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1. Introduction

Before discussing the contents of the present paper, we first want to give some motivation

why a solid theory of derived logarithmic geometry is a desirable thing to have.

An important application of logarithmic geometry has been to control degenerations.

A typical example is given by a dominant morphism f : X → C from a smooth scheme

X to a pointed curve (C, p), where we assume that the restriction X \ X p → C \ p is

smooth and the fiber X p is a normal crossing divisor. If we denote by j : X \ X p → X
and i : X p → X the inclusions, then i∗( j∗O×X\X p

)→ OX p defines a log structure on X p. In

the opposite vein, given a normal crossing variety Y , the existence of certain logarithmic

structures on Y helps in determining if Y can be obtained as the fiber of morphism

X → C as above (see [1, § 5] and the references therein for this point of view).

A further striking example in which logarithmic geometry helps to control

degenerations is given by the Deligne–Mumford compactification of the moduli space

of curves. This compactification can also be obtained by studying the moduli

problem of stable log-smooth curves satisfying a certain basicness condition. Since

logarithmic geometry incorporates degenerations, the moduli space of log-smooth curves

is immediately compact. An overview over these topics can be found in [1].
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On the other hand, derived algebraic geometry has been successfully applied to

study hidden smoothness in moduli spaces. A typical example is given by the moduli

space of morphisms between a smooth curve and a smooth projective variety. Even

for smooth domain and target, this moduli space can be horribly singular and much

larger than the expected dimension. Studying the same moduli problem in derived

algebraic geometry leads to an interesting “nilpotent” structure on the moduli space

[27, Corollary 2.2.6.14]. This structure provides the algebraic–geometric counterpart to

deforming to transversal intersection. Equipped with this nilpotent structure, the moduli

space becomes quasi-smooth, the immediate generalization to derived algebraic geometry

of local complete intersection. The quasi-smooth structure induces a 1-perfect obstruction

theory and a virtual fundamental class in the expected dimension on the underlying

moduli space, which is the key to many enumerative invariants.

Logarithmic and derived algebraic geometry naturally meet in the study of

degenerations of moduli spaces. Suppose we are given a morphism f : X → S as above.

We would then like to understand how some moduli space attached to a smooth fiber

interacts with the corresponding moduli space of the fiber Xs . If the moduli spaces are

quasi-smooth, one would ideally want to compute enumerative invariants of the smooth

fiber in terms of enumerative invariants of the components of Xs .

When Xs only consists of two components, this has been indeed carried out by Li in

[14, 15]. Instead of using log geometry, Li constructs an explicit degeneration of the moduli

space of stable maps. The most difficult part in Li’s theory is to find a perfect obstruction

theory on the moduli space attached to the fiber Xs . Using this degeneration, he is able

to prove a formula for enumerative invariants that has since found many applications.

Gross and Siebert [9] have recently observed that one can circumvent these difficulties

by working in the category of logarithmic schemes. The moduli space attached to the fiber

Xs should just be the corresponding moduli functor taken in the category of logarithmic

schemes in which Xs is equipped with its natural logarithmic structure. If on top of this

we want the moduli space attached to Xs to carry a 1-perfect obstruction theory, one is

naturally led to consider derived logarithmic geometry. The correct functor that combines

both the degeneration aspects and hidden smoothness is a moduli functor living in the

category of derived logarithmic schemes or stacks.

Besides applications to degenerations of quasi-smooth moduli spaces, there are also

other areas where such a theory might be useful. Much of the work on logarithmic

geometry has been concerned with p-adic and arithmetic aspects. Recently, Beilinson [3]

has used derived logarithmic geometry to prove a p-adic Poincaré lemma. Much more

material on this can be found in [4]. It may also be interesting to extend the framework

of derived log geometry developed here to the homotopy theoretic notion of logarithmic

ring spectra developed by Rognes in [21] in order to study moduli problems for structured

ring spectra.

We hope that now the reader is convinced that it would be desirable to have a solid

theory of derived logarithmic geometry. The aim of this work is to begin providing

such foundations. The essential starting point for derived algebraic geometry is that

the category of simplicial rings forms a well-behaved model category. In §§ 1–3 we

provide a model category sL of logarithmic simplicial rings. Its objects are simplicial
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objects in the category of pre-log rings, and the fibrant objects in this model structure

satisfy a log condition analogous to that of a log ring. Besides that, we give a model

category description of the group completion of simplicial commutative monoids, and

outline how this leads to a notion of repletion for augmented simplicial commutative

monoids. Although the repletion is not necessary for setting up the model category sL, it

might become relevant for a further development of the theory. All the model structures

developed in this part have counterparts in the context of structured ring spectra that

complement Rognes’ work on topological logarithmic structures [21].

In §§ 4–6 we develop the theory of étale and smooth morphisms between logarithmic

simplicial rings. The key ingredient in defining these notions is the logarithmic cotangent

complex. We define the logarithmic cotangent complex as the complex that represents

the derived functor of logarithmic derivations. Since for a logarithmic ring (A,M) the

category of A-modules is equivalent to the category of abelian objects in the category

of strict logarithmic rings over (A,M), this exhibits the logarithmic cotangent complex

as the left derived functor of abelianization, which is very close to Quillen’s original

definition for ordinary rings. This coincides with Gabber’s definition in [18, § 8], and we

prove that it also corresponds to Rognes’ definition for structured ring spectra in [21].

We also compare our notions of log-smooth and log-étale maps to the definitions given

by Kato in terms of lifting properties with respect to strict square zero extensions.

In § 7 we glue logarithmic simplicial rings to form derived logarithmic schemes and

derived logarithmic n-stacks. We conclude the section with some speculations about the

correct notion of log modules. In § 8 we explain how to set up a derived version of the

logarithmic moduli of stable maps introduced by Gross and Siebert. In the Appendix we

prove a proposition about square zero extensions of discrete commutative rings.

Notation

If k is a base commutative ring, then the category of pre-log k-algebras will consist of

triples (A,M, α : M → (A, ·)), where A is a commutative k-algebra, M is a commutative

monoid, and α is a morphism of commutative monoids, and the morphisms (A,M,
α : M → (A, ·))→ (B, N , α : N → (B, ·)) will be pairs ( f : A→ B, f [ : M → N ), where

f is a map of k-algebras and f [ a map of commutative monoids, commuting with the

structure maps. When the base ring is k = Z, we will simply speak about pre-log rings.

2. Simplicial commutative monoids

In the following, we let M be the category of commutative monoids, AB be the category

of abelian groups, and R be the category of commutative rings. Moreover, S denotes

the category of simplicial sets, and sM, sAB, and sR denote the categories of simplicial

objects in commutative monoids, abelian groups, and commutative rings.

The categories sM, sAB, and sR are simplicial categories (as for example defined

in [8, II. Definition 2.1]). This means that they are enriched, tensored, and cotensored over

the category of simplicial sets. In each case, the tensor X ⊗ K of an object is the realization

of the bisimplicial object [n] 7→∐
Kn

X , where
∐

is the coproduct in the respective
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category. The simplicial mapping spaces are given by Hom(X, Y )n = Hom(X ⊗1n, Y ),
and the cotensor is defined on the underlying simplicial sets. There exist well-known

model structures on these categories.

Proposition 2.1. The categories of simplicial commutative rings sR, simplicial abelian

groups sAB, and simplicial commutative monoids sM admit proper simplicial cellular

model structures. In all three cases, a map is a fibration (respectively, weak equivalence)

if and only if the underlying map of simplicial sets is a fibration (respectively, weak

equivalence).

We refer to these model structures as the standard model structures on these categories.

Proof. The existence of these model structures is provided by [19, II.4 Theorem 4] or

[8, II. Corollary 5.6]. Right properness is inherited from simplicial sets. Since the cartesian

product is the coproduct of commutative monoids, left properness of sM is a consequence

of [20, Theorem 9.1]. Left properness of sAB may for example be established using the

Dold–Kan correspondence. For sR, left properness is verified in [24, Lemma 3.1.2].

Applying the respective free functors from simplicial sets to the usual generating

cofibrations and generating acyclic cofibrations for S shows that all three categories are

cofibrantly generated. The argument given in [23, Appendix A] can be adopted to show

that sM and sR are cellular. Cellularity of sAB can be checked from the definition.

2.1. Group completion

For the rest of this section we focus on the category of simplicial commutative monoids.

This category is pointed by the constant simplicial object on the one-point monoid. Hence

sM is a pointed simplicial model category, i.e., it is tensored, cotensored, and enriched

over the category of pointed simplicial sets. The tensor with the pointed simplicial set

S1 = 11/∂11 is isomorphic to the bar construction on a simplicial commutative monoid.

It follows that the functors B(M) = M ⊗ S1 and �(M) = M S1
form a Quillen adjunction

B : sM� sM : � with respect to the standard model structure.

Definition 2.2. A simplicial commutative monoid M is grouplike if the commutative

monoid π0(M) is a group.

Forming the adjoint of the fibrant replacement B M → (B M)fib of B M in sM provides

a natural transformation

ηM : M → �((B M)fib). (2.1)

It is immediate that �((B M)fib) is always grouplike. The map ηM is known as the group

completion of M . Below, we will compare it with two other ways of forming a group

completion.

Lemma 2.3. If M is grouplike, then M → �((B M)fib) is a weak equivalence.

Proof. We may assume that M is fibrant. Writing E•M = B•(∗,M,M) for the bisimplicial

set whose realization is the simplicial set E M , an application of the Bousfield–Friedlander
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theorem [5, Theorem B.4] shows that the realization of the degree-wise pullback square

const M //

��

E•M
��

∗ // B•M

provides a homotopy fiber sequence M → E M → B M . Since E M is contractible, it

follows that M → �((B M)fib) is a weak equivalence.

We now let C be the free simplicial commutative monoid on a point, i.e., the simplicial

commutative monoid obtained applying the free commutative monoid functor on sets

degree-wise to 10. Then we apply �((B(−))fib) to form the group completion of C and

choose a factorization

C //
ξ
// C ′ ∼ // // �((BC)fib) (2.2)

of ηC into a cofibration ξ followed by an acyclic fibration.

Lemma 2.4. The map Bξ : BC → BC ′ is a weak equivalence.

Proof. Since BC and BC ′ are connected as simplicial sets, it is enough to show that

�((Bξ)fib) is a weak equivalence. By construction of ξ , this reduces to showing that

�((BηC )
fib) is a weak equivalence. The composite of BηC with the adjunction counit

εD : B�D→ D on D = (BC)fib is the fibrant replacement of BC . Hence it is enough to

show that εD becomes a weak equivalence after applying �((−)fib). The composite of

�((εD)
fib) with the group completion map η�D is the weak equivalence �(D→ Dfib).

Hence it is enough to see that η�D is the weak equivalence, and this follows from the last

lemma.

The next lemma shows that we may view ξ : C → C ′ as the group completion in the

universal example. To state it, recall that an object X in a simplicial model category C
is local with respect to a cofibration U → V in C if X is fibrant and the induced map of

simplicial sets Hom(V, X)→ Hom(U, X) is an acyclic fibration.

Lemma 2.5. An object in sM is ξ -local if and only if it is fibrant and grouplike.

Proof. Let M be ξ -local. Then

sM(C ′,M) ∼= Hom(C ′,M)0 → Hom(C,M)0 ∼= sM(C,M)

is surjective. Hence every map C → M extends over C ′. Passing to connected components,

this means that any homomorphism (N,+) ∼= π0(C)→ π0(M) extends over the group

completion (N,+)→ (Z,+). This implies that M is grouplike.

