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Maximal Inequalities of Noncommutative
Martingale Transforms

Yong Jiao, Fedor Sukochev, and Dejian Zhou

Abstract. In this paper,we investigate noncommutative symmetric and asymmetricmaximal inequal-
ities associated with martingale transforms and fractional integrals. Our proofs depend on some re-
cent advances on algebraic atomic decomposition and the noncommutative Gundy decomposition.
We also prove several fractional maximal inequalities.

1 Introduction

Let f = ( fn)n≥1 be amartingale on a probability space (Ω,P, (Fn)n≥1 ,F). Burkholder
[5] introduced themartingale transform

(Tξ f )n =
n

∑
k=1

ξk−1( fk − fk−1),

where ξ = (ξn)n≥1, ξn is measurable with respect to Fn for each n, and supn ∥ξn∥∞ <

∞. he following well-known weak typemaximal inequality was proved in [5]:

(1.1) ∥ sup
n≥1

∣(Tξ f )n ∣∥ L1,∞(Ω)
≤ C sup

n≥1
∥ fn∥L1(Ω) .

Nowadays, martingale transforms have been proven to be a very powerful tool not
only in probabilistic situation but also in harmonic analysis (see e.g., [1, 40] and the
references therein).

In this paper, wemainly consider noncommutativemartingale inequalities, more
precisely, we focus on noncommutative maximal inequalities associated with mar-
tingale transforms. he development of the noncommutativemartingale inequalities
began with the establishment of the noncommutative Burkholder–Gundy inequality
(see (2.2) and (2.3)) by Pisier and Xu [34]. Since then, many of the classical results
about martingales have been extended to the noncommutative setting; see, for in-
stance, [2,3,9, 15–19,23,25,32,36,38].

Similar to the classical case, the noncommutative Doobmaximal inequalities play
an important role in the theory of noncommutativemartingales and harmonic analy-
sis. We recall some results. In the sequel, let (M, τ) be a noncommutative probability
space and let En denote the conditional expectation associated with a given weak-∗
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dense ûltration (Mn)n≥1. By constructing special projections (see Lemma 3.1), Cu-
culescu [7] established the following weak type Doob maximal inequality: if x =

(xn)n≥1 ∈ L1(M) is amartingale, then

∥(xn)n≥1∥Λ1,∞(M,ℓ∞) ≤ sup
n

∥xn∥1 ,

where for 0 < p <∞, Λp ,∞(M, ℓ∞) (this notationwas ûrst introduced in [12, p. 997])
is deûned as the space of all sequences (xn)n≥1 in Lp ,∞(M) with quasi-norm

(1.2) ∥(xn)n≥1∥ Λp,∞(M,ℓ∞)
=

sup
λ>0

inf
e∈P(M)

{ λτ(1 − e)
1
p ∶ ∥exne∥∞ ≤ λ,∀n ≥ 1} <∞,

where P(M) stands for the projection lattice in M. he strong type of noncom-
mutative form of Doob maximal inequality is due to Junge [21]: for 1 < p ≤ ∞, if
x ∈ Lp(M), then there exist a, b and wn such that for each n ≥ 1,

(1.3) En(x) = awnb and ∥a∥2p( sup
n

∥wn∥∞)∥b∥2p ≤ Cp∥x∥p .

Our ûrst main objective is to extend (1.1) to a noncommutative setting for gen-
eral noncommutativemartingale transforms T cξ and T r

ξ introduced byHong et al. [14,
p. 1254].

Deûnition 1.1 Let ξ = (ξn)n≥0 ⊂ M be an adapted sequence (for each n ≥ 1, ξn is
measurable with respect to Mn ; for convenience, ξ0 ∈M1) such that supn ∥ξn∥∞ ≤ 1.
he noncommutative martingale transforms T cξ and T r

ξ of a martingale x = (xn)n≥1

are deûned by setting

(T cξ x)n =
n

∑
k=1

ξk−1dkx and (T r
ξ x)n =

n

∑
k=1

(dkx)ξk−1 , n ≥ 1,

where d1x = x1 and dkx = xk − xk−1 is themartingale diòerence for each k ≥ 2.

If in addition ξn−1 commutes with Mn for every n ≥ 1, we denote T cξ and T r
ξ

by Tξ . We always use T cξ x (resp. T r
ξ x) to denote the sequence ((T cξ x)n)n≥1 (resp.

((T r
ξ x)n)n≥1).
Noncommutativemartingale transforms have been studied by several authors. In

[34, Remark 2.4], for 1 < p <∞, the strong type (p, p) inequality of the noncommu-
tative transform Tξ with ξn = ±1 for every n ≥ 1 was deduced from the Burkholder–
Gundy inequality. he result was strengthened by Randrianantoanina (see [36, he-
orem 3.1]) who proved that the martingale transform Tξ with ξn = ±1 for each n ≥ 1
is of weak type (1, 1); that is,

(1.4) sup
n≥1

∥(Tξx)n∥L1,∞ ≤ C sup
n≥1

∥xn∥1 .

In addition, the weak type (1, 1) boundedness of Tξ was given as an application of
noncommutativeGundy’s decomposition by Parcet and Randrianantoanina [31,he-
orem 3.1]. By standard interpolation and dual argument, Tξ is then of strong type
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(p, p) for 1 < p <∞ (see e.g., [?, Remark 3.3.4]); that is,

(1.5) ∥Tξx∥p ≤ Cp∥x∥p , 1 < p <∞.

It should be noted that Λ1,∞(M, ℓ∞) ⊂ L1,∞(M) (see Remark 3.4). Osȩkowski [29]
improved (1.4) (see [29, heorem 1 and Lemma 3]) by showing that there exists a
constant C > 0 such that

(1.6) ∥((Tξx)n) n≥1
∥

Λ1,∞(M,ℓ∞)
≤ C sup

n≥1
∥xn∥1

provided ξn−1 commutes with Mn .

An important tool in the study of noncommutativemartingale transform is the non-
commutative Calderón-Zygmund decomposition developed by Parcet [30]. With the
help of such decomposition, Hong et al. [14, heorem C] obtained a weak type in-
equality for general noncommutative martingale transforms T cξ and T r

ξ : if the ûltra-
tion (Mn)n≥1 is regular (see (2.1)), then there exists a decomposition x = x c + x r such
that

(1.7) sup
n≥1

∥(T cξ x
c)

n
∥

L1,∞(M)
+ sup

n≥1
∥(T r

ξ x
r
)n∥ L1,∞(M)

≤ C sup
n≥1

∥xn∥1 .

Under the assumption that the ûltration (Mn)n≥1 is regular, this inequality substan-
tially extends (1.4). We also refer the reader to [28, 43] for other results about non-
commutativemartingale transforms.

Our ûrst main result improves (1.7) and also (1.6) in the case of the regular ûltra-
tion. he result is read as follows (any unexplained terminologies and symbols can be
found in Section 2).

heorem 1.2 Let M be a semiûnite von Neumann algebra equipped with a normal
faithful normalized trace τ, and (Mn)n≥1 be a regular ûltration. If x = (xn)n≥1 ∈

L1(M, τ), then there exists a decomposition x = x c + x r such that

(1.8) ∥((T cξ x
c
)n) n≥1

∥
Λ1,∞(M,ℓ∞)

+ ∥((T r
ξ x

r
)n) n≥1

∥
Λ1,∞(M,ℓ∞)

≤ C sup
n≥1

∥xn∥1 .

Since the le�-hand side of (1.7) does not exceed the le�-hand side of (1.8) (see Re-
mark 3.4(i)), our result does improve (1.7). he proof depends on the noncommuta-
tiveGundy decomposition introduced by Parcet and Randrianantoanina [31] and the
Doobmaximal inequality (1.3). he proof ofheorem 1.2 is contained in Section 3.

he secondmain objective of this paper is to get asymmetricmaximal inequalities
associated with martingale transforms. Recently, using the algebraic atomic decom-
position introduced in [22],Hong et al. [12] studied various asymmetric Doobmaxi-
mal inequalities (see also [13] for the continuous case). In order to explain their main
results, we recall the following deûnition introduced by Defant and Junge [8, p. 328].
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Deûnition 1.3 Let 1 ≤ p < ∞ and 0 ≤ θ ≤ 1. he space Lp(M, ℓθ∞) consists of all
sequences (xn)n≥1 ⊂ Lp(M) with ûnite

∥(xn)n≥1∥Lp(M,ℓθ∞) = inf {∥a∥ p
1−θ

( sup
n≥1

∥wn∥∞)∥b∥ p
θ
∶ xn = awnb,∀n ≥ 1} ,

where the inûmum is taken over all possible factorizations of (xn)n≥1 in the form
xn = awnb with (a, b) ∈ L p

1−θ
(M) × L p

θ
(M) and (wn)n≥1 uniformly bounded in M.

If θ = 1
2 , then Lp(M, ℓθ∞) is theusual Lp(M, ℓ∞) introduced in [33] and [21,p. 173].

We denote Lp(M, ℓθ∞) by Lp(M, ℓc∞) (resp. Lp(M, ℓr∞)) if θ = 1 (resp. θ = 0). he
ûrst form of asymmetric Doob’s inequality can be found in [21, Corollary 4.6] where
Junge established that if p > 2max{θ , 1 − θ} for 0 ≤ θ ≤ 1, then there is a constant
Cp ,θ such that

(1.9) ∥(xn)n≥1∥Lp(M,ℓθ∞) ≤ Cp ,θ∥x∥p , x ∈ Lp(M).

