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ENTROPY OF KILLED-RESURRECTED STATIONARY MARKOV
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Abstract

We consider a strictly substochastic matrix or a stochastic matrix with absorbing states.
By using quasi-stationary distributions we show that there is an associated canonical
Markov chain that is built from the resurrected chain, the absorbing states, and the hit-
ting times, together with a random walk on the absorbing states, which is necessary
for achieving time stationarity. Based upon the 2-stringing representation of the resur-
rected chain, we supply a stationary representation of the killed and the absorbed chains.
The entropies of these representations have a clear meaning when one identifies the
probability measure of natural factors. The balance between the entropies of these rep-
resentations and the entropy of the canonical chain serves to check the correctness of the
whole construction.
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1. Introduction

Our starting point is an irreducible strictly substochastic matrix PI on a countable set I. It
defines a killed Markov chain when adding a cemetery that is an absorbing state. One of our
purposes is to explore how we can study the entropy of this chain.

The problem can be posed for a Markov chain that is absorbed in a class of states, which is
not necessarily a singleton. It is in this enlarged setting that we study the entropy. In this study
we use the following concepts:

• the quasi-stationary distribution (QSD) of the matrix PI . It exists and it is unique when
I is finite, and when I is infinite we assume there exists some QSD;

• the Markov chain defined by resurrecting the absorbed chain with the QSD;

• the 2-stringing of the resurrected Markov chain.

In Proposition 1 we show that every QSD defines a canonical stationary distribution asso-
ciated with an absorbed chain. A construction of this associated stationary chain is given in
Proposition 2, showing that it can be recovered from the resurrected chain with the QSD and
some additional random elements: the killing on the orbits, the transition to the absorbing
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states, and a walk on the set of absorbing states. In this chain the absorbing states share the
same transition probabilities.

The 2-stringing of the resurrected Markov chain is used to supply stationary Markov rep-
resentations of the killed and the absorbed Markov chains in an appropriate way, to compute
their entropies and provide a clear interpretation. This is done in Sections 5.1 and 5.2 and in
Propositions 3 and 4. The entropies are interpreted by identifying the probability measure on
the fibers of some natural factors. The entropy of the killed chain is the entropy of the resur-
rected chain plus the entropy of being alive or killed, and in the absorbed case we must add
the entropy of the states where they are absorbed. These additional terms are given by the
Abramov–Rokhlin formula on some factors. We note that since the killed and the absorbed
trajectory are finite, then almost all the orbits of the stationary representations of the killed and
the absorbed Markov chains contain all the killed or absorbed trajectories.

Finally, in Proposition 5 the entropy of the associated stationary chain is decomposed into
the entropies of the absorbed chain and of the walk on the set of absorbing states. This last
element serves to complete the understanding of the stationary representation of the absorbed
chain: it gives the return time to I and the weights of the absorbing states that are necessary for
stationarity. The main parameter of the whole construction is the reciprocal of the mean length
of the walk, which is also the weight of the set of states I and the Perron–Frobenius eigenvalue
of PI ; see the relations (9), (4) and (1).

Before proceeding further, we shall illustrate the associated Markov chain by considering a
simplified model. Towards this end, the states in I will be called observable while the absorb-
ing states will be called reservoirs; a transition from a reservoir to an observable state is called
an outbreak. The dynamics within the reservoirs cannot be observed, it is only seen at the
observable states. In a first approach this occurs in disease epidemics that emerge and disap-
pear in time. A disease may emerge at some location due to human contact with a biological
reservoir of some microorganism, diffuse in some geographical area, and when finished retreat
unseen to some biological reservoir again. In this case the observable states represent the sizes
of the healthy and infected populations in geographic areas, while the reservoirs correspond to
the biological reservoirs of the microorganism. From our result the associated Markov chain
requires a walk over the reservoirs in order to be stationary in time.

As usual, we use the capital letter H for the entropy of a discrete random variable and h for
the entropy of a stationary chain.

Even if it is not usual, we use ‘trajectory’ to refer to a visit of a finite sequence of states,
and ‘orbit’ for a bilateral sequence of states, that is, for a point in a bilateral product space.

2. Killed and absorbed chains

Let PI = (P(i, j) : i, j ∈ I) be an irreducible strictly substochastic matrix on a countable set I.
As usual, we add a state ∂ �∈ I called a cemetery, and the extension of PI to I ∪ {∂} is
denoted by P, which satisfies P(i, ∂) = 1 −∑

j∈I P(i, j) for i ∈ I, and the absorption condition
P(∂, ∂) = 1. Strictly, substochasticity is equivalent to

∑
i∈I P(i, ∂) > 0. By irreducibility the

states in I are transient. The process defined by PI is identified with the chain absorbed at a
unique cemetery ∂ .

The existence of a unique cemetery models the killing when this phenomenon can be inter-
preted similarly for to all states, for instance in extinction where a unique ∂ has a clear meaning.
But there can be several ways of being killed or hitting a boundary, and this is expressed by
the existence of a set of absorbing states which is not necessary a singleton.
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So, we consider a more general situation. Let P = (P(a, b) : a, b ∈ I ∪ E) be a stochastic
matrix on the countable set I ∪ E whose restriction to I is PI = (P(i, j) : i, j ∈ I), and such that
all the states in E are absorbing and are attained from I. This last means that

∑
i∈I P(i, ε) > 0

for every ε ∈ E . We retrieve the one-point absorption when E = {∂}.
Let X = (Xn) be a Markov chain with transition matrix P; it will be called absorbed chain.

By Pa we mean the law of this chain when starting from a ∈ I ∪ E , and Ea denotes the asso-
ciated mean expected value. Let τE = inf{n ≥ 1 : Xn ∈ E} be the first return time to E . If I is
finite, the hypotheses made on the chain imply Pi(τE < ∞) = 1 for all i ∈ I. In the countable
case we assume that Pi(τE < ∞) = 1 for all i ∈ I.

Let X (K) = (Xn : 0 ≤ n < τE ) and X (A) = (Xn : 0 ≤ n ≤ τE ) be, respectively, the killed and
the absorbed trajectory, both starting from X0. The first one finishes when it is killed, and the
second one is stopped at the state where it is absorbed.

2.1. Quasi-stationary distributions

A QSD μ = (μ(i) : i ∈ I) associated with PI is a probability measure μ on I such that
for all i ∈ I, Pμ(Xn = i | τE > n) = μ(i). By writing this equality for n = 1, we check that the
row vector μ	 is a strictly positive left eigenvector of PI properly normalized (the sum of its
components is 1), with eigenvalue γ = Pμ(τE > 1) ∈ (0, 1), that is,

μ	PI = γμ	, with γ =
∑
i,j∈I

μ(i)P(i, j) = Pμ(τE > 1). (1)

It follows that Pμ(τE > k) = γ k for all k ≥ 0. So, if μ is a QSD then the survival time is
Geometric(1 − γ ) distributed; see Lemma 2.2 in [8]. In the finite case there is a unique QSD
(see [4]); it corresponds to the normalized left Perron–Frobenius eigenvector, and γ is the
associated eigenvalue. The properties of QSD depend on the killed trajectory X (K) = (Xn : 0 ≤
n < τE ). In the infinite case QSDs can exist or not (because the positive left eigenvectors can
be of infinite mass), and when they exist there could be more than one (even a continuum of
them). From now on we fix some QSD μ which, as just discussed, exists and is unique in the
finite case and we assume its existence in the infinite case.