Now let M be fibrant as a simplicial set and grouplike. Since M → �((B M)fib) is a

weak equivalence by Lemma 2.3, it is enough to show that

Hom(C ′, �((B M)fib))→ Hom(C, �((B M)fib))

is a weak equivalence. By adjunction, this map is isomorphic to

Hom(BC ′, (B M)fib)→ Hom(BC, (B M)fib),

and the claim follows from Lemma 2.4 and the fact that sM is simplicial.
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The previous lemma enables us to view the group completion of simplicial commutative

monoids as a fibrant replacement in an appropriate model structure.

Proposition 2.6. The category of simplicial commutative monoids sM admits a left proper

simplicial cellular group completion model structure.

The cofibrations in this model structure are the same as in the standard model structure.

A map M → N is a weak equivalence if and only if the induced map B M → B N is a

weak equivalence of simplicial sets. An object is fibrant if and only if it is both fibrant as

a simplicial set and grouplike.

The fibrant replacement M // // Mgp in the group completion model structure is

weakly equivalent to ηM .

Proof. The desired model structure is defined as the left Bousfield localization of the

standard model structure with respect to the single map ξ . The existence of this

model structure, the characterization of the cofibrations, and the fact that it is left

proper, simplicial, and cellular follow from [10, Theorem 4.1.1]. Lemma 2.5 provides the

description of the fibrant objects.

Now let M → Mgp be a fibrant replacement in the group completion model structure,

and consider the square

M

��

// �((B(M))fib)

��

Mgp // �((B(Mgp))fib).

The bottom horizontal map is a weak equivalence by Lemma 2.3. Using the universal

property of the left Bousfield localization [10, Proposition 3.3.18] and Lemma 2.4, it

follows that B(M)→ B(Mgp) is a weak equivalence. Hence the right vertical map is a

weak equivalence. This provides the desired characterization of the fibrant replacement.

By the previous argument and [10, Theorem 3.2.18], a map M → N is a weak

equivalence in the group completion model structure if and only if it becomes a weak

equivalence when applying �((B(−))fib). This is the case if and only if B(M)→ B(N ) is

a weak equivalence.

Remark 2.7. Simplicial commutative monoids have a homotopical analog known as

commutative I-space monoids. These provide strictly commutative models for the more

common E∞ spaces. The group completion model structure of the previous proposition

is analogous to the group completion model structure for commutative I-space monoids

developed in [23, Theorem 1.3]. The proofs of Proposition 2.1 and of Lemmas 2.3 and 2.5

closely follow the corresponding statements in [23, § 5].

The fact that the fibrant replacement M → Mgp is always a cofibration easily provides

the following universal property.

Corollary 2.8. Every map M → N of simplicial commutative monoids with N fibrant and

grouplike extends over the group completion M // // Mgp .
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Remark 2.9. The example discussed in [5, § 5.7] shows that the group completion model

structure is not right proper.

A different way of group completing a simplicial commutative monoid is to apply the

usual group completion of commutative monoids degree-wise. Viewed as a functor

(−)deg-gp : sM→ sAB, (2.3)

this construction is left adjoint to the forgetful functor. The resulting natural

transformation M → Mdeg-gp is indeed equivalent to the group completion considered

above.

Lemma 2.10. The map M → Mdeg-gp is a weak equivalence with fibrant codomain with

respect to the group completion model structure.

Proof. Since simplicial abelian groups are fibrant as simplicial sets, it follows that

Mdeg-gp is fibrant in the group completion model structure. Quillen’s analysis of Mdeg-gp

in [6, Propositions Q1 and Q2] implies that B M → B(Mdeg-gp) is a weak equivalence of

simplicial sets.

Corollary 2.11. The degree-wise group completion is the left adjoint in a Quillen

equivalence between the category of simplicial commutative monoids with the group

completion model structure and the category of simplicial abelian groups.

Proof. Since all objects in sAB are fibrant as simplicial sets and grouplike, the

forgetful functor U : sAB→ sM preserves fibrant objects. Hence it follows from [10,

Proposition 3.3.16] that U preserves fibrations. Since weak equivalences between fibrant

objects in the group completion model structure are precisely the underlying weak

equivalences of simplicial sets, it follows that a map f in sAB is a weak equivalence

if U ( f ) is. Hence U is a right Quillen functor. Together with the previous lemma, this

implies that ((−)deg-gp,U ) is a Quillen equivalence.

Corollary 2.12. The homotopy category of simplicial abelian groups is equivalent to the

homotopy category of grouplike simplicial commutative monoids.

Remark 2.13. We have seen that the derived adjunction unit M → �((B M)fib), the

fibrant replacement M → Mgp in the group completion model structure, and the

degree-wise group completion M → Mdeg-gp provide three equivalent ways of forming

group completions of simplicial commutative monoids.

The following result will be used in § 4.

Corollary 2.14. A commutative square

M //

��

P

��

N // Q

(2.4)
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of simplicial abelian groups is homotopy cocartesian in sAB if and only if it is homotopy

cocartesian when viewed as a square in sM.

Proof. By Lemma 2.10, the left Quillen functor (−)deg-gp : sM→ sAB sends weak

equivalences between not necessarily cofibrant objects to weak equivalences. So if (2.4)

is homotopy cocartesian in sM, applying (−)deg-gp shows that the square is homotopy

cocartesian in sAB. Let (2.4) be homotopy cocartesian in sAB. We choose a factorization

M // //N c ∼ //N in sM and deduce that N c ∐
M P → Q is a weak equivalence in sM

since it is a weak equivalence after applying (−)deg-gp and its domain and codomain are

grouplike.

2.2. Repletion

Many of the conditions on commutative monoids that are useful in logarithmic geometry

do not appear to provide homotopy-invariant notions when imposing them in each level of

a simplicial commutative monoids. As explained by Rognes in [21, Remark 3.2], the notion

of repletion for commutative monoids [21, § 3] and for commutative I-space monoids

[21, § 8] is made to overcome this difficulty in one relevant instance. Repletion has already

proved useful for the definition of logarithmic topological Hochschild homology in [21, § 8]

and [22]. The close relation between repletion and a group completion model structure

on commutative I-space monoids explained in [23, § 5.10] makes it easy to adapt this to

simplicial commutative rings.

Definition 2.15. Let M → N be a map of simplicial commutative monoids, and let

M // ∼ // Mrep // // M

be a factorization of this map in the group completion model structure. Then M → Mrep

is the repletion of M over N .

General properties of left Bousfield localizations imply that, as an object under M and

over N , the repletion Mrep is well defined up to weak equivalence in the standard model

structure on sM.

Definition 2.16. A map of simplicial commutative monoids M → N is virtually surjective

if the induced homomorphism (π0(M))gp→ (π0(N ))gp is surjective (compare [21,

Definition 3.6]). It is exact [12] if the following square is homotopy cartesian in the

standard model structure on sM:

M //

��

Mgp

��

N // Ngp

The next proposition states that, for a virtually surjective map, repletion enforces

exactness and can be defined by only using group completions.
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Proposition 2.17. Let M → N be a virtually surjective map of simplicial commutative

monoids.

(i) The canonical map Mgp→ (Mrep)gp is a weak equivalence in the standard model

structure.

(ii) The repletion Mrep is weakly equivalent to the map from M to the homotopy pullback

of N → Ngp← Mrep (with respect to the standard model structure).

(ii) The map Mrep→ N is exact.

Proof. The properties of the group completion model structure imply (i). For (ii), one

can use a similar argument as in the proof of [23, Proposition 5.16]. The key ingredient

is the Bousfield–Friedlander theorem [5, Theorem B.4] that compensates for the missing

right properness of the group completion model structure. Part (iii) follows from (i)

and (ii).

If M is a simplicial commutative monoid under and over N , then M → N is

automatically virtually surjective, and passing to the repletion ensures exactness of the

augmentation.

3. Logarithmic simplicial rings

The functor sending a commutative ring A to its underlying multiplicative monoid (A, ·)
is right adjoint to the integral monoid ring functor Z[−] from commutative monoids to

commutative rings. Applying this adjunction degree-wise provides an adjunction

Z[−] : sM� sR : (−, ·) (3.1)

between the associated categories of simplicial objects. The following definition is the

obvious generalization of the pre-log structures introduced by Kato in [12].

Definition 3.1. A pre-log structure (M, α) on a simplicial commutative ring R is a

simplicial commutative monoid M together with a map of simplicial commutative

monoids α : M → (A, ·). A simplicial commutative ring R together with a pre-log

structure (M, α) is called a pre-log simplicial ring. It is denoted by (A,M, α), or simply

by (A,M) if α is understood from the context.

A map of simplicial pre-log rings (A,M)→ (B, N ) is a pair ( f, f [) of maps f : A→ B
in sR and f [ : M → N in sM such that the obvious square commutes. We write sP for

the resulting category of simplicial commutative pre-log rings.

Viewing pre-log simplicial rings as simplicial objects in pre-log rings, the same

arguments as in the case of sM and sR show that sP is a simplicial category. Since Z[−]
preserves coproducts, it is immediate that (A,M)⊗ K ∼= (A⊗ K ,M ⊗ K ). Expressing the

compatibility of the two components of a map of pre-log simplicial rings as a pullback,

it follows that the mapping spaces in sP are related to the mapping spaces in sM and

https://doi.org/10.1017/S1474748014000322 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000322


376 S. Sagave, T. Schürg and G. Vezzosi

sR by a pullback square

HomsP ((A,M), (B, N )) //

��

HomsR(A, B)

��

HomsM(M, N ) // HomsM(M, (B, ·)).

3.1. The pre-log model structures

Since the adjunction (3.1) is a Quillen adjunction with respect to the model structures

from Proposition 2.1, we obtain the two model structures on sP described in the next

two propositions.

Proposition 3.2. The category of simplicial pre-log rings sP admits an injective proper

simplicial cellular model structure in which ( f, f [) : (A,M)→ (B, N ) is

• a weak equivalence (or a cofibration) if both f and f [ are weak equivalences (or

cofibrations) in the standard model structures on sR and sM, and

• a fibration if f is a fibration in sR and the induced map M → (A, ·)×(B,·) N is a

fibration in sM.

We call this model structure the injective pre-log model structure, and write sP inj for

the resulting model category. The fibrant objects are called pre-fibrant.

Proof. The existence of this model structure is established by standard lifting arguments.

Using Lemma 3.12 below, one can check that the generating cofibrations IsM and IsR
for sM and sR give rise to a set

{(Z[L], K )→ (Z[L], L) | K → L ∈ IsM} ∪ {(i, id∗) | i ∈ IsR}
of generating cofibrations for sP, and similarly for the generating acyclic cofibrations.

Similarly, we get a projective pre-log model structure denoted by sPproj.

Proposition 3.3. The category of simplicial pre-log rings sP admits a projective proper

simplicial cellular model structure in which ( f, f [) : (A,M)→ (B, N ) is

• a weak equivalence (or a fibration) if both f and f [ are weak equivalences (or fibrations)

in the standard model structures on sR and sM, and

• a cofibration if f [ is a cofibration in sM and the induced map Z[N ]⊗Z[M] A→ B is

a cofibration in sR.

