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Szilard’s Perpetuum Mobile*

Meir Hemmo and Orly Shenker†‡

In a previous article, we have demonstrated by a general phase space argument that
a Maxwellian Demon is compatible with statistical mechanics. In this article, we show
how this idea can be put to work in the prevalent model of the Demon, namely, a
particle-in-a-box, used, for example, by Szilard and Bennett. In the literature, this
model is used in order to show that a Demon is incompatible with statistical mechanics,
either classical or quantum. However, we show that a detailed phase space analysis of
this model illustrates that a Maxwellian Demon is compatible with statistical mechanics.

1. Introduction. In a previous article (Hemmo and Shenker 2011), we have
demonstrated by a general phase space argument that a Maxwellian De-
mon is compatible with statistical mechanics. In this article, we show how
this idea can be put to work in the prevalent model of the Demon, namely,
a particle-in-a-box, used, for example, by Szilard (1929) and Bennett (1982).
In the literature, this model is used in order to show that a Demon is
incompatible with mechanics, either classical or quantum (see Leff and
Rex 2003).

There are different theories that go under the name of statistical me-
chanics. In this article, we work in the framework of the so-called Boltz-
mannian statistical mechanics. For an overview of the different theories,
see, for example, Sklar (1993), Callender (1999), Uffink (2007), and Frigg
(2008).

The aim of this article is to give a detailed stage-by-stage analysis of
Szilard’s particle-in-a-box experiment in the context of Boltzmannian clas-
sical statistical mechanics. We will show by a detailed phase space analysis
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of this model that a Maxwellian Demon is compatible with statistical
mechanics. Our analysis points in a schematic way to some general fea-
tures of the type of Hamiltonians that can implement the Demonic evo-
lution in Szilard’s set up. As far as we are aware, there are no no-go
theorems in mechanics that preclude Hamiltonians with these features.
Albert’s (2000, chap. 5) and our (Hemmo and Shenker 2011) discussions
of Maxwell’s Demon are in the same spirit.

We do not attempt to write down in this article a detailed Hamiltonian
of a demonic set up since the question we wish to consider is whether
one can rule out a demonic evolution on the basis of theorems in classical
(statistical) mechanics (e.g., Liouville’s theorem, conservation of energy).
We stress that in statistical mechanics there are no general theorems that
are probabilistic counterparts of the second law of thermodynamics, as
is well known. Indeed, if a demonic evolution is consistent with statistical
mechanics (as we will show), there can be no such general theorems. Of
course, theorems assuming very specific conditions, for example, Lan-
ford’s theorems (see Uffink 2007), are compatible with our proof of the
possibility of a Demon. In the literature (e.g., Leff and Rex 2003), there
are numerous discussions of specific Hamiltonians associated with pu-
tative Demons. It may be interesting for further research to examine such
specific Hamiltonians in the light of our possibility argument, but this is
not our aim here.

It is important to distinguish between the question of whether Max-
wellian Demons are possible by theorems of statistical mechanics and the
question of whether Demons are feasible in practice. J. C. Maxwell
thought that his Demon is possible, given the laws of mechanics, but
perhaps not feasible. If, as we argue, Maxwellian Demons are possible
but not feasible, it becomes an extremely interesting question in physics
why that is so. We leave this question to further research.

2. Macrostates. Consider the experiment in figure 1. A particle G is
placed in a box of volume V, which is initially thermally isolated (the set
up is adiabatic up to stage f; see below). Particle G can be treated as an
ideal gas obeying the equation pV p kT, where p is the pressure, T is
the temperature, and k is Boltzmann’s constant. At stage a, a device D
that can measure whether G is on the left- or the right-hand side of the
box is prepared in some standard ready state S, while G is free to move
around in the entire volume of the box. Figure 1 illustrates the two possible
evolutions of the experiment, although only one of the two evolutions is
realized at each time we carry out the experiment.1 In classical mechanics,

1. In fig. 1, we follow the illustration of the experiment given in Bennett (1982), with
some significant changes.
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Figure 1. Szilard’s particle-in-a-box experiment.

the fundamental assumption is that such an experiment can be completely
described by a trajectory, which is a series of microstates determined by
the equations of motion.

In statistical mechanics, the phase space description of this stage is as
follows (see fig. 2). The system consists of three sets of degrees of freedom,
two sets belonging to G and one to D. The horizontal axis in figure 2
stands for the position x of G in the box. We ignore the directions y and
z, since they are unchanged throughout the experiment. Since in later
parts of the experiments we shall be interested in whether G is on the
right-hand side of the box or the left-hand side of it, we divide the ac-
cessible region on xG into two regions corresponding to the position of
G, and denote these regions by [L] and [R]. In Boltzmannian statistical
mechanics, these regions are macrostates. Formally, macrostates are equiv-
alence classes of microstates with respect to some phase space function.
Such classes are physically significant when this function corresponds to
physical observables, such as the thermodynamic magnitudes. A famous
example is the one given by Boltzmann in which the microstates in any
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Figure 2. Phase space description of stage a of the experiment.

given macrostate differ only by permutations of particles (see Ehrenfest
and Ehrenfest 1912/1990; Uffink 2007). We write macrostates in square
brackets and other regions in the phase space in curly brackets.

