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Maximal Inequalities of Noncommutative
Martingale Transforms

Yong Jiao, Fedor Sukochev, and Dejian Zhou

Abstract. In this paper, we investigate noncommutative symmetric and asymmetric maximal inequal-
ities associated with martingale transforms and fractional integrals. Our proofs depend on some re-
cent advances on algebraic atomic decomposition and the noncommutative Gundy decomposition.
We also prove several fractional maximal inequalities.

1 Introduction

Let f = (fu) n>1 be a martingale on a probability space (Q, P, (F,) y>1, F). Burkholder
[5] introduced the martingale transform

(Tef)n = kz”: &1 (fi = frm1)>

where & = (&) 21, £, is measurable with respect to F, for each n, and sup,, | £, ] <
oco. The following well-known weak type maximal inequality was proved in [5]:

(LD | sup (Tef)alll}, _ ) < Csup | fullzicay-
nx1 ? nx1

Nowadays, martingale transforms have been proven to be a very powerful tool not
only in probabilistic situation but also in harmonic analysis (see e.g., [1,40] and the
references therein).

In this paper, we mainly consider noncommutative martingale inequalities, more
precisely, we focus on noncommutative maximal inequalities associated with mar-
tingale transforms. The development of the noncommutative martingale inequalities
began with the establishment of the noncommutative Burkholder-Gundy inequality
(see (2.2) and (2.3)) by Pisier and Xu [34]. Since then, many of the classical results
about martingales have been extended to the noncommutative setting; see, for in-
stance, [2,3,9,15-19,23,25,32,36,38].

Similar to the classical case, the noncommutative Doob maximal inequalities play
an important role in the theory of noncommutative martingales and harmonic analy-
sis. We recall some results. In the sequel, let (M, 7) be a noncommutative probability
space and let £, denote the conditional expectation associated with a given weak-x
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dense filtration (M,,),»1. By constructing special projections (see Lemma 3.1), Cu-
culescu [7] established the following weak type Doob maximal inequality: if x =
(x4 )nx1 € L1(M) is a martingale, then

[(xn)ns1l Ay (v 60 < SUP X015
n

where for 0 < p < 00, Ap oo (M, €oo ) (this notation was first introduced in [12, p. 997])
is defined as the space of all sequences (X, )ys1 in Lp, o0 (M) with quasi-norm

12 |Gy orieny =

sup inf {Ar(1-e)7 : exnelleo <A, Vn2>1} < o0,
wp inf {Ar(1-0)F ¢ fexe] }

where P(M) stands for the projection lattice in M. The strong type of noncom-
mutative form of Doob maximal inequality is due to Junge [21]: for 1 < p < oo, if
x € L,(M), then there exist a, b and w,, such that for each n > 1,

(1.3) Ex(x)=aw,b and |afzp( sup [wule ) [B]2p < Cpllx|,-

Our first main objective is to extend (1.1) to a noncommutative setting for gen-
eral noncommutative martingale transforms Ty and T introduced by Hong et al. [14,
p. 1254].

Definition 1.1  Let & = (&,),50 € M be an adapted sequence (for each n > 1, &, is
measurable with respect to M,,; for convenience, &, € M;) such that sup,, | £, ] < 1.
The noncommutative martingale transforms Tg and Tg of a martingale x = (x,) 1
are defined by setting

n

(Tgx)n = Z Sradix and  (Tix), = Z(dkx)fk_l, n>l,
k=1 k=1

where dix = x; and dyx = x — x,_; is the martingale difference for each k > 2.

If in addition &,_; commutes with M, for every n > 1, we denote Tg and Tg
by T;. We always use Tyx (resp. Tjx) to denote the sequence ((T¢x),)n21 (resp.
((Tgx)n)nzl)-

Noncommutative martingale transforms have been studied by several authors. In
[34, Remark 2.4], for 1 < p < oo, the strong type (p, p) inequality of the noncommu-
tative transform T; with &, = £1 for every n > 1 was deduced from the Burkholder-
Gundy inequality. The result was strengthened by Randrianantoanina (see [36, The-
orem 3.1]) who proved that the martingale transform Ty with £, = +1 for each n > 1
is of weak type (1,1); that is,

(14) sup [ (Tex)nll 1. < Csup [xa]s.
n>1 n>1
In addition, the weak type (1,1) boundedness of Tr was given as an application of

noncommutative Gundy’s decomposition by Parcet and Randrianantoanina [31, The-
orem 3.1]. By standard interpolation and dual argument, T is then of strong type
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(p,p) forl< p < oo (see e.g., [?, Remark 3.3.4]); that is,
(15) I Tex|p < Cpllxflp, 1< p<oo.

It should be noted that Aj e (M, €eo) € Li,00 (M) (see Remark 3.4). Osekowski [29]
improved (1.4) (see [29, Theorem 1 and Lemma 3]) by showing that there exists a
constant C > 0 such that

(1'6) “ ((fo)”) nle Atoo (M, €00) < Csup ”xn Hl
’ n>1

provided &,,_; commutes with M,,.

An important tool in the study of noncommutative martingale transform is the non-
commutative Calderén-Zygmund decomposition developed by Parcet [30]. With the
help of such decomposition, Hong et al. [14, Theorem C] obtained a weak type in-
equality for general noncommutative martingale transforms Ty and T;: if the filtra-
tion (M,,) 451 is regular (see (2.1)), then there exists a decomposition x = x° +x" such
that

W7 sup[(TEx) [ ey +5up (T8l o) < Csup e
nx1 ? nx1 > nx1

Under the assumption that the filtration (M, ),5; is regular, this inequality substan-
tially extends (1.4). We also refer the reader to [28, 43] for other results about non-
commutative martingale transforms.

Our first main result improves (1.7) and also (1.6) in the case of the regular filtra-
tion. The result is read as follows (any unexplained terminologies and symbols can be
found in Section 2).

Theorem 1.2  Let M be a semifinite von Neumann algebra equipped with a normal
faithful normalized trace T, and (M) 51 be a regular filtration. If x = (x4)n>1 €
L1(M, 1), then there exists a decomposition x = x¢ + x" such that

W@8) [ ((Texn) ol a, _avecey

+| ((Tfrxr)")na” A (M) S Csup [xu -
’ nx1

Since the left-hand side of (1.7) does not exceed the left-hand side of (1.8) (see Re-
mark 3.4(i)), our result does improve (1.7). The proof depends on the noncommuta-
tive Gundy decomposition introduced by Parcet and Randrianantoanina [31] and the
Doob maximal inequality (1.3). The proof of Theorem 1.2 is contained in Section 3.