Proof. Again this follows by standard lifting arguments. In this case, the generating

cofibrations IsM and IsR for sM and sR give rise to a set

{(Z[i], i) | i ∈ IsM} ∪ {(i, id∗) | i ∈ IsR}
of generating cofibrations for sP, and similarly for the generating acyclic cofibrations.

Corollary 3.4. The identity functor from simplicial pre-log rings with the projective model

structure to simplicial pre-log rings with the injective model structure is the left Quillen

functor of a Quillen equivalence.
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Remark 3.5. The corollary implies that the two model structures are equivalent for many

purposes. However, as we will see in § 3.2 below, the fact that the injectively fibrant

objects (A,M) have the property that the structure map M → (A, ·) is a fibration makes

the injective model structure more convenient for the purpose of log structures.

If (A,M, α) is a pre-log simplicial ring, we write (A, ·)× for the sub-simplicial

commutative monoid of invertible path components (A, ·)× ⊂ (A, ·), i.e, the sub-simplicial

commutative monoid of (A, ·) consisting of those simplices whose vertices represent units

in the multiplicative monoid π0(A). Using (A, ·)×, we form the following pullback square:

α−1((A, ·)×)
��

// (A, ·)×
��

M α // (A, ·)

(3.2)

Definition 3.6. A pre-log structure (M, α) on a simplicial commutative ring A is a log

structure if the top horizontal map in the square (3.2) is a weak equivalence in the

standard model structure on sM. In this case, (A,M, α) is called a log simplicial ring.

Corollary 3.7. If (A,M)→ (B, N ) is a weak equivalence of pre-log simplicial rings, then

(A,M) is a log simplicial ring if and only if (B, N ) is.

Proof. This uses that the inclusion of path components is a fibration of simplicial sets.

Remark 3.8. While a pre-log simplicial ring is the same as simplicial object in the

category of pre-log rings, it is not true that a log simplicial ring is a simplicial object in

the category of log rings. Already in simplicial degree 0, the monoid ((A, ·)×)0 does not

need to coincide with its submonoid ((A, ·)0)×. The homotopy invariance statement of the

previous corollary would not hold if the log condition was defined using the degree-wise

units.

Construction 3.9. If (A,M) is a pre-log simplicial ring, then we may factor the top

horizontal map in the square (3.2) as a cofibration α−1((A, ·)×)→ G followed by an

acyclic fibration G → (A, ·)× with respect to the standard model structure. The pushout

Ma = M
∐
α−1((A,·)×) G of the resulting diagram in sM comes with a canonical map

αa : Ma → (A, ·).
The induced map (αa)−1((A, ·)×)→ (A, ·)× is isomorphic to G → (A, ·)×. Hence

(Ma, αa) is a log structure on A. We call it the associated log structure of (M, A), and

we refer to (A,Ma, αa) as the logification of (A,M, α).
The logification comes with a natural map (A,M, α)→ (A,Ma, αa). The use of the

relative cofibrant replacement of (A, ·)× and the left properness of sM ensures that

logification preserves weak equivalences.

Lemma 3.10. If (A,M, α) is a log simplicial ring, then (A,M, α)→ (A,Ma, αa) is a weak

equivalence.
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Proof. If (M, α) is a log structure, then α−1((A, ·)×)→ G is a weak equivalence. This

implies that (A,M, α)→ (A,Ma, αa) is a weak equivalence.

3.2. The log model structure

Our next aim is to express the log condition and the logification in terms of model

structures.

Lemma 3.11. Let (A,M) be fibrant in the injective pre-log model structure. Then (A,M)
is a log ring if and only if, for every cofibration K → L in sM with L grouplike, every

commutative square

K //

��

M

��

L // (A, ·)
in sM admits a lift L → M making both triangles commutative.

Proof. Let (A,M) be a pre-fibrant log simplicial ring. Then L → (A, ·) factors through

the inclusion (A, ·)×→ (A, ·) because L is grouplike, and there exists a lifting in the

resulting square

K //

��

α−1((A, ·)×)
��

L // (A, ·)×

(3.3)

because K → L is a cofibration and α−1((A, ·)×)→ (A, ·)× is an acyclic fibration.

Composing with α−1((A, ·)×)→ M gives the desired lift.

For the converse, it is enough to show that for every generating cofibration K → L
in the standard model structure on sM and every square of the form (3.3) there exists

a lift L → α−1((A, ·)×). Since (A, ·)× is grouplike, the map L → (A, ·)× extends over

the group completion L → Lgp. The composed map K → Lgp lifts against M → (A, ·).
This provides a map Lgp→ M whose composite with L → Lgp, in combination with

L → (A, ·)×, induces the desired lifting L → α−1((A, ·)×).
Every map K → L in sM gives rise to a pre-log simplicial ring (Z[L], K ) and a

canonical map (Z[L], K )→ (Z[L], L) in sP. An adjunction argument shows the following.

Lemma 3.12. Let K → L be a map in sM, let (A,M)→ (B, N ) be a map in sP, and

consider commutative squares

(Z[L], K ) //

��

(A,M)

��

(Z[L], L) // (B, N )

and K //

��

M

��

L // N ×(B,·) (A, ·)

in sP and sM. Then the universal property of Z[−] induces a one-to-one correspondence

between commutative squares of the first and second type, and the first square admits a

lift if and only if the second does.
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Let I be the set of generating cofibrations for the standard model structure on sM,

and let

S = {(Z[Lgp], K )→ (Z[Lgp], Lgp) | (K → Lgp) = (K f−→ L → Lgp) where f ∈ I }
be set of maps in sP obtained by group completing the codomains of the generating

cofibrations for sM and forming the associated maps of pre-log simplicial rings.

We will say that a map of pre-log simplicial rings is a log equivalence if it induces

a weak equivalence after logification, and a log cofibration if it is a cofibration in the

injective pre-log model structure of Proposition 3.2. Moreover, a pre-log simplicial ring

is log fibrant if it is a pre-fibrant log simplicial ring.

Theorem 3.13. The log equivalences and the log cofibrations are the weak equivalences

and cofibrations of a left proper simplicial cellular log model structure on the category

of simplicial pre-log rings sP. The log fibrant objects are the fibrant objects in this model

structure.

We write sL for this model category. By slight abuse of language, we refer to it as the

model category of log simplicial rings.

Proof. The log model structure is defined to be the left Bousfield localization of the

injective pre-log model structure with respect to S. Its existence and most of its properties

are provided by [10, Theorem 4.1.1]. Lemma 3.14 provides the characterization of the

fibrant objects, and Lemma 3.15 and [10, Theorem 3.2.18] provide the characterization

of the weak equivalences.

Lemma 3.14. A pre-log simplicial ring (A,M) is S-local if and only if it is a pre-fibrant

log simplicial ring.

Proof. Let (A,M) be a pre-fibrant log simplicial ring. By [10, Proposition 4.2.4], showing

that it is S-local is equivalent to showing that (A,M)→ ∗ has the right lifting property

with respect to the pushout product map

(Z[Lgp], Lgp)⊗ ∂1n ∐
(Z[K ],Lgp)⊗∂1n (Z[K ], Lgp)⊗1n → (Z[Lgp], Lgp)⊗1n .

This map is isomorphic to the map (Z[L ′], K ′)→ (Z[L ′], L ′) associated with

K ′ = Lgp⊗ ∂1n ∐
K⊗∂1n Lgp⊗1n → Lgp⊗1n = L ′.

Then L ′ is grouplike because Lgp is grouplike and 1n is contractible. Combining

Lemmas 3.11 and 3.12 provides the desired lifting.

Now assume that (A,M) is S-local. Then (A,M) is pre-fibrant by definition.

Lemma 3.12 and the argument given in the proof of Lemma 3.11 show that (A,M)
is a log simplicial ring.

The next lemma exhibits the logification of Construction 3.9 as an explicit fibrant

replacement for the log model structure.

Lemma 3.15. Let (A,M) be a pre-fibrant pre-log simplicial ring. Then the logification

map (A,M)→ (A,Ma) is an S-local equivalence of pre-log simplicial rings.
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Proof. Let α−1((A, ·)×)→ G be the cofibration used in Construction 3.9. Then we can

form the associated map of pre-log simplicial rings and observe that the logification may

be obtained as the right vertical map in the pushout square

(Z[G], α−1((A, ·)×)) //

��

(A,M)

��

(Z[G],G) // (A,Ma).

It is enough to show that the left-hand vertical map is an S-local equivalence. For this

we have to verify that it induces a weak equivalence of simplicial sets when applying the

functor Hom(−, (B, N )), where (B, N ) is a fibrant object in the log model structure. By

adjunction and Lemma 3.12, this is equivalent to showing that

α−1((A, ·)×)⊗1n ∐
α−1((A,·)×)⊗∂1n G⊗ ∂1n → G⊗1n

has the lifting property against N → (B, ·). Since (B, N ) is a log simplicial ring and G is

grouplike, this follows from Lemma 3.11.

The last lemma and the formal properties of a left Bousfield localization easily imply

the following statement.

Corollary 3.16. The homotopy category Ho(sL) is equivalent to the full subcategory of

Ho(sP) consisting of log simplicial rings, and the logification induces an adjoint pair

(−)a : Ho(sP)� Ho(sL) : i , where i is the canonical inclusion functor.

3.3. The replete model structures

Rognes’ notion of repletion discussed in § 2.2 can also be described in terms of appropriate

model structures on sP.

Proposition 3.17. The category of simplicial pre-log rings sP admits a left proper

simplicial replete pre-log model structure in which

• a map ( f, f [) : (A,M)→ (B, N ) is cofibration if f is a cofibration in sR and f [ is a

cofibration in sM, and

• an object (A,M) is fibrant if A is fibrant in sR, the structure map M → (A, ·) is a

fibration in the standard model structure on sM, and M is grouplike.

The forgetful functor sP → sM sending (A,M) to M is a right Quillen functor with

respect to the replete pre-log model structure and the group completion model structure

on sM.

Proof. We let ξ : C → C ′ be the map in sM introduced in (2.2), and form the left

Bousfield localization of the injective pre-log model structure with respect to the

associated map (Z[ξ ], ξ) in sP. This model structure has the same cofibrations as

the injective pre-log model structure, and the isomorphism HomsP ((Z[ξ ], ξ), (A,M)) ∼=
HomsM(ξ,M) shows that the fibrant objects are the pre-fibrant objects (A,M) with

ξ -local M . Hence Lemma 2.5 provides the characterization of the fibrant objects. Since
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M 7→ (Z[M],M) is left adjoint to the forgetful functor sP → sM, the last statement is

a formal consequence of [10, Theorem 3.3.20].

If (A,M) is a pre-log simplicial ring, then the group completion of M enables us

to form the trivial locus (A[M−1],Mgp) = (Z[Mgp]⊗Z[M] A,Mgp). Up to a pre-fibrant

replacement, this construction can be viewed as a fibrant replacement in the replete

pre-log model structure.

Lemma 3.18. The composite (A,M)→ (A[M−1],Mgp)pre-fib of the canonical map

(A,M)→ (A[M−1],Mgp) with a fibrant replacement functor for the injective pre-log

model structure provides a fibrant replacement functor for the replete pre-log model

structure.