The axis perpendicular to the page stands for G’s velocity , which isv
determined by the total kinetic energy of . Since the pro-2G (E p mv /2)
jections of the velocity on its three spatial directions can vary (even when
the total kinetic energy E is constant) due to the collisions with the box’s
walls, for any given E the velocity in each spatial direction ranges over
a region between ( , ) for . Therefore, we represent the1/2�v �v v p (2E/m)
velocity macrostate at stage a as the range on the axis perpendicular to
the page.

The vertical axis corresponds to D’s memory state, which is divided
into three macrostates [S], [0], and [1]. We assume for simplicity (as in
Bennett 1982) that D’s macrostates are of equal Lebesgue measure. As
we shall see later, this assumption is natural but not necessary.

At stage a of the experiment depicted in figure 1, the actual microstate
of D � G is in the region corresponding to the macrostate [S, L � R,

1], as illustrated in figure 2. As long as the external constraints are notv
changed (i.e., the volume and the total energy are kept constant), the
trajectory of D � G evolves inside this region.

Another useful way to treat stage a is by saying that stage a describes
the outcome of a preparation measurement of G in the macrostate [L �
R, 1] and similarly for the state [S] of D. More generally, stage a describesv
a preparation measurement in which D � G is brought into the joint
macrostate [S, L � R, 1]. Of course, this preparation means that suitablev
constraints have been placed on D � G and that other possible macrostates
have been ruled out by some observation, which is not described here. We
shall come back to the notion of preparation later on in section 6.

3. Trajectories. At stage b of the experiment (see fig. 1), a partition is
placed (with negligible investment of work) in the middle of the box so
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Figure 3. Phase space description of stage b.

that G is trapped on either the left- or the right-hand side of the box.
This means that the trajectories of D � G are now confined to either [L]
or [R] and no longer pass between the left- and right-hand sides of the
box.

It is important to distinguish, at stage b, between the structure of the
trajectories of D � G in the phase space and the macrostate of D � G
(see fig. 3). In figure 3, this fact is expressed as follows. The macrostate
is depicted by the shaded area, within which there are two disconnected
parts of the bundle of trajectories represented by the dotted lines. This
means that while the trajectories’ structure changes in the transformation
from a to b, the macrostate remains unchanged. This is because whereas
at stage a the dynamical structure of the phase space may be topologically
connected, at stage b the region occupied by [L � R] is necessarily top-
ologically disconnected. The classical dynamics does not allow a trans-
formation, which makes connected trajectories disconnected (or vice
versa); this is possible only for projections of trajectories on some subset
of the degrees of freedom of the system in question. And so the trans-
formation from a to b necessarily involves the intervention of some degrees
of freedom not indicated in figure 1, such as the partition itself and the
automata that manipulate it. In our description of the experiment, these
additional degrees of freedom are treated as external constraints, and they
impose limitations on possible evolutions of D � G. By distinguishing
between the degrees of freedom of D � G and the degrees of freedom of
the external constraints, it is possible to account for notions such as prep-
aration, which will turn out to be important later (see secs. 6 and 12).

Despite the change in the structure of the trajectories, the macrostate
of D � G at stage b is still [S, L � R, 1], as in stage a.2 The reason isv

2. One might say that the macrostate of D � G at this stage is either [S, L, 1] or [S,v
R, 1]. This depends on the way one understands the notion of macrostates. On thisv
view, the entropy of D � G decreases already at this stage rather than at stage c, as
we argue below.
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Figure 4. Phase space description of stage c.

that there are no correlations between the macrostates [L] and [R] of G
and the macrostate of D (which is still S), and so by looking at the
macrostate of D it is impossible to infer the macrostate of G. In figure
3, we present (in dotted lines) trajectories that are permanently trapped
in the subregions [S, L, 1] and [S, R, 1] of the phase space, while thev v
macrostate at stage b is exactly the same as in stage a. This is an example
of the crucial distinction between macrostates and the dynamics in sta-
tistical mechanics. This distinction plays a central role in our analysis
below.

4. Thermodynamics and Kinematics. The transition from a to b is this.
The volume of the box accessible to G is reduced from V to V/2. By
inserting the partition adiabatically, no energy is invested in G, and there-
fore G’s velocity is unchanged. Consequently, the pressure on the walls
of the box is doubled from p to 2p. This increase in p is brought about
solely by the increase in the frequency of the collisions of G with the
box’s walls due to the reduced volume. If we take G to be an ideal gas,
this entails that G’s temperature is unchanged.