However, estimate (1.9) fails when p < 2max{θ , 1 − θ} ([8, Example 4.4]). As men-
tioned in [12, p. 997], in the noncommutative setting, “it seems that the inequality

(1.10) ∥(En(x))n≥1∥Lp(M,ℓc∞) ≤ Cp∥x∥Hc
p
, 1 ≤ p ≤ 2

is too good to be true”. As a substitute, Hong et al. [12,heorem A] established weak
type forms of (1.10) and also strong forms a�er arbitrary small perturbations of the
asymmetries. In [12], another substitute was suggested. hat substitute was stated by
using a new version of noncommutative Hardy spaces Hc

pw(M) and Hr
pw(M) (see

Deûnition 2.3) where p and w are scalars such that 1 < p < 2 and w ≥ 2. Using this
instrument, they proved the following estimates.

heorem 1.4 ([12,heorem B]) Let 1 < p < 2. If w > 2, then

∥(En(x))n≥1∥ Lp(M,ℓc∞)
≤ Cp ,w∥x∥Hc

pw
, x ∈Hc

pw(M),

and
∥(En(x))n≥1∥ Lp(M,ℓr∞)

≤ Cp ,w∥x∥Hr
pw
, x ∈Hr

pw(M).

Inspired byheorem1.4,we ûnd that similar results hold true formartingale trans-
forms Tξ . We now state our secondmain result,which extends heorem 1.4 and com-
plements Junge’s asymmetric Doob inequalitiy [21, Corollary 4.6].

heorem 1.5 Let 1 < p < 2, and let ξn−1 commute with Mn for every n ≥ 1 and
supn ∥ξn∥∞ ≤ 1. If w > 2, then

∥((Tξx)n)n≥1∥ Lp(M,ℓc∞)
≤ Cp ,w∥x∥Hc

pw
, x ∈Hc

pw(M)

and
∥((Tξx)n)n≥1∥ Lp(M,ℓr∞)

≤ Cp ,w∥x∥Hr
pw
, x ∈Hr

pw(M).

Finally,we explain the thirdmain objective of this paper. It consists in showing that
in fact the estimates (1.10) holds in the special case when themartingale transform is
given by the noncommutative fractional integral operator Iα (0 < α < 1). Recall that
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the operator Iα (0 < α < 1), a special kind of martingale transform, was studied by
Randrianantoanina andWu [39],where Iα (0 < α < 1) is deûned by setting, for a ûnite
martingale x = (xk)1≤k≤n (for convenience, x0 = 0),

Iαx =
n

∑
k=1

ζαk dkx

for an appropriate scalar sequence (ζk)k≥1 (see Section 2 for details). Now we state
our thirdmain result as follows.

heorem 1.6 Let M be a hyperûnite and ûnite von Neumann algebra. Let 1 ≤ p < 2
and 0 < α < 1

p , and let 1
q =

1
p − α. hen

∥((Iαx)n)n≥1∥ Lq(M,ℓc∞)
≤ Cα ,p∥x∥Hc

p
, x ∈Hc

p(M),

and

∥((Iαx)n)n≥1∥ Lq(M,ℓr∞)
≤ Cα ,p∥x∥Hr

p
, x ∈Hr

p(M).

he paper is organized as follows. In next section, we collect deûnitions, nota-
tion, and lemmas fromnoncommutativemartingale theory. In particular,wewill give
a concrete example of hyperûnite ûnite von Neumann algebra R (hyperûnite factor
II1) with increasing regular ûltration (R)n≥1. We present the proofs of heorems 1.2
and 1.5 in Section 3. Section 4 is devoted to the fractional integrals Iα . More precisely,
heorem 1.6 is proved in Section 4.1, and in Section 4.2 (see heorems 4.3 and 4.4),
we show some new noncommutative maximal inequalities for “fractional Doob op-
erator”.

hroughout the paper, the symbol Cp is a constant that only depends on p and
can vary from line to line; we denote by p′ the conjugate index of p; for two Banach
spaces (X1 , ∥ ⋅ ∥X1) and (X2 , ∥ ⋅ ∥X2), the notation X1 ≃ X2 means that X1 and X2 are
isomorphic.

2 Preliminaries

his sections containsdeûnitions, notation, and technical results that areused through-
out the text.

2.1 Noncommutative Martingales and Spaces

hroughout, let M be a semiûnite von Neumann algebra equipped with a normal
faithful normalized trace τ (τ(1) = 1). Denote by L0(M, τ) the space of τ-measurable
operators. For 0 < p ≤ ∞, let Lp(M, τ) (simply Lp(M)) be the associated noncom-
mutative Lp-space (see [35, p. 1463]). When p =∞, L∞(M) is just M with the usual
operator norm. We refer the reader to [35] for more information about the noncom-
mutative Lebesgue spaces. Let (Mn)n≥1 be an increasing sequence of von Neumann
subalgebras ofM such that ∪n≥1Mn is weak∗-dense in M. Let En be the conditional
expectation (the existence of En is referred to [44, Proposition 2.36]) ofM onto Mn .
A sequence x = (xn)n≥1 in L1(M) is called a noncommutativemartingalewith respect
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to (Mn)n≥1 if
En(xn+1) = xn , ∀n ≥ 1.

If in addition, all the xn ’s are in Lp(M) for some 1 ≤ p ≤ ∞, x is called an Lp-
martingale. In this case, we set

∥x∥p = sup
n≥1

∥xn∥p .

If ∥x∥p < ∞, x is called an Lp-bounded martingale. For 1 < p < ∞, xn converges to
an element x∞ in Lp(M), and xn = En(x∞) for every n ≥ 1 (see [23, p. 961, Remark]
or [?, Proposition 3.1.9]). As usual, we o�en identify amartingale with its ûnal value,
whenever the latter exists.

Recall that (Mn)n≥1 is a regular ûltration if there exists a positive number R0 ≥ 1
such that

(2.1) En(x) ≤ R0En−1(x)

for each positive x. R0 is usually called the regularity constant. hemartingale diòer-
ence sequence (dkx)k≥1 is deûned by (with convenience d1x = x1)

dkx = xk − xk−1 , ∀k ≥ 2.

For every x ∈ L0(M), ∣x∣ = (x∗x)1/2. If x ∈ L0(M) and x = ∫R sdexs is its spectral
decomposition, then for any Borel subset B ⊆ R,we denote by χB(x) the correspond-
ing spectral projection ∫R χB(s)de

x
s , where χB is the characteristic function of B.

he noncommutative weak Lp-space, denoted by Lp ,∞(M), is deûned as the col-
lection of all x ∈ L0(M) for which the quasi-norm (we also refer the reader to [26,
p. 187] for more details)

∥x∥Lp,∞ ∶= sup
λ>0

λτ(χ(λ ,∞)(∣x∣))

is ûnite.
We recall the deûnition of noncommutative martingale Hardy spaces introduced

in [34].

Deûnition 2.1 For 1 ≤ p < ∞, we deûne the Hardy spaceHc
p(M) (resp. Hr

p(M))
as the collection of all martingales x = (xn)n≥1 in Lp(M) with ûnite norm

∥x∥Hc
p
= ∥(

∞

∑
n=1

∣dnx∣2)
1
2
∥

p
( resp. ∥x∥Hr

p
= ∥(

∞

∑
n=1

∣(dnx)∗∣2)
1
2
∥

p
) .

Let (X1 , ∥ ⋅ ∥X1) and (X2 , ∥ ⋅ ∥X2) be twoBanach spaces such that they are embedded
into a Hausdorò topological vector space. Denote by X1 + X2 (resp. X1 ∩ X2) the
space of their sum (resp. intersection) equipped with the usual norm (see [4, p. 25]).
he noncommutative Burkholder–Gundy inequalities can be stated as follows (see
[34,heorem 2.1]):

(2.2) Lp(M) ≃Hc
p +Hr

p =∶Hp , 1 < p < 2

and

(2.3) Lp(M) ≃Hc
p ∩Hr

p =∶Hp , 2 ≤ p <∞.
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We also recall the conditional version ofnoncommutativemartingaleHardy spaces
developed by Junge and Xu in [23].

Deûnition 2.2 For 1 ≤ p < ∞, we deûne the conditional Hardy space hcp(M)

(resp. hr
p(M)) as the collection of all martingales x = (xn)n≥1 in Lp(M) with ûnite

norm

∥x∥hcp = ∥(
∞

∑
n=1

En−1∣dnx∣2)
1
2
∥

p
( resp. ∥x∥hr

p
= ∥(

∞

∑
n=1

En−1∣(dnx)∗∣2)
1
2
∥

p
) .

he algebraic atomic decomposition of the conditional Hardy spaces hcp(M) ≃

hcp2(M)was introduced in [22],where hcp2(M) is the so-called algebraic atomicHardy
space introduced belowwithw = 2. Here, inspired by [12, p. 1008],we suggest the fol-
lowing deûnition of (generalized algebraic) atomicHardy spaces.

Deûnition 2.3 Let 1 ≤ p ≤ 2 and w , s ≥ 2 such that 1/p = 1/w + 1/s. Deûne

hcpw(M) = {x ∈ L0(M, τ) ∶ ∥x∥hcpw <∞} ,

h1c
pw(M) = {x ∈ L0(M, τ) ∶ ∥x∥h1c

pw
<∞} ,

where

∥x∥hcpw = inf
x=∑n anbn

En(an)=0, bn∈Ls(Mn)

∥
∞

∑
n=1
an ⊗ e1,n∥

w
∥
∞

∑
n=1
bn ⊗ en ,1∥

s
,

∥x∥h1c
pw
= inf

x=∑n dn(anbn)

an∈Lw(M), bn∈Ls(M)

∥
∞

∑
n=1
an ⊗ e1,n∥

w
∥
∞

∑
n=1
bn ⊗ en ,1∥

s
.

he analogous families of rowHardy spaces hr
pw and h1r

pw are deûned by taking adjoint
as usual. Given 1 ≤ p < 2 and w ≥ 2, we deûne

Hc
pw(M) = hcpw(M) + h1c

pw(M) and Hr
pw(M) = hr

pw(M) + h1r
pw(M).