Let us give some independence properties between the time of killing and the absorption
state. In Theorem 2.6 in [3] the independence relation Pμ(Xn = i, τE > n) = μ(i)γ n for all i ∈ I
and n ≥ 0 was stated. Let us prove that when starting from μ, the pair (XτE−1,XτE ), consisting
of the last visited state before absorption and the absorption state, is independent of the random
time τE . For n ≥ 1, i ∈ I, and ε ∈ E , we have

Pμ(XτE−1 = i,XτE = ε, τE = n) = Pμ(Xn−1 = i,Xn = ε, τE = n)

= Pμ(Xn = ε |Xn−1 = i)Pμ(Xn−1 = i, τE > n − 1)

= P(i, ε) μ(i) Pμ(τE > n − 1) = P(i, ε) μ(i) γ n−1.

Then, the independence relation follows. We can be more precise: we have

Pμ(XτE−1 = i,XτE = ε) = P(i, ε) μ(i)

(∑
l≥1

γ l−1

)
= P(i, ε) μ(i) (1 − γ )−1.

Since Pμ(τE = n) = (1 − γ )γ n−1, the desired relation holds:

Pμ(XτE−1 = i,XτE = ε, τE = n) = Pμ(XτE−1 = i,XτE = ε)Pμ(τE = n).
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The above computations also show that the exit law of I when starting from μ satisfies

Pμ(XτE = ε) = (1 − γ )−1

(∑
i∈I

μ(i)P(i, ε)

)
,

Pμ(XτE = ε, τE = n) =
(∑

i∈I

μ(i)P(i, ε)

)
γ n−1.

(2)

These properties depend on the absorbed trajectory X (A) = (Xn : 0 ≤ n ≤ τE ).

3. Associated stationary chain

Let ρ = (ρ(a) : a ∈ I ∪ E) be a probability vector. We define the stochastic matrix
Pρ = (Pρ(a, b) : a, b ∈ I ∪ E) by

Pρ(i, b) = P(i, b) if i ∈ I, b ∈ I ∪ E, Pρ(ε, b) = ρ(b) if ε ∈ E, b ∈ I ∪ E .

So, in Pρ the ε-row is Pρ(ε, •) = ρ	 for all ε ∈ E .

Proposition 1. Every QSD μ of PI determines a probability distribution π = (π (a) : a ∈ I ∪ E)
given by

for all ε ∈ E, π (ε) =
∑
i∈I

μ(i)P(i, ε), and for all i ∈ I, π (i) = γμ(i), (3)

which is a stationary distribution of the matrix Pπ = (Pπ (a, b) : a, b ∈ I ∪ E). In a reciprocal
way, every distribution π̃ that satisfies π̃	 = π̃	Pπ̃ is defined by a QSD μ as in (3). So, if
PI has a unique QSD (as in the finite case) then there is a unique distribution π that satisfies
π	 = π	Pπ .

Proof. The QSD μ satisfies μ	PI = γμ	 with γ ∈ (0, 1) and
∑

i∈I μ(i) = 1. The vector π is
a probability distribution because, from (3) and (1), π (I) =∑

i∈I π (i) and π (E) =∑
ε∈E π (ε)

satisfy
π (I) =

∑
i∈I

γμ(i) = γ and π (E) =
∑
i∈I

μ(i)P(i, E) = 1 − γ . (4)

We check that π is stationary for Pπ . For ε ∈ E and j ∈ I we have(
π	Pπ

)
(ε) = π (ε)

∑
δ∈E

π (δ) +
∑
i∈I

π (i)P(i, ε) = π (ε)(1 − γ ) + γπ (ε) = π (ε),

(
π	Pπ

)
( j) = π (j)

∑
ε∈E

π (ε) +
∑
i∈I

π (i)P(i, j) = π (j)(1 − γ ) + γπ (j) = π (j).

Then π	 = π	Pπ holds.
Now we check that a probability distribution π̃ that satisfies π̃	 = π̃	Pπ̃ is necessarily

defined by a QSD μ as in (3). For j ∈ I we have

π̃ (j) = (
π̃	Pπ̃

)
(j) = π̃(j)

∑
δ∈E

π̃ (δ) +
∑
i∈I

π̃ (i)P(i, j),

and so π̃ (j)
(
1 −∑

δ∈E π̃(δ)
)=∑

i∈I π̃ (i)P(i, j). Then, the restriction π̃I = (π̃(i) : i ∈ I) satisfies
γ π̃	

I = π̃	
I PI for some γ . So, π̃I is a strictly positive left eigenvector with finite mass, so
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μ = γ −1π̃I . Then, π̃I = γμ = (π (i) : i ∈ I) is given by the second term in (3). On the other
hand, we have

π̃ (ε) = (
π̃	Pπ̃

)
(ε) = π̃ (ε)

∑
δ∈E

π̃ (δ) +
∑
i∈I

π̃ (i)P(i, ε).

Then, π̃ (ε)
(
1 −∑

δ∈E π̃ (δ)
)=∑

i∈I π̃ (i)P(i, ε), so π̃ (ε)γ = γ
∑

i∈I μ(i)P(i, ε). This gives the
equality π̃(ε) =∑

i∈I μ(i)P(i, ε), so π̃ = π , which finishes the proof. �
From the equality π (I) = γ in (4), we shall use π (I) in what follows to refer to the Perron–

Frobenius eigenvalue of PI .
Observe that (2) can be written as

Pμ(XτE = ε) = π (ε | E) and Pμ(XτE = ε, τE = n) = π (ε | E)(1 − π (I))π (I)n−1.

We denote by X= (Xn) the Markov chain evolving with the transition kernel Pπ and call it
the associated stationary chain. By an abuse of notation we shall denote Pπ by P, and so, from
now on, P(ε, b) = π (b) for all ε ∈ E, b ∈ I ∪ E . All the concepts developed in the absorbed case
depended only on the trajectory X (A) = (Xn : n ≤ τE ), which is equally distributed as (Xn : n ≤
τE ) when starting from X0 =X0 ∈ I. Hence, there is no confusion if we continue denoting by
Pa the law of the chain X starting from a ∈ I ∪ E and by Ea its associated mean expected value.

Since X= (Xn) has transition probability kernel P and stationary distribution π , its entropy
is given by (see Proposition 12.3 in [5], p. 69)

h(X) = −
∑

a∈I∪E
π (a)

∑
b∈I∪E

P(a, b) log P(a, b).

Then,

h(X)=−
∑
δ∈E

π (δ)
∑

a∈I∪E
π (a) log π (a) −

∑
i∈I

π (i)
∑

b∈I∪E
P(i, b) log P(i, b)

=−π (E)
∑
i∈I

π (i) log π (i) − π (E)
∑
δ∈E

π (δ) log π (δ)

−
∑
i,j∈I

π (i)P(i, j) log P(i, j) −
∑

i∈I,δ∈E
π (i)P(i, δ) log P(i, δ). (5)

Further, we will compare this entropy to the entropies of some random sequences appearing
in the chain.

