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Coxeter Diagrams and the Kothe’s Problem

Ziba Fazelpour and Alireza Nasr-Isfahani

Abstract. A ring A is called right Kothe if every right A-module is a direct sum of cyclic modules. In
this paper, we give a characterization of basic hereditary right Kéthe rings in terms of their Coxeter
valued quivers. We also give a characterization of basic right Kéthe rings with radical square zero.
Therefore, we give a solution to Kothe’s problem in these two cases.

1 Introduction

It is known that every finitely generated Z-module is a direct sum of cyclic modules.
The idea of this important property of abelian groups go back to Priifer [30]. Kéthe
showed that artinian principal ideal rings have this property. He also proved that if
a commutative artinian ring A has the property that each of its A-modules is a di-
rect sum of cyclic modules, then it is a principal ideal ring. He posed the question to
classify the noncommutative rings with this property [28]. Kéthe’s problem is one of
the old problems in rings and modules theory that has not yet been solved. A ring
for which any right module is a direct sum of cyclic modules, is now called a right
Kéthe ring. Nakayama gave an example of a right Kothe ring A that is not a principal
right ideal ring (see [29, p. 289]). Later, Cohen and Kaplansky proved that if a com-
mutative ring A is Kothe, then A is an artinian principal ideal ring [10]. Combining
the results of Cohen and Kaplansky [10] and Kothe [28], one obtains that a commu-
tative ring A is Kothe if and only if A is an artinian principal ideal ring. A right ar-
tinian ring A is called representation-finite provided A has, up to isomorphism, only
finitely many finitely generated indecomposable right A-modules. Following [41], we
call the ring A right pure semisimple if every right A-module is a direct sum of finitely
generated right A-modules. It is known that a commutative ring A is pure semisim-
ple, if and only if, A is a representation-finite ring, if and only if, A is a Kothe ring
[22]. A ring A is a representation-finite ring if and only if A is right pure semisimple
and left pure semisimple [3]. The problem of whether right pure semisimple rings
are representation-finite, known as the pure semisimplicity conjecture, remains open
(see [3,41,42]). It seems that there is a strong connection between pure semisimplicity
conjecture and Kothe’s problem.

Kawada completely solved Koéthe’s problem for the basic finite-dimensional
K-algebras [25-27] (see also [31]). Kawada’s papers contain a set of 19 conditions that
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characterize Kawada algebras as well as the list of all possible finitely generated in-
decomposable modules. Using the multiplicity-free of top and soc of finitely gener-
ated indecomposable modules, Ringel gave a characterization of Kawada algebras [31].
Behboodi et al. proved that if A is a right Kothe ring in which all idempotents are
central, then A is an artinian principal left ideal ring [6]. Recently the authors have
studied Kothe’s problem [17]. In fact, all known results related to the characterization
of right Kéthe rings follow from [17, Corollary 3.2].

In representation theory, representation-finite algebras are of particular impor-
tance, since in this case, one has a complete combinatorial description of the mod-
ule category in terms of the Auslander-Reiten quiver. By [9, Theorem 4.4], any right
Kothe ring A is right artinian; then there is a finite upper bound for the lengths of the
finitely generated indecomposable right A-modules. Thus by [43, Proposition 54.3],
any right Kéthe ring is an artinian representation-finite ring. It seems that a solution of
Kothe's problem needs a classification of all representation-finite rings and some fur-
ther information about the structure of the modules over representation-finite rings,
which is a rather difficult problem. In this paper, by using the representation theory
techniques and classifications of representation-finite hereditary rings [11,13,14], we
solve Kothe's problem in this case. As a consequence, we solve Kothe’s problem for
the class of rings with radical square zero.

We recall that a unitary ring A is defined to be right hereditary if every right ideal of
A is projective. In [20], Gabriel proved that a hereditary finite-dimensional K-algebra
A, over an algebraically closed field K, is representation-finite if and only if the under-
lying graph of its quiver Qx (see [2]) is a disjoint union of the Dynkin diagrams A,,,
Dy, Es, E7, and Eg presented in Table A, that also appear in Lie theory. It is also shown
in [20] that there is a bijection between the isomorphism classes of finite-dimensional
indecomposable representations and the positive roots of the corresponding Dynkin
diagrams; see also [2, Ch. VII].

Table A. Dynkin diagrams

A, o o o o (n vertices, n >1);

D, : o O------ o %o} (n vertices, n > 4);
o)

Ee : o o)
o

E;: o 0O;
o)

Eg : o -

We recall from [19] that a species .# = (F;, iM;);,jes is a finite set of division rings
F; and F;-Fj-bimodules ;Mj, i # j. To an arbitrary basic ring A, one attaches its
species .#, as follows. Let A/] = @}, F;, where n € N; each F; is a division ring
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and J is the Jacobson radical of A. We can write J/J* = @,<;, j<n iMj, where each
iMj = Fi(]/]Z)Fj isan F;-Fj-bimodule. Then .#) = (F;, i M;);, jer is called the species
of A. Let A be a basic hereditary ring and let .#) = (F;, Mj);, jer be the species of
A. We recall from [37] that a Coxeter valued quiver (€, m) of A is a quiver with
vertices 1,2, ..., n corresponding to the division rings Fy, F», ..., F,. There exists a
valued arrow
mij

O———>0

i J
in (¢x,m) if and only if the F;-Fj-bimodule ;M; is non-zero and there exists
exactly m;; > 3 pairwise non-isomorphic indecomposable right (I:)‘ ig/][_")-modules.
If m; j = 3, we write simply

o—>0-

i J

In [13], Dowbor, Ringel, and Simson proved that a hereditary artinian ring A is

representation-finite if and only if the underlying Coxeter valued graph of the Coxeter
valued quiver (%, m) of A is a disjoint union of the Coxeter diagrams presented in

Table B, where the valued edge o> o isidentified with o— o (see [24]).

Table B. Coxeter diagrams

A, o O-mmmm - o %o} (n vertices, n >1);
4
B, : o o o 0 (n vertices, n > 2);
D, : o O --=-=-- o 0 (n vertices, n > 4);
o)
Ee : o 03
o
E;: o O
o
Eg : o 03
4
Fy: o 03
6
G,y : o———o0;
5
Hs : o——O0———0;
5
Hy : o 03
p
L(p): o——o0 (p=50r7<p<oo).
1 2

Let A be a basic hereditary ring and let D be the underlying Coxeter valued graph
of the Coxeter valued quiver (%, m) of A. The ring A is called of the Dynkin type D
if D is one of the Coxeter diagrams A,, B,, D,, E¢, E;, Eg, Fy4, and G, presented
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in Table B. Also A is called of the Coxeter type D if D is one of the Coxeter diagrams
Hj, Hy, and I (p) presented in Table B.

It is proved by Schofield [34, 35] that there exist hereditary bimodule rings of the
form A = (5§ ) of the Coxeter type I,(5). However, the existence of such hereditary
rings of the Coxeter type I,(p) with p > 7 remains open. It depends on rather diffi-
cult questions concerning division rings extensions and leads to a generalized Artin
problems; see [37,39].

One of the main aims of this paper is to get a diagrammatic characterization of
right Kothe rings A that are basic hereditary, or the square of the Jacobson radical of
A is zero.

The paper is organized as follows. In Section 2, we prove some preliminary results
that will be needed later in the paper. In Section 3, we collect some results of hereditary
representation-finite rings that we need in the rest of the paper. In Section 4, we give a
characterization of basic hereditary right Kéthe rings of Dynkin type. In Section 5, we
give a characterization of basic hereditary right Kéthe rings in terms of their Coxeter
valued quivers. Finally in Section 6, we give a characterization of basic right Kothe
rings with radical square zero in terms of their separated quivers.

1.1 Notation

Throughout this paper, A is an associative ring with unit and all modules are unital.
We denote by Mod- A (resp. mod-A) the category of all right A-modules (resp. finitely
generated right A-modules) and by J the Jacobson radical of A. A ring A is said to
be basic if A/]J is a direct product of division rings. For a right A-module M, we
denote by top(M) and rad(M) its top and radical, respectively. Let X be a repre-
sentation of a species .# (see Section 2) and let V be a right module over a division
ring G. We denote by dim X and dim (V)¢ the dimension vector of X and dimen-
sion of V, respectively. Let F and G be division rings and M be an F-G-bimodule.
We denote dim z(M) by l.dim M and dim(M)¢ by r.dim M. Also, we denote M~ :=
Homp (M, F) and M® := Homg (M, G). We denote the left and right dualisations
of the F-G-bimodule M by setting M(®) = M, M) = (MU)L for j>1and M) =
(MUD)R for j < 1, respectively. Moreover, for each m > 1, we denote by d,,, (M) the
sequence (d),dM,...,d) ), where dj” =r.dim M) for each j. Let X and Y be two
right A-modules and f: X — Y be a homomorphism. We write X - Y (resp. X — Y)
when f is an epimorphism (resp. f is a monomorphism). Let A be a A-submodule
of X. We denote by f|, the restriction of f to A. Let M be a right A-module and
n € N. Then M" denotes the direct sum of n copies of M. Let Q be a quiver and let i
be a vertex of Q. We denote by i* and i~ the set of direct successors of i and the set
of direct predecessors of i, respectively. Also, we denote by |i*| and |i”| the cardinal
number of i and i~, respectively. Let K be a field, n € Nand 1 < i < n. We denote
by e; the vector in K” with a 1in the i-th coordinate and zero in the j-th coordinate,
for each j # i. Throughout the paper, we use standard quiver representation and path
algebra terminology as applied in the monographs [2,5]. We also refer to [2, Ch. VII]
for a detailed explanation of the reflection functors technique introduced by Bern-
stein, Gelfand, and Ponomariev in [7], later developed by Dlab and Ringel in [11] and
Auslander, Platzeck, and Reiten in [4].
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2 Preliminaries