From [12, Lemma 3.3], we know that ∥ ⋅ ∥hcpw is a norm if w ≥ 2. Recall that hdp(M)

(1 ≤ p <∞) is the space of all martingales x = (xn)n≥1 ∈ Lp(M) such that the norm

∥x∥hdp
= (

∞

∑
n=1

∥dnx∥
p
p)

1
p

is ûnite. As proved in [22, Remark 5.8], we know that h1c
p2(M) ⊂ hdp(M) for 1 ≤ p < 2.

And we can see from [22,heorems 5.1 and 5.7] that the space h1c
p2(M) plays similar

role as hdp(M).
By [12, Remark 3.2 and heorem 2.1], we have the following algebraic Davis de-

composition.

heorem 2.4 Let 1 ≤ p < 2. We have

hcp(M) ≃ hcp2(M)
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and

Hc
p(M) ≃Hc

p2(M) = hcp2(M) + h1c
p2(M).

Similar results hold for the row spaces.

Remark 2.5 Let 1 ≤ p < 2. hen h1c
p2(M) = h1r

p2(M). By [12, Lemma 3.9], for
1 < p < 2 and w ≥ 2, we have

Hc
pw(M) ⊂Hc

p(M), Hr
pw(M) ⊂Hc

p(M).

Moreover, by [12,heorem Bi], we have

Lp(M) ≃Hc
pw(M) +Hr

pw(M), 1 < p < 2,w ≥ 2.

2.2 Noncommutative Fractional Integrals

In this subsection, we recall fractional integrals for noncommutativemartingales in-
troduced in [39, Section 2]. Assume that M is a hyperûnite and ûnite von Neumann
algebra and the ûltration (Mk)k≥1 consists of ûnite dimensional von Neumann sub-
algebras ofM.

Since dim(Mk) <∞, the Lp(Mk)’s are ûnite dimensional subspaces of Lp(M) for
all 1 ≤ p ≤ ∞. Moreover, for p ≠ q, the two spaces Lp(Mk) and Lq(Mk) coincide
as sets. In particular, the formal identity ιk ∶ L∞(Mk) → L2(Mk) forms a natural
isomorphism between the two spaces.
For k ≥ 1, set

(2.4) ζk ∶= 1/∥ι−1
k ∥

2 .

Clearly, 0 < ζk ≤ 1 for all k ≥ 1 and limk→∞ ζk = 0. Moreover, for every x ∈ L2(Mk),
we have

(2.5) ∥x∥∞ ≤ ζ−1/2
k ∥x∥2 .

Furthermore, one can easily verify that for every x ∈ L1(Mk), (ι−1
k )∗(x) = x ∈

L2(Mk) such that

(2.6) ∥x∥2 ≤ ζ−1/2
k ∥x∥1 .

Our primary example of a hyperûnite and ûnite von Neumann algebra the hyper-
ûnite type II1 factor R and (m(k))∞k=1 ⊂ N such that m(k) ≥ 2 for every k ≥ 1. Set
Mn = ∏

n
k=1 m(k). Denote by Mn the space of n × n complex valued matrices with

usual normalised trace trn satisfying trn(1n) = 1,where 1n is the n×n identitymatrix.
We identify R with the relative inûnite tensor product

(R, τ) =
∞

⊗
k=1

(Mm(k) , trm(k)).

Note that such τ is a faithful normal trace on R. Consider the von Neumann subal-
gebras of R deûned by setting

(Rn , τn) =
n
⊗
k=1

(Mm(k) , trm(k)).
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In fact, we view Rn as a von Neumann subalgebra of Rn+1 (resp. R) via the inclusion

x ∈ Rn z→ x ⊗ 1m(n+1) ∈ Rn+1 ( resp. x ⊗ (
∞

⊗
k=n+1

1m(k)) ∈ R) .

he conditional expectation En ∶ R→ Rn is given by

En = (
n
⊗
k=1

1m(k)) ⊗ (
∞

⊗
k=n+1

trm(k) ) .

hen we can see that the ûltration (Rn)
∞
n=1 is increasing and ⋃n Rn is weak-∗ dense

in R according to the deûnition of inûnite tensor product.
Now the sequence (ζn)∞n=1 with respect to the ûltration (Rn)

∞
n=1 is (M−1

n )∞n=1, that
is,

(2.7) ζn =
1

∏
n
k=1 m(k)

, n ≥ 1.

In particular, ifm(k) = 2 for each k ∈ N, then ζn = 2−n , n ≥ 1. In this case, the ûltration
(Rn)

∞
n=1 is regular (see [45] or [20]), and martingales corresponding to (Rn)

∞
n=1 are

called noncommutative dyadic martingales. By the way, the martingale transform of
noncommutative dyadicmartingales was proved to be strong type (p, p) (1 < p <∞)
by Ferleger and Sukochev [43]. On the other hand, it is also shown in [41, Lemma 3.3]
that (Rn)

∞
n=1 is regular for general (m(k))∞n=1 with supk m(k) < ∞ (the regularity

constan R0 does not exceed (supk m(k) + 1)!).
Now we give the deûnition of fractional integrals.

Deûnition 2.6 ([39, Deûnition 2.1]) Assume that M is a hyperûnite and ûnite von
Neumann algebra. For a given noncommutative martingale x = (xn)n≥1 and 0 <

α < 1, we deûne the fractional integral of order α of x to be the sequence Iαx =

{(Iαx)n}n≥1 where for every n ≥ 1,

(Iαx)n =
n

∑
k=1

ζαk dkx

with the sequence of scalars (ζk)k≥1 from (2.4).

We need several lemmas for the proofs of heorem 1.6 and other results in Sec-
tion 4.

Lemma 2.7 Let 0 < α, α0 < 1. Assume thatM is ahyperûnite andûnite vonNeumann
algebra. If x ∈ L1(Mk), then

ζα0k ∥x∥q ≤ ∥x∥1 , 1 −
1
q
= α0 .

Moreover, if x ∈ Lp(Mk) for 1 < p <∞, then

ζαk ∥x∥q ≤ ∥x∥p ,
1
p
−

1
q
= α.
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Proof he proof is simple. Let x ∈ L1(Mk). By (2.5) and (2.6), we have

ζα0k ∥x∥q = ζα0k τ(∣x∣q)
1
q = ζα0k τ(∣x∣q−1

∣x∣)
1
q

≤ ζα0k ∥x∥
q−1
q
∞ ∥x∥

1
q
1 ≤ ζα0k ζ−α0k ∥x∥1 ,

which ûnishes the proof of ûrst inequality.
Now take x ∈ Lp(Mk). Observing that q > p and using the proved inequality

above, we get

ζαk ∥x∥q = ζαk ∥∣x∣
p
∥
1/p
q/p ≤ ζαk ( ζ

−1+p/q
k ∥∣x∣p∥1)

1/p
= ζαk ζ

−1/p+1/q
k ∥x∥p = ∥x∥p .

he proof is complete. ∎

Lemma 2.8 ([39, heorem 2.9]) Let 1 < p < q < ∞ and α = 1/p − 1/q. Assume
that M is a hyperûnite and ûnite von Neumann algebra. hen there exists a constant
Cα such that for every x ∈ Lp(M),

∥((Iαx)n) n≥1
∥

Lq(M,ℓ1/2∞ )
≤ Cα ,p∥x∥p .

Lemma 2.9 ([39, heorem 2.11]) Let 0 < α < 1. Assume that M is a hyperûnite
and ûnite von Neumann algebra. hen there exists a constant Cα such that for every
x ∈Hc

1 (M),
∥((Iαx)n) n≥1

∥
Hc

1/(1−α)
≤ Cα∥x∥Hc

1
.

3 Martingale Transforms

In this section, we prove our main theorems ofmartingale transforms including he-
orems 1.2 and 1.5. he main tool in the proof of heorem 1.2 is noncommutative
Gundy’s decomposition from [31]. We beginwith the so-called Cuculescu projections
that are now well known in this ûeld.

Lemma 3.1 ([7] or [31, Proposition 1.4]) If x = (xn)n≥1 is a positive L1-bounded
martingale and λ > 0, then there exists a sequence of decreasing projections (q(λ)n )n≥1
in M satisfying the following properties:
(i) for every n ≥ 1, q(λ)n ∈Mn ;
(ii) for every n ≥ 1, q(λ)n commutes with q(λ)n−1xnq

(λ)
n−1;

(iii) for every n ≥ 1, q(λ)n xnq
(λ)
n ≤ λq(λ)n ;

(iv) if we set qλ = ∧∞n=1q
(λ)
n , then τ(1 − q(λ)) ≤ ∥x∥1/λ.

In what follows, for a ûxed λ > 0, we will simply write (qn)n≥1 for the sequence
of Cuculescu’s projections (q(λ)n )n≥1 associated with the martingale x = (xn)n≥1 ∈

L+1 (M) and q for the corresponding qλ . Set pn = qn−1 − qn for n ≥ 1. For λ > 0 and
positivemartingale x = (xn)n≥1 ∈ L1(M), the projections (qn)n≥1 are usually deûned
by induction: q0 = 1,

qn = qn−1 χ[0,λ](qn−1xnqn−1), n ≥ 1.
Observe that it follows immediately from the deûnition that qn ≤ qn−1 for all n > 1.
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We recall the noncommutative Gundy decomposition.