The second main objective of this paper is to get asymmetric maximal inequalities
associated with martingale transforms. Recently, using the algebraic atomic decom-
position introduced in [22], Hong et al. [12] studied various asymmetric Doob maxi-
mal inequalities (see also [13] for the continuous case). In order to explain their main
results, we recall the following definition introduced by Defant and Junge [8, p. 328].
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Definition 1.3 Let1< p < oo and 0 < 6 < 1. The space L,(M, €%,) consists of all
sequences (X )n>1 C Ly (M) with finite

|Gty ey = inf { lal 2, (‘sup [waleo) [B] g : %0 = awab, vn 21},
n>1

where the infimum is taken over all possible factorizations of (x,),s1 in the form
Xn = aw,b with (a,b) € L (M) x Ly (M) and (w, ) 451 uniformly bounded in M.

If6 = 3, then L, (M, ¢9) istheusual L, (M, €0 ) introduced in [33] and [21, p. 173].
We denote L, (M, €2,) by L,(M, €5,) (resp. L,(M, €%,)) if 6 = 1 (resp. 6 = 0). The
first form of asymmetric Doob’s inequality can be found in [21, Corollary 4.6] where
Junge established that if p > 2max{6,1 - 0} for 0 < 6 < 1, then there is a constant
Cp,0 such that

(1.9) [ (xn)nzlnL},(M,ego) <Cpolx)p xeLp(M).

However, estimate (1.9) fails when p < 2max{0,1- 6} ([8, Example 4.4]). As men-
tioned in [12, p. 997], in the noncommutative setting, “it seems that the inequality

(110) [(€a () mstliyreeey < Collogg, 1< p<2

is too good to be true”. As a substitute, Hong et al. [12, Theorem A] established weak
type forms of (1.10) and also strong forms after arbitrary small perturbations of the
asymmetries. In [12], another substitute was suggested. That substitute was stated by
using a new version of noncommutative Hardy spaces 3(;,,, (M) and 3}, (M) (see
Definition 2.3) where p and w are scalars such that 1 < p < 2 and w > 2. Using this
instrument, they proved the following estimates.

Theorem 1.4 ([12, Theorem B]) Let1< p <2. Ifw > 2, then
[Entnstl, rgeey < Comllocs, x €905, (M),

and
[En il ey < Conllocy, x €90, ().

Inspired by Theorem 1.4, we find that similar results hold true for martingale trans-
forms T;. We now state our second main result, which extends Theorem 1.4 and com-
plements Junge’s asymmetric Doob inequalitiy [21, Corollary 4.6].

Theorem 1.5 Letl < p < 2, and let &,_y commute with M,, for every n > 1 and
sup,, [&allee <1 Ifw > 2, then
[Tyl gy < Cooelielocy, x € 365, (M)
and
| (Te)n)nel gy < Comlxlog,s x € 3, (M)
Finally, we explain the third main objective of this paper. It consists in showing that

in fact the estimates (1.10) holds in the special case when the martingale transform is
given by the noncommutative fractional integral operator I* (0 < a < 1). Recall that
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the operator I* (0 < a < 1), a special kind of martingale transform, was studied by
Randrianantoanina and Wu [39], where I* (0 < « < 1) is defined by setting, for a finite
martingale x = (x¢ )1<k<n (for convenience, xg = 0),

n
I*x = Z (rdix
k=1
for an appropriate scalar sequence ({x)»1 (see Section 2 for details). Now we state
our third main result as follows.

Theorem 1.6  Let M be a hyperfinite and finite von Neumann algebra. Let 1< p < 2
and 0 < a < %,andleté :%—a. Then

[ )z vy € Caplllocg  x € FHGOD),
and

| (1)) s | Loney < Cap Ixllge,  x € H(M).

The paper is organized as follows. In next section, we collect definitions, nota-
tion, and lemmas from noncommutative martingale theory. In particular, we will give
a concrete example of hyperfinite finite von Neumann algebra R (hyperfinite factor
I1;) with increasing regular filtration (R),;. We present the proofs of Theorems 1.2
and 1.5 in Section 3. Section 4 is devoted to the fractional integrals I*. More precisely,
Theorem 1.6 is proved in Section 4.1, and in Section 4.2 (see Theorems 4.3 and 4.4),
we show some new noncommutative maximal inequalities for “fractional Doob op-
erator”.

Throughout the paper, the symbol C,, is a constant that only depends on p and
can vary from line to line; we denote by p’ the conjugate index of p; for two Banach
spaces (X1, |- |x,) and (X2, | - | x,), the notation X; ~ X, means that X; and X, are
isomorphic.

2 Preliminaries

This sections contains definitions, notation, and technical results that are used through-
out the text.

2.1 Noncommutative Martingales and Spaces

Throughout, let M be a semifinite von Neumann algebra equipped with a normal
faithful normalized trace 7 ((1) = 1). Denote by Ly (M, 7) the space of 7-measurable
operators. For 0 < p < oo, let L,(M, 1) (simply L,(M)) be the associated noncom-
mutative L,-space (see [35, p. 1463]). When p = oo, Lo, (M) is just M with the usual
operator norm. We refer the reader to [35] for more information about the noncom-
mutative Lebesgue spaces. Let (M, ) ,»1 be an increasing sequence of von Neumann
subalgebras of M such that U, M, is weak*-dense in M. Let €, be the conditional
expectation (the existence of &, is referred to [44, Proposition 2.36]) of M onto M,,.
A sequence x = (xy,)y>1 in L1 (M) is called a noncommutative martingale with respect
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to (Mn)nzl if
En(Xns1) = x0, Vn>1.

If in addition, all the x,’s are in L,(M) for some 1 < p < oo, x is called an L,-
martingale. In this case, we set

Ixlp = sup | xull -
n>1

If |x||, < oo, x is called an L,-bounded martingale. For 1 < p < oo, x,, converges to
an element xo, in L,(M), and x,, = €, (xc ) for every n > 1 (see [23, p. 961, Remark]
or [, Proposition 3.1.9]). As usual, we often identify a martingale with its final value,
whenever the latter exists.