We recall from [11,13,14] that a valued quiver (T, d) of aspecies .# = (F;, iMj); jerisa
finite quiver I = (T, I} ), with the finite set [ of vertices corresponding to the division
rings F; together with non-negative integers d;; = r.dim ; M; and dj; = L.dim ; M; for
i # j and the set I of valued arrows defined as follows. There exists a valued arrow

(dij» dji)

o—>0>

i J
ifand only if ;M; # 0. If d;; = dj; = 1, we write simply

O——>0-

i j
The valued quiver of the species of a basic ring A is denoted by (T4, d). A valued
quiver is called connected if the underlying valued graph of the valued quiver is con-
nected. A valued quiver is said to be acyclic if it has no cycles. In this paper, un-
less otherwise stated, we assume that .# = (F;, ;Mj);,jer is a species with the prop-
erty “;M; # 0 implies that ;M; = 0". Note that the species of any basic hereditary
right artinian ring has this property; see [16]. Following [11,13, 14, 33, 40], a repre-
sentation of ./ is a family (X, j¢;)i,jer of right F;-modules X; and Fj-linear maps
j9i Xi ®p, iMj — X for each arrow i — j of I'. A representation (Xj, j¢;) is called
finite-dimensional provided that all X; are finite-dimensional right F;-modules. A
morphism a: (X;, j¢;i) = (Y;, jy;) is given by right F;-linear maps a;: X; — Y; such
that ;y;(a; ® id,m;) = a;jj; for each arrow i — j of I. We denote by Rep(.#)
(resp. by rep(.#)) the category of all representations of .# (resp. finite-dimensional
representations of .#) [19]. Obviously representations of species are a generalization
of representations of quivers.

Following [1], a submodule K of a right A-module N is called small submodule
if for every submodule L of N, K + L = N implies L = N. Let .# = (F;, i M;j); jer
be a species with the valued quiver (T',d) and (Xj, j¢;) be a representation of .Z.
Suppose that (Y;, jy;) is a subrepresentation of the representation (X, j¢;) of .Z.
Then (X, j¢:)/(Yi, jvi) = (Xi/Yi, jyi), where for each arrow i — j of I the maps jy;
are defined by the commutative diagram

z,-®id,.Mj n,—®id,,M.
0——=Y; ®f, iM; — X; ®, iM; ——=X;/Y; ®F, iMj —=0

jll’ii j‘Pri j)’il
1j T[j

]
0 Y, X; X/, 0

in which 1;: Y; — X; denotes the inclusion map and 7;: X; — X;/Y; projection. Set
m = (m;)it(Xi, joi) = (Xi/Yi, jyi). The representation (Y;, jy;) is called a small
subrepresentation of the representation (X;, j¢;) if every morphism a: (Z;, j¢;) —
(Xi, ji) in rep(.# ) with a epic is epic.

The following proposition gives the necessary and sufficient conditions for a rep-
resentation (Y;, jy;) to be a small subrepresentation of (X, j¢;).
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Proposition 2.1 Let A4 = (F;,iM;); je1 be a species. Suppose that the valued quiver
(T,d) of A is connected and acyclic and let (Y;, jy;) be a subrepresentation of a rep-
resentation (X;, j¢;) of A . Then (Y;, jy;) is a small subrepresentation of (X, j¢;) if
and only if the following conditions hold:
(i) Ifkis a source vertex of T, then Yy = 0.
(if) Ifk is not a source vertex of T, then Yj C Yok Im(x¢;), where the sum is over all
arrows with the target k.

Proof (=). Assume that k is a source vertex of I and Xj # 0. Assume that Y; = X;.
We define a representation (Z;, ;0;) of .# by taking Z; = 0, Z; = X; for each i # k
and all ;0; = ;9i|z,e,, ,m;- Then 7a is an epimorphism, where a = (a;): (Z;, j0:) —
(X,»,jgo,-) and each «;:Z; — X; is the inclusion map. Since « is not an epimor-
phism, (Y;, jy;) is not a small subrepresentation of (X;, j¢;), which gives a con-
tradiction. Hence, Yy # Xj. Assume that Hy is an Fy-submodule of X} such that
Hy+Y = Xi. We define a subrepresentation (X;, jq),i) of (Xj, j¢;) by taking X;C = Hy,
X: = X, for each i # k and all j(p; = J"P"|X§®p,.,-Mj‘ Then 7€ is an epimorphism, where
= (&) (X;,jq);) — (Xi, j¢i) and each £::X; - X; is the inclusion map. The as-
sumption (Y,- iV j) is a small subrepresentation of ( Xi, i@ j) yields the map ¢ is an epi-
morphism and so Hy = Xj. This proves that Yj is a small submodule of Xj. Since Xj
isaright Fy-module and Fy is a division ring, Yy is a direct summand of X. Therefore,
Yy = 0. Assume that k is not a source vertex of I and #;: Xy — Xk/zj_,k Im(x;) is
the canonical quotient map, where the sum is over all arrows with the target k. Assume
that 75 (Xx) # 0 and 5 (Yx) = 7x(Xk). Then Xy = Yi + ¥ Im(x¢;). We define
a subrepresentation (V;, j&;) of (Xj, j¢;) by taking Vj = ik Im(r¢@;), Vi = X; for
each i # k and j&; = j@i|v,e,, M, for each i and j. Therefore, 8 is an epimorphism,
where = (Bi)i: (Vi, jei) = (X, joi) and each B;: V; — X; is the inclusion map.
Thus, (Y;, jy;) is not a small subrepresentation of (X, j¢; ), which gives a contradic-
tion. It follows that 75 (Y ) # 15 (Xx ). Assume that Ej is an Fi-submodule of ;. (X)
such that Ej + ﬂk(Yk) = Wk(Xk)- Set Dy = ﬂzl(Ek) Then k(Pj(Xj ®Fj ij) c Dy for
each arrow j — k of I. Hence, Dy + Y = X and (X, jgo',-') is a subrepresentation
of (X, j¢i), where X,: = Dy, X; = X; for each i # k and all jqo'{ = J"Pi|X,f'®p,,,-M

J
Therefore, 7€ is an epimorphism, where & = (&;);: (X;/,j(p;,) — (Xi, jgi) and each
&:X; — X; is the inclusion map. The assumption that (Y;, i¥;) is a small subrep-
resentation of (X, ;¢;) yields Dy = Xj. It follows that Ex = #;(Xj). Consequently,
1k (Yx) is a small submodule of 77 (Xx). Therefore, Yy € 3, Im(x ;).

(<). Let (Z;, j¢;) bearepresentation of .# and f = (f;): (Zi, j¢i) = (Xi, joi) be
amorphism in Rep(.#) such that 7 f is an epimorphism. Then for each vertex i of T,
Im f; +Y; = X;. If k is a source vertex of I', then the assumption (i) yields Xy = Im f.
Assume that k is not a source vertex of I. Let 7x: Xy — Xx/¥ .k Im(x9;) be the
canonical quotient map. Since Im fi + Yy = Xy, 75 (Im fi ) +7x(Yx) = 71 (Xx ). Hence,
the assumption (ii) yields 5 (Im fi) = 75 (Xx ). Therefore, it is sufficient to show that
for each arrow j — k of T, 1 ¢;(X; ®F, iMy) € Im fi. Assume that there exists an ar-
row ji - kof ['such that x ¢, (X, ®F; j, M) ¢ Im fi. Since j;(fi®id,m;) = fjj¢i for
eacharrow i — jof I', we have arepresentation (Im f;, ;8 ), where ;0; = j@i|im fie, i M;-
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Thus, for each arrow i — j of I', we have the following commutative diagram

0,
Imf, ®F; ,M];>Imf]

Ei®1£ l\ej
[

X; ®F; ,M]%X],

where each £;:Im f; — X is the inclusion map. Therefore, Im f;, # X;,. Since Im f;, +
Yj, = Xj,, Y, is nota small submodule of X ;. By the above argument, jj is not a source
vertex of I and by (ii), 7;,(Y},) = 0. Since Im fj, + Y}, = X, #;,(Im f;,) + 1;,(Y;,) =
1j,(X;,). It follows that #; (Im f;,) = n;,(Xj,). Therefore, there exists an arrow
j2 = jiof T'such that j ¢, (X;, ®;, j,M;,) ¢ Im f;,. It follows that j, is not a source
vertex of I' and the same argument shows that there exists an arrow j3 — j, of T
such that j,¢;, (Xj, ®F,, j;Mj,) ¢ Im f;,. Continuing in this way, we get a cycle in
(T, d) which gives a contradiction. Then y¢;(X; ®f, jMy) S Im f for each arrow
j = k of T. It follows that f is an epimorphism. Consequently, (Y;, jy;) is a small
subrepresentation of (X;, j¢;). ]

In the following proposition, we compute the radical and top of a representation
of species.

Proposition 2.2 Let . # = (F;, {M;j)i,je1 be a species. Suppose that the valued quiver

(T,d) of A is connected and acyclic and let (X, j¢;) be a finite-dimensional represen-

tation of M . Then

() rad((Xi, j9i)) = (i, jyi), where Yy = ¥, Im(r9;) if k is not a source vertex
of T, Y = 0 if k is a source vertex of T, and jy; = j@ilv,e,, M, for each i and j.

