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This article is concerned with a loading-dependent model of cascading failure pro-
posed recently by Dobson, Carreras, and Newman @6# + The central problem is to
determine the distribution of the total number of initial components that will have
finally failed+ A new approach based on a closed connection with epidemic mod-
eling is developed+ This allows us to consider a more general failure model in which
the additional loads caused by successive failures are arbitrarily fixed ~instead of
being constant as in @6# !+ The key mathematical tool is provided by the partial joint
distributions of order statistics for a sample of independent uniform ~0,1! random
variables+

1. INTRODUCTION

In a recent article, Dobson, Carreras, and Newman @6# have proposed an interesting
model to describe the occurrence of cascading failures in a closed system of n com-
ponents+ The basic points of the model can be summarized as follows+ Initially, the
n components have random loads L1, + + + , Ln that correspond to independent uni-
form ~0,1! random variables ~r+v+’s!+ Following some disturbance, a load d is added
to each of the n loads+Any component fails if its new load is larger than one+When
a components fails, a new load p is added to each of the components that are still
functioning+ This can cause further failures in a cascade+ The central problem is to
determine the distribution of a r+v+ N that represents the total number of components
that will have finally failed+ This loading-dependent model of cascading failure is
motivated by the study of large blackouts of electric power transmission systems
~see also @6# for a bibliography!+

Probability in the Engineering and Informational Sciences, 20, 2006, 413–427+ Printed in the U+S+A+

© 2006 Cambridge University Press 0269-9648006 $16+00 413

https://doi.org/10.1017/S0269964806060256 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964806060256


Section 2 is mainly concerned with the same failure model+ First, we reformu-
late this model by means of a cascade algorithm, different but equivalent to the
original one, that allows us to deal with the occurrences of failures one by one+
Moreover, it is convenient to introduce the r+v+’s U1 � 1 � L1, + + + ,Un � 1 � Ln,
which can be interpreted as the initial resistances of the n components+ Obviously,
these r+v+’s are still independent uniform ~0,1!; let U1:n, + + + ,Un:n be the associated
order statistics+We then show that the distribution of N can be expressed in terms of
the joint distributions of the order statistics $Ui:n, 1 � i � k% for 1 � k � n, with
respect to the linear boundary $d � ~i �1!p, 1 � i � k% +As a corollary, we are able
to derive, in an enlightening way, a key result obtained in @6# , namely in case of
nonsaturation N has a quasi-binomial distribution+ Furthermore, we prove how this
result can be extended to a model for which the additional loads after failures are
independent and identically distributed ~i+i+d+! r+v+’s+

In Section 3 we discuss a generalized failure model in which the additional
loads are still constant but arbitrarily fixed ~instead of being equal to each other!+ In
particular, this extension covers those cases in which the initial resistances are i+i+d+
r+v+’s with any given ~not necessarily uniform! distribution+ For this model, we can
now write the distribution of N in terms of the joint distributions of the order sta-
tistics $Ui:n, 1 � i � k% for 1 � k � n, with respect to an arbitrary ~instead of linear!
nondecreasing boundary $si , 1 � i � k% +We then show that the state probabilities of
N still have a remarkable structure and that they can be calculated using a simple
recursion+As special situations, we examine in more detail a model built with sev-
eral redundant components ~so that the first failures will not generate any additional
load! and a model for which the resistances are exponentially distributed and the
additional loads are independent r+v+’s+ Finally, some numerical illustrations and
simple bounds are presented in Section 4+

The approach that we will follow to tackle this cascading failure is inspired by
an argument used in epidemic modeling to determine the distribution of the final
number of new infections for epidemics of the S ~susceptible!r I ~infected!r R
~removed! schema ~see, e+g+, Ball and O’Neill @2# , Lefèvre and Utev @8# , and Picard
and Lefèvre @9# !+Very roughly, in an epidemic context, the n components represent
the n initial susceptibles and the failure of a component corresponds to the infection
of a susceptible ~by one of the infectives present at that time!+ The additional load
in case of failure means that once infected, an individual adds its infectiousness to
the other infectives against the remaining susceptibles+ An indirect contribution of
our article is thus to point out the existence of a closed connection, within this
framework, between reliability and epidemic modelings+