Proof. Since i : M → Mgp is an acyclic cofibration in the group completion model

structure, the associated map (Z[i], i) is an acyclic cofibration in the replete pre-log

model structure. The map (A,M)→ (A[M−1],Mgp) is a cobase change of this map, and

hence also an acyclic cofibration in the replete pre-log model structure. This implies that

the map in question is an acyclic cofibration whose codomain is fibrant in the replete

pre-log model structure.

As it is often the case with left Bousfield localizations, we do not have an explicit

characterization of general fibrations in the replete pre-log model structure. However,

the replete pre-log model structure can be used to guarantee exactness on the underlying

monoid map of a fibrant augmented object.

Corollary 3.19. Let (A,M) be a pre-log simplicial ring, and let sP(A,M)/(A,M) be the

category of augmented (A,M)-algebras with the model structure induced by the replete

pre-log model structure on sP. If (A,M)→ (B, N )→ (A,M) is fibrant in this model

category, then the underlying map N → M is exact in the sense of Definition 2.16.

Proof. By Proposition 3.17, the map N → M is a fibration in the group completion model

structure. Hence N → N rep is a weak equivalence in the standard model structure, and

since N → M is virtually surjective, Proposition 2.17(iii) shows that N → M is exact.

Remark 3.20. By analogy with [21, Definition 3.12], one can define the repletion of a

map (B, N )→ (A,M) of pre-log simplicial rings with virtually surjective N → M as the
first map in the factorization

(B, N )→ (Z[N rep]⊗Z[N ] B, N rep)→ (A,M).

A similar argument as in Lemma 3.18 shows that the repletion map is an acyclic

cofibration in the replete pre-log model structure. However, we do not know if the fact

that N rep→ M is a fibration in the group completion model structure is sufficient to

conclude that (Z[N rep]⊗Z[N ] B, N rep)→ (A,M) gives rise to a fibration in the replete

pre-log model structure after replacing it by a fibration of pre-log simplicial rings.

Remark 3.21. The projective pre-log model structure gives rise to a projective version of

the replete pre-log model structure with similar properties.
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Remark 3.22. Combining the arguments of Proposition 3.17 with the log model structure

of Theorem 3.13, we obtain a left proper simplicial replete log model structure on sP.

Here an object is fibrant if and only if it is injectively fibrant as a pre-log simplicial ring,

M → (A, ·) is a log structure, and M is grouplike.

It follows that the fibrant objects in this model structure always carry the trivial log

structure. Up to pre-log fibrant replacement, the fibrant replacement of (A,M) in the

replete log model structure is given by (A,M)→ (A[M−1], A[M−1]×).

3.4. Functorialities

Definition 3.23. Let (A,M) be a simplicial pre-log ring, and let f : A→ B be a morphism

of simplicial rings. Then the inverse image pre-log structure on B is given by M →
(A, ·)→ (B, ·), and is denoted by f∗M . The inverse image log structure is defined to be

the associated log structure. We will denote it by ( f∗M)a → (B, ·).

Definition 3.24. Let (B, N ) be a simplicial pre-log ring, and let f : A→ B be a morphism

of simplicial rings. Then the direct image pre-log structure on A is given by the fiber

product of simplicial monoids

f ∗N //

��

(A, ·)
��

N // (B, ·).
The associated log structure is denoted by ( f ∗N )a .

It is straightforward to check that, if (B, N ) is a log simplicial ring, then f ∗N is again a

log structure on (A,M) if N → (B, ·) or A×→ B× is a fibration. In contrast, the inverse

image of a log structure will in general not again be a log structure.

Definition 3.25. Let ( f, f [) : (A,M)→ (B, N ) be a morphism of log simplicial rings.

Then ( f, f [) is strict if ( f∗M)a → N is an equivalence of simplicial monoids.

If A is a simplicial commutative ring, we will denote by sPA the category of pre-log

structures on A, i.e., the over-category sM/(A, ·), with its canonical induced injective

model structure. Likewise, we denote by sLogA the full subcategory of the homotopy

category of sPA on the objects M → (A, ·) that are log structures.

Proposition 3.26. A morphism of simplicial commutative rings f : A→ B induces a

Quillen adjunction

f∗ : sPA � sPB : f ∗.

On the level of homotopy categories, this adjunction and the logification induce an

adjunction

f∗a : sLogA � sLogB : f ∗ = f ∗a

whose left adjoint f∗a sends M → (A, ·) to ( f∗M)a → B.
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Proof. The first adjunction is immediate, and it is easy to verify that f∗
preserves cofibrations and trivial cofibrations. The second adjunction follows using

Corollary 3.16.

Remark 3.27. The adjunction ( f∗, f ∗) actually induces the structure of a left Quillen

presheaf over sR on sP, endowed with the injective pre-log model structure (see, for

example, [25, p. 127] for the notion of a left Quillen presheaf).

4. Log derivations and the log cotangent complex

4.1. Log derivations

We begin by defining derivations in the pre-log context. For this we use that the simplicial

model structures discussed in the previous section provide simplicial mapping spaces for

the respective categories, and we will write MapC(−,−) for the derived mapping spaces

in a simplicial model category C.

Let sP(A,M)//(B,N ) denote the category of simplicial pre-log (A,M)-algebras over (B, N ).

Definition 4.1. Let (A,M)→ (B, N ) be a morphism of simplicial pre-log rings, and let J
be a simplicial B-module. Denote by B⊕ J the trivial square zero extension of B by J ,

and let N ⊕ J be the simplicial monoid N × Jadd. Define a morphism N ⊕ J → (B⊕ J, ·)
as the product of the two canonical maps

N −→ (B, ·) −→ (B⊕ J, ·),
(J,+) ↪→ (B⊕ J, ·), x 7→ (1, x).

Then (B⊕ J, N ⊕ J ) is canonically an object in sP(A,M)//(B,N ), and we will call it the

trivial square zero extension of (B, N ) by J .

Remark 4.2. When ( f, f [) : (A,M)→ (B, N ) is a morphism of log simplicial rings, an

equivalent definition of the trivial square zero extension is (B⊕ J, ((s0)∗N )a), where

s0 : B → B⊕ J is the canonical section of the projection B⊕ J → B. See [21,

Lemma 11.5].

Definition 4.3. Let ( f, f [) : (A,M)→ (B, N ) be a morphism of simplicial pre-log rings,

and let J be a simplicial B-module. The simplicial set of f -linear derivations of (B, N )
with values in J is defined as

Der(A,M)((B, N ), J ) = MapsP(A,M)//(B,N )((B, N ), (B⊕ J, N ⊕ J )).

For a morphism of log simplicial rings, it does not make a difference if we compute

derivations in the category of log simplicial rings or in the category of simplicial pre-log

rings.

Lemma 4.4. Let ( f, f [) : (A,M)→ (B, N ) be a morphism of log simplicial rings. Then

Der(A,M)((B, N ), J ) ' MapsL(A,M)//(B,N )((B, N ), (B⊕ J, N ⊕ J )).
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Proof. The map (B⊕ J, N ⊕ J )→ (B, N ) is a fibration in the projective pre-log

model structure since J is fibrant as a simplicial set. So we can model the derived

mapping space MapsP(A,M)//(B,N )((B, N ), (B⊕ J, N ⊕ J )) by the simplicial mapping space

in sP(A,M)//(B,N ), where we use (B⊕ J, N ⊕ J ) as the target and a cofibrant replacement

of (A,M)→ (B, N )
=−→ (B, N ) in the projective pre-log model structure as the source.

Since cofibrations in the projective pre-log model structure are also cofibrations in

the injective pre-log model structure, it remains to show that, with respect to the

injective pre-log model structure,the target is weakly equivalent to a fibration in the

log model structure. By Remark 4.2, (B⊕ J, N ⊕ J ) ' (B⊕ J, ((s0)∗N )a), showing that

(B⊕ J, N ⊕ J ) is a log simplicial ring. Using [10, Proposition 3.3.16], it follows that

the fibrant replacement of (B⊕ J, N ⊕ J ) in the injective pre-log model structure on

sP(A,M)//(B,N ) also provides a fibrant replacement in the log model structure.

Remark 4.5. When ( f, f [) : (A,M)→ (B, N ) is a morphism of log simplicial rings, every

log derivation is a strict morphism. One can show that, for a morphism of discrete log

rings, the functor from B-modules to trivial square zero extensions of (B, N ) gives an

equivalence of categories between abelian objects in the category of log (A,M)-algebras

that are strict over (B, N ) and the category of B-modules [21, Lemma 4.13]. The same

should also hold for a morphism of log simplicial rings, giving a Quillen equivalence

between the categories of simplicial B-modules and the category (sPstr
(A,M)//(B,N ))ab of

abelian objects in the category of log (A,M)-algebras that are strict over (B, N ).

4.2. The log cotangent complex

We have a functor

� : sP(A,M)//(B,N ) −→ ModB, (C, O) 7−→ �(C,O)/(A,M)⊗C B,

where �(C,O)/(A,M) is defined by level-wise application of the functor of log Kähler

differentials (see [12, § 1.7] for the definition) for discrete pre-log rings. On the other

hand, we have the functor of the previous section:

K : ModB −→ sP(A,M)//(B,N ), J 7−→ (B⊕ J, N ⊕ J ).

Note that K is given by applying the trivial square zero extension functor for discrete

pre-log rings level-wise. We then have the following result.

Lemma 4.6. The pair � : sP(A,M)//(B,N ) � ModB : K is a Quillen adjunction with respect

to the projective pre-log model structure on P(A,M)//(B,N ) and the standard model structure

on ModB .

Proof. Adjointness follows from the corresponding statement for discrete log rings, since

� and K are both applied level-wise. Since K clearly preserves fibrations and trivial

fibrations, the adjunction is in fact a Quillen adjunction.

Since � is part of a Quillen adjunction, we obtain a left derived functor

L� : Ho(sP(A,M)//(B,N )) −→ Ho(ModB).
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Definition 4.7. We define the log cotangent complex L(B,N )/(A,M) of a morphism of

simplicial pre-log rings (A,M)→ (B, N ) to be L�(B, N ). Here (B, N ) is regarded as

an object of sP(A,M)//(B,N ).

Thus, by definition, the log cotangent complex represents the derivations, since by

adjunction we have

Der(A,M)((B, N ), J ) = MapsP(A,M)//(B,N )((B, N ), (B⊕ J, N ⊕ J ))

' MapModB (L(B,N )/(A,M), J ).

Remark 4.8. When (A,M)→ (B, N ) is a morphism of discrete log rings, the above

definition recovers Gabber’s definition [18, § 8] of the log cotangent complex.

Remark 4.9. Note that by Remark 4.5 the log Kähler differentials of a morphism of

discrete log rings only depend on the abelian objects in the category of log rings that are

strict over (B, N ), since the log Kähler differentials explicitly compute the abelianization

functor in this category. If we assume that we have the Quillen equivalence between

sModB and (sPstr
(A,M)//(B,N ))ab mentioned in Remark 4.5, then by Lemma 4.4 the log

cotangent complex explicitly computes the left derived functor of the abelianization in

the category sPstr
(A,M)//(B,N ). As Rognes points out in [21], it should be interesting to

investigate the abelianization functor in other categories than log rings that are strict

over (B, N ). For instance, one could replace strictness by the weaker notion of repleteness,

or by no condition at all.