(i) top((Xi,i9))) = (Zi, jyi), where Zy = Xi/ ¥ Im(xg;) if k is not a source
vertex of T, Zi = Xy if k is a source vertex of T and jy; = 0 for each i and j.

Proof For each vertex k of T, define the representation Fy = (W;, jx;), where W; = 0
for i # k, Wy = Fr and all jy; = 0. Since the species .# is acyclic, by [40, Proposi-
tion 1.1], the simple representations F; form a complete list of all non-isomorphic
simple objects in rep(.# ), where k is a vertex of I'. Therefore (V;, j¢;) is a maxi-
mal subrepresentation of (Xj, j¢;) if and only if there exists a vertex k of I' such that
(Vi j¢i) satisfies one of the following conditions:
(i') k is a source vertex of I, Vj is a maximal submodule of X, V; = X; for each
i+ k,and j¢; = j@ilvier,,m; for each i and j,
(ii") k is not a source vertex of T, V. is a maximal submodule of X} which contains
Y-k Im(x¢;), Vi = X; for each i # k, and j¢; = ;9i|v,e,,,um; for each i and j.
It follows that rad((X;, j9i)) = (Yi, j¥:), where Yy = ¥, Im(x¢;) if k is not a
source vertex of I', whereas Y; = 0 if k is a source vertex of ' and jy; = ;¢ily,e;, ,m; for
each iand j. Consequently, top((Xi, i9;)) = (Zi, jyi), where Zy = Xi/ ¥ ;1 Im(x¢;)
if k is not a source vertex of I', whereas Z; = X if k is a source vertex of I'and jy; = 0
for each i and j. L

As an immediate consequence of Propositions 2.1 and 2.2, we obtain the following
corollary.
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Corollary 2.3 Let A = (Fi, iMj)i eI be a species. Suppose that the valued quiver
(T,d) of A is connected and acyclic and let (X, ;¢ ;) be a finite-dimensional represen-
tation of A . Then rad((X;, j;)) is the biggest small subrepresentation of (X;, i9;).

It is well known that, for a quiver Q = (Qo, Q1), the category of representations
of Q over a field K is equivalent to Mod-KQ, where KQ is the path K-algebra of Q;
see [2]. This fact was generalized nicely for species. For a species .# = (F;, iM;); jer,
one can form a tensor ring R 4 = @0 N®, where A = N = @, F;, NO =
@i jeriM;jand N = NOD @, NO for ¢ > 2, with the component-wise addition
and the multiplication induced by taking tensor products. The ring R_y is called the
tensor ring of M (see [19]). Following [14,40], a species .# is called right (resp. left)
finite-dimensional if the dimensions d;; (resp. dj;) are finite for all i # j. The species
A is called finite-dimensional if .4 is left and right finite-dimensional. Assume that
M = (Fi, iMj);,jer is a right finite-dimensional species and the valued quiver (T, d)
of ./ is acyclic. We now define as in [12] a functor

(2.1) F:rep(.#) — mod-R_y4

as follows. For each object X = (Xj, j¢;) in rep(.# ), we set F(X) = @,y X;. The
reader can easily verify that F(X) is a finitely generated right R_,-module. If («; ) ;cr:
(Xi, j9i) = (Yi, jyi) is a morphism in rep(.#), we define F((a;);er) to be @ a;:
@Dicr Xi > Dicy Vi Itis easy to verify that F((«;)ier) is an R_z-homomorphism. It is
well known that the functor F is an equivalence (see [40, Proposition 1.1]). From now
on, we fix the functor F. Note that when the species .# is right finite-dimensional,
the tensor ring R 4 is semiprimary. In this case, Propositions 2.1 and 2.2 and Corol-
lary 2.3 are an automatic translation of categorical properties from modules to repre-
sentations. In particular, we have the following fact.

Proposition 2.4 Let 4 = (Fi, ,»Mj)i)jd be a right finite-dimensional species. Sup-
pose that the valued quiver (T,d) of A is connected and acyclic and let (X;, j¢;) be a
finite-dimensional representation of /. Then top(F(X;, j;)) = F(top((Xi, j¢i))).

3 Representations of Species and Modules over Hereditary Artinian
Rings
Let .# = (F;,iMj);,jer be a finite-dimensional species and suppose that the valued

quiver (T, d) of .# is acyclic and connected. Let k be a sink (resp. source) vertex of
I andlet .#* = (F;, iN;)i,jer be the new species, where

Mt ifi=k,
,'Nj: ,‘Mj ifiqtkandthk,
0 if j = k.

(resp. ;Ni = «M;®, N; =0 for each i and iNj=;M;foreachi#k, j# k) (see [14]).
We recall from [11,33] (see also [4] and [13,14,40]) that a pair of partial Coxeter functors
(or reflection functors, see [2, Ch. VII])
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S¢
rep(A) ~ rep( %)
k

is defined as follows. Let X = (Xj, j¢;) be a finite-dimensional representation of ./ .
Define S; X = (Y}, jyi), where Y; = X; for each i # k and Yj is the kernel of the
morphism (x¢;)
(o) (k9j)
0— Y, — @Xj@pijk — Xi.
Jjelo

By using the natural isomorphism
Hompj(Yk ®F, ijL, Xj) = Hompk(Yk,Xj ®Fj ij),

we get Y Yy ®F, ijL — Yjand jy; = jo; fori # k. Also, if a = (a;)i: X — X
is a morphism in rep(.# ), then S;a = (B;); is defined by B; = «a; for i # k and
Bi: Y — Y,: as the restriction of

@((Xj ® 1)3 @ X] ®ij —_—> @ X; ® ij.
jeTo jelo jeTo
Also, for each sink vertex k of I, define the linear transformation s : Z" — Z"
by spx = y, where [Ty| = n, y; = x; for i # kand yx = —xx + ¥, dixxi. For
each finite-dimensional indecomposable representation X = (Xj, j¢;) of .#, we can
see that each ,¢; is an epimorphism. It follows that dim S; X = s (dim X), where
dim X = (dim (X;)}, )ics. The functor S is defined analogously. The functors Sj
and S induce quasi-inverse equivalences between the full subcategory of rep(.#) of
the representations having no direct summand isomorphic to the simple projective
representation Fy, and the full subcategory of rep(.#*) of the representations having
no direct summand isomorphic to the simple injective representation Fy, (see [11,14]).
Let k be a vertex of I' and let s, I' be the quiver obtained from I by reversing the
direction of all arrows starting or end in k; see [11] and [2, Ch. VII]. An admissible
sequence of sinks in a quiver T is a sequence k;, ..., k, of all vertices in I such that
each vertex k; is a sink in sy, ---s, [ forall1 < t < n [2,11]. Let ky,..., k, be an
admissible sequence in T and let (k}); be a sequence of vertices of I', where j € Z,
k’.:{k”‘ ifi>0, j=tn+r, 0<r<n
P Nkpers ifj<0, —j=tn+r, 0<r<n,

and t is a positive integer. For any m € Z, the species .# ™) is defined in [14] as
follows:

(DY i< 1,

where .#(®) = /. The species .# has the right (resp. left) finite-dimensional prop-
erty if the species .# (™) are finite-dimensional for all m > 0 (resp. m < 0). .4 has
the finite-dimensional property if it has both the left and the right finite-dimensional
property. If .# has the right (resp. left) finite-dimensional property, then the follow-
ing sequence is a right (resp. left) sequence of partial Coxeter functors of .#:

- {(///('”1))":"-‘ itm>1;
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st st
rep( M) T=—= rep( V) =—= ... =—= rep(("V) =—= rep((™M) =—= ...
sy S5

m

ST S5
(resp., -+ — rep(ﬂ(fmfl)) — rep(//[(fm)) .. === rep(‘//l(fl)) — rep(A) ),
SZm So

where 7 and S are the pair of partial Coxeter functors corresponding to the sink k’,_,

in the valued quiver of ./ =), We denote by F](j ) the simple projective representation
i

in .#) corresponding to the sink k' [14].
We need the following result proved in [14, Theorem 1].

Theorem 3.1 Let ./ be a finite-dimensional species and suppose that its valued quiver
(T, d) is connected and acyclic. Then M is representation-finite if and only if A has
the finite-dimensional property and there exists m > 0 such that s;,---s{ (e;) £ 0 for
any source i of . Moreover, if m is minimal with the above property and |To| = n, then
the mapping dim:rep(.#) — Z" is a one-one correspondence between isomorphism
classes of finite-dimensional indecomposable representations of .4 and vectors in Z"
of the form sy - s;(ek: ), where t < m and k, is a sink in the valued quiver of .#(".
In other words, any finite-dimensional indecomposable representation X of .4 has the

form X = P; for some 0 < i < m, where Py = F and P; = S| ~~S,-‘F,(c?.

We recall from [13] that a sequence a = (ay, ..., an) of length m > 2 with a; € N
is called a dimension sequence provided there exist x;, y; € N (1 < i < m), with

aixi =xiq+xi and  a;y;=yia+yia (1<i<m),

where xg = -1, yo = y =21 =0and x,,, = y; = 1.