Applying the proposed method asks us to evaluate the partial joint distribu-
tions of order statistics for a sample of n independent uniform ~0,1! r+v+’s+Much on
this problem can be found in Shorack and Wellner @10, Chap+ 9#; see also Denuit,
Lefèvre, and Picard @5# and the references therein+ In @5# , it is established that the
left tail distributions such as derived here rely on an underlying polynomial struc-
ture of the Abel–Gontcharoff form+ This property, however, is not exploited in the
present work, at least not in a direct or explicit way+
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2. THE BASIC MODEL

Consider a system made of n identical components+ Initially, the n components are
unfailed and have random loads L1, + + + , Ln that are independent and uniformly dis-
tributed on ~0,1!+ The cascade proceeds according to the following algorithm ~Dob-
son et al+ @6# !:

Step 0

• Load increment+ A disturbance d is added to the load of each of the n
components+

• Failure test+ For each component j, 1 � j � n, if the load Lj is greater than
one, j fails+ Let M0 be the number of failures+

Step 1

• Load increment+ If there are failures, a disturbance M0 p is added to the
load of each of the n � M0 remaining components+

• Failure test+ For each of these components j, if the new load d � M0 p � Lj

is greater than one, j fails+ Let M1 be the number of failures+

Step 2

• Load increment+ A disturbance M1 p is added to the load of each of the
n � M0 � M1 remaining components+

• Failure test+ For each of these components j, if the new load d �
~M0 � M1!p � Lj is greater than one, j fails+ Let M2 be the number of
failures+

The next steps are similar+ Failures can occur until time T, when there are no
more new failures+ Indeed, when MT � 0, there is no new load added to the remain-
ing components, so that the cascade process stops ~the system is stabilized!+ The
total number of failures is N ' � M0 � M1 � {{{ � MT�1, the number of unfailed
components being n � N ' +

An equivalent cascade algorithm. We now construct another algorithm that
leads to the same total number of failures in the system+ As indicated in Section 1,
a similar approach is used in epidemic modeling to determine the final size distri-
bution of an epidemic of the SIR schema+ Let us introduce the order statistics
L1:n, + + + , Ln:n, which represent the initial loads of the n components arranged by
increasing weights+

Step 0

• Load increment+ A disturbance d is added to the load of each of the n
components+

• Failure test+ If the largest load d � Ln:n is greater than one, the corre-
sponding component fails+
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Step 1

• Load increment+ If this occurs, a disturbance p is added to the load of
each of the n � 1 remaining components+

• Failure test+ If the new load d � p � Ln�1:n is greater than one, the cor-
responding component fails+

Step 2

• Load increment+A disturbance p is added to the load of each of the n � 2
remaining components+

• Failure test+ If the new load d � 2p � Ln�2:n is greater than one, the cor-
responding component fails+

Here too, failures stop when all of the loads of the remaining components are
smaller than one+ Let N be the associated total number of failures+

It can be easily understood that as long as the total number of failures is con-
sidered, both algorithms are quite equivalent; that is, N ' and N have the same dis-
tribution+ For instance, in the former formulation any given unfailed component at
step 1 receives an additional load M0 p, whereas in the latter formulation, that com-
ponent receives the same load in several steps+ This change of timescale, however,
will not affect the final possible failure of the component+

The new version of the algorithm allows us to express the distribution of N in
a simple way, using the key tool of order statistics+ Indeed, we directly see that

P~N � k!� P @Ln:n � 1 � d, Ln�1:n � 1 � d � p, Ln�2:n � 1 � d � 2p,

+ + + , Ln�k�1:n � 1 � d � ~k � 1!p# , k � 1, + + + , n+ (2.1)