The homotopical version of the log cotangent complex used in [21, §11] immediately

translates to give the following version of the log cotangent complex of a morphism of

log simplicial rings ( f, f [) : (A,M)→ (B, N ), which is defined as the following homotopy

pushout:

B⊗Z[N ] LZ[N ]/Z[M]
ψ
//

φ
��

B⊗ Ngp/Mgp

φ̄
��

LB/A
ψ̄

// LRog
(B,N )/(A,M)

Here ψ is in simplicial degree s defined as the application of the morphism

Bs ⊗Z[Ns ]�1
Z[Ns ]/Z[Ms ]→ Bs ⊗ Ngp

s /Mgp
s

b⊗ dn 7−→ b ·β(n)⊗ γ (n),
where γ denotes the canonical morphism to group completion.

Rognes’ verification that this complex represents the derived functor of derivations also

carries over to the present context.

Proposition 4.10 [21, Proposition 11.21]. There is a natural weak equivalence of mapping

spaces

MapModB (L
Rog
(B,N )/(A,M), J ) ' Der(A,M)((B, N ), J ).
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This allows us to compare the two definitions.

Theorem 4.11. Let ( f, f [) : (A,M)→ (B, N ) be a morphism of simplicial pre-log rings.

Then

L(B,N )/(A,M) ∼= LRog
(B,N )/(A,M)

in D(B).

Proof. Let J be a simplicial module. Then the functor mapping J to the logarithmic

derivations Der(A,M)((B, N ), J ) is representable both by L(B,N )/(A,M) and LRog
(B,N )/(A,M).

Using the Yoneda lemma, we thus conclude that L(B,N )/(A,M) ∼= LRog
(B,N )/(A,M) in the

derived category D(B) of simplicial B-modules.

Rognes’ definition leads to simple proofs of the expected properties of the log cotangent

complex.

Proposition 4.12. (i) Let (A,M)→ (B, N )→ (C, O) be maps of simplicial pre-log

rings. Then there is a transitivity homotopy cofiber sequence in the homotopy

category of simplicial C-modules

C ⊗L
B L(B,N )/(A,M) −→ L(C,O)/(A,M) −→ L(C,O)/(B,N ).

(ii) Let

(A,M)

��

// (B, N )

��

(R, P) // (S, Q)

be a homotopy pushout square in sL. Then there is an isomorphism in the homotopy

category of simplicial S-modules

S⊗L
B L(B,N )/(A,M) ' L(S,Q)/(R,P).

Proof. These follow immediately from [21, Propositions 11.28 and 11.29].

4.3. Square zero extensions

Definition 4.13. Let ( f, f [) : (A,M)→ (B, N ) be a morphism of log simplicial rings, J a

simplicial B-module, and η : �(B,N )/(A,M)→ J a derivation. We define (Bη, Nη) via the

pullback diagram in sL(A,M)

(Bη, Nη) //

pη
��

(B, N )
s0
��

(B, N )
η
// (B⊕ J, N ⊕ J )

and call the map pη : (Bη, Nη)→ (B, N ) the natural projection.

This defines a functor

8 : (ModB)�(B,N )/(A,M) → sL(A,M)//(B,N )
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from the category of simplicial modules under the log Kähler differentials to the category

of log simplicial (A,M)-algebras augmented over (B, N ). This functor has a left adjoint 9

given by mapping an object (A,M)→ (C, O)→ (B, N ) to the sequence of differentials

�(B,N )/(A,M)→ �(B,N )/(C,O). It is straightforward to verify that this defines a Quillen

adjunction. Hence we obtain derived functors L9 and R8.

The following statement is proved in the appendix.

Proposition 4.14. Let π : R→ S be a square zero extension of discrete commutative rings,

and let J = kerπ be the corresponding square zero ideal. Then there exists a derivation

d ∈ π0MapR/sA/S(S, S⊕ J [1]) such that there exists an isomorphism in Ho(sR/S),
between π : R→ S and the canonical projection pd : S⊕d J → S, where pd is defined

by the homotopy pullback diagram

S⊕d J //

pd
��

S
0
��

S d // S⊕ J [1].
Theorem 4.17 below provides the analog of Proposition 4.14 for strict square zero log

extensions of discrete log rings. The proof of that theorem will be based on the next

two lemmas. For this, recall that a monoid P is integral if the group completion map

P → Pgp is injective.

The following elementary result is well known (see, for example, the remark after [12,

Definition (4.6)]). We include a proof, since we were unable to locate one in the literature.

Lemma 4.15. A strict square zero extension of discrete and integral log rings (π, π [) :
(R, P, α)→ (S, Q, β) is exact, i.e., the diagram

P
π [ ��

// Pgp

(π [)gp
��

Q // Qgp

is cartesian in the category of commutative monoids.

If (R, P, α) is a discrete log ring, then we write cR : R×→ P for the composite of the

inverse of the isomorphism α−1(R×)→ R× and the canonical map α−1(R×)→ P.

Proof. Let J = kerπ . Since π is surjective and J 2 = 0, we have π−1(S×) ∼= R×. Together

with the log condition on (R, P, α), this provides isomorphisms R× ∼= α−1(R×) ∼=
α−1π−1(S×), and therefore strictness implies that we have a pushout of commutative

monoids

R× cR //

π× ��

P
π [
��

S× cS // Q.

Since both R× and S× are abelian groups, we have Q ∼= P ⊕ S×/∼, where

(x, u) ∼ (x ′, u′)⇔ ∃ v ∈ R× such that cR(v)x = x ′ and π(v−1)u = u′.
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Given [x, u] ∈ P ⊕ S×/∼, the square zero condition implies that there exists v ∈ R× such

that π(v) = u. Since (x, u) ∼ (cR(v)x, 1), the morphism π [ maps the element cR(v)x ∈ P
to [x, u] ∈ Q ∼= P ⊕ S×/∼. Hence the morphism π [ is surjective.

Consider the morphism of monoids

ϕ : P −→ Q×Qgp Pgp x 7−→ (π [(x), [x, 1]gp),

where we have denoted by x 7→ [x, 1]gp the canonical map P → Pgp, with Pgp implicitly

identified, as usual, with a quotient of P × P.

We will prove that ϕ is bijective, and hence a monoid isomorphism. Since P is integral,

the map P → Pgp is injective, and thus so is ϕ. In order to prove the surjectivity of ϕ,

we first observe that, if (y, [x1, x2]gp) is an arbitrary element in Q×Qgp Pgp, then there

exists x ∈ P such that π [(x) = y. It follows that π [(xx2) = π [(x1) since y and [x1, x2]gp

have the same image in Qgp, and Q is integral. But under the identification Q ∼=
P ⊕ S×/∼, we have π [(x ′) = [x ′, 1] for any x ′ ∈ P, and hence [xx2, 1] = [x1, 1] in

P ⊕ S×/∼. By definition of ∼, there exists v ∈ R× such that

cR(v)xx2 = x1 and π(v−1)1 = 1.

In particular, we have π(v) = 1. Now, let us prove that ϕ((cR(v)x)) = (y, [x1, x2]). By

definition, we have

ϕ(cR(v)x) = (π [cR(v)π
[(x), [cR(v)x, 1]gp).

Since cR(v)xx2 = x1, we have [cR(v)x, 1]gp = [x1, x2]gp, and since π [cR(v) = cSπ(v) =
1 ∈ Q, we also have π [cR(v)π

[(x) = π [(x) = y. This completes the proof of the

surjectivity of ϕ.

If (R, P) is a discrete log ring, then cgp
R : R×→ Pgp denotes the composite of the map

cR : R×→ P from the log condition and the group completion map P → Pgp.

Lemma 4.16. Let (π, π [) : (R, P, α)→ (S, Q, β) be a strict square zero extension of

discrete integral log rings, and let J = kerπ be the corresponding square zero ideal. Then

exp : J −→ R×, ξ 7−→ (1+ ξ),
and the maps cgp

R and cgp
S induce a commutative diagram

J
exp

//

��

R×
π×
��

cgpR // Pgp

(π [)gp
��

{1} // S×
cgpS // Qgp

(4.1)

of constant simplicial commutative monoids in which both squares are homotopy cartesian

and homotopy cocartesian.

Proof. It is immediate from the square zero condition that the left-hand square is

cartesian. Since it consists of constant simplicial monoids, it is also homotopy cartesian.

Hence J → R×→ Pgp is a homotopy fiber sequence of simplicial abelian groups, and it
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follows that the left-hand square is also homotopy cocartesian as a square of simplicial

abelian groups. By Corollary 2.14, it is therefore a homotopy cocartesian square of

simplicial commutative monoids.

For the right-hand square, we consider the commutative diagram

J
exp

//

��

R×
π×
��

cR // P
π [
��

// Pgp

(π [)gp
��

{1} // S× cS // Q // Qgp.

(4.2)

Since (π, π [) is a strict square zero extension between discrete integral log rings,

Lemma 4.15 implies that the right-hand square in (4.2) is cartesian. The middle square

in (4.2) is cartesian since the log conditions on (R, P, α) and (S, Q, β) and the square

zero condition on π provide isomorphisms

(π [)−1(S×) ∼= (π [)−1(β−1(S×)) ∼= α−1π−1(S×) ∼= α−1(R×) ∼= R×.
Hence the right-hand square in (4.1) is homotopy cartesian. Moreover, since we already

observed that the left-hand square in (4.2) is cartesian, it follows that the outer square

is cartesian. Arguing as above, we deduce that the outer square is homotopy cocartesian

as a square of constant simplicial commutative monoids. Since we already know that the

left-hand square in (4.1) is homotopy cocartesian, it follows that the right-hand square

in (4.1) is homotopy cocartesian.

We are now able to prove the promised log analog of Proposition 4.14.

Theorem 4.17. Let (π, π [) : (R, P)→ (S, Q) be a strict square zero extension of discrete

integral log rings, and let J = kerπ be the corresponding square zero ideal. Then there

exists a derivation

(d, d[) ∈ π0Map(R,P)/sP/(S,Q)((S, Q), (S⊕ J [1], Q⊕ J [1]))
such that there exists an isomorphism in Ho(sP/(S, Q)) between (π, π [) and the canonical

projection

(pd , p[d) : (S⊕d J, Q⊕d[ J )→ (S, Q),

where (pd , p[d) is defined by the homotopy pullback diagram

(S⊕d J, Q⊕d[ J ) //

(pd ,p
[
d ) ��

(S, Q)
0
��

(S, Q)
(d,d[)

// (S⊕ J [1], Q⊕ J [1]).

(4.3)

Proof. In order to simplify the exposition, we do not make explicit some of the cofibrant

replacements needed to represent maps in homotopy categories by maps in the relevant

model categories. By Proposition 4.14, there exists a ring derivation d : S→ S⊕ J [1]
satisfying the statement of that Proposition. Let δ : S→ J [1] denote its J [1] component.

By Lemma 4.16, we have a homotopy pushout diagram

R×
cgpR //

π× ��

Pgp

(π [)gp
��

S×
cgpS // Qgp.
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Using its universal property and δπ = 0, it follows that

0 : Pgp −→ Q⊕ J [1] and S× −→ Q⊕ J [1], v 7−→ (cS(v), v
−1δ(v))

define a homomorphism ε[ : Qgp→ Q⊕ J [1], whose precomposition with Q → Qgp will

be denoted by δ[ : Q → Q⊕ J [1]. Using this map, we define

d[ = (idQ, δ
[) : Q −→ Q⊕ J [1].