Lemma 3.2 Let F and G be division rings, M be an F-G-bimodule and A = (§ ) be
an artinian ring. Then there exist precisely 3 pairwise non-isomorphic finitely generated
indecomposable right A-modules if and only if r.dim M = 1.dim M = 1. Moreover, in
this case, F = G as division rings and M* =~ M® as G-F-bimodules.

Proof Assume that A = (§ %) is an artinian ring such that there exist precisely
3 pairwise non-isomorphic, finitely generated, indecomposable right A-modules.
Then by [39, Corollary 3.5], d3(M) is a dimension sequence. It follows that by
[39, Lemma 3.1] and [13, Proposition 2’], rdimM =1dim M =1.

Conversely, assume that r.dim M =1.dim M = 1. Let M = xG for some 0 # x € M.
Define a division ring embedding a: F — G by the formula fx = xa(f) for any f € F.
So we have an F-G-isomorphism ¢: M — ,(p)G¢ by the formula ¢(xg) = g. Since
L.dim M = 1, we can assume that M = Fx. Define a division ring embedding f: G — F
by the formula xg = B(g)x. Thus, we have an F-G-isomorphism y: M — rFgg)
by the formula y(fx) = f. Therefore, ,(r)Gc = M = pFg(g) as F-G-bimodules.
It follows that MR = 6Ga(ry and M = () Fr as G-F-bimodules. Clearly, f = a!
and the isomorphism y¢™ is just equal 8. Notice that the same f yields also the
isomorphism Gy (ry £ p(G)Fr> 0 M" = MR as G-F-bimodules. Therefore by [11,
Proposition 2.6], there exist precisely 3 pairwise non-isomorphic finitely generated
indecomposable right A-modules. ]
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Let F and G be division rings and let M be an F-G-bimodule. We say that the
F-G-bimodule M is trivial if there exist precisely 3 pairwise non-isomorphic finitely
generated indecomposable right (£ #)-modules.

Let A be a basic hereditary ring and suppose that the number of vertices of the
valued quiver (T, d) of A is the natural number n. A vector x € N” is called branch
system of the Coxeter valued quiver (€, m) of A if there exists an admissible se-
quence ki, ..., k; in the valued quiver (T'a,d) of A such that s; ---s{x = e; for some
1 < j < n. This generalizes the positive part of the usual rank 2 root systems (see [13]).
The following well-known result is playing a key role in our study in this paper.

Proposition 3.3  Let A be a basic hereditary artinian ring. Then the underlying
Coxeter valued graph of the Coxeter valued quiver (€, m) of A is a disjoint union
of the Coxeter diagrams presented in Table B if and only if A is a representation-finite
ring. Moreover in this case:

(i) there exists a bijection between the indecomposable finite-dimensional represen-

tations of ./ and the branch system of the Coxeter valued quiver (6, m) of A;

(ii) the ring A is isomorphic with the tensor ring R 4, of the species M of A;

(iii) the functor F:rep(.#y) — mod-A in (2.1) with A = R 4, is an equivalence of
categories;

(iv) if the underlying Coxeter valued graph of the Coxeter valued quiver (€, m) of A
is one of the Coxeter diagrams A, B, D,, E¢, E;, Eg and F, presented in Table
B, then the underlying valued graph of the valued quiver (Ta, d) of A is one of the
valued Dynkin diagrams presented in Table C.

Table C. Valued Dynkin diagrams (consult also [37])

Ayt o O-mmm - o o (n vertices, n >1);
(1,2)
B, : o O------ o o (n vertices, n > 2);
2.1)
C,: o O-mmmm o o (n vertices, n > 2);
D, : o O e o ’e} (n vertices, n > 4);
o
E¢ : o 03
o
E; : o 0O
o)
Es : o ¢}
1,2
Fy: o t.2) 03
(1.3)
G,y : o—o-
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Proof This follows from [13, Theorem 2].

(i) This follows from Theorem 3.1, see also [13, Theorem 2].

(ii) The proof in the case when A is a basic hereditary finite-dimensional algebra
over a field is given in [12]. The proofin the general case follows from [38, Theorem 4.5
and Corollary 4.6] together with [37, Lemma 3.3]; see also [16, Theorem 3].

(iii) By [39, Lemma 3.1 and Corollary 3.5] and [13, Proposition 2/], the species
My of A is finite-dimensional. Since the valued quiver (T, d) of A is acyclic and
connected, by [40, Proposition 1.1], the functor F:rep(.#,) — mod-A in (2.1) with
A =R 4, is an equivalence of categories.

(iv) Assume that the underlying Coxeter valued graph of the Coxeter valued quiver
(%, m) of A is one of the Coxeter diagrams A,, D,,, E¢, E;, and Eg presented in
Table B. Then by Lemma 3.2, the underlying valued graph of the valued quiver (Ts, d)
of A is one of the valued Dynkin diagrams A, D,,, E¢, E; and Eg presented in Table C,
respectively. If the underlying Coxeter valued graph of the Coxeter valued quiver
(%a>m) of A is the Coxeter diagram B, presented in Table B, then by [39, Lemma 3.1
and Corollary 3.5] and [13, Proposition 2'], the underlying valued graph of the val-
ued quiver (T, d) of A is one of the valued Dynkin diagrams B, and C,, presented in
Table C. If the underlying Coxeter valued graph of the Coxeter valued quiver (%, m)
of A is the Coxeter diagram IF4 presented in Table B, by the same arguments the un-
derlying valued graph of the valued quiver (T's, d) of A is the valued Dynkin diagram
[F, presented in Table C. [ ]

Let A be a basic hereditary ring such that the underlying valued graph of the valued
quiver (T, d) of A is one of the valued Dynkin diagrams presented in Table C. There-
fore, there exist non-zero natural numbers f; satisfying d;; f; = d;i f; for each vertex
i, j of [y. Assume that the number of vertices of the valued quiver (T4, d) of A is the
natural number n. We denote by Q" the vector space of all x = (xy, ..., x,) over the
field of rational numbers. Then we define a symmetric positive definite bilinear form
B:Q"xQ" - Qasfollows. Foreach x, y € Q", B(x,y) = 3; f,-x,-y,-—% Yijdijfixiyj.
For each vertex k of I'y, we have a reflection si, where s; : Q" — Q" is a linear trans-
formation given by sgx = x — (2B(x, ex)/B(ex, ex))ek. A group of all linear trans-
formations of Q" generated by the reflections s, k is a vertex of T, is called Weyl
group and is denoted by W. It is well known that the set R = {x € Q" | x = wey
for some w € W and k is a vertex of ['y } is a reduced root system such that the set
{ex | k isavertex of T5 } is a base for R; see [8,11, 24]. If the underlying Coxeter
valued graph of the Coxeter valued quiver (%, m) of A is one of the Coxeter dia-
grams A,, B,, D,, E¢, E;, Eg, and F, presented in Table B; then by Theorem 3.1,
[33, Theorem 6.5] and [13, Theorem 1] (see also [11, Proposition 1.9]), there exists
a bijection between the isomorphism classes of finite-dimensional indecomposable
representations of .#, and the positive roots of (Ts,d). Now we assume that the
underlying Coxeter valued graph of the Coxeter valued quiver (%, m) of A is the
Coxeter diagram G, presented in Table B, then the category mod- A has exactly 6 non-
isomorphic indecomposable modules. By [39, Corollary 3.5], d¢(M) is a dimension
sequence. Therefore by [13, Proposition 2 ], d¢ (M) is one of the following sequences
up to cyclic permutation and reversion:

(1,2,2,2,1,4), (1,2,3,1,2,3), (1,3,1,3,1,3).
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If dg(M) = (1,3,1,3,1,3), then by [39, Lemma 3.1 and Corollary 3.5], the underly-
ing valued graph of the valued quiver (Ts,d) of A is G, presented in Table C. Thus
by Proposition 3.3 and [11, Proposition 1.9], the branch system of the (€, m) of A
is exactly the positive roots of (Ts, d). But if dg(M) is one of the sequences (up to
cyclic permutation and reversion) (1,2,2,2,1,4) and (1,2,3,1,2,3), then the under-
lying valued graph of the valued quiver (I'y,d) of A is one of the valued diagrams

(1,2) (2,2) (1,4) (2,3) 2,1) (4,1) (3,1)
o 0 0, O 0, O 0, O 0, O 0, O 0.

> > > > > >

It follows that by Proposition 3.3, the branch system of its Coxeter valued quiver is
different from the positive roots of the corresponding Dynkin diagram. Therefore in
Section 5, by using reflection functors, we study the Kéthe property for basic heredi-
tary rings A of the Dynkin type G, and of the Coxeter types Hj, H,, and I, (p) with
p=5or7<p<oo.

4 Right Kothe Rings of Dynkin Type

Following [31], we say that a finitely generated indecomposable right A-module M is
multiplicity-free top if composition factors of top(M) are pairwise non-isomorphic.
The species .# has the multiplicity-free top property if every finite-dimensional in-
decomposable representation of .#, is multiplicity-free top.

We start this section with the following fact that is frequently used in our study of
right Kothe rings of Dynkin type.

Proposition 4.1  The following two conditions are equivalent for a basic ring A.
(i) A is aright Kothe ring.
(ii) A is artinian and every indecomposable right A-module of finite length is multi-
plicity-free top.
If, in addition, A is hereditary, then (i) is equivalent with the following statement:
(iil) A is a representation-finite ring and the species ./ has the multiplicity-free top
property.