In ~2+1!, it was implicitly assumed that 1 � d � ~n �1!p � 0+ If this is not true,
define j * � min$ j : 1 � d � jp � 0% + Obviously, P~N � k! is still given by ~2+1!
when k �1, + + + , j *,whereas P~N � k!� P~N � j *!when k � j *�1, + + + , n,meaning
that the occurrence of j * failures necessarily yields n failures+ Such a consequence
of cascading is called a saturation effect in @6# + To simplify the presentation, we
will continue with ~2+1! without saturation+

Now let us introduce the r+v+’s U1 � 1 � L1, + + + ,Un � 1 � Ln+ Obviously, these
Ui ’s are still independent and uniformly distributed on ~0,1!+ By construction of the
model, they can be interpreted as the initial random resistances of the n compo-
nents+ Denote by U1:n, + + + ,Un:n the associated order statistics ~i+e+, the n initial resis-
tances arranged by increasing strengths!+ Then we can rewrite ~2+1! as

P~N � k!� P @U1:n � d,U2:n � d � p,U3:n � d � 2p,

+ + + ,Uk:n � d � ~k � 1!p# , k � 1, + + + , n+ (2.2)
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From ~2+2!, we then get

P~N � k!� P @U1:n � d,U2:n � d � p,U3:n � d � 2p,

+ + + ,Uk:n � d � ~k � 1!p,Uk�1:n � d � kp# , k � 0, + + + , n, (2.3)

where we put Un�1:n � 1, say+
In order to evaluate the probability ~2+3!, we begin by deriving the preliminary

result ~2+4! below+ That formula is well known ~see, e+g+, @5# !; the simple proof
given here will be adapted later to more general situations+ For any fixed size k ~1 �
k � n!, consider a sample U1, + + + ,Uk of independent and uniform ~0,1! r+v+’s, and
denote by U1:k, + + + ,Uk:k the associated order statistics+ Let x be any real in ~0,d !+

Lemma 2.1:

P @x � U1:k � d,U2:k � d � p,U3:k � d � 2p, + + + ,Uk:k � d � ~k � 1!p#

� ~d � x!~d � kp � x!k�1, k � 1, + + + , n+ (2.4)

Proof: We will proceed by induction+ Obviously, for k � 1, P @x � U1:1 � d # �
d � x+ Suppose that ~2+4! holds for k �1, + + + , l ~� n �1!+ For k � l �1, we start by
representing the probability on the left-hand side of ~2+4! as follows+ Consider the
l �1 possible choices Ui , 1 � i � l �1, for the first ordered value U1:l�1, and denote
by U1:l

~i ! , + + + ,Ul:l
~i ! the order statistics of the original sample deprived of Ui ~which

reduces to a sample of size l !+ The probability in ~2+4! can be expressed as

(
i�1

l�1

P @x � Ui � d,Ui � U1:l
~i ! � d � p,U2:l

~i ! � d � 2p, + + + ,Ul:l
~i ! � d � lp# dz+ (2.5)

By conditioning on Ui , we can then rewrite ~2+5! as

~l � 1!�
x

d

P @z � U1:l � d � p,U2:l � d � 2p, + + + ,Ul:l � d � lp# dz+ (2.6)

However, by induction, ~2+6! is equivalent to

~l � 1!�
x

d

~d � p � z!~d � p � lp � z!l�1 dz, (2.7)

which, after integration, yields the right-hand side of ~2+4! for k � l � 1+ �

It now becomes easy to show from ~2+3! that N has a quasi-binomial distribu-
tion ~in the sense of Consul @3# !+ This result was derived in @6#; as indicated in @6# ,
it was also obtained in other contexts and by different methods+ For related prob-
lems, see, for example, Stadje @11# and Zacks @12# +
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Proposition 2.2:

P~N � k!� �n

k
�d~d � kp!k�1~1 � d � kp!n�k, k � 0, + + + , n+ (2.8)