4. Elements of the associated stationary chain

The object of this section is to show how one can retrieve the chain X from the absorbed
trajectories and some walks on the set of absorbing states. To this end, the behavior of the chain
X is first decomposed along its visits to I and to E in a separated way.

4.1. Decoupling the stationary chain

Let τI = inf{n ≥ 1 : Xn ∈ I} be the first return time of X to I. Now, consider the stochastic
matrix Q = (Q(i, j) : i, j ∈ I) given by Q(i, j) = Pi(Xτ I = j). By using that Pε(Xτ I = j) = π (j |
I) = μ(j) for all ε ∈ E, j ∈ I, we get

Q(i, j) =Ei

(
1{Xτ I =j,τI=1}

)
+Ei

(
1{Xτ I =j,τI>1}

)
= P(i, j) + Pi(τI > 1)Pi

(
Xτ I = j | Xτ I−1, τI > 1

)
= P(i, j) + P(i, E)μ(j). (6)
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Let Y= (Yn : n ∈Z) be a Markov chain with transition matrix Q. It is straightforwardly checked
that μ is a stationary measure for Y.

Remark 1. For a substochastic matrix PI the matrix Q = (Q(i, j) = P(i, j) + P(i, E)μ(j) :
i, j ∈ I) was defined in [7] and called the resurrected matrix from PI with distribution μ. It was
a key concept used in [7] to prove the existence of QSD for geometrically absorbed Markov
chains taking values in an infinite countable set.

The chain Y can be constructed as follows. Let 	 = {ξl : l ∈Z} be the ordered sequence
given by

{ξl : l ∈Z} = {n ∈Z : Xn ∈ I} with ξl−1 < ξl , ξ−1 < 0 ≤ ξ0.

Then, (ξl − ξl−1 : l ∈Z) is a renewal stationary sequence with interarrival times distributed
as P(ξl − ξl−1 = •) = Pμ(τI = •), l �= 0. By definition, (Xξl : l ∈Z} is a stationary sequence
distributed as Y= (Yn : n ∈Z), so (Xξl : l ∈Z) is a copy of Y.

The random sequence b = (bl : l ∈Z, l �= 0) defined by bl = 1 if ξl − ξl−1 = 1 and bl = 0 if
ξl − ξl−1 > 1 is a collection of independent and identically distributed (i.i.d.) Bernoulli random
variables, with

P(bl = 1) = π (I) and P(bl = 0) =
∑
i∈I

μ(i)P(i, E) = π (E).

(Recall that π (I) + π (E) = 1). When X0 ∈ I, we find τE = inf{l ≥ 1 : bl = 0}.
Remark 2. Every irreducible matrix stochastic matrix Q with stationary distribution μ can be
written as in (6). In fact, let χ = (χ (i) : i ∈ I) be a non-null vector, χ �= 
0, that satisfies

for all i ∈ I: 0 ≤ χ (i) < 1 and χ (i) ≤ min{Q(i, j)μ(j)−1 : j ∈ I}.
This can be achieved because μ is strictly positive. Define PI = Q − χμ	, so

for all i, j ∈ I: P(i, j) = Q(i, j) − χ (i)μ(j). (7)

To avoid the trivial situation we can assume that the vector χ also satisfies that for every i ∈ I
and for some (or for all) j ∈ I for which Q(i, j) > 0, we have P(i, j) > 0. This allows us to
take χ ensuring that PI is irreducible. From the construction, P(i, j) ∈ [0, 1) and, since χ �= 0,
we get ∑

j∈I

P(i, j) = 1 − χ (i) ∈ (0, 1],
∑
i,j∈I

(1 − P(i, j)) > 0.

Hence, P is strictly substochastic, it is not trivial, and when adding the cemetery ∂ we have
χ (i) = P(i, ∂). So,

μ	P = μ	(Q − χμ	)=
(

1 −
∑
i∈I

μ(i)P(i, ∂)

)
μ	;

that is, μ	 is the Perron–Frobenius left eigenvector of P with eigenvalue π (I) =∑
i,j∈I μ(i)P(i, j) (see (1) and (4)). From (7) it follows that Q(i, j) = P(i, j) + P(i, ∂)μ(j), so

(6) is satisfied.

The restriction of P = Pπ to the absorption states E satisfies

for all ε, δ ∈ E : P(ε, δ) = π (δ), so P(X1 = δ | X0 = ε, X1 ∈ E) = π (δ | E).
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The transition law to an absorbing point after being in Xt−1 = i ∈ I is given by

for all δ ∈ E : P(Xt = δ | Xt ∈ E, Xt−1 = i) = P(i, δ)/P(i, E).

So, if X−1 ∈ I and X0 ∈ E , the total sojourn time at E is τI , and it is distributed as a
Geometric(π (I)). Then, immediately after the entrance to E the chain X makes a walk on
E of length τI − 1 (a quantity that could vanish). To describe it, take G= (Gn : n ∈Z) a
Bernoulli chain with probability vector π (• | E). Let us consider the finite random sequence
V = (Gl : 1 ≤ l < τI) (with V empty if τI = 1), which is distributed as

P(V = ∅) = P(τI = 1) = π (I), (8)

P(V = (δ1, . . . , δk−1)) = P(G1 = δ1, . . . , Gk−1 = δk−1, τI = k)

=
(

k−1∏
l=1

π (δl | E)

)
π (E)k−1π (I) =

(
k−1∏
l=1

π (δl)

)
π (I)

for k ≥ 2, (δ1, . . . , δk−1) ∈ Ek−1.

Notice that the last equality also holds when τI = k = 1 because an empty product satisfies∏k−1
l=1 = 1. We have (Xt, 1 ≤ t < τI | X−1 ∈ I, X0 ∈ E) ∼ V , and V is called a walk on E . Note

that τI − 1 | τI > 1 is equally distributed as τI . The exit law from E is P(Xτ I ∈ •) ∼ μ. In fact,
for all δ ∈ E ,

Pδ(Xτ I = i) =
∑
ε∈E

Pδ(Xτ I = i, Xτ I−1 = ε)

=
∑
ε∈E

Pδ(Xτ I−1 = ε)Pε(X1 = i | X1 ∈ I)

= π (i | I) = μ(i).

Notice that
for all δ ∈ E, Eδ(τI) = π (I)−1. (9)

We consider a sequence of i.i.d. random variables T = (Tn : n ∈Z) which are
Geometric(π (I)) − 1 distributed, that is, P(Tn = l) = π (I)(1 − π (I))l for l ≥ 0. The construc-
tion of i.i.d. walks on E is made as follows. One takes an increasing sequence of times
(tn : n ∈Z) with tn+1 − tn = Tn and such that tn → ∞ if n → ∞ and tn → −∞ if n → −∞. We
define Vn = (Gtn , . . . , Gtn+1−1) = (Vn

1 , . . . , Vn
Tn

). So, V= (Vn : n ≥Z) is an i.i.d. sequence of
walks on E . The walk Vn is empty when Tn = 0.

When E = {∂} is a singleton, we have π (∂ | E) = 1, G= (Gn : n ∈Z) is the orbit with the
unique symbol Gn = ∂ for all n, and the random sequence V = (Gl : 1 ≤ l < τI) has the symbol
∂ repeated |τI | − 1 times.