5. Measurement in Statistical Mechanics. The measurement of the loca-
tion of G by D is described in this experiment by the transition from stage
b in figure 3 to stage c in figure 4. The interaction Hamiltonian brings
about correlations between the macrostates of D and the macrostates of
G, such that trajectories that start out in [S, L, 1] end up in [0, L, 1]v v
and trajectories that start out in [S, R, 1] end up in [1, R, 1] (where [0,v v
L, 1] is the macrostate in which D registers the outcome 0, G is locatedv
in the left side of the box, and its velocity is in the velocity range 1, andv
similarly for [1, R, 1]). The macroscopic evolution of D � G is expressedv
by the shaded areas in figures 3 and 4. It is crucial to note that the
measurement of the location of G by D has a single outcome, that is,
either [L] or [R]. To account for this fact, we need two phase space de-
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scriptions of the universe, both appearing in figure 4. The phase space on
the left side of the figure represents the outcome [L], while the phase space
on right side represents the outcome [R]. It would be wrong to superimpose
these two descriptions in a single phase space since this would imply,
mistakenly, that the outcome of the measurement is both [L] and [R]. At
this point, our description of the measurement becomes crucially different
from Bennett’s (1982) description. To understand this transition, it is
essential in statistical mechanics to distinguish between the following two
aspects of the evolution:

i) The dynamical behavior of the bundle of trajectories of D � G.
ii) The macroscopic evolution of D � G.

We consider now these two aspects in turn. (i) The first thing to note
is that the description of the behavior of the bundle of trajectories in the
transition from stage b to c refers to the set of all possible (or counter-
factual) trajectories of D � G that start out in the region {S, L � R, 1},v
which coincides (due to the preparation in stage a) with the initial macro-
state [S, L � R, 1]. We follow the trajectories of D � G that start outv
in the initial region {S, L � R, 1} and note the regions of the phasev
space to which they arrive at each time. The set of end points, to which
the trajectories bundle arrives at any given time t, we call the dynamical
blob (or blob, for short) at t.3

At stage b, the dynamical blob coincides with the region {S, L � R,
1}. We then follow the evolution of this blob. One subset of the blobv

evolves to the region {0, L, 1}, and the other subset evolves to the regionv
{1, R, 1}. In other words, at stage c the blob coincides with the unionv
of the regions {0, L, 1} and {1, R, 1}. In figure 4, this evolution isv v
illustrated by the trajectories represented by the dotted lines: the dotted
lines that have been confined to {S, L � R, 1} in figure 3 are now confinedv
to both regions {0, L, 1} and {1, R, 1}. Since the description in termsv v
of the blob applies to the actual trajectory as well as the counterfactual
trajectories of D � G, the evolution of the blob is identical in the two
possible histories (or possible measurement outcomes). We understand
Bennett’s description of this set up using a single phase space as applying
to the evolution of the blob (rather than the evolution in terms of macro-
states). For this reason, the dotted lines representing the entire blob cover
both regions {0, L, 1} and {1, R, 1} and are copied in both phase spacesv v
in figure 4.

The evolution of the blob satisfies Liouville’s theorem since the Le-
besgue measure of the region {S, L � R, 1} is equal to the Lebesguev

3. We use here an idea similar to that of Poincare sections, which are hyperplanes
crossed by trajectories and often used to study degree of periodicity.
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measure of the union of the regions {0, L, 1} and {1, R, 1}. This is thev v
case in each of the two parts of figure 4. It is important to note that this
conclusion about Liouville’s theorem holds regardless of the fact that the
regions {0, L, 1} and {1, R, 1} coincide with the corresponding macro-v v
states.

(ii) We now consider the macroscopic evolution of D � G as it is
described in terms of the partition to macrostates. Here it is crucial to
note the interplay between the evolution of the blob and the change in
the macrostate of D � G. The macrostates in stage c of the experiment
are denoted in figure 4 by the shaded regions, which stand for the two
possible macrostates corresponding to the two possible outcomes of the
measurement. In our setting, the phase space is partitioned into macro-
states in such a way that the three macrostates of D (i.e., [S], [0], and [1])
are pairwise equal in Lebesgue measure, and so the macrostates at stage
c exactly overlap with the blob at this stage. Liouville’s theorem applies
to the behavior of the blob only. It states that the measure of the blob
over time is conserved, but it does not put any constraint on the way in
which the blob can spread over the macrostates of D � G, nor is it relevant
at all in determining the measure of each macrostate of D � G. The only
constraint that follows from Liouville’s theorem with respect to the change
in the macrostates of D � G during the evolution is that the total Lebesgue
measure of (the union of) the macrostates into which the blob evolves
cannot be smaller than the Lebesgue measure of the blob. That is all.
Thus, we can see that our setting satisfies this constraint since the two
macrostates at stage c exactly overlap with the blob.

Note, however, that this exact overlap is not necessary: macrostates are
sets of microstates that are observationally indistinguishable, and this
indistinguishability is contingent on the physical structure of the observer
in question. Figure 5 illustrates a scenario in which the Lebesgue measures
of the macrostates [S, L � R, 1], [0, L, 1], and [1, R, 1] are pairwisev v v
equal. Consequently, the blob does not fill up the regions occupied by the
postmeasurement macrostates of D � G. However, Liouville’s theorem
is satisfied also in this scenario precisely because the blob at stage c does
not fill up the regions occupied by the macrostates [0, L, 1] and [1, R,v

1] but is confined to half of each of them. We focus on the partition inv
figure 4 for simplicity of illustration only. But the argument in this article
goes through for the case of figure 5 as well, and in fact for any partition
to macrostates, as we shall see below.