Proof: Since the n initial components are i+i+d+, a number of N � k failures can
arise in an analogous fashion among all of the sets of k components, hence the

factor �n

k
� in ~2+8!+ Fix any given set of k components as the set having those k

failures+ Looking at ~2+3!, we first see that the other n � k components will not fail
with the probability ~1 � d � kp!n�k , as indicated in ~2+8!+ Furthermore, when
k �1, the failure of all of the k components of the set now means that @U1:k � d,U2:k �
d � p, + + + ,Uk:k � d � ~k � 1!p# with a sample of size k ~instead of n!, and this will
occur with a probability given by ~2+4! evaluated at x � 0, hence the remaining
factor in ~2+8!+ �

The noncascade situation arises when p � 0+As expected, ~2+8! then reduces to
the binomial distribution for a sample size n and a success ~i+e+, failure! probability d+

A randomized extension. The functioning of the components can be influenced
by various factors, internal or external+ In such situations, the additional loads
imposed to the system are not known with certainty but can be viewed as random
elements of the model+ So, let us suppose that the initial disturbance corresponds to
a r+v+ D and that, independently of D, the successive loads after failures correspond
to i+i+d+ r+v+’s W1,W2, + + + ,Wn�1+ Denote the cumulated additional loads by P1 �
W1,P2 � W1 � W2, + + + ,Pn�1 � W1 � {{{ � Wn�1+ To avoid saturation, we assume
that D � Pn�1 � 1 a+s+ ~this hypothesis is satisfied if, for instance,D and the Wi ’s are
bounded by 10n!+Now ~2+8! for the law of N can be extended as follows ~see Lefèvre
and Picard @7# for a similar result derived in an epidemic context!+

Proposition 2.3:

P~N � k!� �n

k
�E @D~D � Pk !

k�1~1 � D � Pk !
n�k # , k � 0, + + + , n+ (2.9)

Proof: For any given k, let us condition the event ~N � k! with respect to the two
r+v+’s D and Pk+ By adapting the argument followed for ~2+8!, we then get

P~N � k!� �n

k
�E @uk~0!~1 � D � Pk !

n�k # , k � 0, + + + , n, (2.10)

where u0~0! [1 and the other uk~0!’s represent the following conditional probabil-
ities evaluated at x � 0:
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uk~x! � P @x � U1:k � D,U2:k � D � P1, + + + ,Uk:k � D � Pk�1 6 D,Pk # , (2.11)

x being any real in ~0,D!+ Now we will prove that

uk~x! � ~D � x!~D � Pk � x!k�1, k � 1, + + + , n, (2.12)

which leads to the announced formula ~2+9!+
As for Lemma 2+1, we proceed by recurrence and consider ~2+11! for k � l �1+

First, ~2+6! is replaced by

ul�1~x! � ~l � 1!�
x

D

P @z � U1:l � D � P1,U2:l � D � P2 ,

+ + + ,Ul:l � D � Pl 6 D,Pl�1# dz+ (2.13)

Now, for the term P @{{{# in ~2+13!, let us condition on the r+v+ P1, and put EP1 �
W2, EP2 � W2 � W3, + + + , EPn�2 � W2 � {{{� Wn�1+We obtain that

ul�1~x! � ~l � 1!�
x

D

E $P @z � U1:l � D � P1,U2:l � D � P1 � EP1,

+ + + ,Ul:l � D � P1 � EPl�1 6 D,P1, EPl # 6 D,Pl�1% dz+ (2.14)

However, by the hypothesis of recurrence ~for k � l ! and using P1 � EPl � Pl�1,
~2+14! then becomes

ul�1~x! � ~l � 1!�
x

D

E @~D � P1 � z!~D � P1 � EPl � z!l�1 6 D,Pl�1# dz

� ~l � 1!�
x

D

@D � E~P1 6 Pl�1!� z# ~D � Pl�1 � z!l�1 dz+ (2.15)