4.2. Retrieving the stationary chain

Let Y= (Yn : n ∈Z) be a stationary Markov chain with transition matrix Q. Our purpose is
to construct a copy of X from Y by adding a series of random operations.

Let P be a probability measure governing the law of Y when it starts from the stationary
distribution μ, the sequences G, T and so V, and also the random element BI,I and D

I defined
below.
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Let BI,I = (
(Bi,j

l : l ∈Z); i, j ∈ I
)

be an independent array of Bernoulli random variables such

that Bi,j
l ∼ Bi,j for l ∈Z, where

P(Bi,j = 1) = θi,j, P(Bi,j = 0) = θ i,j = 1 − θi,j,

θi,j = P(i, j)

P(i, j) + P(i, E)μ(j)
= P(i, j)

Q(i, j)
.

(10)

Let τ∂ = inf{l ≥ 1 : BYl−1,Yl
l = 0}. For k ≥ 1, i0, . . . , ik−1 ∈ I we have

P(Y0 = i0, Y1 = i1, . . . , Yk−1 = ik−1, τ∂ = k)

= μ(i0)

(
k−1∏
l=1

P(il−1, il)

)(∑
j∈I

P(ik−1, E)μj

)
= μ(i0)

(
k−1∏
l=1

P(il−1, il)

)
P(ik−1, E).

Hence, the sequence Y (K) = (Yl : 0 ≤ l < τ∂ ) is distributed as a killed chain X (K) starting
from μ.

Now take an independent array D
I = (

(Di
l : l ∈Z); i ∈ I

)
of random variables taking values

in E and with law
for all δ ∈ E : P(Di

l = δ) = P(i, δ)/P(i, E). (11)

For k ≥ 1, i0, . . . , ik−1 ∈ I, δ ∈ E we set

P(Y0 = i0,Y1 = i1, . . . , Yk−1 = ik−1, Dik−1
k = δ, τ∂ = k)

= μ(i0)

(
k−1∏
l=1

P(il−1, il)

)
P(ik−1, E)

(
P(ik−1, δ)/P(ik−1, E)

)

= μ(i0)

(
k−1∏
l=1

P(il−1, il)

)
P(ik−1, δ).

Then, the sequence Y (A) = (Y0, . . . , Yτ∂−1, D
Yτ∂−1
τ∂

) is distributed as an absorbed chain X (A)

starting from μ.
Let us construct a chain S

s = (Ss
t : t ∈Z) from Y, BI,I , DY , G, and T (and so also V), having

the same distribution as X. First, define a random sequence S= (St : t ∈Z) as follows. We set
T0 = 0, S0 = Y0 (so S0 = Y0 ∈ I is distributed as μ), and:

I In a sequential way on n ≥ 0 we make the following construction. Assume at step n that
Tn has been defined; then, put STn = Yn and go to step n + 1.

Ia If BYn,Yn+1
n+1 = 1 put Tn+1 = Tn + 1, STn+1 = Yn+1, and go to step n + 2.

Ib If BYn,Yn+1
n+1 = 0 put Tn+1 = Tn + Tn + 2, define STn+1 = DYn

n+1, STn+1+l = Vn
l for 1 ≤

l < Tn (it is empty when Tn = 0), and STn+1 = Yn+1. Then continue with step n + 2.

II Similarly, in a sequential way on n < 0 we make the following construction for step n:

IIa If BYn,Yn+1
n+1 = 1 put Tn = Tn+1 − 1, STn = Yn, and continue with step n − 1.

IIb If BYn,Yn+1
n+1 = 0 put Tn = Tn+1 − (Tn + 2), STn+1 = DYn

n+1, STn+1+l = Vn
l for 1 ≤ l < Tn,

and STn = Yn. Then, continue with step n − 1.
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Let S= (St : t ∈Z) be the random sequence resulting from this construction, and let
T= (Tn : n ∈Z), recalling that T0 = 0. By an abuse of notation we also denote by T=
{Tn : n ∈Z} the set of these values. By definition, T= {t ∈Z : St ∈ I} is the set of random points
where S is in I. In Proposition 2 we will prove that (S,T) is a regenerative process (see [2],
pp. 169–170), that is, for all l ≥ 0 the process (S•+Tl : • ≥ 0; Tn+1 − Tn, n ≥ l) has the same
distribution as (S• : • ≥ 0; Tn+1 − Tn, n ≥ 0) and it is independent of (Tn : n ≤ l).

The cycles of this regenerative process, (STn, . . . , STn+1−1), n ∈Z, are i.i.d., and so all of
them have the same distribution as (S0, . . . , ST1−1). By shifting the process S

s = (Ss
t : t ∈Z)

by a random time chosen uniformly in {0, . . . , T1 − 1} and conditionally independent of the
rest of the process, we get a stationary process Ss = (Ss

t : t ∈Z) (see Theorem 6.4 in [2]). So,
S

s
0 takes values in I ∪ E and, from the next proposition, it is distributed as π (different than S0,

which takes values in I and is distributed as μ).

Proposition 2. The process (S,T) is regenerative and the associated stationary process Ss is
equally distributed as X.

The proof can be found in the Appendix.

5. Stationary representation of killed and absorbed chains

The stationary Markov chain Y= (Yn : n ∈Z) with transition matrix Q and stationary
distribution μ has entropy

h(Y) = −
∑
i∈I

μ(i)
∑
j∈I

Q(i, j) log Q(i, j). (12)

To get stationary representations of the killed and the absorbed chains we will use the
2-stringing form of Y. Let us recall this notion. Consider the stochastic matrix Q[2], with set
of indexes I2, given by Q[2]((i, j), (l, k)) = Q(l, k)1(l = j). Its stationary distribution satisfies
ν((i, j)) = μ(i)Q(i, j) for (i, j) ∈ I2. In fact, by using

∑
i∈I μ(i)Q(i, j) = μ(j) we get∑

(i,j)∈I2

ν((i, j))Q[2]((i, j), (l, k)) =
∑
i∈I

μ(i)Q(i, l)Q(l, k) = μ(l)Q(l, k) = ν((l, k)).

The stationary chain Y
[2] = ((Y1

n , Y2
n ) : Y2

n−1 = Y1
n , n ∈Z) evolving with Q[2] is the 2-stringing

of Y. We write it by Y
[2] = ((Yn−1, Yn) : n ∈Z). It is well known that it is conjugated to

Y by the (1-coordinate) mapping ϒ(((Yn−1, Yn) : n ∈Z)) = (Yn : n ∈Z). (This property was
stated in a general form in Lemma 1 in [9].) Being conjugated by a mapping means that the
mapping is one-to-one, measure preserving, and commutes with the shift on Z. Since ϒ is
clearly one-to-one and shift commuting, we only check that it is measure preserving. Taking
(il : l = 0, . . . , k) ∈ Ik+1, we have

P((Yn−1, Yn) ∈Y
[2] : (Yl−1, Yl) = (il−1, il) : l = 1, . . . , k)

= μ(i0)Q(i0, i1)
k−1∏
l=1

Q(il, il+1) = P(Yl = il : l = 0, . . . , k).