Recall that (M,,) 51 is a regular filtration if there exists a positive number Ry > 1
such that

(21) En(x) < ROE,,_I(x)

for each positive x. Ry is usually called the regularity constant. The martingale differ-
ence sequence (dgx )k is defined by (with convenience dyx = x;)

dix = Xk — Xk_1» Vk > 2.

For every x € Lo(M), x| = (x*x)"2. If x € Lo(M) and x = [, sde? is its spectral
decomposition, then for any Borel subset B ¢ R, we denote by y5(x) the correspond-
ing spectral projection [ x5(s)dey, where yp is the characteristic function of B.

The noncommutative weak L,-space, denoted by L, o (M), is defined as the col-
lection of all x € Ly(M) for which the quasi-norm (we also refer the reader to [26,
p. 187] for more details)

%[z = sup AT(X(1,00) (1x))

is finite.
We recall the definition of noncommutative martingale Hardy spaces introduced
in [34].

Definition 2.1 For1< p < oo, we define the Hardy space 3}, (M) (resp. 3}, (M))
as the collection of all martingales x = (x,)»1 in L, (M) with finite norm

Jxlog, = | ( i'd"ﬂz)i”p (resp- Ixls, =) ( fjl|(dﬂx)*|2)i p)_

Let (X3, | - ||x,) and (X2, | - | x, ) be two Banach spaces such that they are embedded
into a Hausdorff topological vector space. Denote by X; + X, (resp. X; n X;) the
space of their sum (resp. intersection) equipped with the usual norm (see [4, p. 25]).
The noncommutative Burkholder-Gundy inequalities can be stated as follows (see
[34, Theorem 2.1]):

(2.2) Ly(M) 2, + 3}, =3, 1<p<2
and
(2.3) Ly(M) =3, n 3, =3, 2<p<oo.
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We also recall the conditional version of noncommutative martingale Hardy spaces
developed by Junge and Xu in [23].

Definition 2.2 For 1 < p < oo, we define the conditional Hardy space hj, (M)
(resp. h,(M)) as the collection of all martingales x = (x),»1 in L,(M) with finite

norm
p) '

oo 1
¢ g = H( 3 8,,,1|d,1x|2)
n=1
The algebraic atomic decomposition of the conditional Hardy spaces hj, (M) =~
hy,, (M) was introduced in [22], where hj,, (M) is the so-called algebraic atomic Hardy
space introduced below with w = 2. Here, inspired by [12, p. 1008], we suggest the fol-
lowing definition of (generalized algebraic) atomic Hardy spaces.

, (resp. %0y = H( §8n1|(d,,x)*|2)5

Definition 2.3 Let1< p <2andw,s > 2 such that1l/p =1/w +1/s. Define
R (M) = {x € Lo(M, 7) = [|x[lne, < o0},
R, (M) = {x € Ly(M, ) : ol < o},

where

>
N

‘ s

The analogous families of row Hardy spaces hj,, and h},’w are defined by taking adjoint
as usual. Given1< p <2 and w > 2, we define

350, (M) = i, (NO) + B, (M) and 36, (VD) = B, (D) + I, (VD).

x=%, anbu
€(an)=0, byeL (M,)

oo [ee]
| hs, = inf H Y a,® ey, WH D bu®ens
n=1 n=1

oo

x = inf H ap ®e

[ Hh}:w ¥=3, dy(anby) ,,Z:I ne
an€Ly (M), bpeL (M)

oo
H Z bn ® e,,,l
W=l

From [12, Lemma 3.3], we know that | - ¢ isanorm if w > 2. Recall that hg(M)
(1< p < 00) is the space of all martingales x = (x,)s>1 € L,(M) such that the norm

oo 1
P
belug = (2 1ol
n=

is finite. As proved in [22, Remark 5.8], we know that h;‘z(M) c hg (M) forl1< p<2.
And we can see from [22, Theorems 5.1 and 5.7] that the space h};z (M) plays similar

role as hg(M).
By [12, Remark 3.2 and Theorem 2.1], we have the following algebraic Davis de-
composition.

Theorem 2.4 Let1< p <2. Wehave
Ry (M) = hyp (M)
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and
HH (M) = Hip (M) = By (M) + By ().

Similar results hold for the row spaces.

Remark 2.5 Letl < p < 2. Then h};z(M) = h};z(M). By [12, Lemma 3.9], for
1< p<2andw > 2, we have

J—C;W(M) c ﬂ{;(M), fH;W(M) c J{;(M).
Moreover, by [12, Theorem Bi], we have

Lp(M) = 3, (M) + 3, (M), 1<p<2,w>2.
2.2 Noncommutative Fractional Integrals

In this subsection, we recall fractional integrals for noncommutative martingales in-
troduced in [39, Section 2]. Assume that M is a hyperfinite and finite von Neumann
algebra and the filtration (M )k»1 consists of finite dimensional von Neumann sub-
algebras of M.

Since dim (M) < oo, the L, (M})’s are finite dimensional subspaces of L, (M) for
all1 < p < co. Moreover, for p # g, the two spaces L,(My) and Lq(Mj) coincide
as sets. In particular, the formal identity ix: Loo (My) — Ly(My) forms a natural
isomorphism between the two spaces.

For k > 1, set
(2.4) G =1/
Clearly, 0 < {} < 1forall k > 1and lim_, o, {4 = 0. Moreover, for every x € L,(My),
we have
25) Jxllee < G el

Furthermore, one can easily verify that for every x € Li(My), (17)*(x) = x €
L, (M) such that

(2.6) Ix]2 < G,

Our primary example of a hyperfinite and finite von Neumann algebra the hyper-
finite type II; factor R and (m(k));2, ¢ N such that m(k) > 2 for every k > 1. Set
M, = [1;.; m(k). Denote by M,, the space of n x n complex valued matrices with
usual normalised trace tr, satisfying tr, (1,) = 1, where 1,, is the n x n identity matrix.
We identify R with the relative infinite tensor product

(R, 1) = @M (ks trm(k))-
k=1

]

Note that such 7 is a faithful normal trace on R. Consider the von Neumann subal-
gebras of R defined by setting

(:Rna Tn) = ®(Mm(k)’trm(k))-
k=1
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In fact, we view R,, as a von Neumann subalgebra of R,,.; (resp. R) via the inclusion
XeR, — x® L) €R resp. x ® (§ 1, eR).
(n+1) n+l ( p ( W (k)) )
The conditional expectation &,: R — R, is given by
En = ( ]§11m(k)) ® ( k§+1trm(k) )

Then we can see that the filtration (R, )52, is increasing and U,, R,, is weak-* dense
in R according to the definition of infinite tensor product.