To close, we observe that E~P1 6 Pl�1!� Pl�10~l �1!, so that ~2+15! is analogous to
~2+7! with Pl�10~l � 1! substituted for p, hence ~2+12! for k � l � 1+ �

3. A GENERALIZED MODEL

In this section we discuss another generalization of the model in @6# by assuming
this time that the additional loads in case of failures are still constant but arbitrarily
fixed+ Such an extension allows us to widen the field of applications of the model+

Thus, a large system is often built, for security reasons, with several redundant
components+ Then the first failures of components will not influence the function-
ing conditions applied to the other components+ In the model of Section 2, this
means that a load p is added to each unfailed component only when there are at
least c �1 failures ~instead of one!, with 0 � c � n �1+ The probability ~2+2! is then
modified as follows: If k � 1, + + + , c,

P~N � k!� P @Uk:n � d # , (3.1)
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and if k � c � 1, + + + , n,

P~N � k!� P @Uc�1:n � d,Uc�2:n � d � p, + + + ,Uk:n � d � ~k � c � 1!p# + (3.2)

More generally, let us assume that the additional loads are successively of given
weights w1, + + + ,wn�1+ Denote the cumulated weights by p1 � w1, + + + , pn�1 �
w1 � {{{� wn�1, and to avoid saturation, suppose that d � pn�1 � 1+ Then ~2+2! is
changed in

P~N � k!� P @U1:n � d,U2:n � d � p1, + + + ,Uk:n � d � pk�1# , k � 1, + + + , n+

(3.3)

Such an extension is also relevant when in ~2+2! the initial resistances of the n
components are independent but no longer uniformly distributed+ More precisely,
let us suppose that these resistances are represented by i+i+d+ random variables
X1, + + + , Xn, with an arbitrary continuous distribution function F+ Let X1:n, + + + , Xn:n

be the associated order statistics+ The initial disturbance is still denoted by d, and
the successive loads are still denoted by p1, + + + , pn�1; assume that d and d � pn�1

are in the support of F+ Then, instead of ~2+2!, we have

P~N � k!� P @X1:n � d, X2:n � d � p1, + + + , Xk:n � d � pk�1# , k � 1, + + + , n+

(3.4)

However, since the vector @X1:n, + + + , Xn :n# has the same distribution as
@F�1~U1:n!, + + + ,F�1~Un:n!# , ~3+4! is equivalent to

P~N � k!� P @U1:n � s1, + + + ,Uk:n � sk # , k � 1, + + + , n, (3.5)

where we put s1 � F~d !, s2 � F~d � p1!, + + + , sn � F~d � pn�1!+ Of course, ~3+5!
covers all of the previous cases+

Now let us determine from ~3+5! the exact probability of N+ To begin, we will
extend Lemma 2+1+ Specifically, we consider again any fixed sample of size
k ~1 � k � n! and define

jk~x! � P @x � U1:k � s1,U2:k � s2 , + + + ,Uk:k � sk # , k � 1, + + + , n, (3.6)

x being any real in ~0, s1!, with j0[1+ These jk’s are no longer known explicitly but
they can be computed recursively from ~3+7!+

Lemma 3.1: For any real y,

jk~x! � ~ y � x!k � (
j�0

k�1�k

j
�jj ~x!~ y � s1�j !

k�j, k � 1, + + + , n+ (3.7)
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Proof: First, we observe that as for ~2+6!, one can write, for 0 � l � n � 1,

jl�1~x! � ~l � 1!�
x

s1

P @z � U1:l � s2 ,U2:l � s3 , + + + ,Ul:l � sl�1# dz+ (3.8)

Now let us proceed by induction and suppose that ~3+7! is true for k � 1, + + + , l
~� n �1!+ For k � l �1, applying induction to the probability on the right-hand side
of ~3+8! yields

jl�1~x! � ~l � 1!�
x

s1

~ y � z!l dz � ~l � 1! (
j�0

l�1� l

j
�~ y � s2�j !