Lemma 3.2 ([31,heorem 2.4]) Let x = (xn)n≥1 ∈ L1(M) be a positive L1-bounded
martingale and let λ > 0. hen there exist four bounded L1-martingales y, z, v, and w
satisfying the following properties:
(i) x = y + z + v +w with

dn y = qndnxqn − En−1(qndnxqn), dnz = qn−1dnxqn−1 − dn y,
dnv = qn−1dnx(1 − qn−1), dnw = (1 − qn−1)dnx ,

where (qn) are the projections associated with x and λ given by Lemma 3.1;
(ii) ∥y∥1 ≤ 8∥x∥1 and ∥y∥2

2 ≤ 6λ∥x∥1;
(iii) ∑n≥1 ∥dnz∥1 ≤ 6∥x∥1;
(iv) max{τ(⋁n supp(dnv)), τ(⋁n supp(dnw))} ≤ λ−1∥x∥1.

Lemma 3.3 Use the same assumption as Lemma 3.2. In addition, if the ûltration
(Mn)n≥1 is regular, then

sup
n≥1

∥dnz∥∞ ≤ (6 + 2R0)λ,

where z and λ are as in Lemma 3.2, R0 is the regularity constantmentioned in Section 2.
Moreover, we have

∥z∥2
2 ≤ 6(6 + 2R0)λ∥x∥1 .

Proof By Lemma 3.2, we have dnz = qn−1dnxqn−1 − dn y. Set
αn = qn−1xnqn−1 − qnxnqn and βn = qn−1xn−1qn−1 − qnxn−1qn .

Noting that
En−1(qnxnqn) = En−1(qnxnqn − qn−1dnxqn−1),

we have
dnz = αn − βn − En−1(αn − βn).

By Lemma 3.1(iii) and regularity, for each n ≥ 1, we obtain
∥dnz∥∞ ≤ 2∥αn − βn∥∞

≤ 4λ + 2∥qn−1xnqn−1∥∞ + 2∥qnxn−1qn∥∞

(2.1)
≤ 4λ + 2R0∥qn−1xn−1qn−1∥∞ + 2∥qnqn−1xn−1qn−1qn∥∞

≤ 6λ + 2R0λ,
where R0 is the regularity constant appearing in (2.1) and the property qn ≤ qn−1 is
used. Finally, by Lemma 3.2(iii),

∥z∥2
2 =

∞

∑
n≥1

∥dnz∥2
2 ≤

∞

∑
n≥1

∥dnz∥∞∥dnz∥1 ≤ 6(6 + 2R0)λ∥x∥1 . ∎

Recall an important property: if the sequence (xn)n≥1 ⊂ Lp(M) is positive, then
we have (see [?, p. 111] or [24, p. 392])
(3.1) ∥(xn)n≥1∥Lp(M,ℓ1/2∞ )

= inf{∥a∥Lp(M) ∶ xn ≤ a,∀n ≥ 1}.

Now we are in a position to proveheorem 1.2.
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Proof of Theorem 1.2 We use Cuculescu projections introduced in Lemma 3.1. For
j ≥ 1 and ûxed k ≥ 1, deûne

π0,k = ⋀
i≥0

q(2
i
)

k and π j ,k =⋀
i≥ j

q(2
i
)

k − ⋀
i≥ j−1

q(2
i
)

k .

Note that ∑ j≥0 π j ,k = 1 in the sense of strong operator topology for every ûxed k ≥ 1
(see [37, Proposition 1.4]). We deduce that for every ûxed k ≥ 1,

dkx =∑
i< j

π i ,k−1dkxπ j ,k−1 +∑
i≥ j

π i ,k−1dkxπ j ,k−1 =∶ ∆ck−1(dkx) + ∆r
k−1(dkx).

It is obvious that (π j ,k) j aremutually orthogonal projections for every ûxed k. hen
the operators ∆ck−1 and ∆

r
k−1 are actually triangular truncations studied in [11]. It fol-

lows from Lemma 3.1(i) that q(2
i
)

k−1 ∈ Mk−1 for every i, and consequently for each j
and k, π j ,k−1 ∈ Mk−1, we know that ∆ck−1(dkx) and ∆r

k−1(dkx) are still martingale
diòerences. Set x = x c + x r with

x c =∑
k≥1
∆ck−1(dkx) and x r

=∑
k≥1
∆r

k−1(dkx).

Fix λ = 2ℓ for some ℓ ∈ Z. By Lemma 3.2, for ûxed λ > 0, we get the Gundy decom-
position x = y + z + v +w . hen

x c =∑
k≥1
∆ck−1(dk y) +∑

k≥1
∆ck−1(dkz) +∑

k≥1
∆ck−1(dkv) +∑

k≥1
∆ck−1(dkw)

=∶ yc + zc + vc +wc .

Taking into the account that the arguments for row and columns are totally similar,
in order to ûnish the proof, we only need to prove that there is a constant K > 0 such
that

∥((T cξ x
c
)n) n≥1

∥
Λ1,∞(M,ℓ∞)

≤ K∥x∥1 .

To this end, according to the deûnition of Λ1,∞(M, ℓ∞) (see (1.2)), it suõces to show
that for every ûxed λ > 0, we have
(I) inf e∈P(M){λτ(1 − e) ∶ ∥eEn(T cξ y

c)e∥∞ ≤ λ, ∀n ≥ 1} ≤ C∥x∥1;
(II) inf e∈P(M){λτ(1 − e) ∶ ∥eEn(T cξ z

c)e∥∞ ≤ λ, ∀n ≥ 1} ≤ C∥x∥1;
(III) inf e∈P(M){λτ(1 − e) ∶ ∥eEn(T cξ v

c)e∥∞ ≤ λ, ∀n ≥ 1} ≤ C∥x∥1;
(IV) inf e∈P(M){λτ(1 − e) ∶ ∥eEn(T cξw

c)e∥∞ ≤ λ, ∀n ≥ 1} ≤ C∥x∥1 .
We ûrst prove (I). he condition supn ∥ξn∥∞ ≤ 1 implies that themartingale trans-

forms T cξ and T r
ξ are both bounded in L2(M). Combining the fact that triangular

truncations are contractive in L2(M) (see [10] or [11]) and Lemma 3.2(ii), we deduce
that

∥T cξ y
c
∥
2
2 ≤ ∥yc∥2

2 =∑
k≥1

∥∆ck−1(dk y)∥2
2 ≤ C∑

k≥1
∥dk y∥2

2

= C∥y∥2
2 ≤ 6Cλ∥x∥1 .

We now decompose T cξ y
c into the combination of four positive elements:

T cξ y
c
= h1 − h2 + ih3 − ih4
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such that
∥h j∥2 ≤ ∥T cξ y

c
∥2 , j ∈ {1, 2, 3, 4}.

Actually, we can take h1 (resp. h3) as the positive part of Re(T cξ y
c) (resp. Im(T cξ y

c)),
and take h2 (resp. h4) as the positive part of Re(T cξ y

c) (resp. Im(T cξ y
c)), where

Re(T cξ y
c
) =

T cξ y
c + (T cξ y

c)∗

2
and Im(T cξ y

c
) =

T cξ y
c − (T cξ y

c)∗

2i
.

By the Doob inequality (1.3), there is a constant C > 0 such that

∥(En(h j)) n≥1
∥

L2(M,ℓ1/2∞ )
≤ C∥h j∥2

for every j ∈ {1, 2, 3, 4}. hen, by (3.1), there exist positive elements a j satisfying that
for every n ≥ 1,

En(h j) ≤ a j , ∥a j∥2 ≤ C∥h j∥2 ≤ C∥T cξ y
c
∥2 .

Set

e j = χ(0, λ4 )(a j) and eλ =
4
⋀
j=1
e j .

hen, for every j ∈ {1, 2, 3, 4},

e jEn(h j)e j ≤ e ja je j = a j χ(0, λ4 )(a j) ≤
λ
4
,

which implies that

∥eλEn(T cξ y
c
)eλ∥∞ ≤

4

∑
j=1

∥e jEn(h j)e j∥∞ ≤ λ.

Now, for the projection eλ , by the Chebyshev inequality, we have

λτ(1 − eλ) ≤
4

∑
j=1

λτ(1 − e j) =
4

∑
j=1

λτ(χ[ λ
4 ,∞)(a j))

≤
4

∑
j=1

16
λ
∥a j∥

2
2 ≤

64C
λ

∥T cξ y
c
∥
2
2 ≤ 384C∥x∥1 .

his ûnishes the proof of (I).
Comparing Lemma 3.3 and Lemma 3.2(ii), we ûnd that the “z-part” plays a sim-

ilar role to that of the “y-part”. hen the proof of (II) can be ûnished by applying
Lemma 3.3 and similar argument used in the proof of (I). his is the only placewhere
wehaveused the regularity assumption (by referring toLemma 3.3) in thewholeproof
of the theorem.

Now we turn to the proofs of (III) and (IV). Set

q̂ =⋀
s≥ℓ
⋀
k≥1

q(2
s
)

k ,
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recalling that ℓ ∈ Z is given by the equality λ = 2ℓ . By Lemma 3.1(iv),

λτ(1 − q̂) ≤ λ∑
s≥ℓ

τ( 1 − ⋀
k≥1

q(2
s
)

k ) ≤ λ∑
s≥ℓ
∑
k≥1

τ(1 − q(2
s
)

k )

≤ λ∑
s≥ℓ

1
2s ∥x∥1 = ∥x∥1 .

hen, by the deûnition of Λ1,∞(M, ℓ∞), it remains to show

∥q̂En(T cξ v
c
)q̂∥∞ ≤ λ, ∀n ≥ 1

and

∥q̂En(T cξw
c
)q̂∥∞ ≤ λ, ∀n ≥ 1.