Proof The equivalence of (i) < (ii) is a consequence of [17, Corollary 3.3].
(ii) <> (iii) Since A is assumed to be hereditary, the equivalence of (ii) and (iii)
follows from Propositions 2.4 and 3.3, and the equivalence (i) <> (ii) proved earlier. m

Proposition 4.2 If A is a basic hereditary artinian ring of the Dynkin type A, then
A is a right Kothe ring.

Proof Assume that A is a basic hereditary artinian ring of the Dynkin type A,,. Then
there exists a bijection between the finite-dimensional indecomposable representa-
tions of .#, and the positive roots of (T4, d). Since by [8, p. 265], the positive roots
of (Ta,d) are ¥;ck;ex, where 1 < i < j < n + 1, by Proposition 2.2, every finite-
dimensional indecomposable representation of the species .# is multiplicity-free
top. Therefore by Proposition 4.1, A is a right Kéthe ring. [ ]

Proposition 4.3  Let A be a basic hereditary ring of the Dynkin type D,. Then
A is a right Kéthe ring if and only if A is an artinian ring such that the following
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conditions hold:

@ [(n-2)"<2
(ii) Foreach i < n — 3, there exists at most one arrow with the source i.

Proof (=). Assume that |(n—2)"| > 2. Since by Proposition 3.3, the underlying
valued graph of the valued quiver (T, d) of A is the valued Dynkin diagram D, pre-
sented in Table C, by using [8, p. 271], there exists a finite-dimensional indecompos-
able representation X of .#, with the dimension vector dim X = _,,3,. Therefore
by Proposition 2.2, there exists a finite-dimensional indecomposable representation
X of A, such that top(X) = F,_, ®F,_,, which is a contradiction by Proposition 4.1.
Now, we show that for each i < n — 3, there exists at most one arrow with the source i.
Assume that there exists i < n — 3 such that |i*| = 2. Since by using [8, p. 271], there
exists a finite-dimensional indecomposable representation Y of .#), with the dimen-
sion vector dim Y = _;,,..,,5;> Where the first 2 is in the i-th coordinate, by Propo-
sition 2.2, there exists a finite-dimensional indecomposable representation Y of .#
that is not multiplicity-free top. It follows that by Proposition 4.1, A is not right Kéthe,
which is a contradiction.

(+<). Assume that X = (Xj, j¢;) is a finite-dimensional indecomposable representa-
tion of .# and there exists 1 < ¢ < n such that F; & F; < top(X). Since by Proposi-
tion 3.3, the underlying valued graph of the valued quiver (T4, d) of A is the valued
Dynkin diagram D, presented in Table C, by [8, p. 271], the positive roots of (T, d)
can be expressed as combinations of simple roots as follows:

1) e;i+-+e 1<i<k<n-1
2) ei+-r e+t t2e, e, +e, 1<i<k<n-3
(3) e+ t+e,rte, 1<i<n-2
(4) e+ te,rte, 1 t+e, 1<i<n-2.

By Proposition 2.2, dim (X,)p, = 2 and the vertex ¢ is source. It follows that by (ii),
t = n — 2. Therefore, |(n—2)"| = 3, which is a contradiction. Thus, every finite-
dimensional indecomposable representation of ./#, is multiplicity-free top. There-
fore, by Propositions 3.3 and 4.1, A is a right Kéthe ring. [ ]

An arm of length t is a pair (Q’, k) consisting of a quiver Q' of type A, presented
in Table A and the vertex k of Q’, which has at most one neighbor in Q’. We say that a
quiver Q has an arm (Q’, k) if Q" is a full subquiver of Q and there are no arrows be-
tween the vertices of Q outside of Q” and the vertices of Q’ different from k. Let ¢ be
avertex of a quiver A of tree type. We say that an arrow a: x — y points to ¢ provided
y and ¢ belong to the same connected component of the quiver obtained from A by
deleting a. Let .# = (F;, ;Mj);,jer be a species such that for any i, j € I, F; = F; as di-
vision rings and r.dim ; M; = 1.dim ; M; = 1 and suppose that the valued quiver (T, d)
of . is of tree type. Let X = (Xj, j¢;) be a finite-dimensional representation of .#
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and (Q', k) be an arm of (T, d). We say that X is conical on (Q’, k) provided ;¢; is
injective for any arrow i — j of Q' that points to k and for the remaining arrows [ — ¢
of Q', 1¢ is surjective. The representation X is said to be thin, provided dim (X;) , <1
for all vertices i. The support of X is the set of vertices i with X; # 0 [32].

The following lemma is a generalization of [32, Corollary 1.4].

Lemma 4.4  Let F be a division ring and let .# = (Fi,iM;); jer be a species such
that for each i and j, F; = F as division rings and ;M; = pFr as bimodule and the
valued quiver (T,d) of ./ is of tree type. Let (Q , k) be an arm of (T, d). Then any
Sfinite-dimensional representation X of .4 has a decomposition as X = X @ X", where
X' is conical on (Q', k) and the support of X' is contained in Q' \{k}. In particular, if
X is a finite-dimensional indecomposable representation of # such that Xy # 0, then
X is conical on (Q, k).

Proof Let X = (Xj, j¢;) be a finite-dimensional representation of .#. Let .# " be
a subspecies of .# with the valued quiver Q'. Then by [11, Theorem], there exists a
bijection between the finite-dimensional indecomposable representations of .# "and
the positive roots of Q . Moreover, .# is representation-finite. Therefore by using
[8, p. 265], every finite-dimensional representation of .Z "is a direct sum of thin in-
decomposable representations. Thus, the restriction X|Q of X to Q" is a direct sum of
thin indecomposable representations X () with j € J. Let J' be the set of indices jel
such that X(j)x # Oandlet J” be the set of indices j € J such that X(j) = 0. For each
vertex t of Q , we set X, = Dy X(j)rand X, = ®cjr X(j)+. Moreover, if t isa vertex
inT\Q', then weset X, = X,and X, = 0. Thus, X = X ®X , where X = (X;,jgoi) and
X" =(x;, i9i). Since the representations X (j) with j € J are conicalon (Q, k), X is
conical on (Q’, k). Also, since the representations X (j) with j € J satisfy X(j) = 0,
the support of X" is contained in Q"\{k}. Therefore, the proof is complete. ]

Let ./ be a species and assume that .7 is a subspecies of .. If the species .# has
the multiplicity-free top property, then clearly the species .# "has the multiplicity-free
top property. This fact is frequently used in the rest of the paper.

Proposition 4.5 Let A be a basic hereditary ring of the Dynkin type E¢. Then A is a
right Kothe ring if and only if A is an artinian ring such that the following conditions
hold:

6

E¢ : o
1 2 3 4 5

[¢]

(i) 1<|3*<2 4% <1and 2| <1
(ii) For each y € 37, there exists at least one arrow with the target y.

Proof (=). Assume that A is a right Kothe ring. Let .# " be a subspecies of ./,
such that the underlying valued graph of the valued quiver (r',d) of . is the valued
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Dynkin diagram D5 presented in Table C. Then by using Proposition 4.3, |3*| < 2 and
there exists at most one arrow with the source 2 and one arrow with the source 4.
Consequently, |[4*| < 1and [2*| < 1. If |3*| = 0, then by Proposition 3.3, the Coxeter
valued quiver (%, m) of A has the orientation

6

E¢ : o -
1 2 3 4 5

Hence by using [8, p. 275], there exists a finite-dimensional indecomposable repre-
sentation X of .#, with the dimension vector dim X = ,3,,. It follows that by
Proposition 2.2, there exists a finite-dimensional indecomposable representation X
of A such that Fs @ F¢ ¢ top(X), which is a contradiction, by Proposition 4.1.
Therefore, 1 < |3*| < 2. Now we show that for each y € 37, there exists at least one
arrow with the target y. Assume that there exists y € 37 such that there is no arrow
with the target y. Since |[4*| < 1and [2*] < 1, y = 6. Therefore by Proposition 2.2,
Fs @ Fg € top(X), where X is a finite-dimensional indecomposable representation of
M with the dimension vector dim X = },3,,. Hence, X is not multiplicity-free top,
which is a contradiction, by Proposition 4.1.

(«<=). Let Ay = (Fi,iM;); jer be the species of A. Assume that X = (X;, jg;) isa
finite-dimensional indecomposable representation of .# such that F; ®F; ¢ top(X)
for some vertex i of I'y. Since by Lemma 3.2, there exists a division ring F such that
each F; = F as division rings, by using [8, p. 275], dim (X;); < 1, dim (X3) < 2,
dim (X3) < 3, dim(X4), < 2, dim(X5); < 1, and dim (Xg) < 2. Thus by as-
sumptions (i) and(ii) and Proposition 2.2, i = 3 and dim (X3 ) = 3. It follows that by
Lemma 4.4, X is one of the following representations

X6

|

392

X;€ X;5C X; X, Xs
X6

X,C X, X, X, DX
X6

XX, X, =ox, OXs
X6

Xi X, X3 e X,y X,
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where dim (Im(3¢2)) = 1 and dim (Im(3¢4)); = 1. Since there exists a bijection
between the finite-dimensional indecomposable representations of .# and the posi-
tive roots of (I's, d), by using [8, p. 275], there are no indecomposable representations
of .4 with the dimension vectors , 3, Or ,.3.. It follows that X is not indecom-
posable, which is a contradiction. Thus, every finite-dimensional indecomposable
representation of ./, is multiplicity-free top. Therefore by Propositions 3.3 and 4.1,
A is a right Kéthe ring. n

Proposition 4.6  Let A be a basic hereditary ring of the Dynkin type E;. Then A is a
right Kothe ring if and only if A is an artinian ring such that the Coxeter valued quiver
(%> m) of A has the orientation

T6
E;:

Proof (=). Assume that A is a right Kéthe ring. Then by the same argument as in
the proof of Propositions 4.3 and 4.5, we can see that1 < [3%| < 2, [47| <1, |5%| < 1, and
|2*| < 1and for each y € 37, there exists at least one arrow with the target y. Since by
using [8, p. 279], there exists a finite-dimensional indecomposable representation Y of
M with the dimension vector dim Y = ,;%,,,, by Propositions 2.2 and 4.1, (%, m)
has the orientation

TG
E;:

o
1 2 3 4 5 7

(«<=). Let A = (Fi,iM;)i jer be the species of A. Assume that X = (X, jy;) isa
finite-dimensional indecomposable representation of .# such that F;®F; ¢ top(X)
for some vertex j of I'y. Since A is of the Dynkin type E7, by Lemma 3.2, there exists
a division ring F such that for each i € I, F; = F as division rings. If X5 = 0, then by
Proposition 4.2, X is multiplicity-free top, which is a contradiction. Hence X3 # 0.
Therefore by Lemma 4.4, X is the representation

X

!