As we said above, in our set up of the experiment, illustrated in figure
4, the postmeasurement macrostates of D � G are pairwise equal in
Lebesgue measure. At the initial stage of the experiment, the blob, by
construction, coincides with the initially prepared macrostate [S, L � R,

1]. In the subsequent stages, the blob evolves in accordance with thev
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Figure 5. Phase space description of stage c, with alternative partitioning to mac-
rostates.

Hamiltonian. At stage b, the blob still exactly coincides with the macro-
state of D � G. Note that in figure 1, which describes the physical set
up of the experiment, there are two possibilities at stage b. But the de-
scription of these two possibilities is given by figure 3 in a single phase
space since the macrostate of D � G at stage b is the same for both
possibilities. By contrast, at stage c of the experiment, since the mea-
surement has a single outcome, that is, either the macrostate [0, L, 1] orv
the macrostate [1, R, 1], a correct description of the phase space depictsv
only one of these macrostates. In figure 4, we present the two possible
outcomes with two different phase spaces in order to avoid the mistaken
idea that both possibilities are equally real. In Boltzmannian statistical
mechanics, entropy is defined by the logarithm of the Lebesgue measure
of the actual macrostate of the system (more on entropy in sec. 7). There-
fore, the entropy of D � G after the measurement is given by the Lebesgue
measure of either [0, L, 1] or [1, R, 1], depending on the actual outcome.v v
This does not imply, of course, a violation of Liouville’s theorem since
the measure of the blob is conserved in each of the two possibilities
depicted in figure 4.

6. Preparation. Here is another way to understand the measurement as
described above in the framework of Boltmannian statistical mechanics.
On the one hand, the trajectories’ bundle that started out at stage a
overlaps with both macrostates at stage c. By Liouville’s theorem, the
volume of the bundle never changes. On the other hand, the measurement
is intended to reveal the actual macrostate of G. This means that once
we discover whether G is in [L] or [R], in practice we follow thereafter
only the corresponding subset of the bundle. The other subset is not cut
off but only practically ignored.
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The above account of measurement is exactly the way in which one
explains the preparation of a system in any given macrostate and in par-
ticular the preparation of the initial macrostate at stage a. Unless we take
it that one of the two outcomes of the measurement is the newly prepared
macrostate, and unless we follow this macrostate only (and ignore the
other outcome), we cannot explain the preparation of the initial stage a
of the experiment and, in particular, why we follow only the blob that
starts out in the macrostate [S, L � R, 1] rather than a blob that startsv
out in the union of this macrostate and some other macrostates that were
possible at the initial time. These considerations lead to the conclusion
that at the end of the measurement, at stage c, the macrostate of D � G
is not given by the entire blob of the trajectories that started out in the
macrostate [S, L � R, 1] but rather by either one of the macrostates [0,v
L, 1] or [1, R, 1].

4v v

7. Entropy. The above treatment of measurement and preparation has
some crucial implications in statistical mechanics concerning entropy. In
Boltzmannian statistical mechanics, the entropy of a system at a moment
of time is given by , where w is the Lebesgue measure of theS p k ln w
macrostate in which the microstate of the system happens to be at that
moment. The entropy of D � G is reduced during measurement in this
setting since the volume of each of [0, L, 1], [1, R, 1] is smaller than thev v
volume of [S, L � R, 1], and so the Lebesgue measure of the macrostatev
along each evolution decreases in the transition from b to c.

Of course, as illustrated in figure 5, whether entropy is reduced in
measurement is contingent and depends on the relative Lebesgue measures
of the macrostates in question, in our experiment, on the relative volumes
of [S], [1], and [0].5 The fact that entropy is reduced in our setting is
absolutely compatible with the laws of classical mechanics. This was
pointed out by Albert (2000, chap. 5) and in Hemmo and Shenker (2011).
Here we see a concrete example of these general arguments. Figure 5 is
a case in which the entropy is conserved during measurement, and if the

4. The idea of retaining all possible evolutions of the system perhaps comes from
quantum mechanics. But in the context of classical mechanics, this idea is flawed for
the following reasons. First, tracking all possible evolutions immediately leads to a
problem in accounting for measurement since there is no way to express in this approach
the empirical fact that a measurement has a single outcome. Second, while in quantum
mechanics there might be some arguments for retaining the evolution of all possible
branches of the universal quantum state based on the possibility of reinterference, such
arguments are inapplicable in classical mechanics.

5. In general, the relative size of the macrostates and the behavior of entropy over
time are fixed neither a priori (in whatever sense) nor conventionally but rather ob-
jectively by the structure of the universe.
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macrostates [0, L, 1], [1, R, 1] were larger in measure, then the entropyv v
would even increase.

If this scenario is a Maxwellian Demon, then it might well be that we
are amply surrounded by Demons. Since the second law of thermody-
namics seems to be violated here (at first sight; we shall come back to
this point later), one may be tempted to postulate that in such a parti-
tioning of the phase space entropy must increase by at least the same
amount elsewhere in the universe. However, in the context of the Demon
question, such a move would be circular (see Earman and Norton 1998,
1999). Moreover, the foregoing argument is based only on mechanical
considerations that, as far as we see, do not support such a postulate. In
particular, we emphasize once again that Liouville’s theorem is irrelevant
in this context since it applies to the evolution of the blob only, which is
indeed measure conserving. The decrease of entropy during measurement
is a decrease in the measure of macrostates only. This decrease does not
mean that the measure of the blob has decreased but only that from that
time onward, we follow the corresponding subset of the blob, in accor-
dance with the outcome of the measurement.