Now the sequence ({,,)52, with respect to the filtration (R, )52, is (M), that
is,
27) (o= m21

' b Meam(k)

In particular, if m(k) = 2foreach k € N, then {,, = 27", n > 1. In this case, the filtration
(Ry)52, is regular (see [45] or [20]), and martingales corresponding to (R, )52, are
called noncommutative dyadic martingales. By the way, the martingale transform of
noncommutative dyadic martingales was proved to be strong type (p, p) (1< p < o0)
by Ferleger and Sukochev [43]. On the other hand, it is also shown in [4], Lemma 3.3]
that (R, )52, is regular for general (m(k));2, with sup, m(k) < oo (the regularity
constan Ry does not exceed (sup; m(k) +1)!).

Now we give the definition of fractional integrals.

Definition 2.6 ([39, Definition 2.1]) Assume that M is a hyperfinite and finite von
Neumann algebra. For a given noncommutative martingale x = (x,)n» and 0 <

a < 1, we define the fractional integral of order « of x to be the sequence I*x =
{(I*x), } ns1 where for every n > 1,

(I"x), = Z (hdix
k=1

with the sequence of scalars (i )x»; from (2.4).

We need several lemmas for the proofs of Theorem 1.6 and other results in Sec-
tion 4.

Lemma 2.7 Let0 < a, oy < 1. Assume that M is a hyperfinite and finite von Neumann
algebra. If x € L;y(My), then

1
G lxllg < flxfl 1= == ao.
9
Moreover, if x € L,(Mjy) for 1 < p < oo, then

1 1
Glxllg <lixlp  —===a
q p P q
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Proof The proofis simple. Let x € L;(My). By (2.5) and (2.6), we have

G xllg = Gl o = GEoa(lcl e
<G’ <2 217 < G G el
which finishes the proof of first inequality.
Now take x € L,(My). Observing that ¢ > p and using the proved inequality
above, we get
o 1/p
Gllxly = CENIPIYE < Ge( G P P 1) ™7 = Geg P xl p = L.
The proof is complete. ]

Lemma 2.8 ([39, Theorem 2.9]) Letl < p < g < oo and a = 1/p —1/q. Assume
that M is a hyperfinite and finite von Neumann algebra. Then there exists a constant
Cq such that for every x € L,(M),

| (1*%)n) sl 1 ac.ey < Canlxl

Lemma 2.9 ([39, Theorem 2.11]) Let 0 < a < 1. Assume that M is a hyperfinite
and finite von Neumann algebra. Then there exists a constant C, such that for every
x € H{(M),
(4
(002) ol < Colels

3 Martingale Transforms

In this section, we prove our main theorems of martingale transforms including The-
orems 1.2 and 1.5. The main tool in the proof of Theorem 1.2 is noncommutative
Gundy’s decomposition from [31]. We begin with the so-called Cuculescu projections
that are now well known in this field.

Lemma 3.1 ([7] or [31, Proposition 1.4]) If x = (x,)ns1 is a positive L-bounded
martingale and A > 0, then there exists a sequence of decreasing projections (qy) s
in M satisfying the following properties:

(i) foreveryn>1, qy) € My;

1) (OON

commutes with qn 1ann v

(iii) foreveryn >1, qg,’\)x q(’\) < Aq(l)

(iv) ifwesetg" = A% 1qn ), then 7(1-gM) < ||x|1 /A

(ii) foreveryn >1, q,

In what follows, for a ﬁxed A > 0, we will simply write (g, )n>1 for the sequence
of Cuculescu’s projections (qn Yus1 assoc1ated with the martingale x = (x,)ns1 €
L} (M) and g for the corresponding q*. Set p, = g,_1 — g, for n > 1. For A > 0 and
positive martingale x = (x,) n>1 € L1 (M), the projections (g, ) n>1 are usually defined
by induction: go =1,

qn = CIn—IX[O,}L](Qn—lann—l)a n>1
Observe that it follows immediately from the definition that g, < g,_; forall n > L.

https://doi.org/10.4153/50008414X19000580 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X19000580

Noncommutative Maximal Inequalities 231
We recall the noncommutative Gundy decomposition.

Lemma 3.2 ([31, Theorem 2.4]) Let x = (x,)ns1 € L1(M) be a positive L-bounded
martingale and let A > 0. Then there exist four bounded L,-martingales y, z, v, and w
satisfying the following properties:

(i) x=y+z+v+wwith

dny = qndnxqn = En-1(qndnxqn),  dnz = qu1duXqn-r = dny,
dnv = qu1dnx (1= gn-1), duw = (1= gn-1)dnx,
where (q,) are the projections associated with x and A given by Lemma 3.1;
(i) [yls<8lx]and [y]3 < 6A]x]s;
(ii)) X1 |duzl < 6] x[1;
(iv) max{z(V, supp(d,v)), t(V, supp(d,w))} < A7 x|

Lemma 3.3  Use the same assumption as Lemma 3.2. In addition, if the filtration
(M) w51 is regular, then
sup |dnz]e < (6 +2Rp)A,

nx1
where z and A are as in Lemma 3.2, Ry is the regularity constant mentioned in Section 2.
Moreover, we have
2
|z]3 < 6(6 +2Ro)A|x]s.

Proof By Lemma 3.2, we have d,z = qn_1d,xqu-1 — d,y. Set

On = qna1Xnqn-1 = GnXnqn and By = gu1Xn-19n-1 = gnXn-1qn-

Noting that

€n-10gn%nqn) = En-1(qnXnqn = qn-14nXqn-1),
we have

dnz=ay = Bn—En1(n = Pu)-
By Lemma 3.1(iii) and regularity, for each n > 1, we obtain
ldnzlloo < 2]lan = Bulloo
<4+ Zan—lann—lHoo + Zuqnxn—lqn Hoo

(2.1
< 4/\ + 2RO an—lxn—IQn—l Hoe + 2”%%4%4%4% Hoe

<6A+ ZR()A,

where Ry is the regularity constant appearing in (2.1) and the property g, < g,; is
used. Finally, by Lemma 3.2(iii),

213 = 3 [dnzl3 < 3 |dnzlo |dnzli < 6(6 + 2Ro)A[ 1. C
n>1 n>1

Recall an important property: if the sequence (x,)n>1 € L,(M) is positive, then
we have (see [?, p. 111] or [24, p. 392])

(3.1) H(x”)"ﬂHLP(M,eLQZ) =inf{[alL, o) Xn <@, Vn 21}

Now we are in a position to prove Theorem 1.2.
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Proof of Theorem 1.2 'We use Cuculescu projections introduced in Lemma 3.1. For
j>1and fixed k > 1, define

2 2 2!