Xi X, X3 X, OX °X;.

If X7 = 0, by the proof of Proposition 4.5, X is not indecomposable, which is a con-
tradiction. Thus, X7 # 0. If dim (X5), = 2, then by Lemma 4.4, X = Z’ & Z", where

X=X ~— X, ® Xs X5 0X, X5 X5,
7 =X~ X, 0 X, X, X, X; 0,
72 =X ~—— X, 0 X, bl X, x, <Y x,

https://doi.org/10.4153/50008414X20000115 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X20000115

Coxeter Diagrams and the Kothes Problem 673

and sy7: X7 - X;' is an isomorphism. Thus, X = Z' &7, where

” ” ” ” 5¥7

ARED ¢ X, X, X, X, X;.

Since by using [8, p. 278], dim (X7) = 1, X; # 0. It follows that X is not indecompos-
able, which is a contradiction. Therefore, dim (X5), # 2. Since by using [8, p. 278],
dim (XI)F < 2, dim (XZ)F < 3, dim (X3)F < 4, dim (X4)F < 3, dim (XS)F < 2,
dim (Xs) < 2and dim (X7); < 1, so dim (X7) = dim (X5) = 1. Hence by Propo-
sition 2.2, j =3 or j = 4. If j = 4, then dim (X4) = 3. Set

X
T
T:= X, X, X3 ox, =¥ Ox,,.
Thus, by Lemma 4.4, T = T' @ T”, where
T:=X ~— X, ® X¢ X; X, OXs,
T =X, < X, & X, X, X, 0,
T =X «——X,0X, X, X, < x,

T =X, X, X, X, 0 0,
X
T = X! X, X; X < x, X

Since dim (Xs); =1, X, # 0Oand T # 0. Consequently, X is not indecomposable,
which is a contradiction. Now assume that j = 3. Therefore, either dim (X3) = 3 and
dim (Im(3y4)) =1 or dim (X3), = 4and 1 < dim (Im(3y4) )z < 2. Set
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X

|

H:= Xl X2 X3 )X4.

Then by Lemma 4.4, H=H & F, where
H=X<~—X®Xg <~ X3 —X,,
H =X, <~—X,®X, < X; <0,
3P4

H =X, <X, ® X, ~— X, <—— X4,

and 3y4: X4 — X, is an isomorphism. It follows that X = H @ H , where

X
H =X, X, X, 0 0 0,
x;
H// . X;/ X;r X;’ 3V4 X4 XS X7,

and X; # 0. Consequently, X is not indecomposable, which is a contradiction. Hence
every finite-dimensional indecomposable representation of .4, is multiplicity-free
top. Therefore, by Propositions 3.3 and 4.1, A is a right Kéthe ring. ]

Lemma 4.7 If A is a basic hereditary artinian ring of the Dynkin type Eg, then A is
not a right Kothe ring.

Proof Assume that A is a right Kéthe ring. Then by Proposition 4.1, every finite-
dimensional indecomposable representation of ./ is multiplicity-free top. Thus by
using Proposition 4.6, (¢, m) of A is one of the following quivers:

06
o 0
1 2 3 4 5 7 8
06
o >0-
1 2 3 4 5 7 8

Since by using [8, p. 284], there exists a finite-dimensional indecomposable repre-
sentation Z of .# with the dimension vector dim Z = ,3,,,, by Proposition 2.2,
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either Fy®Fg c top(Z) or F, @ F; ®F; ¢ top(Z), which is a contradiction. Therefore,
A is not right Kéthe. L]

A Characterization of Right Kothe Hereditary Rings
In this section we give a characterization of right Kothe hereditary rings.

Theorem 5.1 Let F and G be division rings and M be an F-G-bimodule. Then A =
(5 M) is a right Kéthe ring if and only if there exists m > 3 such that d,,(M) = (m - 2,
1,2,...,2,1) is a dimension sequence.

Proof We start by an observation that is a direct consequence of Proposition 2.2
(see also Proposition 2.4). For a basic hereditary ring A (2 R 4, ) as above being right
artinian, a finitely generated indecomposable right A-module N = (Xg, Yg, ¢: X ®F
M — Y) is multiplicity-free top if and only if either N is a simple projective module
and then (dim (X)p,dim (Y);) = (0,1) or dim (X) = 1. This follows from the fact
that ¢ is surjective and X # 0 in case N is not simple projective.

(=). Assume that A = (§ %) is a right K6the ring. Then there exists m > 3 such
that A has only m pairwise non-isomorphic finitely generated indecomposable right
A-modules of finite length. Thus, by [40, Proposition 1.1], .# is a finite-dimensional
species. Hence by Theorem 3.1, .# has the finite-dimensional property and {Py, P;,
...»Py_1} is the set of all finite-dimensional indecomposable representations
(up to isomorphism) of .#, where Py is a simple projective representation and P; =

Sy S;Fif)’ for each 1 < i < m — 1. By using [39, Proposition 3.2] and [40, Propo-

sition 1.1] (see also [13, Proposition 1]), Mm=2L ~ AR 56 bimodules and by using
of [40, Lemma 1.3] (see also [13, Proposition 1]), for each1 < t < m — 2, dim P, =
dMdim P, — dim P,_,. It follows that d,,(M) = (d),d],...,dM )) is a dimension
sequence. Since A is right Kothe, by Proposition 4.1, every finite-dimensional inde-
composable representation of .#) is multiplicity-free top. Assume that m > 3 and
dim P; = (x;, y;), for each 0 < i < m -1 (comparing to the formula before Lemma 3.2
for the sequence a := d,,,(M), the indexing of x;’s and y;’s are shifted by 1). Then by
the entrance observation x; = 1, for every i = 1,...,m — 1. Since dim Py = (0,1) and
dim P; = (1,d}"), we have d = x, = 1 and consequently d)! > 1, since otherwise
m = 3 by Lemma 3.2. Also, we have x; = d}! — 1, so d) = 2. Proceeding in a similar
way, by induction we obtain

dw(M) = (d)',1,2,...,2,d ).

Consequently, by [13, Proposition 2'] and Lemma 3.2, (d¥ - (m - 3),1,d™ ) is a
dimension sequence. Hence, we infer that d}f = m — 2 and dM | = 1. Therefore,
dp(M) = (m-2,1,2,...,2,1).

(«=). Assume that there exists m > 3 such that d,,(M) = (m —2,1,2,...,2,1) is
a dimension sequence. Then by [39, Corollary 3.5], A has only m pairwise non-
isomorphic finitely generated indecomposable right A-modules of finite length. Thus,
A is representation-finite. It follows from [40, Proposition 1.1] that A is a basic
hereditary artinian ring and .# is representation-finite. Therefore by Theorem 3.1,
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{Po,Py,...,P,_1}isthe set of all finite-dimensional indecomposable representations
(up to isomorphism) of .#, where Py is a simple projective representation and P; =

Sl‘--~Si_FI(;),for eachl < i <m-1 Sinced,(M) = (m-2,1,2,...,2,1) and by

using [40, Lemma 1.3] (see also [13, Proposition 1]), dim P;,; = d¥dim P, — dim P, _;
for each 1 < t < m — 2, so computing inductively, the consecutive dimension vectors,
with the starting values dim Py = (0,1) and dim P; = (1, m — 2), we infer that x; = 1,
forevery i =1,...,m —1, where (x;, y;) are as above. Thus by entrance observation
and Proposition 2.2, every finite-dimensional indecomposable representation of ./Z
is multiplicity-free top. Therefore by Proposition 4.1, A is a right Kothe ring. [ ]

Example 5.2 Let A = (§§), where C is the field of complex numbers and R is
the field of real numbers. Then A is a basic hereditary artinian ring and the category
mod-A has exactly 4 non-isomorphic indecomposable modules, since the underly-
ing valued graph of (T4, d) is equal to B, from Table C and A is a finite-dimensional
algebra over its center R.I,, in particular (cCg)" = (cCgr)¥; see [11]. Thus, the under-
lying Coxeter valued graph of the Coxeter valued quiver (%, m) of A is B, presented

in Table B (i.e., o——o) and by the very definition d4(cCg) = (2,1,2,1). Therefore
by Theorem 5.1, A is a right Kothe ring.