l�j

� �
x

s1

P @z � U1:j � s2 ,U2:j � s3 , + + + ,Uj:j � sj�1# dz+ (3.9)

However, computing the first integral in ~3+9! and again using ~3+8! for the second
integral, we find that ~3+9! reduces to

jl�1~x! � ~ y � x!l�1 � ~ y � s1!
l�1 �(

j�0

l�1�l � 1

j � 1
�~ y � s2�j !

l�jjj�1~x!,

hence ~3+7! for k � l � 1+ �

The recursion ~3+7! can sometimes be slightly simplified by choosing an appro-
priate value for y+ For instance, y � 1 will guarantee that the coefficients in the
recursion are all positive+ Several applications are given in the following+

The distribution ~2+8! for N can now be generalized by ~3+10! in terms of the
probabilities jk~0!+ The reader is referred to @5# for an alternative proof based on
Abel–Gontcharoff polynomials+

Proposition 3.2:

P~N � k!� �n

k
�jk~0!~1 � s1�k !

n�k, k � 0, + + + , n+ (3.10)

Proof: As for ~2+3!, we have

P~N � k!� P @U1:n � s1, + + + ,Uk:n � sk ,Uk�1:n � sk�1# , k � 0, + + + , n+

Thus, it suffices to follow the argument given in the proof of Proposition 2+2 using
~3+6! with x � 0+ �

Formula ~3+10! with the recursion ~3+7! can be combined to give the single
recursion ~3+11!+
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Corollary 3.3:

�n

k
� � (

j�0

k �n � j

k � j
�P~N � j !

1

~1 � s1�j !
n�k
, k � 0, + + + , n+ (3.11)

Proof: Equation ~3+7! with x � 0 and y � 1 yields

1 � (
j�0

k �k

j
�jj ~0!~1 � s1�j !

k�j, k � 0, + + + , n+ (3.12)

After multiplication by �n

k
� , ~3+12! can be rewritten as

�n

k
� � (

j�0

k �n � j

k � j
��n

j
�jj ~0!~1 � s1�j !

n�j
1

~1 � s1�j !
n�k
, k � 0, + + + , n+ (3.13)

However, applying ~3+10! inside the sum of ~3+13! allows us to exhibit P~N � j !,
which then leads to ~3+11!+ �

Notice that the relations ~3+11! constitute a triangular system of n � 1 linear
equations in the n � 1 unknown probabilities P~N � j !+ For instance, ~3+11! for
k � 0 gives P~N � 0!� ~1 � s1!

n , and for k � n, P~N � 0!� {{{� P~N � n!� 1+

Case with redundant components. Let us go back to the previous particular
model specified by ~3+1!, ~3+2!, with a threshold of c � 1 failures+ Here thus,

s1 � {{{� sc � d and sk � d � ~k � c � 1!p, k � c � 1, + + + , n+ (3.14)

Corollary 3.4: Under (3.14), the law of N is given by (3.10), where, if k �1, + + + , c,

jk~0! � d k, (3.15)

and if k � c � 1, + + + , n,

jk~0! � (
l�0

k�c�1�k

l
� d k�lp l~k � c!l�1~k � c � l !+ (3.16)

Proof: Equation ~3+15! is straightforward and we will focus on ~3+16!+ For k �
c � 1, + + + , n, choosing x � 0 and y � d in ~3+7! then yields

jk~0! � d k � (
j�c�1

k�1 �k

j
�jj ~0!@�p~ j � c!# k�j, k � 1, + + + , n+ (3.17)

Proceeding by recurrence, let us suppose that ~3+16! is true for jj~0! with j �
c � 1, + + + , k � 1+ Then, by substitution in ~3+17!, and after rearrangement and per-
mutation of the two sums, we obtain
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jk~0! � d k � (
j�c�1

k�1 �k

j
�~�p!k�j (

l�c�1

j � j

l
�d lp j�l~ j � c!k�l�1~l � c!