/\q() and ”]k—/\q() /\q( )_

i20 i>j i>j—1
Note that 3 ;.o 7 x = 1 in the sense of strong operator topology for every fixed k > 1
(see [37, Proposition 1.4]). We deduce that for every fixed k > 1,

dix =Y Wi gadix oy + ) Mo dix o = Af_ (diex) + ALy (dix).
i<j i>j

It is obvious that (7; ;) j are mutually orthogonal projections for every fixed k. Then
the operators A _; and A} _; are actually triangular truncations studied in [11]. It fol-
lows from Lemma 3.1(i) that g k | € My_, for every i, and consequently for each j
and k, 7 x_; € M_;, we know that Af_,(dix) and A} _, (dix) are still martingale
differences. Set x = x¢ + x” with

x“ =Y Ap(dex) and x" =) AL (dix).

k>1 k>1

Fix A = 2¢ for some ¢ € Z. By Lemma 3.2, for fixed A > 0, we get the Gundy decom-
position x = y + z + v + w. Then

=30 A (diy) + 30 Ay (diz) + 30 Ay (div) + 37 Ay (diw)
k>1 k>1 k>1 k>1
=y + 25 +vo W
Taking into the account that the arguments for row and columns are totally similar,

in order to finish the proof, we only need to prove that there is a constant K > 0 such
that

[(CTEx)n) sl a ey < Kl
To this end, according to the definition of A; o, (M, €5 ) (see (1.2)), it suffices to show
that for every fixed A > 0, we have
) infoepo0 (Ar(1-€) £ [e€u(TEy Vel <A, Yn21) < Clxls
D) infeepony{Ar(l-e): [e€u(Tiz)e[oo <A Vn 21} < Clix|s;
D) infeeprry {Ar(1-e) : [e€n(T{v )efoo <A, Vn 21} < Cllx|s
V) infeepory{AT(1-e): [e€u(Tiw)e[w <A, Vn 21} < Clx|r.
We first prove (I). The condition sup,, | €, | < 1implies that the martingale trans-
forms T; and T are both bounded in L,(M). Combining the fact that triangular

truncations are contractive in L, (M) (see [10] or [11]) and Lemma 3.2(ii), we deduce
that

ITE (3 < 1y°15 = X 18k (dey) I3 < €30 iyl
k>1 k>1

= Clylz < 6CA|x]s.

We now decompose T y“ into the combination of four positive elements:

TC}/C = hl - h2 + lh3 - lh4
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such that
Ihjll2 < Teylas je{l,2,3,4}

Actually, we can take h (resp. h3) as the positive part of Re( Ty y“) (resp. Im(T; y°)),
and take h; (resp. h) as the positive part of Re( Ty y“) (resp. Im( £7)); where

TC C+ TC C\* TC c _ TC C\*
194 ( 5}’) and Im(Tgyc): 14 ( g}’) .

R TCC:
«(Tey) 2 2i

By the Doob inequality (1.3), there is a constant C > 0 such that

” (En(hf)) n21|| LOV,ef2) S Clhjl.

for every j € {1,2,3,4}. Then, by (3.1), there exist positive elements a j satisfying that
for every n > 1,

En(hj) <aj,  ajf2 < Clhjl2 < C|Tgy .
Set
4
eJ = X(O)%)(aj) and e = /\1 ej_
j=

Then, for every j € {1,2,3,4},

~

ei€n(hj)ej <ejajej=ajx, A)(a]) < T

which implies that
4
lexén(Tey el < Z lej€n(hj)ejloo < A.
Now, for the projection e), by the Chebyshev inequality, we have

Mr(l-ey) < Z)Lr 1-¢j) = ZAT(X[A o) ()))

j=1
416 64C . .

Z;\ ajl3 < — I1Tey |3 <384C] x|
j=1

This finishes the proof of (I).

Comparing Lemma 3.3 and Lemma 3.2(ii), we find that the “z-part” plays a sim-
ilar role to that of the “y-part”. Then the proof of (II) can be finished by applying
Lemma 3.3 and similar argument used in the proof of (I). This is the only place where
we have used the regularity assumption (by referring to Lemma 3.3) in the whole proof
of the theorem.

Now we turn to the proofs of (III) and (IV). Set

>0 k>1

https://doi.org/10.4153/50008414X19000580 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X19000580

234 Y. Jiao, F. Sukochev and D. Zhou

recalling that € € Z is given by the equality A = 2¢. By Lemma 3.1(iv),

M- ANt (1— A q(z)) AN S e(1-4%))

s>t 520 k>1
< AZ *Hxlll = %]

Then, by the definition of Ay . (M, €« ), it remains to show
[7En(Tev)ql o < A, Vi1
and
1€ (TEw )]0 < A, Vn>1.
Actually, we will prove below that €, (T;v*)g = 0 and £, (T;w)q = 0. Note that

En(Tev )T = 3 Ay (div)T = ) Ak 1 (div) T,

k=1 k=1
where Gi_1 = Asse q,(( 1) > q. It suffices to show
(3.2) Ak_l(dkv)ﬁk_l =0 and Ai—](dkw)a\k—l =0.

Note that A, ; qiz_sl) > G- for i > £. From the definition of 7; _;, we have
ﬂlkl_/\q(Z) Aq(Z)
s>i
Hence,
ﬂi’k_lz]\k_l = a\k—lni,k—l =0, fori > ¢, k> 1,
which further implies
Ay (div) G = Z i k1K VTTj k1
i<j<e
and
A ((dew) Qa1 = Y. ik dewmj ko
i<j<e
Since dv = qk 1dkx(l - qk | ) (by Lemma 3.2(i)) and 7; 1 < q](cz_fl) fori < ¢, it
follows that
e e
A ()i = Y mikaaqg ) dix(1= )i = 0.
i<j<e

Similarly, Aj_, (dxw)qk-1 = 0. Then (3.2) is proved, and the proof is complete. ]

Remark 3.4 This remark contains two points.