Now let A = (H§ %). Then A has the analogous properties as in the previous case
with the one exception; namely, ds(rCc) = (1,2,1,2), hence A is not a right Kéthe
ring. Notice that in this case, dim P, = (2,1), so the representation P, of .#} is not
multiplicity-free top.

Let A be a basic hereditary artinian ring such that the underlying Coxeter valued
graph of the Coxeter valued quiver (€, m) of A is one of the Coxeter diagrams B,,,
Fy, Hj, Hy, G, and I,(p) presented in Table B. Then by Proposition 3.3, A = R 4, .
Assume that A is a right Kéthe ring. Then by Proposition 4.1, .# has the multiplicity-
free top property. Let .#Z" = (F, G, M) be a subspecies of .# such that (F M) has
only m > 3 pairwise non-isomorphic indecomposable right modules. Therefore by
Theorem 5.1, d,, (M) = (m - 2,1,2,...,2,1) is a dimension sequence.

Proposition 5.3  Let A be a basic hereditary ring of the Dynkin type B,,. Assume that
AMn = (Fi, iMj); jer is the species of A. Then A is a right Kothe ring if and only if A is
an artinian ring such that one of the following conditions holds:

(i) da(p1My) = (2,1,2,1) is a dimension sequence and the Coxeter valued quiver
(€, m) of A is the quiver

(i) dy(aM,-1) = (2,1,2,1) is a dimension sequence and the Coxeter valued quiver
(%, m) of A is the quiver

n n-1 t-1 t t+1 2 1

wherel<t<n-1
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Proof (=). Assume that A is a right Kothe ring. Then by Proposition 4.1,
every finite-dimensional indecomposable representation of the species .# has multi-
plicity-free top. The underlying Coxeter valued graph of the Coxeter valued quiver
(%a,m) of A is the Coxeter diagram

By, : o O------ o 0>

thus by Theorem 5.1, either dy(,-1M,) = (2,1,2,1) is a dimension sequence or
ds(nMy-1) = (2,1,2,1) is a dimension sequence. If dy(,-1M,) = (2,1,2,1) is a
dimension sequence, then by Proposition 3.3, the underlying valued graph of the
valued quiver (T, d) is the valued Dynkin diagram B, presented in Table C. Since
there exists a bijection between the isomorphism classes of finite-dimensional inde-
composable representations of .#, and the positive roots of (T's,d) and since by
[8, pp. 267-268], the positive roots of (I's,d) can be expressed as combinations of
simple roots as follows:

1) > ek (1<i<n),
i<k<n

(2) > ek (1<i<j<n),
i<k<j

(3) Zek+226k (1<i<j<n),
i<k<j j<ksn

Ifdy(wM,-1) = (2,1,2,1) is a dimension sequence, then by Proposition 3.3, the un-
derlying valued graph of the valued quiver (T, d) is the valued Dynkin diagram C,
presented in Table C. Since there exists a bijection between the isomorphism classes
of finite-dimensional indecomposable representations of .#, and the positive roots
of (T4, d) and also since by using [8, pp. 269-270], the positive roots of (s, d) can
be expressed as combinations of simple roots as follows:

(1) > ek (I<i<j<n),
i<k<j

(2) dex+2 > ex+ey (I<i<j<n),
i<k<j j<k<n

(3) > ek +en (1<i<n);
i<k<n

thus, by Proposition 2.2, the Coxeter valued quiver (%, m) of A is

n n-1 t-1 t t+1 2 1

wherel<t<n-1
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(<=). Assume that dy(,-1M,) = (2,1,2,1) is a dimension sequence and the Coxeter
valued quiver (%, m) of A is the quiver

Thus by using [8, pp. 267-268] and Proposition 2.2, .# has the multilplicity-free top
property. Therefore by Propositions 3.3 and 4.1, A is a right Kothe ring.

Now we assume that dy(,M,_;) = (2,1,2,1) is a dimension sequence and the
Coxeter valued quiver (%, m) of A is the quiver

n n-1 t-1 t t+1 2 1

where 1 < ¢t < n — 1. Thus by Proposition 3.3, the valued quiver (T5,d) of A is the
valued Dynkin quiver

where 1 < t < n — L It follows that by using [8, pp. 269-270] and Proposition 2.2, .4
has the multilplicity-free top property. Consequently by Propositions 3.3 and 4.1, A is
a right Kothe ring. [ ]

Lemma 5.4 If A is a basic hereditary artinian ring of the Dynkin type F4, then A is
not a right Kéthe ring.

Proof Let F and G be division rings and let M be an F-G-bimodule such that .# ‘=
(F, G, M) is a subspecies of .# and (§ ¥) has only 4 pairwise non-isomorphic inde-
composable right modules. Assume to the contrary that A is a right Kothe ring. Then
by Theorem 5.1, d4(M) = (2,1,2,1). It follow from Proposition 3.3 that the valued
quiver (T, d) of A is one of the valued Dynkin quivers

(1,2)

Fy: o 03
Fy: o (1.2) 05
Fy: O (1.2) 05
Fy: o (1.2) 0-

Since by using [8, p. 287], there exists a finite-dimensional indecomposable represen-
tation X of .#, with the dimension vector dim X = 2342, by Proposition 2.2, .#
has no the multiplicity-free top property, which is a contradiction, by Proposition 4.1.
Therefore, A is not right Kéthe. ]
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Lemma 5.5 If A is a basic hereditary artinian ring of the Coxeter type Hs, then A is
not a right Kéthe ring.

Proof Let F and G be division rings and let M be an F-G-bimodule such that .# "=
(F,G, M) is a subspecies of ./, and (5 %) has only 5 pairwise non-isomorphic in-
decomposable right modules. Assume to the contrary that A is a right Kothe ring.
Then by Proposition 4.1, every finite-dimensional indecomposable representation of
the species .# has multiplicity-free top. Thus by Theorem 5.1, ds(M) = (3,1,2,2,1).
If (%A, m) is the quiver

5

then

= 5755(2,2,3) = 57(2,3,3) = (2,3,6).

Hence by Proposition 2.2, F; @ F; ¢ top(Ps), which is a contradiction. If (€, m) is
the quiver

then
dim Py = 5;55535,(0,0,1) = 575,55 (0,2,1) =575, (0,2,1)

=57(2,2,1) = (2,3,1).
Thus, F; ® F; ¢ top(P,), which is a contradiction. Suppose that (%, m) is the quiver

5
O<——O0—>0"

1 2 3

= s7(1,2,4) = (1,2,4). Therefore F, ® F, € top(Ps), which is a contradiction. If
(%a,m) is the quiver

1 2 3

s7855557(1,4,2) = s7s755(3,4,2) = 5755(3,4,2) = 57(3,5,2) = (2,5,2). Thus by
Proposition 2.2, F; @ F3 ¢ top(P;), which is a contradiction. Therefore A is not a
right Kothe ring. L]

As an immediate consequence of Lemma 5.5, we have the following corollary.

Corollary 5.6  If A is a basic hereditary artinian ring of the Coxeter type Hy, then A
is not a right Kéthe ring.

The pair (T, m) is called a (general) Coxeter valued quiver if T = (T, I}) is a fi-
nite quiver and m:T; - N U {oo} is a function such that m(«) > 3, for any arrow

https://doi.org/10.4153/50008414X20000115 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X20000115

680 Z. Fazelpour and A. Nasr-Isfahani

o € I3. Notice that each Coxeter valued quiver is uniquely determined by the under-
lying Coxeter valued graph and some selection of its orientation.

Let A be a basic hereditary ring and let .#x = (F;, i M;); jer be the species of A.
Note that the species ./, does not necessarily have the property “;M; # 0 implies
that ;M; = 0”. We say that the bimodule ; M; belongs to a fixed connected component
(T, m) of the Coxeter valued quiver of A, provided we have i, j € [;. Recall that a ring
A is called indecomposable if A is not a direct product of two non-zero rings. Now,
we are ready to give a characterization of basic hereditary right Kothe rings in terms
of their Coxeter valued quivers.

Theorem 5.7  Let A be a basic hereditary ring. Then A is right Kothe if and only if A
is an artinian ring such that the Coxeter valued quiver (€, m) of A is a finite disjoint
union of the following Coxeter valued quivers:

(i) A, with any orientation;

(ii) B, with the orientation

o O ------ o 0
n n-1 2 1
(iii) B, with the orientation
4
oO——>0------ o R o 0

n n-1 t-1 t t+1 2 1

:

1 2 n-3 n-2 n-1

withl<t<n-1
(iv) D, with the following conditions:

(@ |[(n-2)"<2
(b) foreach i < n -3, there exists at most one arrow with the source i;
(v) [Eg with the following conditions:
T 6
O

1 2 3 4 5

(@) 1<37|<2 |4*|<land 27| <L
(b) Foreach y € 37, there exists at least one arrow with the target y;
(vi) [E; with the orientation
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(vii) G, with the orientation

(viii) T,(p) with the orientation

with p=5o0r7 < p < oo;

where additionally in the cases (ii), (iii), (vii), and (viii) the dimension sequences of
the unique nontrivial bimodules ;M belong to these components have very restrictive
shapes given respectively as follows:

(11) d4(n—1Mn) = (2$ 1,2, 1);

(iti) da(nMn_y) = (2,1,2,1);

(Vll) dG(lMZ) = (4) 17 2) 2: 2)1);
(viii) d,(\M3) = (p-2,1,2,...,2,1).