Actually, we will prove below that En(T cξ v
c)q̂ = 0 and En(T cξw

c)q̂ = 0. Note that

En(T cξ v
c
)q̂ =

n

∑
k=1
∆ck−1(dkv)q̂ =

n

∑
k=1
∆ck−1(dkv)q̂k−1 q̂,

where q̂k−1 = ⋀s≥ℓ q
(2s

)

k−1 ≥ q̂. It suõces to show

(3.2) ∆ck−1(dkv)q̂k−1 = 0 and ∆ck−1(dkw)q̂k−1 = 0.

Note that ⋀s≥i q
(2s

)

k−1 ≥ q̂k−1 for i > ℓ. From the deûnition of π i ,k−1, we have

π i ,k−1 = ⋀
s≥i

q(2
s
)

k−1 − ⋀
s≥i−1

q(2
s
)

k−1 .

Hence,
π i ,k−1 q̂k−1 = q̂k−1π i ,k−1 = 0, for i > ℓ, k ≥ 1,

which further implies

∆ck−1(dkv)q̂k−1 = ∑
i< j≤ℓ

π i ,k−1dkvπ j ,k−1

and
∆ck−1(dkw)q̂k−1 = ∑

i< j≤ℓ
π i ,k−1dkwπ j ,k−1 .

Since dkv = q(2
ℓ
)

k−1 dkx(1 − q(2
ℓ
)

k−1 ) (by Lemma 3.2(i)) and π i ,k−1 ≤ q(2
ℓ
)

k−1 for i ≤ ℓ, it
follows that

∆ck−1(dkv)q̂k−1 = ∑
i< j≤ℓ

π i ,k−1q
(2ℓ)
k−1 dkx(1 − q(2

ℓ
)

k−1 )π j ,k−1 = 0.

Similarly, ∆ck−1(dkw)q̂k−1 = 0. hen (3.2) is proved, and the proof is complete. ∎

Remark 3.4 his remark contains two points.
(i) Our heorem 1.2 improves (1.7). To explain this, it suõces to show the em-

bedding property Λ1,∞(M, ℓ∞) ⊂ L1,∞(M), which implies that the le�-hand side
of (1.8) is greater than the le�-hand side of (1.7). Assume M is acting on a Hilbert
space H. Take a martingale x = (xn)n≥1 ∈ Λ1,∞(M, ℓ∞), n0 ∈ N and λ > 0. Set
en0 = χ[0,λ](∣xn0 ∣). Let e be a projection in M such that e∣xn ∣

2e ≤ λ2 for every n ∈ N.
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We claim that e⊥n0
∧ e = 0 where e⊥n0

= 1 − en0 . Suppose that e⊥n0
∧ e is not zero. hen

e⊥n0
∧ e(H) ≠ {0}. For every nonzero element ξ ∈ e⊥n0

∧ e(H), we have

⟨e⊥n0
∧ e∣xn0 ∣

2e⊥n0
∧ eξ, ξ⟩ = ⟨e⊥n0

∧ e(e⊥n0
∣xn0 ∣

2e⊥n0
)e⊥n0

∧ eξ, ξ⟩

> λ2
⟨e⊥n0

∧ eξ, ξ⟩ = λ2
∥ξ∥2

H .

his is a contradiction to the fact for each n ∈ N, e⊥n0
∧ e∣xn ∣

2ee⊥n0
∧ e = e⊥n0

∧

e(e∣xn ∣
2e)e⊥n0

∧ e ≤ λ2. Hence, e⊥n0
∧ e = 0. hen en0 ∨ e⊥ = 1. By [44, p. 292,

Proposition 1.6], we arrive at

e = en0 ∨ e
⊥
− e⊥ ∼ en0 − en0 ∧ e

⊥
≤ en0 ,

which further implies

sup{ τ(e) ∶ e ∈ P(M), ∥e∣xn ∣
2e∥∞ ≤ λ2 ,∀n ≥ 1} ≤ τ(en0)

and
τ(1 − en0) ≤ inf{τ(1 − e) ∶ e ∈ P(M), ∥e∣xn ∣

2e∥1/2
∞ ≤ λ,∀n ≥ 1}.

Note that ∥exne∥∞ = ∥ex∗n exne∥
1/2
∞ ≤ ∥e∣xn ∣

2e∥1/2
∞ for each n. Hence,

inf{τ(1 − e) ∶ ∥e∣xn ∣
2e∥1/2

∞ ≤ λ,∀n ≥ 1} ≤
inf{τ(1 − e) ∶ ∥exne∥∞ ≤ λ,∀n ≥ 1}.

hus, for every λ > 0, we have

λτ(1 − en0) ≤ inf { λτ(1 − e) ∶ e ∈ P(M), ∥exne∥∞ ≤ λ,∀n ≥ 1} .

Since n0 is arbitrary, the above inequality means ∥x∥L1,∞(M) ≤ ∥x∥Λ1,∞(M,ℓ∞) and

Λ1,∞(M, ℓ∞) ⊂ L1,∞(M).

(ii) For the proof of (II) (“z-part”) in the proof of heorem 1.2, if we want to use
Lemma 3.2(iii), we have to show ∑k≥1 ∥∆ck−1(dkz)∥1 ≤ C∑k≥1 ∥dkz∥1. However, the
triangular truncation∆ck−1 is just ofweak type (1, 1) (see [11]). Here,we have employed
Lemma 3.3 to avoid such diõculty. We still do not know how to prove heorem 1.2
without the condition “(Mn)n≥1 is regular” (see also [14, Remark 4.1]).

Now we show the proof ofheorem 1.5.

Proof of Theorem 1.5 We only prove the result for column space since the row ana-
log can be proved similarly.
By heorem 1.4, ∥((Tξx)n)n≥1∥Lp(M,ℓc∞) ≤ Cp ,w∥Tξx∥Hc

pw
. It suõces to show that

the following inequality holds true for every x ∈Hc
pw ,

∥Tξx∥Hc
pw
≤ C∥x∥Hc

pw
, 1 < p < 2, w > 2.

According to Deûnition 2.3, we have to prove

∥Tξx∥hcpw ≤ C∥x∥hcpw and ∥Tξx∥h1c
pw
≤ C∥x∥h1c

pw
.

235

https://doi.org/10.4153/S0008414X19000580 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000580


Y. Jiao, F. Sukochev and D. Zhou

First, we deal with the le� estimate. Given x ∈ hcpw(M) with 1/p = 1/w + 1/s, there
exists a decomposition x = ∑n anbn satisfying

∥
∞

∑
n=1
an ⊗ e1,n∥

w
∥
∞

∑
n=1
bn ⊗ en ,1∥

s
≤ (1 + δ)∥x∥hcpw ,

where an ∈ Lw(M), En(an) = 0, bn ∈ Ls(Mn) and δ is as small as we wish. Observe
that for every k ≥ 1,

(3.3) dkx = Ek(
k−1

∑
n=1
anbn) − Ek−1(

k−1

∑
n=1
anbn) =

k−1

∑
n=1

(dkan)bn .

hen

Tξx =
∞

∑
k=1

ξk−1dkx =
∞

∑
k=1

ξk−1

k−1

∑
n=1

(dkan)bn =
∞

∑
n=1

(
∞

∑
k=n+1

ξk−1dkan

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ân

)bn .

It follows from (1.5) that ∥ân∥w = ∥Tξan∥w ≤ cw∥an∥w . And it is easy to check that
En(ân) = 0. We have

∥
∞

∑
n=1
ân ⊗ e1,n∥

w

= ∥
∞

∑
n=1

∞

∑
k=n+1

(ξk−1 ⊗ 1)(dkan ⊗ e1,n)∥
w

= ∥
∞

∑
k=1

(ξk−1 ⊗ 1)
k−1

∑
n=1

(dkan ⊗ e1,n)∥
w

= ∥
∞

∑
k=1

(ξk−1 ⊗ 1)[ Êk(
∞

∑
n=1
an ⊗ e1,n) − Êk−1(

∞

∑
n=1
an ⊗ e1,n)]∥

w

= ∥Tξ⊗1(
∞

∑
n=1
an ⊗ e1,n)∥

w
≤ C∥

∞

∑
n=1
an ⊗ e1,n∥

w
,

where Êk = Ek ⊗ idB(ℓ2), ξ ⊗ 1 = (ξk ⊗ 1)k≥1, and the last inequality is due (1.5), since
ξk−1 ⊗ 1 commutes with Mk ⊗ B(ℓ2) for every k. Consequently,

∥Tξx∥hcpw ≤ C∥x∥hcpw .