(i) Our Theorem 1.2 improves (1.7). To explain this, it suffices to show the em-
bedding property Aj oo (M, o) C Li,00(M), which implies that the left-hand side
of (1.8) is greater than the left-hand side of (1.7). Assume M is acting on a Hilbert
space H. Take a martingale x = (x,)ns1 € Apoo(M, %), 1o € Nand A > 0. Set
eny = X[0,1](|%n,|)- Let e be a projection in M such that e|x,|*e < A* for every n € N.
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We claim that e; A e = 0 where e;;, =1~ e,,. Suppose that e, A e is not zero. Then

e;, A e(H) # {0}. For every nonzero element ¢ € e;; A e(H), we have

(€, A e|xno|ze:0 ne& E) = (ep A e(ei0|xn0|zetn)e,ﬁo Aeé&, &)
> A ey, ne&, &) = 1) €]

This is a contradiction to the fact for each n € N, e; A e|x,|’ee; Ae = en A

no
e(elx,*e)es, A e < A% Hence, es Ae = 0. Then e,, v e' = 1. By [44, p. 292,

Proposition 1.6], we arrive at ’
e=ep Ve —et~e, —en Aet< e,
which further implies
sup{7(e):eeP(M), elxs|’e|c <A*, YV >1} < 1(ep,)
and
T(1-e,,) <inf{7(1-e) : e € P(M), |e|xq|?e| Y2 < A,Vn >1}.

Note that ||ex, e[ e =[x exneHl,{,2 < He|xn|ze\|i2 for each n. Hence,

inf{z(1-e): |elx,|?e| L2 <A, Vn>1} <
inf{r(1-e): |expe|o <A, Vn21}.
Thus, for every A > 0, we have
AM(1-ey,) <inf{Ar(1-e):e e P(M), [expefo <A, Vn 21},
Since ny is arbitrary, the above inequality means ||x |, _ n) < [%]a, . (v, e..) and
Aloo(M, €e0) € Li,0o (M).

(ii) For the proof of (II) (“z-part”) in the proof of Theorem 1.2, if we want to use
Lemma 3.2(iii), we have to show Y, [|AS_; (dk2)[1 € C Xy |diz[1. However, the
triangular truncation Ay _, is just of weak type (1,1) (see [11]). Here, we have employed
Lemma 3.3 to avoid such difficulty. We still do not know how to prove Theorem 1.2
without the condition “(M,, ) ,»; is regular” (see also [14, Remark 4.1]).

Now we show the proof of Theorem 1.5.

Proof of Theorem 1.5 We only prove the result for column space since the row ana-
log can be proved similarly.

By Theorem 1.4, | ((Tex)n )21z, (n,ec) € Cpow || Tex|ac, - It suffices to show that
the following inequality holds true for every x € H7,,

|‘Tng{}-(;,WSCHng-(;w, 1<p<2, w > 2.
According to Definition 2.3, we have to prove

| Tex

b, <Clxlng, and [ Texlye < Clixlye -
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First, we deal with the left estimate. Given x € hj,, (M) with 1/p = 1/w +1/s, there
exists a decomposition x = }°,, a, b, satisfying

oo oo
H Z a, ® ey, ‘ Z b,®e,
n=1 n=1

where a, € L,,(M), €,(a,) =0, b, € L(M,,) and ¢ is as small as we wish. Observe
that for every k > 1,

| <@+ 8)]xls,
N

w ‘

k-1 k-1 k-1
(3.3) dix = Ex( Y anbn) = a3 anba) = Y (dian)bn.
n=1 n=1 n=1
Then
oo oo k-1 oo oo
Tex = Z r1dix = Z &k Z(dkan)bn = Z ( Z Sk-1dian ) b
k=1 k=1 n=1 n=1 " k=n+1

an

It follows from (1.5) that |@,|w = | Teau|w < cwllan|w. And it is easy to check that
&.(a,) = 0. We have

| Y e
n=1 w
= H > 2 (@) (dian ®er,n) ’
n=1k=n+1 w

‘ w

IS 0B Samo an) B Smoan)]],

= H T£®1( Z a, ® el,,,) HW < CH Z a, ® ey,
n=1 n=1

y i(gk_l o1) "z:(dkan & e1)

)
w

where € = &; ® idg(e,)> £ ® 1= (& ®1)>1, and the last inequality is due (1.5), since
&k-1 ® 1 commutes with My ® B(£) for every k. Consequently,

| Texls,, < Clxng, -

Now we turn to prove that T; is bounded on h};w(M). For x ¢ h};W(M), there
exists a decomposition x = ., d,, (a,b,) satisfying

o0 oo
H Z a, ® ey, H Z b,®e,
n=1 Wi =1

where a, € L,,(M), b, € L;(M) and § is small enough. Then

<
DI

Tex = Y Eadi(aby) = Y di(Eray by).
k=1 k=1 ":f—’
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Observe that sup,, | €, <1and @ € L,,(M). Notice that &,_; commutes with M
for each k > 1; then

o0
| > @e
n=1

2=

w o H ( rifn_la,,a;f:_l)l/zuw = H( gangnqu_ﬂlt)

oo % oo
*
J(Zaa)], - [Zaeen
n=1 w n=1

which implies that | Tex |, < [ x|, . The proof is complete. ]
pw pw

>
w

4 Fractional Integrals

In this section, we show several results related to fractional integrals in noncommu-
tative martingale setting. In classical harmonic analysis, fractional integrals (or Riesz
potentials, see e.g., [42]) plays an important role in the proof of Sobelov inequality; see
e.g., [42, p. 124, Theorem 2]. In the same spirit, we can naturally expect that the out-
come of this study would be useful in the operator-valued harmonic analysis ([27]).

All results in the section are obtained for hyperfinite and finite von Neumann al-
gebras.

4.1 Fractional Integral

In this subsection, we prove Theorem 1.6.
Before going further, we recall some results from [21]. The following lemma is
taken from the proof of [21, Proposition 2.8].

Lemma 4.1 Forn >1, let M, be a subalgebra of M with conditional expectation &,,.
There exists an isometric right M,,-module map u, : M -~ M,, ® B(¢,) whose image is
the space of columns with entries in M, satisfying

En(x"y) = un(x) un(y).
In the same paper, Junge also proved the following dual Doob inequality.