Since β ◦ cS is the canonical inclusion map S×→ S, one can use the restrictions to Pgp

and S× in the above homotopy pushout to check that the diagram

Q
β
��

d[ // Q⊕ J [1]
αJ [1]
��

S d // S⊕ J [1]
commutes. Here αJ [1] : Q⊕ J [1] → S⊕ J [1], (s, ξ) 7→ (β(s), β(s)ξ) denotes the log-

structure map. This implies that (d, d[) is indeed a log derivation.

Next we use (d, d[) and the trivial log derivation 0 to form the homotopy pullback (4.3).

Since the forgetful functors from simplicial pre-log rings to simplicial commutative

rings and simplicial commutative monoids preserve pullbacks, both the ring and the

monoid component of (4.3) are homotopy pullbacks in the respective categories. By

Proposition 4.14 we get an isomorphism

R
χ

//

π ��

S⊕d J

pd{{
S

in Ho(sA/S). Since d[ ◦π [ = (π [, 0) = 0 ◦π [, we also get an induced map χ [ : P →
Q⊕d[ J of simplicial monoids over Q, where Q⊕d[ J maps to Q via p[d . Moreover, since

the diagram

P

π [

��

π [ //

α

��

Q

d[
��

β

��
R

π

��

π // S

d

��

Q
0[

//

β ��

Q⊕ J [1]
αJ [1] ��

S
0
// S⊕ J [1]

commutes, we get that the pair (χ, χ [) : (R, P)→ (S⊕d J, Q⊕d[ J ) is indeed a map in

sL/(S, Q).
We already know from Proposition 4.14 that χ is an equivalence of simplicial rings.

To prove that χ [ is an equivalence, we consider the following commutative diagram of

simplicial commutative monoids:

J
exp

//

��

R× cR //

π×
��

P //

π
��

Pgp

π [
��

// {1}
��

{1} // S× cS // Q // Qgp ε[ // J [1].

(4.4)
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The outer square is homotopy cartesian and homotopy cocartesian as a square of

simplicial abelian groups. Using Corollary 2.14 and Lemma 4.16, it follows that the

rightmost square in (4.4) is homotopy cocartesian. Since it consists of simplicial abelian

groups, it is also homotopycartesian in sAB, and hence also in sM. The third square

(spanned by π and π [) is cartesian by Lemma 4.15. Since it consists of discrete simplicial

monoids, it is also homotopy cartesian. It follows that the composite

P //

π [
��

{1}
��

Q δ[ // J [1]
of the two rightmost squares is homotopy cartesian.

On the other hand, by definition of Q⊕d[ J , the outer square in the diagram

Q⊕d[ J
p[d ��

// Q
0[
��

// {1}
��

Q d[ // Q⊕ J [1] proj
// J [1]

is homotopy cartesian. Now it is enough to observe that, since by definition of χ [, we

have p[ ◦χ [ = π [, and the diagram

P

��

π [ //

χ [

��

Q

δ[

��

id

��

Q⊕d[ J

��

p[
// Q

δ[

��

{1} //

��

J [1]
id

��

{1} // J [1]
commutes. The front and rear faces of this diagram are homotopy pullbacks; hence we

conclude that χ [ is an equivalence of simplicial commutative monoids.

Remark 4.18. Note that the homotopy pullback in Theorem 4.17 is a homotopy pullback

in sL/(S, Q), since the forgetful functor sL/(S, Q)→ sL creates homotopy pullbacks.

Moreover, Theorem 4.17 holds true if we work in the undercategory (A,M)/sL, where

(A,M) is any simplicial log ring, i.e., (π, π [) is a map in (A,M)/sL and a strict square

zero extension of discrete log rings, and the homotopy pullback defining (S⊕d J, Q⊕d[ J )
in Theorem 4.17 is taken in (A,M)/sL (or equivalently in (A,M)/sL/(S, Q)).

5. Derived log-étale maps

Following [12, 3.2], we give the following definition.

Definition 5.1. A morphism ( f, f [) : (A,M)→ (B, N ) of discrete log rings will be called

formally log-étale if for any strict square zero extension of discrete integral log rings
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(g, g[) : (R, P)→ (S, Q) and every commutative diagram

(S, Q) (B, N )oo

(R, P)
(g,g[)

OO

(A,M)
( f, f [)
OO

oo

there exists a unique (h, h[) : (B, N )→ (R, P) such that the resulting triangles commute.

A morphism ( f, f [) : (A,M)→ (B, N ) of discrete log rings will be called log-étale if it

is formally log-étale and the underlying map f : A→ B is finitely presented.1

Remark 5.2. Note that Kato defines étale morphisms only in the category of fine log

rings, i.e., both ( f, f [) and (g, g[) are required to be morphisms of fine log rings. Thus,

if a map of fine log ring (A,M)→ (B, N ) is étale in the sense of Definition 5.1, then it is

étale in Kato’s sense. Since there seems to be no homotopically meaningful way to define

the notion of a fine log structure, we have chosen the previous more general definition,

i.e, we just probe using square zero extension of integral, but not necessarily fine, log

rings.

For log simplicial rings, we adopt the following definition.

Definition 5.3. A morphism ( f, f [) : (A,M)→ (B, N ) of log simplicial rings will be called

derived formally log-étale if L(B,N )/(A,M) is trivial.

A morphism ( f, f [) : (A,M)→ (B, N ) of log simplicial rings will be called derived

log-étale if it is formally derived log-étale, and the underlying morphism f is

homotopically finitely presented [27, Definition 1.2.3.1].

Proposition 5.4. The composition of two derived log-étale maps is derived log-étale. If

f : (A,M)→ (B, N ) and g : (A,M)→ (C, O) are maps of simplicial pre-log algebras,

and f is derived log-étale, then the homotopy base-change map

(C, O) −→ (B, N )
h∐

(A,M)

(C, O)

is derived log-étale.

Proof. First of all, observe that being of finite presentation is stable under composition

and base change. The remaining statements about the cotangent complex, follow

from the transitivity sequence, and from the so-called flat base change, i.e., from

Proposition 4.12.

Since a map of log simplicial rings ( f, f [) : (A,M)→ (B, N ) is strict if and only if the

induced map of pre-log rings (B, f∗(M))→ (B, N ) is a weak equivalence in the log model

structure, it follows that strict maps are preserved under base change.

1We have adopted the convention of Gabber and Ramero [7] of not imposing any finiteness condition on
the monoid map.
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Lemma 5.5. Let

(A,M)

��

// (B, N )

��

(R, P) // (S, Q)

be a homotopy pushout of log simplicial rings. If (A,M)→ (B, N ) is strict, then so is

(R, P)→ (S, Q).

Proof. We consider the induced square

(A,M)

��

// (B, f∗(M))
��

// (B, N )

��

(R, P) // (S, f∗(P)) // (S, Q).

Here the outer square is homotopy cocartesian by assumption, and it follows easily that

the left-hand square is homotopy cocartesian. Hence the right-hand square is homotopy

cocartesian. If (B, f∗(M))→ (B, N ) is a weak equivalence in the log model structure,

this implies that (S, f∗(P))→ (S, Q) also has this property.

The following theorem shows that the previous notion of log-étaleness implies the

classical one on the truncation. We recall the following notation: given a model category

C and objects A and B of C , we will denote the respective slice model categories by A/C ,

C/B, and A/C/B.

Theorem 5.6. If a morphism ( f, f [) : (A,M)→ (B, N ) of log simplicial rings is derived

log-étale and π0 f [ is of finite presentation, then the induced morphism (π0 f, π0 f [) :
(π0 A, π0 M)→ (π0 B, π0 N ) is a log-étale morphism of discrete log rings (in the sense of

Definition 5.1).

Proof. First of all observe that the left Quillen functor π0 : sP → P preserves finitely

presented objects. So we are left to prove that (π0 f, π0 f [) is formally étale. Let (π, π [) :
(R, P)→ (S, Q) be a strict square zero extension of discrete integral log rings under

(A,M), with square zero ideal J .

We have to prove that the canonical map

Hom(π0 A,π0 M)/P ((π0 B, π0 N ), (R, P)) −→ Hom(π0 A,π0 M)/P ((π0 B, π0 N ), (S, Q))

is bijective. Since (R, P) and (S, Q) are discrete, this is equivalent to showing that the

canonical map

u : Map(A,M)/sL((B, N ), (R, P)) −→ Map(A,M)/sL((B, N ), (S, Q))

is a weak equivalence of simplicial sets. This is true if and only if, for any 0-simplex

ϕ = (ϕ, ϕ[) in Map(A,M)/sL((B, N ), (S, Q)), the homotopy fiber

hofib(ϕ) = hofib(u;ϕ)
is non-empty and contractible. In order to establish this, let us write Bϕ for (B, N ) viewed

as an object in (A,M)/sL/(S, Q) via ϕ, and let ϕ∗ J [1] be J [1] viewed as a B-module

via ϕ. We consider the map

ρϕ : Map(A,M)/sL/(S,Q)(Bϕ, (S, Q)⊕ J [1]) −→ Map(A,M)/sL/(S,Q)((B, N ), (B, N )⊕ϕ∗ J [1])
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induced by sending

(D, D[) : Bϕ → (S, Q)⊕ J [1]
to the map (B, N )→ (B, N )⊕ϕ∗ J [1] whose projection to (B, N ) is the identity, and

whose projection to ϕ∗ J [1] is given, on B and N , respectively, by the composites

B D // S⊕ J [1] prJ [1]
// J [1] and N D[

// Q⊕ J [1] prJ [1]
// J [1] .

In the notation of Theorem 4.17, we obtain a diagram

hofib(ϕ)

��

// •
ϕ

��

Map(A,M)/sL/(S,Q)(Bϕ, (R, P))

��

pd // Map(A,M)/sL/(S,Q)(Bϕ, (S, Q))

(d,d[)
��

Map(A,M)/sL/(S,Q)(Bϕ, (S, Q))

��

0
// Map(A,M)/sL/(S,Q)(Bϕ, (S, Q)⊕ J [1])

ρϕ

��

•
0

// Map(A,M)/sL/(B,N )((B, N ), (B, N )⊕ϕ∗ J [1]).

The top square is homotopy cartesian by definition. The middle one is homotopy cartesian

by Theorem 4.17, the fact that Map preserves homotopy cartesian squares, and the fact

that the forgetful functor (A,M)/sL/(S, Q)→ (A,M)/sL creates homotopy pullbacks,

so that the homotopy pullback of Theorem 4.17 is actually a homotopy pullback in

(A,M)/sL/(S, Q) (see Remark 4.18). The bottom square is homotopy cartesian by

definition of the map ρϕ . If we set Dϕ = ρϕ ◦ (d, d[) ◦ϕ, we see that hofib(ϕ) is non-empty

if and only if Dϕ is zero in

π0 Map(A,M)/sL/(B,N )((B, N ), (B, N )⊕ϕ∗ J [1]) ∼= Ext1
B(L(B,N )/(A,M), ϕ

∗ J ),

and in this case

hofib(ϕ) ∼= �0Map(A,M)/sL/(B,N )((B, N ), (B, N )⊕ϕ∗ J [1])
∼= �0MapB-Mod(L(B,N )/(A,M), ϕ∗ J [1]).

If L(B,N )/(A,M) ∼= 0, hofib(ϕ) is then non-empty and contractible.

6. Derived log-smooth maps

Following [12], we give the following definition.