Now we turn to prove that Tξ is bounded on h1c
pw(M). For x ∈ h1c

pw(M), there
exists a decomposition x = ∑n dn(anbn) satisfying

∥
∞

∑
n=1
an ⊗ e1,n∥

w
∥
∞

∑
n=1
bn ⊗ en ,1∥

s
≤ (1 + δ)∥x∥h1c

pw
,

where an ∈ Lw(M), bn ∈ Ls(M) and δ is small enough. hen

Tξx =
∞

∑
k=1

ξk−1dk(akbk) =
∞

∑
k=1
dk(ξk−1ak

´¹¹¹¹¹¸¹¹¹¹¹¶
ãk

bk).
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Observe that supn ∥ξn∥∞ ≤ 1 and ãk ∈ Lw(M). Notice that ξk−1 commutes with Mk
for each k ≥ 1; then

∥
∞

∑
n=1
ãn ⊗ e1,n∥

w
= ∥(

∞

∑
n=1

ξn−1ana∗n ξ
∗
n−1)

1/2
∥
w
= ∥(

∞

∑
n=1
an ξn−1ξ∗n−1a

∗
k)

1
2
∥
w

≤ ∥(
∞

∑
n=1
ana∗n)

1
2
∥
w
= ∥

∞

∑
n=1
an ⊗ e1,n∥

w
,

which implies that ∥Tξx∥h1c
pw
≤ ∥x∥h1c

pw
. he proof is complete. ∎

4 Fractional Integrals

In this section, we show several results related to fractional integrals in noncommu-
tativemartingale setting. In classical harmonic analysis, fractional integrals (or Riesz
potentials, see e.g., [42]) plays an important role in the proof of Sobelov inequality; see
e.g., [42, p. 124,heorem 2]. In the same spirit, we can naturally expect that the out-
come of this study would be useful in the operator-valued harmonic analysis ([27]).
All results in the section are obtained for hyperûnite and ûnite von Neumann al-

gebras.

4.1 Fractional Integral

In this subsection, we proveheorem 1.6.
Before going further, we recall some results from [21]. he following lemma is

taken from the proof of [21, Proposition 2.8].

Lemma 4.1 For n ≥ 1, letMn be a subalgebra ofM with conditional expectation En .
here exists an isometric rightMn-modulemap un ∶M→Mn ⊗ B(ℓ2) whose image is
the space of columns with entries in Mn satisfying

En(x∗y) = un(x)∗un(y).

In the same paper, Junge also proved the following dual Doob inequality.

Lemma 4.2 ([21, heorem 0.1]) Let 1 ≤ p < ∞ and let (xn)n≥1 be a sequence of
positive elements in Lp(M). hen

∥∑
n≥1

En(xn)∥
p
≤ Cp∥∑

n≥1
xn∥

p
.

Now we are in a position to proveheorem 1.6.

Proof of Theorem 1.6 We only prove the result for column spaces, since the row
analog can be proved similarly.

Case 1: 0 < α < 1/2.
Note that ∥ ⋅ ∥Lq(M,ℓc∞) is a quasi-norm (see [8, heorem 3.2]). According to he-

orem 2.4, we haveHc
p(M) ≃ hcp2(M) + h1c

p2(M). hen it suõces to show

(4.1) ∥((Iαx)n) n≥1
∥

Lq(M,ℓc∞)
≤ Cα ,p∥x∥hcp2
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and

(4.2) ∥( Iαx)n) n≥1
∥

Lq(M,ℓc∞)
≤ Cα ,p∥x∥h1c

p2

We ûrst prove (4.1). Let x ∈ hcp2(M) with 1/p = 1/2 + 1/s. hen there exists a
decomposition x = ∑n anbn satisfying

∥
∞

∑
n=1
an ⊗ e1,n∥

2
∥
∞

∑
n=1
bn ⊗ en ,1∥

s
≤ (1 + δ)∥x∥hcp2 ,

where En(an) = 0, bn ∈ Ls(Mn) and δ > 0 is as small as we wish. By (3.3), for every
N ≥ 1, we have

(Iαx)N =
N

∑
k=1

ζαk dkx =
N

∑
k=1

k−1

∑
n=1

ζαk (dkan)bn =
N

∑
n=1

(
N

∑
k=n+1

ζαk dkan)bn

=
N

∑
n=1

(Iαan)Nbn = (
N

∑
n=1

(Iαan)N ⊗ e1,n)(
∞

∑
n=1
bn ⊗ en ,1) .

Set A1 = ∑
∞
n=1 Iαan⊗ e1,n and B1 = ∑

∞
n=1 bn⊗ en ,1. It is not hard to check that for every

N ≥ 1,
(Iαx)N = ÊN(A1)B1 ,

where ÊN = EN ⊗ idB(ℓ2). In fact, notice that En(an) = 0 for each n ≥ 1, we have

ÊN(A1) =
N

∑
n=1

EN(Iαan)⊗ e1,n +
∞

∑
n=N+1

EN(Iαan)⊗ e1,n

=
N

∑
n=1

(Iαan)N ⊗ e1,n .

For 1
w = 1

2 − α <
1
2 , by applying the L2 − Lw boundedness of the fractional integral Iα

(see Lemma 2.8), we ûnd

∥A1∥w = ∥
∞

∑
n=1

∣(Iαan)
∗
∣
2
∥

1
2

w
2

≤ (
∞

∑
n=1

∥Iαan∥
2
w)

1
2

Lem. 2.8
≤ Cα(

∞

∑
n=1

∥an∥
2
2)

1
2
= Cα∥

∞

∑
n=1
an ⊗ e1,n∥

2
.

Since w > 2, it follows from the Doob inequality (1.3) and (3.1) that there exists η ∈

Lw/2(M⊗ B(ℓ2)) such that

Ên(∣A1∣
2
) ≤ η, ∥η∥w/2 ≤ Cw∥∣A1∣

2
∥w/2 = ∥A1∥

2
w , ∀n ≥ 1.

hen there exist contractions yn ∈M⊗ B(ℓ2) such that

Ên(∣A1∣
2
)
1/2

= ynη1/2 and Ên(∣A1∣
2
) = η1/2 y∗n ynη1/2 .

On the other hand, according to the polar decomposition, there is vrow,A1 ∈M⊗B(ℓ2)
such that

A1 = vrow,A1 ∣A1∣.
Hence, by Lemma 4.1, we get

Ên(A1) = ûn(v∗row,A1
)
∗ûn(∣A1∣),
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where themap ûn is corresponding to the conditional expectation Ên as in Lemma 4.1.
Using Lemma 4.1 again, we have

(4.3) ûn( ∣A1∣)
∗
ûn( ∣A1∣) = Ên( ∣A1∣

2) = η1/2 y∗n ynη1/2 .

Again, applying the polar decomposition twice, we can write

ûn(∣A1∣) = γn ,1∣ ûn( ∣A1∣) ∣ = γn ,1∣ynη1/2
∣ = γn ,1γ∗n ,2 ynη1/2 ,

where the second equality is due to (4.3). We conclude from the above argument that

(Iαx)n = Ên(A1)B1 = ûn(v∗row,A1
)
∗γn ,1γ∗n ,2 ynη1/2B1

= ûn(v∗row,A1
)
∗γn ,1γ∗n ,2 ynη1/2B1∣η1/2B1∣

−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
wn

∣η1/2B1∣.

Since ûn(v∗row,A1
)∗ is a rowmatrix and B1 is a column matrix, it follows that wn ∈M.

We still have to show that ∣η1/2B1∣ ∈ Lq(M). Observe that 1/q = 1/w + 1/s. By the
Hölder inequality, we obtain

∥ ∣η1/2B1∣∥ Lq(M)
= ∥η1/2B1∥Lq(M⊗B(ℓ2)) ≤ ∥η1/2

∥w∥B1∥s ≤ ∥A1∥w∥B1∥s

≤ Cα∥
∞

∑
n=1
an ⊗ e1,n∥

2
∥
∞

∑
n=1
bn ⊗ en ,1∥

s
≤ Cα∥x∥hcp2 .

Now we prove (4.2). Let x ∈ h1c
p2(M) with 1/p = 1/2 + 1/s. From the deûnition, we

can ûnd a decomposition x = ∑n dn(anbn) satisfying

∥
∞

∑
n=1
an ⊗ e1,n∥

2
∥
∞

∑
n=1
bn ⊗ en ,1∥

s
≤ (1 + δ)∥x∥h1c

p2
,

where an ∈ L2(M), bn ∈ Ls(M) and δ > 0 is small enough. A simple calculation gives

(Iαx)n =
n

∑
k=1

ζαk dk(akbk) =
n

∑
k=1

ζαkEk(akbk) −
n

∑
k=1

ζαkEk−1(akbk) =∶ Yn − Zn .

Weonly estimate ∥(Yn)n≥1∥Lq(M,ℓc∞), since ∥(Zn)n≥1∥Lq(M,ℓc∞) canbe similarlyproved.
Deûne the conditional expectation En in B(ℓ2) by setting

En((m j ,k) j ,k≥1) = ((m j ,k)1≤ j ,k≤n) ⊕ (mk ,k)k>n .

hen, from Lemma 4.1, we have

Yn =
n

∑
k=1

uk(ζαk a
∗
k)
∗uk(bk) = (

n

∑
k=1

uk(ζαk a
∗
k)
∗
⊗ e1,k)(

∞

∑
k=1

uk(bk)⊗ ek ,1)

= En(A2)B2 ,

where En = idM⊗ idB(ℓ2)⊗En and A2 = ∑
∞
k=1 uk(ζαk a

∗
k)
∗ ⊗ e1,k . Note that ∣A2∣

2 ∈

Lw/2(M⊗ B(ℓ2)). In fact, using Lemma 2.7, we have

∥A2∥
2
w = ∥

∞

∑
k=1

ζ2α
k Ek(aka∗k)∥w/2

≤
∞

∑
k=1

∥ζ2α
k Ek(aka∗k)∥w/2

≤
∞

∑
k=1

∥aka∗k∥1 = ∥
∞

∑
k=1
ak ⊗ e1,k∥

2

2
.
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Observe that w/2 > 1 for 1
w = 1

2 − α. Similar to the proof of (4.1), we can apply the
Doob inequality (1.3) and (3.1) to get the factorization

En(∣A2∣
2
) = βz∗nznβ, n ≥ 1

satisfying
0 ≤ β ∈ Lw(M⊗ B(ℓ2)), ∥β∥w ≤ Cw/2∥A2∥w , and sup

n≥1
∥zn∥∞ ≤ 1.