8. Szilard on the Entropy of Measurement. Our account of the experiment
so far is different from Szilard’s (1929) account (see also Earman and
Norton 1998).6 Szilard argued that in measurement the entropy of D �
G decreases, and therefore there must be an increase of entropy elsewhere
in the universe. We have just shown that the total entropy of D � G may
decrease in measurement in a way that is consistent with the classical
dynamics, in particular with Liouville’s theorem. Therefore, unless one
presupposes that the entropy of a closed system cannot decrease as stated
by the second law of thermodynamics (thus begging the question of Max-
well’s Demon), no compensating increase of entropy is required. It seems
to us that Szilard was in the right direction in arguing that the entropy
of D � G decreases during the measurement (assuming the same partition
of the phase space into macrostates). But he failed to realize the full
implications of his idea since he did not pursue a purely mechanical anal-
ysis to the end.

9. Work in Thermodynamics. We now move on to the transition starting
at d through e and ending at stage f of the experiment. In our set up,
this process is carried out adiabatically. At stage d, we press a piston
against a vacuum (in accordance with the outcome of the previous mea-
surement), remove the partition without investing any work, and then, at

6. We do not address arguments here (e.g., Bennett 1982) in the framework of Gibbsian
statistical mechanics.
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stage e, we release the piston quasi-statically allowing the pressure exerted
by G to produce work, until at stage f the particle G is again free to move
throughout the volume V of the box. The work produced by G on the
piston is stored in some external degree of freedom, say a weight that is
lifted outside the box (see fig. 1). This quasi-static expansion of an ideal
gas is the paradigmatic case of a reversible (i.e., entropy-conserving) pro-
cess in thermodynamics. Particle G exerts work on the piston, thereby
transferring energy to the weight outside the box. Consequently the free
energy of the weight increases, by the amount mgh, where m is the mass
of the weight, g the gravitational acceleration, and h the height to which
the weight is lifted. Conservation of energy entails that the internal energy
of G decreases by an amount equal to the increase of the free energy of
the weight. (We focus on an adiabatic process here, but a similar argument
can be run by considering an isothermal process; see below.)

Now, it follows from the ideal gas law that the increase in the volume
accessible to G (from either L or R to L � R) is accompanied by changes
in both the pressure and the temperature. The temperature decreases be-
cause the temperature of an ideal gas is proportional to its internal energy,
which has decreased due to the transfer of energy from G to the weight.
The pressure decreases during this transition, both because of the decrease
in the average kinetic energy (and thus the velocity) of G and because of
the increase in the distance between the box’s walls.

Note that since the weight here ends up in a certain fixed height h,
which is essentially determined by the momentum it gains from G, it can
be held in place at its maximal altitude with negligible investment of work.
The mechanism places the weight in some standard position at height h,
which does not depend on whether G is in [L] or [R], and then returns
to its ready state. Of course, the entire evolution of the mechanism will
depend on the memory macrostate of D. But the set up is such that once
the weight is in its final place and the mechanism is back in its ready
state, the only traces of whether G was in [L] or in [R] are in D’s memory.
We will come back to the issue of D’s memory in section 12.

10. Work in Statistical Mechanics. In terms of phase space, the transition
from c to f is as follows (see fig. 6; for simplicity we do not draw the
phase space at stages d and e). From stage c to stage f, there is an increase
in the Lebesgue measure along the xG axis from either [L] or [R] to [L �
R] and a simultaneous decrease of the measure along the G axis fromv

1 to 2 p 1/2, in such a way that the total Lebesgue measure of thev v v
Poincare section at all times is conserved in accordance with Liouville’s
theorem. By the end of stage f, the macrostate of D � G is either [0, L
� R, 2] or [1, L � R, 2], as represented by the two parts of figure 6.v v
During this transition, the low entropy of D � G is conserved, while the
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Figure 6. Phase space description of stage f.

weight is reversibly lifted. The free energy of the weight can be used now
in order to compress another ideal gas G′ in a reversible and entropy-
conserving way.

Here we have (once again) followed the assumption in the literature
that the partition of the phase space to macrostates matches exactly the
spread of the blob. This assumption is not necessary (see fig. 5), but it
makes the discussion simple, and it has the consequence that the total
entropy of G (and of course of D � G) is conserved during this evolution
from stage c to stage f. If the partition is coarser than the spread of the
blob, such that the measure of is greater than the measure of the blobv2

along the axis, then the entropy in will increase and ipso facto sov vG

will the entropy of D � G. However, the partition may also be finer (i.e.,
may be smaller) than the spread of the blob, in which case the entropyv2

in will decrease (in this case, the blob will partially overlap with morev
than one macrostate, and probability considerations will come into play).
The crucial point that needs be stressed here is that there is no general
argument based on mechanics (or statistical mechanics) to the effect that
the entropy in must increase during the transition from c to f, so as tov
result in an increase of the total entropy of D � G.