The orbits ((Yn−1, Yn) : n ∈Z) ∈Y
[2] can be identified with the orbits (Yn : n ∈Z) ∈Y.
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5.1. The killed chain

The stationary representation of the killed chain will be a stationary Markov chain on the
set of states I2 × {0, 1} = {(i, j, a) : (i, j) ∈ I2, a ∈ {0, 1}}. Prior to defining the transition matrix
we introduce the function

ϕ(i, j, a) = (θi,j1(a = 1) + θ i,j1(a = 0)), (i, j, a) ∈ I2 × {0, 1}.

The transition matrix K = (
K((i, j, a), (l, k, b)) : (i, j, a), (l, k, b) ∈ I2 × {0, 1}) is defined by

K((i, j, a), (l, k, b)) =
⎧⎨⎩ 0 if l �= j,

Q(l, k)ϕ(l, k, b) = P(l, k)1(b = 1) + P(l, E)μ(k)1(b = 0) if l = j.

It can be straightforwardly checked that this is a stochastic matrix: we claim its stationary
distribution ζ = (ζ (i, j, a) : (i, j, a) ∈ I2 × {0, 1}) is given by

ζ (i, j, a) = μ(i)Q(i, j)ϕ(i, j, a)

= μ(i)P(i, j)1(a = 1) + μ(i)P(i, E)μ(j)1(a = 0). (13)

By using
∑

i∈I μ(i)Q(i, l) = μ(l) we get the desired property,

∑
(i,j,a)∈I2×{0,1}

ζ (i, j, a)K((i, j, a), (l, k, b)) =
(∑

i∈I

μ(i)Q(i, l)

)
Q(l, k)ϕ(l, k, b)

= μ(l)Q(l, k)ϕ(l, k, b) = ζ (l, k, b),

so the claim follows.
The killed Markov chain presented in its stationary form is denoted

Y
(K) = ((Yn−1, Yn, Bn) : n ∈Z);

it takes values in I2 × {0, 1} and has transition matrix K. The component Bn is called the label
at n. By hypothesis, PI is irreducible so also K is an irreducible matrix. Then, the Markov shift
Y

(K) is ergodic (see Proposition 8.12 in [5]).
It is straightforward to check that the mapping

ϒ (K) : Y(K) →Y, ((Yn−1, Yn, Bn) : n ∈Z) → (Yn : n ∈Z) (14)

is a factor, which means that it is measure preserving and commutes with the shift on Z.

Remark 3. We show that Y(K) models the killed Markov chain. Let N = {n ∈Z : Bn = 0} and
write it as N = {nl : l ∈Z}, where nl is increasing with l, and n−1 < 0 ≤ n0. Note that
P(0 ∈N ) = π (E).

The orbit ((Yn−1, Yn, Bn) : n ∈Z) in Y
(K) is denoted in the simpler form ((Yn−1, Bn) :

n ∈Z) and we can divide it into the disjoint connected pieces (Y, B)(K)
l = ((Ynl , 1), . . . ,

(Ynl+1−2, 1), (Ynl+1−1, 0)), l ∈Z. The component Ynl is distributed with law μ for all l, and

one can identify (Y, B)(K)
l with Y (K)

l = (Ynl , . . . , Ynl+1−1), a piece of the orbit Y = (Yn : n ∈Z)
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starting from μ at nl and killed at nl+1 − 1. We get that Y (K)
l ∼X (K) for all l �= −1 when X (K)

starts from μ. In fact, for s ≥ 0, i0, . . . , is ∈ I, we have

P
(
X (K) = (i0, . . . , is)

)= μ(i0)
s−1∏
r=0

P(ir, ir+1)P(is, ∂)

= μ(i0)

(
s−1∏
r=0

Q(ir, ir+1)θir,ir+1

)(∑
m∈I

Q(is, m)θ is,m

)
= P

(
Y (K)

l = (i0, . . . , is)
)

.

Let s ≥ 0, (i0, . . . , is) ∈ Is+1. For almost all the orbits Y ∈Y
(K) we have

P(n0 = 0, Y (K)
0 = (i0, . . . , is)) = π (E)μ(i0)

s−1∏
r=0

P(ir, ir+1)P(is, ∂) > 0.

Since the killed trajectories are finite, the class of killed trajectories is countable. From the
ergodic theorem, and since Y

(K) is ergodic, it follows that P-a.e. (almost everywhere) the
orbits of Y(K) contain all the killed trajectories of the chain.

The entropy of the killed chain satisfies

h
(
Y

(K))= −
∑

(i,j)∈I2

μ(i)Q(i, j)
∑
k∈I

Q(j, k)
(
θj,k log (Q(j, k)θj,k) + θ j,k log (Q(j, k)θ j,k)

)
= −

∑
(j,k)∈I2

μ(j)Q(j, k) log Q(j, k) +
∑

(j,k)∈I2

μ(j)Q(j, k)H(Bj,k),

where H(Bj,k) = − (
θj,k log θj,k + θ j,k log θ j,k

)
is the entropy of the Bernoulli random variable

Bj,k. Hence,

h
(
Y

(K))= h(Y) + �(B), with �(B) =
∑

(j,k)∈I2

μ(j)Q(j, k)H(Bj,k). (15)

The quantity �(B) = h(Y(K)) − h(Y) is the conditional entropy of Y(K) given the factor Y
(see Lemma 2 and Definition 3 in [6]). To be more precise, given an orbit Y = (Yn : n ∈Z)
of Y, the fiber given by (14) satisfies (ϒ (K))−1{Y} = {(BYn−1,Yn

n : n ∈Z) ∈ {0, 1}Z}, and it is
distributed as a sequence of independent Bernoulli variables given by (10); we denote it by
(P)Y. We have

H(P)Y

(
BY0,Y1

1

)= −(θY0,Y1 log θY0,Y1 + θY0,Y1 log θY0,Y1

)
. (16)

Let us summarize the results on the entropy of Y(K).

Proposition 3. The entropy of the stationary representation Y
(K) of the killed chain satisfies

h
(
Y

(K))= h(Y) + �(B), (17)

�(B) =
∫

H(P)Y

(
BY0,Y1

1

)
dP(Y) =

∑
(i,j)∈I2

μ(i)Q(i, j)H(Bi,j),
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and

h
(
Y

(K))= −
∑
i∈I

μ(i)P(i, E) log P(i, E) − (1 − π (I))
∑
j∈I

μ(j) log μ(j) (18)

−
∑
i,j∈I

μ(i)P(i, j) log P(i, j).

Proof. From (15) and (16), and by using the Markov property, we retrieve the Abramov–
Rokhlin formula (see [1,6]),

�(B) = h
(
Y

(K))− h(Y) =
∫

H(P)Y

(
BY0,Y1

1

)
dP(Y) =

∑
i,j∈I

μ(i)Q(i, j)H(Bi,j).

This gives (17). The only thing left to prove is (18). By using∑
i∈E

μ(i)P(i, E) = 1−π (I),
∑
j∈I

P(i, j) = 1−P(i, E),
∑
i∈I

μ(i)P(i, j) = π (I)μ(j)

and (12), we get

�(B) = −
∑
i,j∈I

μ(i) (P(i, E)μ(j) log (P(i, E)μ(j)) + P(i, j) log P(i, j))

+
∑
i,j∈I

μ(i)Q(i, j) log Q(i, j)

= −
∑
i∈I

μ(i)P(i, E) log P(i, E) − (1 − π (I))
∑
j∈I

μ(j) log μ(j)

+
∑
i,j∈I

μ(i)P(i, j) log P(i, j) − h(Y).