Proof Since A is a basic hereditary ring, it has a ring product decomposition A =
Ay & --- ® A, where each A; is an indecomposable basic hereditary ring. Then the
Coxeter valued quiver (%4, m) of A is a disjoint union of the Coxeter valued quivers
(€a,>m) of A;.

(=). Assume that A is a right Kéthe ring. Then A; is an indecomposable basic
hereditary right Kothe ring, for each 1 < i < s. Thus, without loss of generality, we
can assume that A is an indecomposable basic hereditary right Kéthe ring. Then by
Proposition 4.1, A is a representation-finite ring and every finite-dimensional inde-
composable representation of .#, is multiplicity-free top. Thus by Proposition 3.3
and Lemmas 4.7, 5.4, 5.5, and Corollary 5.6, the underlying Coxeter valued graph of
the Coxeter valued quiver (%, m) of A is one of the Coxeter diagrams A, B,,, D,,,
Es, E;, Gy and I, (p) presented in Table B. Therefore by Propositions 4.2, 4.3, 4.5, 4.6,
5.3, and Theorem 5.1, the proof complete.

(<=). By Propositions 4.2, 4.3, 4.5, 4.6, 5.3, and Theorem 5.1, for each 1 < i < s, every
right A;-module is a direct sum of cyclic modules. Therefore, A is aright Kéthe ring. m

6 A Characterization of Right Kéthe Rings with Radical Square Zero

Let U and T be two rings, let M be a T-U-bimodule and let R = (g 1‘(’}) Let P be
the category whose objects are triples (X, Y, f), where X is a right T-module, Y is a
right U-module and f € Homy (X ®1 M, Y). If « € Homg, ((X, Y, f), (X, Y, ),
then & = (a1, a3 ), where a; € Hom7 (X, X’) and a; € Homy(Y, Y’) such that a, f =
f' (o1 ® idpr). The functor G: Zr ~Mod-R is defined in [18] (see also [19]) as follows.
Let (X,Y, f) be an object in the category Zg. For (x,y) € X ® Y and ({ ) € R,
define

(x,9) (é ’:) = (xt,f(x ®m) +yu).
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It is easy to see that X @Y is a right R-module. We define G((A, B, f)) tobe A®B. Let
a = (a1, a2) € Homg, ((X, Y, ), (X, Y, f')). We set G(a) = &y ® . The reader
can easily verify that G(«) is an R-homomorphism. It is well known that the functor
G is an equivalence. From now on, we will identify the categories Zx and Mod-R.

Let A be a basic artinian ring with radical square zero and R = (AO/] A]/ ]). Let o/

denote the full subcategory of Mod-R whose objects are (X, Y, f), where X and Y
are two right A/J-modules and f € Hom,;(X ®,,; J, Y) is an epimorphism. Then
we have the natural functor H: Mod-A — & which is defined in [18] (see also [19])
as follows. Let M be a right A-module. Then H(M) = (M/M], M], fu), where
fu:M/M] ®x/7 ] = M] is induced from the multiplication map M ®, ] - M]J. Itis
well known that the functor H is full and dense and M € Mod-A is indecomposable
ifand only if H(M) in 7 is indecomposable.

Proposition 6.1 Let A be a basic artinian ring with radical square zero. Then A is a
right Kéthe ring if and only if R = (A({] A]/]) is a right Kothe ring.

Proof (=). Assume that A is a right Kothe ring. Since A is a basic artinian ring,
by [21, Proposition 1.8], R is a basic artinian ring. Let (A, B, f) be a finitely gener-
ated indecomposable right R-module. If (A, B, f) ¢ <7, then f is not an epimor-
phism. Since B is semisimple, B = B’ @ Im f for some A/J-submodule B of B. Thus
(A, B )z (AImf, f) @ (0,B, f). Since (A, B, f) is indecomposable, (A, B, f) =
(0,B , f) and hence B isa simple right A-module. Therefore by [23, Corollary 2.2],
(A, B, f) is multiplicity-free top. Now assume that (A, B, f) € /. Then there ex-
ists an indecomposable right A-module M such that H(M) = (4, B, f). It follows
that (A, B, f) = (M/M], M], fu), where fy: M/M] ®,;; ] - M] is induced from
the multiplication map M ®, | — M]J. Since A is right Kéthe, by Proposition 4.1,
M/M] =$;®---®S;, where t € N, each §; is a simple right A-module and S; # S; for
each i # j. Therefore by [23, Corollary 2.2], top((A, B, f)) = (51,0,0)&---&(S;,0,0),
where for i # j, (S;,0,0) £ (S;,0,0). This proves that every finitely generated inde-
composable right R-module is multiplicity-free top. Therefore by Proposition 4.1, R
is a right Kéthe ring.

(«). Let N be a finitely generated indecomposable right A-module. Then by [21,
Exercise 1C], H(N) = (N/NJ,NJ, fy) is a finitely generated indecomposable right
R-module. Since by [23, Corollary 2.2], top(H(N)) = (5;,0,0) @ --- & (S;,0,0),
where t € Nand N/NJ = §; @ --- @ S;, by Proposition 4.1, for each i # j, S; ¢ S;.
Therefore, A is a right Kothe ring. u

Let A be a basic artinian ring with radical square zero and let .#Zx = (Fi, iM;); jer
be the species of A. Note that the species .#, does not necessarily have the property
“iM; # 0 implies that ;M; = 0”. Let (I'x,d) be the valued quiver of A. We recall
from [15] that a separated quiver of A is the valued graph (T, d*) with the vertex set
{(i,1):i €I, 1 =0,1} and the arrows

(dij» dji)
o0——>0>

(0 (-1
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precisely when ; M; # 0. If d;; = d;; = 1, we write simply
O——>0-
(5,0) (1
It is easy to see that the separated quiver of A coincides with the valued quiver of R
(see [15]). Moreover, it is well known that R = (AO/ J A]/ ;
ring (see [15] and also [21]).
We conclude this section with the following result, which is a characterization of
basic right Kothe rings with radical square zero in terms of their separated quivers.

) is a basic hereditary artinian

Theorem 6.2  Let A be a basic ring with radical square zero and let M = (F;, iM;)i jer
be the species of A (note that .# does not necessarily have the property “;M; # 0 implies
that ;M; = 0"). Then the following statements are equivalent:
(i) A is a right Kothe ring;
(i) R= (A({] A]/]) is an artinian ring such that the Coxeter valued quiver (6, m) of
R is a finite disjoint union of the Coxeter valued quivers presented in Theorem 5.7;
(iii) A is a representation-finite ring and the separated quiver (T3, d) of A is a finite
disjoint union of the following valued Dynkin quivers:
(a) A, with any orientation;
(b) B, with the orientation

where there exist precisely 4 pairwise non-isomorphic finitely generated in-

decomposable right (75" “*;T“)-modules;
(¢c) C, with the orientation
(2,1
oO——>0------ o L o o)
n n-1 i-1 i i+l 2 1

wherel < i < n—1and there exist precisely 4 pairwise non-isomorphic finitely
generated indecomposable right (%’ "}‘ff;l)—modules;

(d) D, with the following conditions:

O [(n-2)"<2%
(2) Foreach i < n -3, there exists at most one arrow with the source i;
(e) Eg with the following conditions:

o
1 2 3 4 5

(1) 1<3%|<2 |4*|<land 2¥| <
(2) Foreach y € 37, there exists at least one arrow with the target y;

o
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(f) [E, with the orientation

O 05
1 2 3 4 5 7

(g) the valued quiver
(4.1)

o——>0>
1 2

where there exist precisely 6 pairwise non-isomorphic finitely generated in-
decomposable right (' ‘gz)—modules;
(h) the valued quiver
(r-21)
o—o»

1 2

where p = 50r7 < p < oo and there exist precisely p pairwise non-isomorphic

finitely generated indecomposable right ()} 1]F\’£2)-modules.

Proof
()<= (ii) follows from Theorems 5.7 and 6.1.

(if) == (iii) follows from Proposition 3.3 and [39, Lemma 3.1].

(iii) = (i) Since A is a basic artinian ring with radical square zero, R is a basic hered-
itary artinian ring. Thus, R = R; ®---®R,,, where each R; is an indecomposable basic
hereditary artinian ring. Since R is a right Kothe ring if and only if each R; is a right
Kéthe ring and the valued quiver of R is a disjoint union of the valued quivers of R;,
without loss of generality, we can assume that R is an indecomposable basic heredi-
tary artinian ring. Let the separated quiver (T, d) of A be one of the valued Dynkin
quivers A,, B,, C,, D,, E¢, and E; presented in (iii). Since R is a representation-
finite ring, by Proposition 3.3, the underlying Coxeter valued graph of the Coxeter
valued quiver (%x, m) of R is one of the Coxeter diagrams A, B,,, D,, E¢, and E,
presented in Table B. Hence, by assumption and Theorem 5.7, R is a right Kothe ring.
Now assume that the separated quiver (I}, d) of A is the quiver
(41

o——>0>
1 2

and there exist precisely 6 pairwise non-isomorphic finitely generated indecompos-
able right (g ‘gz)-modules. Then by [39, Corollary 3.5], d¢(; M) is a dimension
sequence and hence by [13, Proposition 2 ], ds(1M3) = (4,1,2,2,2,1). Thus by The-
orem 5.7, R is a right Kéthe ring. If the separated quiver (I}, d) of A is the quiver
presented in (h), by the similar argument we can see that R is a right Kéthe ring.
Therefore by Proposition 6.1, A is a right Kothe ring. [ ]
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