On balance, therefore, in our setting, the total entropy of D � G has
decreased in the measurement transition from b to c and then remained
unchanged throughout until stage f, and then in the transition from stage
f to stage g, as we will show shortly, it increases back to its initial value.
The decrease in entropy during the measurement is used in our setting to
transform some of the heat energy of G into free mechanical energy in
the external weight, which can be used, for instance, to compress another
ideal gas G′ in a box. Therefore, what we have shown here is that entropy
decreases in measurement on the assumption that the partition matches
exactly the spread of the blob.
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11. The Second Law of Thermodynamics. In the context of Boltzmannian
statistical mechanics, the second law of thermodynamics applies to the
dynamical evolutions of blobs. In this approach, the second law says
roughly what follows. Take an initial set of microstates (e.g., compatible
with some macrostate) and follow the trajectories of the system, which
start out in this set as they evolve according to the Hamiltonian. In the
course of this evolution, the blob overlaps with various macrostates at
each moment of time. The statistical counterpart of the second law in this
framework then says that most (in the sense of the Lebesgue measure) of
these trajectories will arrive into macrostates with an increasingly larger
Lebesgue measure until equilibrium is reached. (We discuss the question
of completing the cycle of operation in the next section.) Our analysis of
measurement above violates this understanding of the second law. It shows
that the second law cannot be true for all partitions of the phase space
into macrostates. Whether the partition to macrostates in the scenario of
figures 2–4 is true about the world is a question of fact. It seems to us
that this partition is natural, and if so this statistical mechanical version
of the second law of thermodynamics cannot be in general true in sta-
tistical mechanics.

For this reason, our conclusion that entropy might decrease in mea-
surement is compatible with our analysis of Maxwell’s Demon in Hemmo
and Shenker (2011). In this analysis, although we did not stress explicitly
the special role of measurements, the decrease of the total entropy of D
� G is a straightforward consequence of both the partition to macrostates
and the selection of a single final macrostate among several possible ones.

12. Completing the Cycle. We saw that we can extract work from heat
using the decrease of the entropy of D � G at stage c. In order to decide
whether we have here a Maxwellian Demon, what still remains to be
examined is whether the cycle of operation can be completed. Let us
explain what this means. We shall say that the cycle is completed if the
following conditions are satisfied: (i) D � G returns to its initial macro-
state, (ii) there are no macroscopic traces of the previous history of the
universe (e.g., concerning the outcome of the measurement, the memory
of D) in either D � G or the environment Q, and (iii) the free energy of
the weight at the final state is the same as at stage f.7

We treat the environment Q as a mechanical system that may consist
of any number of degrees of freedom. For simplicity, we take Q to consist
of a single particle. Note that up to now we did not refer to Q since we
carried out an adiabatic process in which Q is irrelevant. However, as we

7. Of course, there are always microscopic traces because of the determinism of classical
mechanics.
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shall see now, the environment plays a crucial role in completing the cycle.
This very idea is prevalent: for example, Szilard (1929) and Bennett (1982)
argue that completing the cycle of operation involves dissipation in Q,
and therefore Q’s final macrostate is a fortiori different from its initial
macrostate. For them, not only the macrostate of Q changes, but the
entropy of Q increases. We will now show how to complete the cycle such
that the above three conditions are satisfied. We will then examine the
question of the entropy of Q in the course of the cycle and consider the
implications with respect to the question of Maxwell’s Demon.

Here is a way to complete the cycle. At stage f, the blob describing D
� G’s evolution covers the entire region {0 � 1, L � R, 2} (see thev
dotted lines in fig. 6). We now construct an evolution that maps the points
in this blob back to the initial macrostate [S, L � R, 1] in figure 2. Here,v
it is important to keep in mind that figure 6 describes two possible his-
tories, only one of which is the actual history of the universe, but in both
the full blob is depicted. The measure of the blob {0 � 1, L � R, 2} inv
figure 6 is equal to the measure of the final macrostate [S, L � R, 1] inv
figure 2: while the measure of the blob along the D degree of freedom
decreases by half, from the union of [1] and [0] to [S], the measure of the
blob along the G degree of freedom is doubled since the measure of 1v v
is twice the measure of 2. Therefore, Liouville’s theorem is satisfied.v

Recall that inserting the partition at stage b resulted in the splitting of
the phase space into two disconnected regions [S, L] and [S, R]. However,
during the expansion stages from c to f, the gradual changes in the con-
straints translate into a topological change in the trajectories of G, namely,
that the region [L � R] at stage f is connected again. A similar topological
change occurs in D, so that by the end of stage f, the phase space is
connected as indicated in figure 2. Note further that in this transition the
entropy of D � G is restored to its initial value; that is, it is doubled.
The entropy of G is doubled in this transition, while the entropy of D
remains unchanged. The weight remains in its lifted state.