Lemma 4.2 ([21, Theorem 0.1]) Let1 < p < oo and let (x,),s1 be a sequence of
positive elements in L,(M). Then

DRACH

IR
p n>1 p

Now we are in a position to prove Theorem 1.6.

Proof of Theorem 1.6 We only prove the result for column spaces, since the row
analog can be proved similarly.

Casel: 0 < a <1/2.
Note that | - |, (,ec.) is @ quasi-norm (see [8, Theorem 3.2]). According to The-

orem 2.4, we have J(;, (M) = h, (M) + h};z(M). Then it suffices to show

(4.1) ” ( (I"‘x)n) nle Lg(M,ec,) : C“’p”x

h;z
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and

(4.2) H (Iax)”) nle LyMee) < Caplx]

We first prove (4.1). Let x € hy,(M) with 1/p = 1/2 + 1/s. Then there exists a
decomposition x = 3, a,b, satisfying

oo oo
H Z a, ® ey, 2H Z b,®e,
n=1 n=1

where €,(a,) =0, b, € Ly(M,,) and § > 0 is as small as we wish. By (3.3), for every
N > 1, we have

1c
hy,

| <+0)lx

h;z’

N k-1 N
() = 3 (= 5 3 ((dican) o - 2( Y Cidean )by
k=1 k=1n=1 =l k=n+1

I
iM= 1
—~
~

*an)nbn = ( é(l“an)N ® el,,,)( ni::lbn ® en,l).

SetA; =Y, [%a,®e ,and By = Yoo b, ® e, 1. Itis not hard to check that for every
N>1,

(I*x)y = En(A1)By,

where Ey = €y ® idp(e,)- In fact, notice that €, (a,) = 0 for each n > 1, we have

EN(Al) ZE'N(I a,,)®eln+ Z EN(I a,,)®el,,

n=1 n=N+1
N
= Z(I“an)N ® ey,n-
n=1
For - = 1 — a < 1, by applying the L, — L,, boundedness of the fractional integral I*
(see Lemma 2. 8) we find
1 oo 1
2 2
[l = | z (an) P L < (X 1raal?)
2 n=1
Lem 2. 8 ad

(znannz) = Ca| anm e,

Since w > 2, it follows from the Doob inequality (1.3) and (3.1) that there exists 7 €
Ly 2(M ® B(¢£,)) such that

En(lAP) < Nl < Coll APz = ALl ¥R
Then there exist contractions y,, € M ® B(¢,) such that
En(|A) = yun? and  E,(JAIP) = 7y yun'?.

On the other hand, according to the polar decomposition, there is vyou,4, € M®B(€;)
such that

A= Vrow,A1|A1|-

Hence, by Lemma 4.1, we get

8 (Al) (VrowAl) ﬁn |A1|)’
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where the map @, is corresponding to the conditional expectation €, as in Lemma 4.1.
Using Lemma 4.1 again, we have

(43) @A) Ta(lAi]) = Ea(1A?) = 0" y5yn'
Again, applying the polar decomposition twice, we can write
U (|Ai]) = Yn,1|i‘\n( ‘Al‘) | = Yualyn ’71/2| = Yn,l)’;,zyn ’71/2>
where the second equality is due to (4.3). We conclude from the above argument that
(1) = €u(AD)B1 = T (Viow,a,) Vua Y2yl By
= Tu(Vrow,a,) YV 2yutl 2 Biln P B[ ' By.

Wn
Since U, (v}, 4,)" is a row matrix and By is a column matrix, it follows that w,, € M.

We still have to show that [/2B,| € L,(M). Observe that 1/q = 1/w + 1/s. By the
Holder inequality, we obtain

[72Bill , ney = 11" BillL, oonienyy < 112 1wlBills < LA [Bil

oo (oo}
Z a, ® ey, 2H Z b, ®ey,,

Now we prove (4.2). Let x € h1 , (M) with 1/p = 1/2 + 1/s. From the definition, we
can find a decomposition x = Y, d (anb,) satisfying

(o] (o]
” Z a, ® ey, 2H Z b,®e,
n=1 n=1

where a, € L,(M), b, € L;(M) and § > 0 is small enough. A simple calculation gives

< Cqy

‘ < C“HX h
S

<
[, <+ )l

(I%)n = Y CRdi(arbi) = Y Gir(arbi) = Y. (i €xar(akby) =2 Y, — Zy.
k=1 k=1 P

Weonly estimate || (Y, ) nx1] 1, (v, c_ ) Since [ (Zy ) nz1| 1, (v ey can be similarly proved.
Define the conditional expectation E,, in B(¢,) by setting

En((mjs)jkst) = ((mjk)ijken) ® (Mii)isn
Then, from Lemma 4.1, we have

Y, = zn: up(Ceag) ur(by) = ( z”: ur(Cear)” ® el,k) ( i ur(by) ® ek,l)
k=1 k=1 k=1
= En(AZ)Bb

where E, = idy ®idp(e,) ®E, and Ay = Y32, u({fa;)* ® ey . Note that [A,]* €
Ly,/2(M ® B(£,)). In fact, using Lemma 2.7, we have

sl = | X2 G entarad)| . < 214 Exlarai) luya
k=1 k=1

oo oo
< Z lakag|: = H Zak ® el’kHz'
k=1 k=1
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Observe that w/2 > 1 for % = 1 — a. Similar to the proof of (4.1), we can apply the

Doob inequality (1.3) and (3.1) to get the factorization
E,(|A2]*) = Bziz,B, n>1
satisfying
0<pely(M®B(£2)), |[Blw<CyplAzlw, and sup lznlloo <1.

On the other hand, combining the polar decomposition and Lemma 4.1, there is a
contraction vyow, 4, such that

E, (AZ) =E, (Vrow,Az |A2|) = Uy (Vrow,Az )*an (|A2|)’
where the operator 7, is corresponding to the conditional expectation E, as in
Lemma 4.1. Then .
|7 (42])]” = En(|4a]) = 2B,
which further implies that there is a contraction p, € M ® B(¢,) such that @, (|A|) =
pnzn 3. Now we get the factorization

Vo = o (Vo) Pr3uBBa = T (Viown,) Pz BBal BB BB

Wn,2

*

Since vrow, 4, is a row matrix, by the definition of #,, we know that , (v}, 4,)" is a

row matrix. From this and B, is column matrix, we know that w,, , is affiliated with

M. It is obvious that |w, 2] < 1and |BB,| is also affiliated with M. Hence, the

factorization above is our desired one. Now, to prove [[ (Y, )ns1/z,(aec.) < Clx /e

% o

we only need to show [|$B;[|; < C|lx], . Indeed, by Hélder’s inequality for 1/g =
P2

1/w +1/s, we have

S

18B2ly < 1B1w1B2 ], < CuaCopa| 3 an @ e,
n=1

<1+ 0)xles

[eo)
H Z bn ® €eu,1
2
n=1

where
oo 1/2 oo 1/
IBale = | S bl < o X0

is due to s > 2 and the dual Doob inequality (Lemma 4.2).