Definition 6.1. A morphism ( f, f β) : (A,M)→ (B, N ) of discrete log rings will be called

formally log-smooth if, for any strict square zero extension of discrete integral log rings

(g, g[) : (R, P)→ (S, Q), the canonical map

HomL(A,M)((B, N ), (R, P)) −→ HomL(A,M)((B, N ), (S, Q))

is surjective. Here L(A,M) denotes the slice category of L over (A,M).
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A morphism ( f, f [) : (A,M)→ (B, N ) of discrete log rings will be called log-smooth if

it is formally log-smooth, and the underlying map f : A→ B is finitely presented as a

map of commutative algebras.

Remark 6.2. Remark 5.2 applies analogously to log-smooth maps: we define smoothness

on a larger class of maps than Kato does, and if a map of fine log rings is smooth in the

sense of Definition 6.1, then it is smooth in Kato’s sense.

Definition 6.3. A morphism ( f, f [) : (A,M)→ (B, N ) of log simplicial rings will be called

derived formally log-smooth if

HomHo(B-Mod)(L(B,N )/(A,M), J ) ' 0

for any simplicial B-module J with π0 J = 0.

A morphism ( f, f [) : (A,M)→ (B, N ) of log simplicial rings will be called derived

log-smooth if it is formally log-smooth and f : A→ B is homotopically finitely presented.

The following theorem shows that the notion of derived log-smoothness implies the

classical one on the truncations.

Theorem 6.4. If ( f, f [) : (A,M)→ (B, N ) of log simplicial rings is derived log-smooth,

then the induced morphism (π0 f, π0 f [) : (π0 A, π0 M)→ (π0 B, π0 N ) is a log-smooth

morphism of discrete log rings (in the sense of Definition 6.1).

Proof. Let (π, π [) : (R, P)→ (S, Q) be a strict square zero extension of discrete integral

log rings under (A,M), with square zero ideal J . Following the arguments and the

notation in the proof of Theorem 5.6 shows that the map

Hom(π0 A,π0 M)/L((π0 B, π0 N ), (R, P)) −→ Hom(π0 A,π0 M)/L((π0 B, π0 N ), (S, Q))

is surjective if and only if, for any 0-simplex ϕ in Map(A,M)/sL((B, N ), (S, Q)), the

associated element Dϕ is zero in

π0 Map(A,M)/sL/(B,N )((B, N ), (B, N )⊕ϕ∗ J [1])
∼= Ext1

B(L(B,N )/(A,M), ϕ
∗ J ) ∼= HomHo(B-Mod)(L(B,N )/(A,M), ϕ∗ J [1]).

But π0(ϕ
∗ J [1]) = 0, so the result follows.

7. Derived log stacks

In giving our definitions, we will not mention explicitly the proper choices of universes:

the reader will find they are the same as in [26].

7.1. Derived log pre-stacks

Throughout, we fix a base commutative ring k. If we view k as a constant simplicial

ring with the trivial simplicial pre-log structure, then the category of pre-log simplicial

k-algebras is the category pre-log simplicial rings under k. It is denoted by sPk , and it
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inherits an injective and a projective model structure from sP. Likewise, we obtain a

model category of log simplicial rings sLk from Theorem 3.13 as the comma category

k ↓ sL.

Definition 7.1. The category of derived log affines over k is the opposite category dLogAffk
of sLk , and we let

SPr(dLogAffk) := SdLogAffop
k = SsLk

be the category of simplicial presheaves on derived log affines over k.

Note that dLogAffk is a simplicial model category, and that SPr(dLogAffk) is

simplicially enriched by

HomSPr(dLogAffk )
(F,G)n := HomSPr(dLogAffk )

(F ×1n,G),

where

(F ×1n)(A,M) := F(A,M)×1n .

Proposition 7.2. The category SPr(dLogAffk) admits a left proper cellular model structure

where the weak equivalences and the fibrations are defined object-wise.

Proof. This is [26, Propositions A.1.3(1) and A.2.5].

Consider the Yoneda functor

dLogAffk −→ SPr(dLogAffk), X 7−→ h X := HomdLogAffk
(−, X),

and define

hW := {hw : h X → hY | w : X → Y a weak equivalence in dLogAffk}.

Definition 7.3. The category of log pre-stacks over k is the model category dLogAff∧k
obtained as the left Bousfield localization of SPr(dLogAffk) with respect to hW .

Remark 7.4. In the notation of [26, Definitions 2.3.3 and 4.1.4], the model category

dLogAff∧k (with the appropriate choice of universes) is denoted as (dLogAffk, S)∧, where

S stands for the weak equivalences in dLogAffk .

Note that, by standard properties of left Bousfield localizations (see e.g., [10]),

Ho(dLogAff∧k ) can be identified with the full subcategory of Ho(SPr(dLogAffk)) consisting

of functors F : dLogAff
op
k −→ S preserving weak equivalences.

We are now able to define a derived log analog of the spectrum functor.

Definition 7.5. We define the derived log spectrum functor Spec as follows:

Spec : Ho(dLogAffk) −→ Ho(dLogAff∧k ), (A,M) 7−→ HomsP (Q(A,M), R(−)),
where Q(−) (respectively, R(−)) denotes a cofibrant (respectively, fibrant) replacement

functor in the model category sPproj, and HomsP (−,−) the simplicial enrichment in sP.
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Equivalently, we could have defined Spec as in [26, Definition 4.2.5]. The model category

version of the Yoneda lemma [26, Corollary 4.2.4], tells us that the following holds.

Proposition 7.6. The Spec functor is fully faithful, and for any (A,M) ∈ sP, and any

F ∈ dLogAff∧k , we have a canonical isomorphism in Ho(S),

MapdLogAff∧k (Spec(A,M), F) ' F(A,M).

7.2. Derived log stacks

Definition 7.7. A family {(A,M)→ (Ai ,Mi )}i∈I of morphisms in sPk is called a strict

log-étale covering family of (A,M) in dLogAffk if

• each (A,M) −→ (Ai ,Mi ) is a strict log-étale morphism (of simplicial pre-log

k-algebras), and

• there exists a finite subset J ⊆ I such that the family of base-change functors{
−⊗L

A A j : Ho(sModA) −→ Ho(sModA j )
}

j∈J

is conservative.

Proposition 7.8. The collection of strict log-étale covering families form a model

pre-topology on the model category dLogAffk in the sense of [26, Definition 4.3.1].

Proof. This follows immediately from stability of strict log-étale maps with respect to

composition and homotopy pullbacks (Proposition 5.4 and Lemma 5.5).

Definition 7.9. We denote by str-log-ét both the model pre-topology, given by strict

log-étale covering families, on dLogAffk , and the Grothendieck topology on Ho(dLogAffk)

generated by the induced pre-topology.

To any F ∈ SPr(dLogAffk), we can associate the sheaf of connected components π0(F)
on the strict log-étale (usual) site (Ho(dLogAffk), str-log-ét). And, for any i > 0, any

fibrant X ∈ dLogAffk , and any s ∈ F(X)0, we can consider the sheaf πi (F, s) on the

comma site (Ho(dLogAffk/X), str-log-ét) [26, Definition 4.5.3].

Definition 7.10. A map f : F −→ G in SPr(dLogAffk) is called a π∗-isomorphism if the

induced maps of sheaves

π0(F) −→ π0(G),

πi (F, s) −→ πi (G, f (s))

are isomorphisms, for any i > 0, any fibrant X , and any s ∈ F(X)0.

Theorem 7.11. There is a model structure on SPr(dLogAffk) in which the cofibrations

are the same as those in dLogAff∧k , and the weak equivalences are π∗-isomorphisms.
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Proof. This follows from [26, Theorem 4.6.1].

Definition 7.12. The model category structure on SPr(dLogAffk) given by Theorem 7.11

will be called the model category of derived log stacks, and its homotopy category will be

simply denoted by dLogStk .

It follows from the proof of Theorem 7.11, and from basic properties of left

Bousfield localizations, that dLogStk can be identified with the full subcategory of

Ho(SPr(dLogAffk)) consisting of functors F : dLogAff
op
k −→ S such that F preserves

weak equivalences and F satisfies strict log-étale hyperdescent, i.e., the canonical map

F(X) −→ holim1op F(H•) := holim1opMapdLogAff∧k (H•, F)

is an isomorphism in Ho(S), for any strict log-étale pseudo-representable hypercover

H•→ h X of X (see [26, Definition 4.6.5]).

In particular, we will say that an object F ∈ Ho(dLogAff∧k ) is a derived log stack if it

satisfies the strict log-étale hyperdescent condition.

Proposition 7.13. The strict log-étale model pre-topology on the model category dLogAffk
is subcanonical [27, Definition 1.3.1.3], i.e., Spec(A,M) is a derived log stack, for any

(A,M) ∈ sP.

Proof. We will only prove the case of a strict log-étale representable hypercover, leaving

to the reader the general case of a strict log-étale pseudo-representable hypercover (as in

the proofs of Lemmas 2.2.2.13 and 1.3.2.3(2) in [27]). By using finite products, we can

assume that we are working with a strict log-étale covering family given by a single map

(A,M)→ (B, N ) in sP. We have to show that the morphism (A,M)→ |(B, N )•| is an

isomorphism in Ho(sLk). Let Ho(sLk)
str denote the subcategory of Ho(sLk) spanned by

log simplicial rings with strict morphisms. Since strictness is preserved under homotopy

colimits, (A,M)→ |(B, N )•| gives a morphism in Ho(sLk)
str. Let U : sLk → sAlgk

denote the functor that forgets the log structure. By strictness, the induced functor

U : Ho(sLk)
str→ Ho(sAlgk) is conservative. The claim then follows from the string of

isomorphisms in Ho(sAlgk)

U (A,M)→ |U (B, N )•| → U (|(B, N )|•),
where the first isomorphism comes from descent for the étale topology on dAffk , and the

second isomorphism holds because U commutes with homotopy colimits.

By Proposition 7.13, the Spec functor factors as a fully faithful functor

Spec : Ho(dLogAffk) −→ dLogStk .

Remark 7.14. One might also consider the not necessarily strict log-étale model

pre-topology on the model category dLogAffk . The problem with this model topology

is that it is very likely that it is not subcanonical. This is closely related to the fact that

the log-étale topology on general (i.e., not fine and saturated) log schemes is probably

also not subcanonical.
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7.3. Geometric derived log stacks

By following the same path as in [27], we give the following inductive definition.

Definition 7.15. A derived log stack is (−1)-geometric if it is representable, i.e.,

isomorphic in dLogStk to Spec(A,M) for some simplicial pre-log k-algebra (A,M). Let

n > 0 be an integer.

• A derived log stack F ∈ dLogStk is n-geometric if the following hold.

– The diagonal map F −→ F × F is (n− 1)-representable.

– There exists a family {Spec(Ai ,Mi )}i∈I of representable derived stacks, and a

morphism

p :∐i Spec(Ai ,Mi ) −→ F,

called an atlas for F , such that

∗ the sheafification of π0(p) is an epimorphism of sheaves of sets on the site

(dLogStk, str-log-ét);

∗ the induced morphism pi : Spec(Ai ,Mi ) −→ F is log-smooth, for any i ∈ I.

• A morphism f : F −→ G in dLogStk is n-representable if for any representable X and

any morphism X −→ G, the derived log stack F ×G X is n-geometric.