The evolution just described in the transition from f to g requires a
source of energy since it involves an increase in the Lebesgue measure of
the blob along the G degree of freedom corresponding to the increase inv
G’s speed. In other words, in restoring G’s initial macrostate, its internal
energy increases (by the amount corresponding to the change from 2 tov

1). Here, Q comes into play. Consider figure 7. Up to now, in figures 2–v
6 we depicted three sets of degrees of freedom. We now need two more,
namely, the velocity Q and position xQ of Q. We describe them separatelyv
in figure 7, but of course the dimensions of figure 7 belong to the same
phase space of figures 2–6. This means, in particular, according to Liou-
ville’s theorem that the total volumes of the blobs in figures 2–6 and 7
must be conserved; that is, the total volume of the blob describing D �
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Figure 7. Phase space description of the environment at stage g.

G � Q must be conserved. Since in the transition from stage f to stage
g the volume of the blob in the D � G degrees of freedom is conserved,
and since the total volume of the blob describing D � G � Q must be
conserved, it follows that we need to show now that the volume of the
blob describing Q alone must be conserved during the interaction of Q
with D � G. Here is a way to achieve this.

Throughout stages a to f, Q is in some fixed macrostate [A, (T1)],v
where A is the position macrostate of Q and (T1) is its velocity macrostatev
corresponding to the initial temperature T1 of Q. As a result of the in-
teraction of G with Q, energy flows from Q to G, and Q’s blob evolves
from the region overlapping with the macrostate [A, (T1)] to the regionv
overlapping with the macrostate [B, (T2)], where T2 is the temperaturev
of Q at the final state. As in the previous stages, for simplicity, we con-
structed the macrostates such that they overlap exactly with the blob. The
final temperature T2 of Q is lower than its initial temperature T1 in exactly
the amount of energy transferred to G. Therefore, the volume of the blob
in figure 7 along the Q degree of freedom decreases. Liouville’s theoremv
dictates that (since we required that the total volume of the blob of D �
G remains fixed) the volume along Q must increase by the same amount.v
This increase in the volume of xQ is expressed by the transition to the
region overlapping with macrostate [B, (T2)] in which the spread of thev
blob over the xQ degree of freedom is larger than in the macrostate [A,
(T1)]. Here we have shown that Liouville’s theorem is satisfied by thev

transition from f to g.
If we think of Q as a single particle, then increasing the spread of Q

along xQ just means that we have less information about the position of
Q after the interaction (whereas we have more information about Q’s
velocity). If Q consists of many particles, the analysis of the spread along
xQ is a simple generalization of this point. We reiterate that the increase
in the spread of the blob here only means a decrease of information about
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where Q is. In classical mechanics, nothing forbids such an increase in
xQ, nor are there any mechanical preconditions concerning the rest of the
universe that need be satisfied in order for this evolution to take place.8

The transition from figure stage f to stage g completes the erasure of
any traces of the actual position of G at stage b and any record in D of
the outcome of the measurement at the end of stage c. Since it is impossible
to reconstruct the earlier macrostate of either D or G from the final
macrostate of D � G � Q in stage g, this is a macroscopic erasure. Of
course, in classical mechanics there is no microscopic erasure since from
any given microstate one can reconstruct the full history of the system.
However, for any given partition, one can construct a macroscopic erasure
by mapping macrostates or (subsets of the macrostates) into other macro-
states such that macroscopic retrodiction would become impossible (an-
other example of macroscopic erasure is proposed in Hemmo and Shenker
[2011]). In our setting, given the partition to macrostates as described
throughout our experiment, subsets of the macrostate [S, L � R, 1] arev
indistinguishable. In particular, one cannot distinguish between subsets
that originate in the two macrostates [0, L � R, 2] and [1, L � R, 2] inv v
figure 6. Consequently, one cannot retrodict the macrostate in figure 6,
given the macrostate of stage g in figure 2. We stress here that a mac-
roscopic erasure is relative to a given partition of the phase space into
macrostates, and there is no universal erasure in classical statistical me-
chanics that would fit in advance all possible partitions.

13. Maxwell’s Demon. Let’s consider the changes in the entropy of D �
G � Q during the transition from stage f to g. At the end of the cycle,
D � G returns to its initial macrostate, and the weight remains lifted.
Environment Q evolved from [A, (T1)] to [B, (T2)]. This set up is av v
Maxwellian Demon, provided the entropy change of Q is not higher than
the equivalence in entropy of the free energy of the weight. The net change
in the total volume of the blob of D � G � Q as a result of the evolution
from stage f to stage g is zero, in accordance with Liouville’s theorem: D
� G is back in its initial state of stage a, and so the cycle is completed.
Since the weight has a higher free energy than it did at stage a, and since
the net effect is that Q has less energy by exactly the same amount, one
may say that this experiment illustrates how to transform into work heat
energy from a single heat source. We have here a bona fide Maxwellian
Demon that is consistent with the laws of statistical mechanics.9

8. In particular, this evolution does not require any pressure difference between Q and
the rest of the universe at any time.