On the other hand, combining the polar decomposition and Lemma 4.1, there is a
contraction vrow,A2 such that

En(A2) = En(vrow,A2 ∣A2∣) = ũn(v∗row,A2
)
∗ũn(∣A2∣),

where the operator ũn is corresponding to the conditional expectation En as in
Lemma 4.1. hen

∣ ũn( ∣A2∣) ∣
2
= En(∣A2∣

2
) = ∣znβ∣2 ,

which further implies that there is a contraction ρn ∈M⊗ B(ℓ2) such that ũn(∣A∣) =
ρnznβ. Now we get the factorization

Yn = ũn(v∗row,A2
)
∗ρn ynβB2 = ũn(v∗row,A2

)
∗ρnznβB2∣βB2∣

−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
wn ,2

∣βB2∣.

Since vrow,A2 is a row matrix, by the deûnition of ũn , we know that ũn(v∗row,A2
)∗ is a

row matrix. From this and B2 is column matrix, we know that wn ,2 is aõliated with
M. It is obvious that ∥wn ,2∥∞ ≤ 1 and ∣βB2∣ is also aõliated with M. Hence, the
factorization above is our desired one. Now, to prove ∥(Yn)n≥1∥Lq(M,ℓc∞) ≤ C∥x∥h1c

p2

we only need to show ∥βB2∥q ≤ C∥x∥h1c
p2
. Indeed, by Hölder’s inequality for 1/q =

1/w + 1/s, we have

∥βB2∥q ≤ ∥β∥w∥B2∥s ≤ Cw/2Cs/2∥
∞

∑
n=1
an ⊗ e1,n∥

2
∥
∞

∑
n=1
bn ⊗ en ,1∥

s

≤ (1 + δ)∥x∥h1c
p2
,

where

∥B2∥s = ∥
∞

∑
k=1

Ek ∣bk ∣
2
∥

1/2

s/2
≤ Cs/2∥

∞

∑
k=1

∣bk ∣
2
∥

1/2

s/2
= Cs/2∥

∞

∑
k=1
bk ⊗ ek ,1∥

s

is due to s ≥ 2 and the dual Doob inequality (Lemma 4.2).
Case 2: 1/2 ≤ α < 1/p.

If 1 < p < 2, we know that 1/q = 1/p − α < 1/2 implies q > 2. hen combining (1.9),
Lemma 2.8, and (2.2), we obtain

∥((Iαx)n) n≥1
∥

Lq(M,ℓc∞)

(1.9)
≤ Cq∥Iαx∥q ≤ CqCα∥x∥p ≤ CqCαCp∥x∥Hc

p
.

It remains to consider the case p = 1. In this case, if α = 1/2, then, by Case 1 and
Lemma 2.9, we get

∥((I1/2x)n) n≥1
∥

L2(M,ℓc∞)
= ∥((I1/4I1/4x)n) n≥1

∥
L2(M,ℓc∞)

≤ Cα∥I1/4x∥Hc
4/3

≤ Cα∥x∥Hc
1
.
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If 1/2 < α < 1, then 1/(1−α) > 2, and it follows from (1.9), Lemma 2.8, and Lemma 2.9
that

∥((Iαx)n)n≥1∥L1/(1−α)(M,ℓc∞)

(1.9)
≤ Cα∥Iαx∥L1/(1−α)

= Cα∥Iα−1/2I1/2x∥L1/(1−α) ≤ Cα∥I
1/2x∥L2

= Cα∥I1/2x∥Hc
2
≤ Cα∥x∥Hc

1
.

he proof of the theorem is complete. ∎

4.2 Fractional Doob Maximal Inequalities

We ûnd from [6, p. 36] that, for 1 < p < q < ∞ and classical dyadic martingale
f = ( fn)n≥1, (4.4) holds true with M = L∞[0, 1) and ζn = 2−n

∥( ζαn fn) n≥1
∥

Lq(L∞[0,1),ℓ1/2∞ )
= ∥ sup

n
ζαn ∣ fn ∣∥ Lq(L∞[0,1))

≤ Cα∥ f ∥p , α =
1
p
−

1
q
.

(4.4)

Usually, supn ζ
α
n ∣ fn ∣ is called a fractional Doob maximal function of a martingale

f = ( fn)n≥1. First, with the help of Lemmas 2.8 and 2.9, we extend (4.4) into non-
commutative setting:

heorem 4.3 Let 0 < α < 1. Assume thatM is a hyperûnite and ûnite von Neumann
algebra. If supn≥1

ζn
ζn−1

∶= Cζ < 1, then there exists a constant Cα such that

∥(ζαn xn)n≥1∥ Lq(M,ℓ1/2∞ )
≤ Cα∥x∥p ,(4.5)

x ∈ Lp(M), 1 < p < q <∞, α =
1
p
−

1
q
;

∥(ζαn xn)n≥1∥ L 1
1−α

(M,ℓ1/2∞ )
≤ Cα∥x∥H1 , x ∈H1(M).

Furthermore, combining heorem 4.3 and the Gundy decomposition established
in [31], we get the following weak type fractional maximal inequality.

heorem 4.4 Let 0 < α < 1. Assume thatM is a hyperûnite and ûnite von Neumann
algebra. If x = (xn)n≥1 ∈ L1(M) and supn≥1

ζn
ζn−1

∶= Cζ < 1, then there exists a constant
Cα such that

∥(ζαn xn)n≥1∥Λ 1
1−α ,∞(M,ℓ∞) ≤ Cα sup

n≥1
∥xn∥1 .

We give an example for the special condition supn≥1
ζn
ζn−1

∶= Cζ < 1 used in the
above results.

Remark 4.5 Take (ζn)n≥1 deûned as in (2.4) corresponding to (Rn)n≥1 (usually
called noncommutativeVilenkin ûltration; see (2.7)). We have supk ζk/ζk−1 = supk 1/
m(k) ≤ 1/2, since m(k) ≥ 2 for each k ≥ 1.
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Now we prove heorem 4.3. It is the origin of the subsection, since many results
are based on it.

Proof of Theorem 4.3 Note that for p ≥ 1, Lp(M, ℓ1/2∞ ) is a Banach space (see [24,
p. 392] or [?, Proposition 4.1.3]). For positive x ∈ Lp(M), we have

∥( ζαnEn(x)) n≥1
∥

Lq(M,ℓ1/2∞ )

= ∥(ζαnEn(x) − ζαnEn−1(x) + ζαnEn−1(x)) n≥1
∥

Lq(M,ℓ1/2∞ )

= ∥(En(Iαx) − En−1(Iαx) + ζαnEn−1(x)) n≥1
∥

Lq(M,ℓ1/2∞ )

≤ 2∥(En(Iαx)) n≥1
∥

Lq(M,ℓ1/2∞ )
+ sup

n≥1

ζαn
ζαn−1

∥( ζαn−1En−1(x)) n≥1
∥

Lq(M,ℓ1/2∞ )
,

his and Lemma 2.8 imply

∥(ζαnEn(x))n≥1∥ Lq(M,ℓ1/2∞ )
≤

2
1 − Cαζ

∥(En(Iαx)) n≥1
∥

Lq(M,ℓ1/2∞ )

≤
Cα

1 − Cαζ
∥x∥p .

he inequality (4.5) follows, since every x ∈ Lp(M) can be written into the combina-
tion of four positive elements.
Combining the above argument and Doob’s inequality (1.3), we get

∥(ζαnEn(x))n≥1∥ L 1
1−α

(M,ℓ1/2∞ )
≤

2
1 − Cαζ

∥(En(Iαx)) n≥1
∥

L 1
1−α

(M,ℓ1/2∞ )

≤ C 1
1−α

2
1 − Cαζ

∥Iαx∥ 1
1−α

.

For 0 < α ≤ 1/2, we use Burkholder–Gundy’s inequality (2.2) and Lemma 2.9 to de-
duce

∥Iαx∥ 1
1−α

≤ C 1
1−α

∥Iαx∥H 1
1−α

≤ CαC 1
1−α

∥x∥H1 .

For 1/2 < α < 1, applying Lemmas 2.8 and 2.9, we have

∥Iαx∥ 1
1−α

= ∥Iα−
1
2 I

1
2 x∥ 1

1−α
≤ Cα∥I

1
2 x∥2 ≤ Cα∥x∥H1 .

Conbining these esimates, the second inequality follows and the proof is complete. ∎

To prove the Doob inequality (1.3), Junge [21] ûrst obtained the dual form of the
Doob inequality (Lemma 4.2). In this paper, as an application of this (p, q)-typemax-
imal inequality (4.5), we establish the dual version of (4.5). he following result for
α = 0 is just Lemma 4.2.

Corollary 4.6 Let 1 ≤ p < ∞ and 0 ≤ α < 1
p . Assume that M is a hyperûnite and

ûnite von Neumann algebra. If supn≥1
ζn
ζn−1

∶= Cζ < 1 and (bn) ⊂ Lp(M) is a sequence
of positive elements, then there exists a constant Cα such that

∥∑
n
ζαnEn(bn)∥

q
≤ Cα∥∑

n
bn∥

p
,

1
q
=

1
p
− α.
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Proof he result for α = 0 is just Lemma 4.2. Hence, we only consider 0 < α < 1
p .

he case p = 1 follows from Lemma 2.7. It remains to consider the case 1 < p <∞. By
duality, we have

∥∑
n
ζαnEn(bn)∥

q
= sup

g≥0,∥g∥q′≤1
τ(∑

n
ζαnEn(bn)g)

= sup
g≥0,∥g∥q′≤1

τ(∑
n
bnζαnEn(g)) .