� d k � (
l�c�1

k�1 �k

l
�d lpk�l~l � c! (

j�0

k�l�1�k � l

j
�~l � c � j !k�l�1~�1!k�l�j+

(3.18)

However, for any real x,

(
j�0

m �m

j
�~x � j !m�1~�1!m�j � 0, m � 1,2, + + + , (3.19)

since the left-hand side of ~3+19! corresponds to Dm~x m�1!, where D denotes the
usual forward difference operator+ Thus, using ~3+19! we see that the second sum in
~3+18! reduces to �~k � c!k�l�1 + Finally, ~3+18! becomes

jk~0! � (
l�c�1

k �k

l
�d lpk�l~l � c!~k � c!k�l�1,

hence ~3+16!, as indicated+ �

Case with exponential resistances. Let us assume that the resistances have an
exponential law, with parameter µ ~� 0! say+ Thus, s1 �1 � exp~�µd !, and for k �
1, + + + n � 1, s1�k � 1 � exp@�µ~d � pk!# , with pk � w1 � {{{� wk+ In other words,

sk � 1 � q0 q1{{{qk�1, k � 1, + + + , n, (3.20)

where q0[ exp~�µd ! and qk[ exp~�µwk!, k � 1, + + + , n � 1+ This particular situa-
tion is of the type met in epidemic theory with the so-called Reed–Frost model+ The
homogeneous case where q1 � {{{ � qn�1 [ q corresponds to that model in its
standard version ~see, e+g+,Andersson and Britton @1# and Daley and Gani @4# !; the
nonhomogeneous case with different qk’s gives a nonstationary version of the model
~see @7# !+ Under ~3+20!, ~3+11! becomes

�n

k
� � (

j�0

k �n � j

k � j
�P~N � j !

1

~q0{{{qj !
n�k
, k � 0, + + + , n+ (3.21)

An advantage of this case is that the additional loads imposed on the system
can be considered, without difficulty, as random elements+ Specifically, let us sup-
pose that the initial disturbance and the successive loads in case of failure corre-
spond to independent r+v+’s, D and W1, + + + ,Wn�1, all possibly with different laws+ In
an epidemic context, W1, + + + ,Wn are i+i+d+ r+v+’s that represent lengths of infectious
periods; the model then corresponds to the randomized version of the Reed–Frost
model ~e+g+, @1,4# !+ Now, for this randomized case, the n � 1 relations ~3+21! can

CASCADING FAILURE MODEL 423

https://doi.org/10.1017/S0269964806060256 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964806060256


still be extended into a linear system of similar structure+ More precisely, for j �
0, + + + , n, define the parameters

q0
~ j ! � E @exp~�µjD!# and qk

~ j !� E @exp~�µjWk !# , k � 1, + + + , n � 1+ (3.22)

Corollary 3.5: Under randomized (3.20),

�n

k
� � (

j�0

k �n � j

k � j
�P~N � j !

1

q0
~n�k!{{{qj

~n�k!
, k � 0, + + + , n+ (3.23)

Proof: First,we condition on fixed values d for D and w1, + + + ,wn�1 for W1, + + + ,Wn�1+
The conditional state probabilities of N thus satisfy the relations ~3+21!+We observe
that P~N � j !, 0 � j � n, depends only on the parameters q0, + + + ,qj + Let us multiply
both sides of ~3+21! by ~q0{{{qk!

n�k, and on the right-hand side, replace ~q0{{{qk!
n�k0

~q0{{{qj !
n�k by ~q1�j{{{qk!

n�k + Then, to eliminate the condition,we take the expec-
tation, which yields, using the parameters ~3+22!,