9. We do not say that the Demon strictly violates Kelvin’s formulation of the second
law since, as we said, Q is not a heat bath.
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Note that we assumed above that the interaction of Q with G resulted
in a transfer of energy from Q to G rather than the other way around.
In mechanics, of course, these two evolutions are velocity reversals of one
another. And if one is possible given a certain Hamiltonian, so is the
other. Which evolution takes place depends on the initial conditions.
Throughout the experiment, we have assumed that the microscopic initial
conditions in the initial macrostate of D � G � Q at stage a are such
that the velocities induce a process from a to g as we described. If we
reverse the velocities of D � G � Q, then the process would go in the
reversed order of macrostates from g to a, contrary to our assumption.
In this case, the entropy of the universe (including the weight) would
increase rather than decrease. The question of whether Maxwell’s Demon
in this case is possible boils down to whether D � G � Q can be prepared
in the initial macrostate that would contain microconditions with velocities
in one direction only. If this cannot be done, the efficiency of the Demonic
evolution would decrease (see Hemmo and Shenker 2011), but any degree
of efficiency greater than the standard predictions of statistical mechanics
would be a Demon. We are not aware of any no-go theorems that preclude
such preparations that lead to a Demonic evolution given the right Ham-
iltonian.

In general, the question as to the entropy of Q during this transition
depends on the partition of the phase space of Q into macrostates. Our
choice of macrostates in figure 7 is natural but once again not necessary
(see sec. 14): the entropy of Q may increase or decrease depending on the
partition to macrostates. The macrostate of Q could be larger (a case that
would be similar to fig. 5) or smaller, by, for example, dividing the region
overlapping with [B, T2] into two macrostates. In this latter case, the
spread in xQ will be exactly the same as in [A, T1], despite the decrease
in the spread along . The crucial point is that such construction doesx v

not seem to violate any known law of mechanics; in particular, it obeys
Liouville’s theorem.10 Since the macroscopic erasure is relative to a given
set of macrostates, the change of entropy during the erasure varies ac-
cording to the measure of the relevant macrostates. In the case brought
here, the transition from f to g is entropy conserving.

14. Repeating the Cycle. As we saw already, the first cycle of our exper-
iment is a Maxwellian Demon. The question now is whether we can repeat
the cycle in order to transform more of the heat energy of Q into work.
Since at the end of the first cycle the possible position of Q is more

10. Note that here the environment Q is not a heat bath in the thermodynamic sense.
It is a consequence of energy conservation that in our set up above Q’s temperature
varies.
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dispersed, the operation of the second cycle may be less efficient. However,
as we showed above, despite this possible decrease in efficiency, the entropy
of Q is conserved.

On repetitions of the experiment, the outcome of the measurement at
stage c is unpredictable. However, the decrease of entropy and the ex-
traction of work are completely predictable, independently of whether the
microstate of G happens to be in region [L] or in region [R] after the
insertion of the partition at stage b. The fact that the expansion from
stage c to stage f requires different operations depending on whether the
particle is found in [L] or [R] at stage c has no bearing on the question
of Maxwell’s Demon.

15. Does the Demon Depend on the Partition to Macrostates? In the Boltz-
mannian approach, entropy depends on the Lebesgue measure of the
macrostate of the system. Therefore, a system in a given microstate may
be assigned different values of entropy depending on the partition to
macrostates. In particular, in our experiment the entropy changes in, say,
figures 2–4 are different from the entropy changes in figure 5 (in the latter,
the entropy of D � G in the measurement is conserved). However, the
crucial point in our argument is that, since the cycle is completed, the
particular partition in the D � G degrees of freedom makes no difference
to the question of the total entropy balance by the end of the cycle.
However, the final total entropy balance depends on the entropy change
in Q, which does depend on the partition to macrostates in Q’s degrees
of freedom. The macrostates of Q in figure 7 are contingent on the specific
environment, but they are consistent with the principles of classical me-
chanics. We do not know of any no-go theorem in mechanics that rules
out such macrostates of Q. Indeed the core of our argument is precisely
that a Demon is consistent with classical mechanics.

In order to show that a Demon is impossible and save the second law,
one needs to show that the partition to the macrostates of Q is necessarily
(by the principles of mechanics) such that the entropy of Q increases by
more than the work gained in the weight. Until then, we join Lebowitz
in his conclusion: “I do not know if anyone is making bets on the eventual
resolution of the apparent paradoxes relating to the co-existence, in the
description of the same phenomena, of both determinism and randomness,
reversibility and time a-symmetry, and so on. If there are people betting,
however, I would be very happy to be the banker and keep the money
until everyone has agreed on the matter” (quoted in Sklar 1993, 420).

16. Conclusion. In our previous article (Hemmo and Shenker 2011) on
this topic, we gave a general argument to the effect that a Maxwellian
Demon is compatible with Boltzmannian statistical mechanics. We further
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showed that the Demon’s operation cycle can be completed. In the current
article, we illustrated this argument by focusing on Szilard’s particle-in-
a-box thought experiment. The analysis here uses purely Boltzmannian
statistical mechanical concepts. In particular, we did not appeal to ideas
and concepts from thermodynamics. Indeed, we believe that this was
Maxwell’s original intention in putting forward his Demon. Like Max-
well’s, our experiment is ideal, and we do not argue that an actual con-
struction of a Demon is feasible. The reasons, however, are pragmatic
and concern the complexity of real physical systems and the difficulty to
control multiple degrees of freedom.
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