Note that 1/q′−1/p′ = α. According toheorem4.3 and the deûnition of ∥ ⋅ ∥Lp′(M,ℓ1/2∞ )
,

we ûnd suitable a such that

0 ≤ ζαnEn(g) ≤ a, ∀n ≥ 1 and ∥a∥p′ ≤ Cα∥g∥q′ .

hen, by Hölder’s inequality,

∥∑
n
ζαnEn(bn)∥

q
≤ τ(∑

n
bna) ≤ ∥∑

n
bn∥

p
∥a∥p′ ≤ Cα∥∑

n
bn∥

p
,

which ûnishes the proof. ∎

We also ûnd the following fractional version of the Stein inequality ([34,heorem
2.3]). WeuseCorollary 4.6 toprove it. his isnew even in the commutativemartingale
setting.

Proposition 4.7 LetM be a hyperûnite and ûnite von Neumann algebra. Let 0 ≤ α <
1/p with 1 < p <∞, and let 1/q = 1/p − α. If supn≥1

ζn
ζn−1

∶= Cζ < 1 and (bn) ⊂ Lp(M),
then

(4.6) ∥(∑
n

∣ζαnEn(bn)∣
2
)

1
2
∥

q
≤ Cα∥(∑

n
∣bn ∣

2
)

1
2
∥

p
.

Proof Since for α = 0, (4.6) is just [34,heorem 2.3], we only consider 0 < α < 1/p.
If 2 ≤ p < ∞, by the property En(a)∗En(a) ≤ En(∣a∣2) for a ∈ Ls(M) (s ≥ 2) and
Corollary 4.6, we have

∥(∑
n

∣ζαnEn(bn)∣
2
)

1
2
∥

q
= ∥

∞

∑
n=1

∣En(bn)∣
2ζ2α

n ∥

1
2

q/2

≤ ∥
∞

∑
n=1

En(∣bn ∣
2
)ζ2α

n ∥

1
2

q/2

≤ C2α∥
∞

∑
n=1

∣bn ∣
2
∥

1
2

p/2
= C2α∥(∑

n
∣bn ∣

2
)

1
2
∥

p
.

Now, it suõces to consider the case 1 < p < 2. For 1 < q ≤ 2, by the duality
(Lr(M, ℓc2))∗ = Lr′(M, ℓc2) (see [34]) and the proven result of the case 2 ≤ p <∞, we
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then have

∥(∑
n

∣ζαnEn(bn)∣
2
)

1
2
∥

q
= sup{ ∣τ(∑

n
ζαnEn(bn)g∗n) ∣ ∶ ∥(∑

n
∣gn ∣

2
)

1
2
∥

q′
≤ 1}

= sup{ ∣τ(∑
n
bnζαnEn(g∗n)) ∣ ∶ ∥(∑

n
∣gn ∣

2
)

1
2
∥

q′
≤ 1}

≤ ∥(∑
n

∣bn ∣
2
)

1
2
∥

p
∥(∑

n
∣ζαnEn(gn)∣

2
)

1
2
)∥

p′

≤ Cα∥(∑
n

∣bn ∣
2
)

1
2
∥

p
,

where the last “≤” is due to (4.6) (note that 1/q′ − 1/p′ = α and q′ ≥ 2). If 2 < q <∞,
then take 0 < α1 < 1 and 0 < α2 < 1 such that α = α1 + α2,

1
2
−

1
q
= α1 and

1
p
−

1
2
= α2 .

Applying (4.6) for p = 2, we arrive at

∥(∑
n

∣ζαnEn(bn)∣
2
)

1
2
∥

q
≤ Cα1∥(∑

n
∣ζα2n En(bn)∣

2
)

1
2
∥

2

≤ Cα1Cα2∥(∑
n

∣bn ∣
2
)

1
2
∥

p
,

where we have used (4.6) again with 1 < p < 2 and q = 2 to get the last “≤”. he proof
is complete. ∎

Since ∥ ⋅ ∥Λ1/1−α ,∞(M,ℓ∞) is a quasi-norm,we cannot apply the idea used in the proof
ofheorem 4.3 to prove the weak type inequality in heorem 4.4. We apply Gundy’s
decomposition to overcome this problem.

Observe that

∥x∥H1 ≤ ∥(
∞

∑
k=1

∣dkx∣2)
1/2

∥
1
≤

∞

∑
k=1

∥∣dkx∣2∥
1/2
1/2 =

∞

∑
k=1

∥dkx∥1 = ∥x∥hd1
.

Combining this andheorem 4.3, we get the result below.

Lemma 4.8 Let 0 < α < 1. Assume that M is a hyperûnite and ûnite von Neumann
algebra. If supn≥1

ζn
ζn−1

∶= C1 < 1, then there exists a constant Cα such that

∥(ζαn xn)n≥1∥L 1
1−α

(M,ℓ1/2∞ )
≤ Cα∥x∥hd1

, x ∈ hd1 (M).(4.7)

Nowwe are ready to proveheorem 4.4. he idea of the proof is similar to the one
ofheorem 1.2. We need to do more calculations, so we still give the proof.

Proof of Theorem 4.4 By linearity and homogeneity,we can assumewithout loss of
generality that ∥x∥1 = 1. Set λ = s

1
1−α for every ûxed s > 0. Applying Lemma 3.2, for

λ > 0, we get the Gundy decomposition

x = y + z + v +w .
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By the quasi-triangle inequality of Λ 1
1−α ,∞

(M, ℓ∞), it suõces to show

∥(ζαn yn)n≥1∥Λ 1
1−α ,∞(M,ℓ∞) ≤ Cα∥x∥1 ,(4.8)

∥(ζαn zn)n≥1∥Λ 1
1−α ,∞(M,ℓ∞) ≤ Cα∥x∥1 ,(4.9)

and
∥(ζαn (v +w)n)n≥1∥Λ 1

1−α ,∞(M,ℓ∞) ≤ Cα∥x∥1 .(4.10)

To show (4.8), take 1 < p < min{2, 1
α } and 1/q = 1/p − α. Similar to the proof of

heorem 1.2, we decompose y into the combination of four positive elements
y = h1 − h2 + ih3 − ih4

such that
∥h j∥p ≤ ∥y∥p , j ∈ {1, 2, 3, 4}.

By Lemma 2.7, we know that ∥ζαnEn(h j)∥q ≤ ∥En(h j)∥p ≤ ∥h j∥p for every n ≥ 1 and
j. Applying heorem 4.3 and the deûnition of Lq(M, ℓ1/2∞ ), for every j ∈ {1, 2, 3, 4},
there exist positive elements a j satisfying for every n ≥ 1,

ζαnEn(h j) ≤ a j , ∥a j∥q ≤ Cα∥h j∥p ≤ Cα∥y∥p .
Set

e j = χ(0, s4 )(a j) and es =
4
⋀
j=1
e j .

hen, for each j,

e jζαnEn(h j)e j ≤ e ja je j ≤
s
4
,

which implies that

∥esζαnEn(y)es∥∞ ≤
4

∑
j=1

∥e jζαnEn(h j)e j∥∞ ≤ s.

Note that ∥y∥1 ≤ 8 and ∥y∥2
2 ≤ 6λ (by Lemma 3.2(ii)) where λ = s

1
1−α . he Chebyshev

inequality gives

sτ(1 − es)1−α
≤

4

∑
j=1

sτ(1 − e j)1−α
=

4

∑
j=1

sτ(χ( s
4 ,∞)(a j))

1−α

≤
4

∑
j=1

4qs1−q(1−α)
∥a j∥

q(1−α)
q

≤ Cq(1−α)
α 4q+1s1−q(1−α)

∥y∥q(1−α)
p .

Since 1 < p < min{2, 1
α }, it follows from theHölder inequality that

∥y∥q(1−α)
p = τ(∣y∣2−p

∣y∣2p−2
)

q(1−α)
p

≤ (∥∣y∣2−p
∥ 1

2−p
∥∣y∣2p−2

∥ 1
p−1

)

q(1−α)
p

≤ 8
(2−p)q(1−α)

p 6
(p−1)q(1−α)

p λ
(p−1)q(1−α)

p ,
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which, together with the deûnition of λ = s
1

1−α , further implies

sτ(1 − es)1−α
≤ Cq(1−α)

α 4q+18
(2−p)q(1−α)

p 6
(p−1)q(1−α)

p .

According to the deûnition of Λ 1
1−α ,∞

(M, ℓ∞), these ûnish the proof of (4.8).
It follows from (4.7) and Lemma 3.2(iii) that

∥(ζαn zn)n≥1∥Λ 1
1−α ,∞(M,ℓ∞) ≤ ∥(ζαn zn)n≥1∥L 1

1−α
(M,ℓ1/2∞ )

≤ Cα∥z∥hd1
≤ 6Cα∥x∥1 ,

where the ûrst inequality is due to the deûnitions of those two spaces. his is just
(4.9). Now we turn to show (4.10). Set

e0 = 1 − ( ⋁
n
supp(dnv)) ∨ ( ⋁

n
supp(dnw)) .

hen it is easy to check that
e0(v +w)e0 = 0.

Note that λ = s
1

1−α . By the deûnition of Λ 1
1−α ,∞

(M, ℓ∞) and Lemma 3.2(iv), we have

∥(ζαn (v +w)n)n≥1∥Λ 1
1−α ,∞(M,ℓ∞) ≤ sup

s>0
sτ(1 − e0)1−α

≤ sup
s>0

s( τ( ⋁
n
supp(dnv)) + τ( ⋁

n
supp(dnv)))

1−α

≤ sup
s>0

s(2λ−1
)
1−α

= 21−α .

he proof is complete. ∎
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