• An n-representable morphism f : F −→ G in dLogStk is log-smooth if for any

representable X and any morphism X −→ G, there exists an atlas
∐

i Yi −→ F ×G X
for F ×G X such that each induced map Yi −→ X is log-smooth between representable

derived stacks.

The statement of the Artin property for derived log stacks and the corresponding

version of Lurie’s representability criterion will be treated in a sequel to this paper.

Remark 7.16 (Pre-log and log modules). If (A,M) is a simplicial pre-log algebra, there is

an obvious category PreLogMod(A,M) of pre-log modules over (A,M), whose objects are

triples (S, P, ϕ : S→ P), where S is a simplicial M-module (i.e., a simplicial set endowed

with an action of the simplicial monoid M), P is a simplicial A-module, and ϕ is a map

of simplicial sets that is equivariant with respect to the structure map α : M → A, i.e.,
such that the diagram

M × S //

α×ϕ
��

M
ϕ
��

A× P // P

commutes, and whose morphisms are the natural ones. There is a model structure on

Mod(A,M) where weak equivalences (respectively, fibrations) are pairs ( f, g), where f is a

weak equivalence (respectively, a fibration) of simplicial sets and g is a weak equivalence

(respectively, a fibration) of simplicial A-modules. Direct and inverse image functors

define a Quillen pair, and there is a natural monoidal structure on PreLogMod(A,M) such

that algebras in Mod(k,1) are exactly pre-log k-algebras. However, PreLogMod(A,M) is
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very much non-additive. This is reflected by the fact that we have functors

AbGrps((k, 1)/P/(A,M)) ↪→ AbMonoids((k, 1)/P/(A,M)) −→Mod(A,M),

where the left one is not an equivalence (while it is in the non-pre-log case) and the right

one is not essentially surjective (while it is an equivalence in the non-pre-log case). One

might however use [17] to define a notion of flat topology on pre-log algebras (viewed

as algebras in Mod(k,1)). Unfortunately, these flat maps have flat underlying maps of

schemes, so they are not very interesting.

When (A,M) is a simplicial pre-log algebra with structure map α, there is a log

variant LogMod(A,M) of PreLogMod(A,M), where we only consider those pre-log modules

(S, P, ϕ : S→ P) such that the map α−1(A×P )→ A×P is a weak equivalence (here A×P
denotes the connected components of A acting as equivalences on P). We have not fully

investigated the homotopy and monoidal structures on this category.

From a general point of view, in order to get an alternative theory of derived log

geometry along these lines, we think it might be interesting to proceed as follows. Embed

the category of (pre) log rings in the category of arrows between commutative monoids.

This embedding is not full, so something new is obtained. Then we may use the approach

sketched in [28, § 5.3] and [17] to build a Zariski, flat, or smooth topology for arrows

between S1-derived schemes (i.e., the geometric objects of derived geometry over the

monoidal model category of simplicial sets), and explore the derived geometry of objects

arising via gluing (pre) log rings. This would roughly correspond classically to partially

disregarding the fact that there is an underlying scheme of a log scheme. This work

remains to be done, and we feel like it is a worthwhile task since it might yield a new

insight in the foundations of classical log geometry, too.

8. An example

This section provides an example of a non-trivial derived log stack. We construct a derived

version of the logarithmic moduli of stable maps introduced by Gross and Siebert.

We begin by producing an inclusion functor from the category of stacks over discrete

log rings to the category of derived stacks over log simplicial rings. To accomplish this,

we endow the category of discrete log rings with the trivial model structure. Then the

inclusion functor

i : Lk → sLk

from the category of log rings under a base ring k to the category of log simplicial rings

under a base ring k is a right Quillen functor. As a consequence we obtain a Quillen

adjunction for the categories of pre-stacks

i! : SLk � dLogAff∧k : i∗.
Here SLk is the category of simplicial presheaves on Lk equipped with the projective

model structure.

We equip the category Lk with the strict étale topology, and using the same

construction as in Theorem 7.11 we can define the model category of higher log stacks
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(see [27, § 2.1] for the construction of (non-derived) higher stacks in the non-logarithmic

context).

To verify that the above adjunction descends to the category of stacks, we have to check

that i preserves coproducts, equivalences, and hypercovers. The only non-trivial part is

to verify that i preserves strict étale morphisms, since in the discrete case étaleness is

characterized by the vanishing of the one-truncated cotangent complex, whereas in the

non-discrete case the full cotangent complex must vanish.

Lemma 8.1. Let (A,M)→ (B, N ) be a strict étale morphism of discrete log rings. Then

L(B,N )/(A,M) ' 0.

Proof. Since the morphism is strict, we have an equivalence L(B,N )/(A,M) ' LB/A, so we

deduce that τ61LB/A ' 0. But by [11, Proposition 3.1.1] this implies that LB/A ' 0. We

conclude using again the equivalence L(B,N )/(A,M) ' LB/A.

In practice, one usually deals with stacks not defined over the entire category of

log rings, but only the category of fine and saturated log rings. Such a log stack over

the category of fine and saturated log rings is usually defined as a category fibered in

groupoids over this category. Using the inclusion functor from groupoids to simplicial sets

and the Grothendieck construction, we can view every such category fibered in groupoids

as a simplicial set valued functor on the category of fine and saturated log rings. The

main example we have in mind is the following.

Example 8.2 [9, Definition 1.3]. Assume our base is a separably closed field k. Denote

by M log,pre
g,n the functor that assigns to every fine and saturated log ring (A,M)

the groupoid of proper log-smooth and integral morphisms f : (C,M)→ Spec(A,M)
together with n sections si : Spec(A,M)→ (C,M) such that every fiber of f is a reduced

and connected curve of genus g, and if U ⊂ C is the non-critical locus of f , then

M|U ' f ∗M ⊕⊕i (si )∗NA.

Remark 8.3. Note that, since we are in the relative situation over a separably closed

field k and since in the above examples the log schemes are assumed to be fine and

saturated, this ensures that the geometric fibers have at worst nodal singularities by [13,

Theorem 1.3].

If we now let Lfs
k denote the category of fine and saturated log rings, we then have an

inclusion j : Lfs
k → Lk . Arguing as above, we obtain an adjunction

j! : SLfs
k � SLk : j∗

between the categories of simplicial presheaves equipped with the projective model

structures, and this again descends to the categories of stacks with respect to the strict

étale topology.

Using the composition i! ◦ j! we can regard any category fibered in groupoids over the

category of fine and saturated log schemes as a derived log stack. By combining this

composition and Example 8.2 we can construct the derived moduli of stable maps over

a fine and saturated base log k-scheme (S,MS).

https://doi.org/10.1017/S1474748014000322 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000322


402 S. Sagave, T. Schürg and G. Vezzosi

Definition 8.4. Let (S,M) be a fine and saturated log scheme over a separably closed

field k, and denote by dLogSt(S,M) the comma category of dLogStk over (S,M). Let C

denote the universal curve over M log,pre
g,n , and let X be a derived affine log scheme over

(i j)!S. We then defined the derived moduli of stable maps as

M(X) = Map
dLogSt(S,M)/(i j)!M

log,pre
g,n

(
(i j)!C, X × (i j)!M

log,pre
g,n

)
.

Note that we have not proven that M(X) is algebraic. We hope to return to this in

a future paper. If an Artin–Lurie type representability theorem [2, 16] for derived log

stacks were available, this would be an immediate consequence. Once algebraicity is

proven one can compute the cotangent complex of the derived moduli of stable maps.

This will coincide with the perfect obstruction theory used in [9]. The functoriality of

the cotangent complex would be the major advantage of working with derived moduli,

as similar statements for the perfect obstruction theory are in general difficult to obtain.

An important problem outlined by Gross–Siebert is to identify interesting

quasi-compact substacks of the derived moduli of stable log maps. As the topology of the

derived and the underived moduli are the same, our approach does not suggest anything

on this problem.
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Appendix

For the readers’ convenience, we will give a proof of Proposition 4.14.

Proof of Proposition 4.14. Let π : R→ S be a square zero extension of discrete

commutative rings, and let J = kerπ be the corresponding square zero ideal. Then we

have to show that there exists a derivation

d ∈ π0MapR/sA/S(S, S⊕ J [1])
such that there exists an isomorphism in Ho(sA/S), between π : R→ S and the canonical

projection pd : S⊕d J → S, where pd is defined by the homotopy pullback diagram

S⊕d J //

pd
��

S
0
��

S
d
// S⊕ J [1].

We will give two proofs, one working in any characteristic and the other, considerably

simpler, working in characteristic zero. We begin with the general case.

Let π : R→ S be a surjection of commutative algebras with square zero ideal J = kerπ .

As a first step, we apply the functor −⊗L
R S to the cofiber sequence

R π // S // J [1],
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and obtain a split fiber sequence. The splitting map gives a map

ψ : S⊗L
R S −→ S⊕ J [1]

in Ho(S/sA/S), where

S

S⊗L
R S //

µ ;;

S⊕ J [1]

pr1
dd

S
j1

cc

0

::

commutes, µ being induced by the product map, and j1 being induced by y 7−→ y⊗ 1.

By computing the action of ψ on homotopy groups, we see that

ψ61 := τ61(ψ) : τ61(S⊗L
R S) −→ τ61(S⊕ J [1]) ' S⊕ J [1]

is an isomorphism in Ho(S/sA/S).
As a second step, we define d : S −→ S⊕ J [1] as the composite

S
j2 // S⊗L

R S // τ61(S⊗L
R S)

ψ61
// S⊕ J [1]

in which j2 is induced by y 7−→ 1⊗ y. Observe that, by the first step, d is a section of

the projection pr1 : S⊕ J [1] −→ S.

As a third step, we observe that since the two composites

R π // S
j1 // S⊗L

R S , R π // S
j2 // S⊗L

R S

coincide, we get an induced canonical map α : R −→ S⊕d J , where S⊕d J is defined by

the homotopy pullback diagram

S⊕d J
p
��

// S
0
��

S d // S⊕ J [1].
Moreover, if we view S⊕d J as an object in Ho(sA/S) via p, then α is a morphism in

Ho(sA/S).
By computing the action of α : R −→ S⊕d J on homotopy groups, it is easy to check

that it is an isomorphism in Ho(sA/S).
We now give an alternative proof in characteristic zero. As above, let π : R→ S

be a surjection of commutative algebras with square zero ideal J = kerπ . If the base

commutative ring k is a Q-algebra, the homotopy theories of simplicial commutative

k-algebras and of differential non-positively graded commutative k-algebras (cdgas for

short) are equivalent. So we are allowed to work with cdgas. Note that S⊕ J [1] can then

be represented by the cdga

0 // J 0 // S // 0
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in which S sits in degree 0. The 0 derivation is then represented by the commutative

diagram

0 // 0 //

0
��

S
id��

// 0

0 // J 0 // S // 0

Observe that we may represent S also by the cdga

0 // J i // R // 0,

where i denotes the inclusion map. Then we can define a derivation d by the commutative

diagram

0 // J i //

id
��

R
π
��

// 0

0 // J 0 // S // 0,

and remark that d is a fibration of cdgas. Since the model category of cdgas is proper,

the ordinary pullback of the zero derivation and of d computes the homotopy pullback

S⊕d J . But the ordinary pullback is given by just

0 // 0 // R // 0

(i.e., by just R sitting in degree 0). So we conclude that there is an isomorphism

R ' S⊕d J in the homotopy category of cdgas/S.
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