This shows (18). �
Remark 4. From (13) we get that there are, in mean,∑

i,j∈I

ζ (i, j, 1) =
∑
i,j∈I

μ(i)P(i, j) = π (I)

sites in Z where Y
(K) has made a transition with label 1, and a mean∑

i,j∈I

ζ (i, j, 0) =
∑
i∈I

μ(i)P(i, E) = π (E)

of sites in Z where Y
(K) has made a transition with label 0, and so resurrects with

distribution μ.

5.2. The absorbed chain

Let us construct a stationary representation of the absorbed chain in a similar way
as we did for the killed chain. Define E∗ = E ∪ {o} with o �∈ E ∪ I. The absorbed chain
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will take values on the set of states I2 × E∗ = {(i, j, δ) : i ∈ I, j ∈ I, δ ∈ E∗}. The matrix
A= (A((i, j, δ), (l, k, ε)) : (i, j, δ), (l, k, ε) ∈ I2 × E) defined by

A((i, j, δ), (l, k, ε)) =

⎧⎪⎪⎨⎪⎪⎩
0 if l �= j,

Q(l, k)θl,k = P(l, k) if l = j, ε = o,

Q(l, k)θ l,kP(l, ε)/P(l, E) = P(l, ε)μ(k) if l = j, ε ∈ E

is a stochastic matrix whose stationary distribution η = (η(i, j, δ) : (i, j, r) ∈ I2 × E∗) is
given by

η(i, j, δ) = μ(i)Q(i, j)
(
θi,j1(δ = o) + θ i,jP(i, δ)/P(i, E)1(δ ∈ E)

)
= μ(i)P(i, j)1(δ = o) + μ(i)P(i, δ)μ(j)1(δ ∈ E).

In fact, since
∑

δ∈E∗ (θi,l1(δ = o) + θ i,lP(i, δ)/P(i, E)1(δ ∈ E)) = 1, we get the stationarity
property ∑

(i,j,δ)∈I2×E∗
η(i, j, δ)A((i, j, δ), (l, k, ε))

=
(∑

i∈I

μ(i)Q(i, l)

)
Q(l, k)

(
θl,k1(ε = o) + θ l,kP(l, ε)/P(l, E)1(ε ∈ E)

)
= μ(l)Q(l, k)

(
θl,k1(ε = o) + θ l,kP(l, ε)/P(l, E)1(ε ∈ E)

)= η(l, k, ε).

We denote by Y
(A) = ((Yn−1, Yn, D∗

n) : n ∈Z) the absorbed Markov chain presented in its
stationary form, and taking values in I2 × E∗ with transition matrix A. Since A is irreducible,
the Markov shift Y(A) is ergodic.

It is straightforward to check that the mapping

ϒ (A) : Y(A) →Y
(K), ((Yn−1, Yn, D∗

n) : n ∈Z) → (Yn−1, Yn, Bn) : n ∈Z)

with Bn = 1(D∗
n = o) (19)

is a factor between Y
(A) and Y

(K).

Remark 5. Let us see that the stationary chain Y
(A) models the absorbed Markov chain. First,

denote N ∗ = {n ∈Z : D∗
n ∈ E} and write it by N ∗ = {nl : l ∈Z} with nl increasing in l and n−1 <

0 ≤ n0. We have P(0 ∈N ∗) = π (E). Similarly to Remark 3, an orbit ((Yn−1, Yn, D∗
n) : n ∈Z) of

Y
(A) is denoted in the form ((Yn−1, D∗

n) : n ∈Z) and is partitioned into the disjoint connected
pieces

(Y, D∗)(A)
l = ((Ynl , o), . . . , (Ynl+1−2, o), (Ynl+1−1, D∗

nl+1
)) with l ∈Z.

The component Ynl is distributed with law μ for all l, and we can identify (Y, D∗)(A)
l with

Y (A)
l = (Ynl , . . . , Ynl+1−1, D∗

nl+1
) starting from μ. Since the events {n ∈Z : D∗

n ∈ E} have the

same distribution as {n ∈Z : Bn = 0} in Y
(K), it can be checked that, for all l �= −1, Y (A)

l ∼X (A),
where X (A) starts form μ. In fact, for s ≥ 0, i0, . . . , is ∈ I, ε ∈ E , we have

P
(
X (A) = (i0, . . . , is, ε)

)= μ(i0)

(
s−1∏
r=0

P(ir, ir+1)

)
P(is, ε) = P

(
Y (A)

l = (i0, . . . , is, ε)
)
.
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Let s ≥ 0, (i0, . . . , is) ∈ Is+1, ε ∈ E . For almost all the orbits Y ∈Y
(A) we have

P
(
n0 = 0, Y (A)

0 = (i0, . . . , is, ε)
)= π (E)μ(i0)

s−1∏
r=0

P(ir, ir+1)P(is, ε) > 0.

Since the absorbed trajectories are finite, the class of absorbed trajectories is countable. Then,
since Y

(A) is ergodic, we get from the ergodic theorem that, P-a.e., the orbits of Y(A) contain
all the absorbed trajectories of the chain.

The entropy of the absorbed chain satisfies

h
(
Y

(A))= −
∑

(i,j)∈I2

μ(i)Q(i, j)
∑
k∈I

Q(j, k)θj,k log (Q(j, k)θj,k)

−
∑

(i,j)∈I2

μ(i)Q(i, j)
∑

k∈I,ε∈E
Q(j, k)θ j,kP(j, ε)/P(j, E) log (Q(j, k)θ j,kP(j, ε)/P(j, E))

= −
∑

(j,k)∈I2

μ(j)Q(j, k) log Q(j, k) −
∑
j∈I

μ(j)Q(j, k)(θj,k log θj,k + θ j,k log θ j,k)

−
∑

(j,k)∈I2

μ(j)Q(j, k)θ j,k

∑
ε∈E

P(j, ε)/P(j, E) log (P(j, ε)/P(j, E)).

Then,

h
(
Y

(A))= h
(
Y

(K))+
∑
i∈I

μ(i)P(i, E)H(Di), where

H(Di) = −
∑
δ∈E

P(i, δ)/P(i, E) log (P(i, δ)/P(i, E)) (20)

is the entropy of a random variable in E distributed as the transition probability from i ∈ I to a
state conditioned to be in E . Note that the above expression can also be written as

h
(
Y

(A))= h
(
Y

(K))+
∑
i∈I

μ(i)(P(i, E)H(Di) + P(i, I)H(o)),

H(o) = 0 being the entropy of a constant.
Define

�(D) = h
(
Y

(A))− h
(
Y

(K))=
∑
i∈I

μ(i)P(i, E)H(Di).