�n

k
�q0
~n�k!{{{qk

~n�k! � (
j�0

k �n � j

k � j
�P~N � j ! q1�j

~n�k!{{{qk
~n�k! , k � 0, + + + , n,

hence the system ~3+23!+ �

4. EXAMPLES AND BOUNDS

For illustration, we consider a special case of nonregular type for the model exam-
ined in Section 3+ Specifically, ~3+5! is assumed to hold now with

sk � @d � p~k � 1!# u, k � 1, + + + , n, (4.1)

where u � 0+ This arises when the resistances are i+i+d+ r+v+’s with a power-function
distribution @i+e+, F~x!� x u for x � ~0,1! with u � 0# and when the initial distur-
bance is equal to d and each additional load is equal to p, with d � p~n �1! � 1+ If
u� 1, the model corresponds to the case in Section 2+

We have evaluated the probability law of N, using the recursion ~3+10!, ~3+12!,
when the system has n � 50 components and for different sets of parameters ~with
nonsaturation!+ Figure 1 gives this distribution on a logarithmic scale if d � p � 1

51
_

and u� 0+5,0+7,1, or 1+1+ As expected, the power parameter u plays a crucial role;
in particular, the mode is at k � 50 for u� 0+5 or 0+7 and at k � 0 if u�1 or 1+1+ In
Figure 2, the parameters are u � 0+5 and d � 0+1p, 0+75p, or p, with p � 1

51
_ + We

observe that varying the initial disturbance d moderately affects the distribution; of
course, the influence exerted by d depends also on the value of u+

It is worth pointing out that for n large, the recursion is not always efficient and
can even generate negative values for certain probabilities of N+

To close, we indicate that for arbitrary s1, + + + , sn, the distribution of N can be
approximated by finding upper and lower bounds for the probabilities jk~0! in ~3+10!+
Such simple bounds are provided in Property 4+1+
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Figure 1. Log plot of the distribution of the number N of failed components, under
~4+1! with n � 50 and d � p � 1

51
_ and for four different u’s+

Figure 2. Log plot of the distribution of the number N of failed components, under
~4+1! with n � 50, u� 0+5, and p � 1

51
_ and for three different d’s+
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Property 4.1: In general,

s1{{{sk � jk~0!� sk
k � ~sk � s1!

k, k � 1, + + + , n+ (4.2)

If the sequence s1, + + + , sk is concave (resp. convex), then

jk~0! � ~�!s1 @~ksk � s1!0~k � 1!# k�1, k � 1, + + + , n, (4.3)

and for any given k ' � $1, + + + , k � 1%,

jk~0! � ~�!@sk '�1 � k '~sk '�1 � sk ' !#

� @sk '�1 � ~k � k ' !~sk '�1 � sk ' !#
k�1, k � 1, + + + , n, (4.4)

provided, in the convex case, that sk '�1 � k '~sk '�1 � sk ' ! � 0.

Proof: Let us first derive ~4+2!+ By definition ~3+6!,

jk~0! � P~U1 � s1, + + + ,Uk � sk !� s1{{{sk ,

whereas choosing x � 0 and y � sk in ~3+7! yields

jk~0! � sk
k � (

j�0

k�1�k

j
�jj ~0!~sk � s1�j !

k�j � sk
k � ~sk � s1!

k+

Now if the sequence s1, + + + , sk is concave, then a lower linear approximation to this
sequence is given by

si � si
~l ! [ s1 � ~i � 1!~sk � s1!0~k � 1!, i � 1, + + + , k,

and an upper linear approximation is given by

si � si
~u! [ sk ' � ~i � k ' !~sk '�1 � sk ' !, i � 1, + + + , k,

for any k ' � $1, + + + , k � 1% + Moreover, it is obvious that

P @U1:k � s1
~l ! , + + + ,Uk:k � sk

~l ! #� jk~0!� P @U1:k � s1
~u! , + + + ,Uk:k � sk

~u! # + (4.5)

It then remains to evaluate the two bounds in ~4+5! by applying ~2+4!, which leads
to ~4+3! and ~4+4!+ The convex case can be treated similarly, under the constraint for
~4+4! that s1

~u! defined earlier is positive+ �
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