This is the conditional entropy of Y
(A) given the factor Y

(K). To see this, take an orbit
Y (K) = ((Yn−1, Yn, Bn) : n ∈Z) of Y

(K). The fiber given by (19) satisfies (ϒ (A))−1{Y (K)} =
{(DYn,Bn

n : n ∈Z) ∈ (E∗)Z} with DYn,Bn
n ∈ E when Bn = 0 and DYn,Bn

n = o when Bn = 1. These
variables are independently distributed as a Bernoulli DYn

n given in (11) if Bn = 0 and the
constant variable o if Bn = 1. This probability measure is denoted by (P)Y(K) . Thus,

H(P)Y(K)

(
DY0,B0

0

)=
{−∑

δ∈E P(Y0, δ)/P(Y0, E) log (P(Y0, δ)/P(Y0, E)) if B0 = 0,

0 if B0 = 1.
(21)
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Proposition 4. The entropy of the stationary representation Y
(A) of the absorbed chain

satisfies

h
(
Y

(A))= h
(
Y

(K))+ �(D) with

�(D) =
∫

H(P)Y

(
DY0,B0

0

)
dP(Y (K)) = −

∑
i∈I

μ(i)P(i, E)H(Di)

and

h
(
Y

(A))= −(1 − π (I))
∑
j∈I

μ(j) log μ(j) −
∑
i,j∈I

μ(i)P(i, j) log P(i, j)

−
∑

i∈I,δ∈E
μ(i)P(i, δ) log P(i, δ).

(22)

Proof. From (20) and (21), and by using the Markov property,

�(D)=
∫

H(P)Y(A)

(
DY0,B0

0

)
dP(Y (K))

=−
∑
i∈I

μ(i)P(i, E)
∑
δ∈E

P(i, δ)/P(i, E) log (P(i, δ)/P(i, E))

=−
∑

i∈I,δ∈E
μ(i)P(i, δ) log P(i, δ) +

∑
i∈I

μ(i)P(i, E) log P(i, E).

We then use (18) to get the expression in (22). �
Remark 6. Let X (A) be a trajectory of an absorbed chain, with initial distribution μ in I and
finishing after it hits E . It has length τE and it corresponds to an absorbed trajectory of length
τE − 1 in the process Y

(A) with alphabet I2 × E∗. In fact, if (X1, . . . ,Xl, ε) with X1, . . . ,

Xl ∈ I, ε ∈ E , is an absorbed trajectory of length l + 1, then the associated trajectory in Y
(A)

is given by ((Xr,Xr+1, o), r = 1, . . . , l − 1;(Xl, j∗, ε)) of length l. Here, j∗ ∈ I is an element
chosen with distribution μ and it is the starting state of the next absorbed trajectory.

5.3. Entropy balance

The associated stationary chain X with transition kernel P = Pπ is retrieved from the sta-
tionary chain Y with transition kernel Q, a collection of Bernoulli variables BI,I that assign 0
or 1 between the connections of Y, a set of Bernoulli variables D

I giving the transition from
I to E , and a family of walks V whose components are Bernoulli variables (Gn) distributed as
π (• | E). The length of these walks is Geometric(π (I)) − 1 distributed, and so they could be
empty.

It is straightforward to prove the following equality, relating h(X) given by (5) to the
entropies of the elements forming the chain X.

Proposition 5.

h(X) = π (I)h
(
Y

(A))+ π (E)2h(G) + π (I)π (E) log π (I) + π (E)2 log π (E).
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Below we discuss the way this equality appears. We have reduced the elements forming the
chain X to only two, the absorbed chains Y

(A) and the walks V with Bernoulli variables Gn.
From (22), we have

h
(
Y

(A))= − π (E)
∑
j∈I

μ(j) log μ(j) −
∑
i,j∈I

μ(i)P(i, j) log P(i, j)

−
∑

i∈I,δ∈E
μ(i)P(i, δ) log P(i, δ),

and the Bernoulli sequence G= (Gn) has entropy

h(G) = −
∑
δ∈E

π (δ | E) log π (δ | E) = −π (E)−1
∑
δ∈E

π (δ) log π (δ) + log π (E).

Taking some N, we divide the sequence (X1, . . . , XN) into the set of absorbed chains X (A)

and the set of nonempty walks V in E . The proportion of elements in I approaches π (I)
as N → ∞. Therefore, from (9) we obtain that for every time t ∈T there are in mean∑

i∈I μ(i)P(i, E)(π (I)−1 − 1) points belonging to a walk in E . Since the set of points in T

has a weight π (I), we obtain that the proportion of points in Z belonging to a walk in E is
π (I) ·∑i∈I μ(i)P(i, E)(π (I)−1 − 1) = π (E)2. Hence, the proportion of sites in (X1, . . . , XN)
with symbols in G arising from a walk V in E approaches π (E)2 as N → ∞. We have

π (E)2h(G) = −π (E)
∑
δ∈E

π (δ) log π (δ) + π (E)2 log π (E). (23)

Let us compute π (I)h
(
Y

(A)
)
. Since μ(i) = π (i)/π (I) for i ∈ I, we have

−π (I)
∑
j∈I

μ(j) log μ(j) = −
∑
j∈I

π (j) log π (j) + π (I) log π (I),

and so, using (22), we get

π (I)h
(
Y

(A))=−π (E)
∑
j∈I

π (j) log π (j) + π (E)π (I) log π (I)

−
∑
i,j∈I

π (i)P(i, j) log P(i, j) −
∑

i∈I,δ∈E
π (i)P(i, δ) log P(i, δ).

Then, the equality given in Proposition 5 has been proved:

h(X) − (π (E)2h(G) + π (E)2 log π (E)) = π (I)h
(
Y

(A))+ π (E)π (I) log π (I).

The term π (I)π (E) log π (I) has an origin similar to the last term in (23). In fact, from
Remark 4, the resurrection weights μ(j), j ∈ I, appear with frequency π (E) in the sequence Y

because this occurs at the sites where there is a jump to E . Since the sequence Y appears with
frequency π (I), then the term −∑

i∈I μ(i) log μ(i) appears with frequency π (I)π (E). Hence,
as in (23), we have

−π (I)π (E)
∑
i∈I

μ(i) log μ(i) = −π (E)
∑
i∈I

π (i) log π (i) + π (I)π (E) log π (I),
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and since −π (E)
∑

i∈I π (i) log π (i) is the term present in (5), the extra term given by
π (I)π (E) log π (I) appears.

Remark 7. From Remark 6 the length of an absorbed trajectory in Y
(A) with alphabet I2 × E∗

is the same as the number of elements in I of an absorbed trajectory X (A) starting from μ and
absorbed when hitting E (this is of length |X (A)| − 1, which counts the visited sites in I, but not
the one containing the absorbing state). Since the entropy of a system is the gain of entropy per
unit of time, the proportion of symbols given the entropy h(Y(A)) is π (I). This explains why
the term π (I)h(Y(A)) appears.

Appendix A. Proof of Proposition 2

Let us first show that the process (S,T) is regenerative. Consider a pair of sequence
(a(u) : u ≥ 0) and (b(1), . . . , b(m)) taking values in I ∪ E and such that a(0) ∈ I. From the
construction of S, we have

P(STn+l = b(l), l = 1, . . . , m | STn−u = a(u), u ≥ 0) (24)

= P(STn+l = b(l), l = 1, . . . , m | STn = a(0)).

Also, we have that (STl : l ∈Z) is equally distributed as (Yn : n ∈Z). Then,

STn ∼ μ for all n ∈Z. (25)

This proves that (S,T) is regenerative. Therefore, by making a shift on a random number
of sites U uniformly chosen in {0, . . . , T1 − 1} we define a stationary process S

s given by
S

s
t = St+U for t ∈Z.

Since the random number U only depends on the length T1, there is regeneration at the
random times in T= {t ∈Z : Ss

t ∈ I} (see relations (24) and (25)). Hence, for all t ∈Z, b ∈ I ∪ E ,
and (a(u) : n ≤ t) taking values in I ∪ E , we have

P(Ss
t+1 = b | bSs

u = a(u), u ≤ t) = P(Ss
t+1 = b | Ss

u = a(u), u = t, . . . , t − r), (26)

where r ≥ 0 is the first nonnegative element such that a(t − r) ∈ I.
Again using that U only depends on T1, we get that, for all t ∈Z and all a, b ∈ I ∪ E ,

P(Ss
t+1 = b | Ss

t = a) = P(Su+1 = b | Su = a) for u �= −1, 0.

We avoid taking u = 1 or u = 0 because S0 only takes values in I.
Let us compute P(t ∈T). It suffices to calculate P(t �∈ T)/P(t ∈T). From (9) we get that, for

every time t ∈T, there are in mean∑
i∈I

μ(i)
∑
j∈I

Q(i, j)θ i,jπ (I)−1 =
∑
i∈I

μ(i)P(i, E)π (I)−1

points in Z \T. Then, from (4) we find

P(t �∈T)/P(t ∈T) =
∑
i∈I

μ(i)P(i, E)π (I)−1 = π (E)/π (I).

We conclude that
P(t ∈T) = π (I) and P(t �∈T) = π (E). (27)
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Hence, P(Ss
t ∈ I) = π (I) and P(Ss

t ∈ E) = π (E).
Let i, j ∈ I. We have P(Ss

t = i | Ss
t ∈ I) = P(S0 = i | S0 ∈ I) = μ(i), and so, using (27), we get

P(Ss
t = i) = μ(i)P(Ss

t ∈ I) = μ(i)π (I) = π (i). (28)

Let i, j ∈ I. From the definition of θi,j in (10) we get

P(Ss
t+1 = j | Ss

t = i) = θi,jQ(i, j) = P(i, j). (29)

We have
∑

j∈I P(Ss
t+1 = j | Ss

t = i) = 1 − P(i, E), so P(Ss
t+1 ∈ E | Ss

t = i) = P(i, E). Then, Ss
t = i

jumps to E with probability P(i, E), and the jump to some particular state δ ∈ E is done with
probability

P(Ss
t+1 = δ | Ss

t = i) = P(i, E)P(i, δ)/P(i, E) = P(i, δ). (30)

Let δ, ε ∈ E . We have P(δ, E) = P(V �= ∅) = π (E), so

P(Ss
t+1 = ε | Ss

t = δ) = π (ε | E)P(δ, E) = π (ε | E)π (E) = π (ε). (31)

Then, by using previous relations and (3), we get

P(Ss
t = δ) =

∑
i∈I

P(Ss
t−1 = i, Ss

t = δ) +
∑
ε∈E

P(Ss
t−1 = ε, Ss

t = δ)

=
∑
i∈I

P(Ss
t = δ | Ss

t−1 = i)π (i) +
∑
ε∈E

P(Ss
t = δ | Ss

t−1 = ε)P(Ss
t−1 = ε)

=
∑
i∈I

P(i, δ)π (i) + π (δ)
∑
ε∈E

P(Ss
t−1 = ε)

=
∑
i∈I

P(i, δ)μ(i)π (I) + π (δ)π (E) = π (δ)(π (I) + π (E)) = π (δ).

Again from the construction of the process S, it follows that

P(Ss
t+1 = ε | Ss

t = δ, Ss
u = a(u), u < t) = P(Ss

t+1 = ε | Ss
t = δ) = π (ε). (32)

Now, let us compute P(Ss
t = ε, Ss

t+1 = j) for ε ∈ E , j ∈ I. The pair (Ss
t = ε, Ss

t+1 = j) has its

origin in some pair (Ys = i, Ys+1 = j) satisfying Bi,j
s+1 = 0, for some i ∈ I. Then, by summing

over all states i ∈ I and all pieces of trajectories in E that are built between i and j, and by using
(30), (8), and (3), we get

P(Ss
t = ε, Ss

t+1 = j) =
∑
i∈I

∑
l≥1

P(Ss
t−l = i; Ss

t−u∈E, 1≤u<l; Ss
t = ε, Ss

t+1 = j)

=
∑
i∈I

μ(i)μ( j)P(i, ε)π (I) +
∑
i∈I

μ(i)μ( j)
∑

l≥1;δ1,...,δl∈E

(
P(i, δ1)

l−1∏
k=2

π (δk)

)
π (ε)π (I)

= π (ε)π (I)μ(j) = π (ε)π (j). (33)

From relations (28)–(33) we get that the bivariate marginals of the stationary chains X= (Xn)
and S

s = (Ss
n) are the same. So, we will finish by proving that Ss satisfies the Markov property.

In view of the regeneration property (26), this will be proven once we show that

P(Ss
t+1 = b | Ss

u = a(u), u = t, . . . , t − r) = P(Xt+1 = b | Xt = a(t)), (34)
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where r ≥ 0 and satisfies a(t − r) ∈ I, a(t − u) ∈ E for u = 1, . . . , r − 1. This was shown for the
case r = 0 in (29) and (30). On the other hand, (32) proves (34) in the case b ∈ E and r > 0. So,
the unique case left to show is b ∈ I and r > 0.

Let i, j ∈ I, r > 0, δu ∈ E for u = 0, . . . , r − 1. Since P(Xt+1 = j | Xt−u = δ0) = π (j), to
achieve the proof of (34), the unique relation that we are left to show is

P(Ss
t+1 = j | Ss

t−u = δu, u = 0, . . . , r − 1, Ss
t−r = i) = π (j).

We have

P(Ss
t+1 = j, Ss

t−u = δu, u = 0, .., r − 1, Ss
t−r = i)

= μ(i)(P(i, j) + P(i, E)μ(j))θi,j
P(i, δ0)

P(i, E)

(
r−1∏
u=1

π (δl)

)
π (I)

= μ(i)P(i, E)μ(j)
P(i, δ0)

P(i, E)

(
r−1∏
u=1

π (δl)

)
π (I)

= μ(i)P(i, δ0)μ(j)

(
r−1∏
u=1

π (δl)

)
π (I),

and

P(Ss
t = i, Ss

t−u = δu : u = 0, . . . , r − 1) =
⎛⎝∑

j∈I

μ(i)P(i, δ0)μ(j)

⎞⎠(r−1∏
u=1

π (δl)

)

= μ(i)P(i, δ0)

(
r−1∏
u=1

π (δl)

)
.

Therefore,

P(Ss
t+1 = j | Ss

t−u = δu, u = 0, . . . , r − 1, Ss
t−r = i) = μ(j)π (I) = π (j).

Then (34) follows. We have proven that the laws of the stationary chains X= (Xt) and S
s = (Ss

t )
are the same.
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