Case2:1/2 <o <1/p.
If1< p <2, we know that1/q = 1/p — a < 1/2 implies q > 2. Then combining (1.9),
Lemma 2.8, and (2.2), we obtain

2 (o<}
= CS/ZH Y bk ® ek,lH
2 =1 s

(1.9)
H((I{xx)n),,ﬂ” Ly(M,e2.) < CylIxflg < CoCallxllp < CqCanHx”%;-

It remains to consider the case p = 1. In this case, if @ = 1/2, then, by Case 1 and
Lemma 2.9, we get

H ( (Il/z'x)”) n>1 H Ly(M,e¢,) = ” ( (11/411/4x)n) nZlH Ly(M,e<,)

< Cal 4x5¢s,, < Callxllogs
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If1/2 < a <1, then1/(1- ) > 2, and it follows from (1.9), Lemma 2.8, and Lemma 2.9

that
o (2 o
H ((I 'x)”)ﬂZIHLV(]_a)(M,e;) < C(X HI x”Ll/(lﬂx)
= Cal 21 |1y < Cal T,
= Coll1?x 3¢5 < Calxa:.
The proof of the theorem is complete. ]

4.2 Fractional Doob Maximal Inequalities

We find from [6, p. 36] that, for 1 < p < g < oo and classical dyadic martingale
f = (fa)ns1, (4.4) holds true with M = Lo,[0,1) and {,, = 27"

N (075 T PR P12 RN
1 1

< Cy , =——-—.
Ifllps e ? 4

Usually, sup,, {|fu| is called a fractional Doob maximal function of a martingale
f = (fu)ns1- First, with the help of Lemmas 2.8 and 2.9, we extend (4.4) into non-
commutative setting:

Theorem 4.3 Let 0 < a < 1. Assume that M is a hyperfinite and finite von Neumann
algebra. If sup,,, % := C¢ <1, then there exists a constant C, such that

(45) H (ngn)nzln Lq(M,fL/oz) < C“ Hx”P’
1 1
x€L,(M), l<p<g<oo, a==-—;
’ P 4
| (¢ ) s | L, onet S C Ixfl3c,  x € T (M).

Furthermore, combining Theorem 4.3 and the Gundy decomposition established
in [31], we get the following weak type fractional maximal inequality.

Theorem 4.4 Let 0 < a < 1. Assume that M is a hyperfinite and finite von Neumann
algebra. If x = (Xn)n>1 € Li(M) and sup,., % i= C¢ <1, then there exists a constant
C, such that

[(Caxn)natla o _veew) < Casup |xnlh-
1-a’ nx1
We give an example for the special condition sup,,, & := C¢ < 1used in the
above results.

Remark 4.5 Take ({,)n> defined as in (2.4) corresponding to (R, ) s (usually
called noncommutative Vilenkin filtration; see (2.7)). We have sup,. {i/{x_1 = sup, 1/
m(k) <1/2, since m(k) > 2 for each k > 1.
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Now we prove Theorem 4.3. It is the origin of the subsection, since many results
are based on it.

Proof of Theorem 4.3 Note that for p > 1, L,(M, 8},{,2) is a Banach space (see [24,
p. 392] or [?, Proposition 4.1.3]). For positive x € L,(M), we have

| (GEn()) ol 1, e,y
= (€8 () = G () + CiEna () ey
= || (EnlI%x) = € (I*%) + (€0 (x)) nle Ly(M.eL)

@ Ca
<2 (1) 1l Lyl TSP E“ (Gt (@) ] Ly(OM.eL)

This and Lemma 2.8 imply
(44 2 o
| @enCD)na]l g 2y < o [(&ar) il oy
Ca
gl

The inequality (4.5) follows, since every x € L,(M) can be written into the combina-
tion of four positive elements.
Combining the above argument and Doob’s inequality (1.3), we get

2
| (C5€n(x))nst Lyl ST e G | (&a(rx)) | Ly o)

<C 1] o
1-a

T 1-CY
For 0 < a < 1/2, we use Burkholder-Gundy’s inequality (2.2) and Lemma 2.9 to de-

duce

HI“xHﬁ SC&”I“XHHi SCaCﬁHxH%.

1-a

For 1/2 < a < 1, applying Lemmas 2.8 and 2.9, we have
1125l = 1273 ] < Call ] < Calxlsc
Conbining these esimates, the second inequality follows and the proof is complete. m

To prove the Doob inequality (1.3), Junge [21] first obtained the dual form of the
Doob inequality (Lemma 4.2). In this paper, as an application of this (p, q)-type max-
imal inequality (4.5), we establish the dual version of (4.5). The following result for
a = 0 is just Lemma 4.2.

Corollary 4.6 Letl<p<ooand0 < a < %. Assume that M is a hyperfinite and

nite von Neumann algebra. If su S = Cp<1and b,) c L,(M) is a sequence
24 Pux1 7, ¢ P q
of positive elements, then there exists a constant C, such that

DNANON S, -

, = -

q P

‘ <C,
q
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Proof The result for « = 0 is just Lemma 4.2. Hence, we only consider 0 < a < %

The case p =1 follows from Lemma 2.7. It remains to consider the case 1 < p < co. By
duality, we have

= swp 7 Y lrea(bag)

T g20,gly<t * n

= sup 7 LbauliEn(g)).

820, gl <1 n

|2 ¢renten)

Notethat1/q’-1/p’ = a. Accordingto Theorem 4.3 and the definition of | - |

Ly (Ve
we find suitable a such that
0<{pEu(g)<a, Yn>1 and |af, < Calglly-
Then, by Holder’s inequality,
HZ(ijn(bn) gT(ana) gHan lalp < Col| S bul
n q n n P n P
which finishes the proof. u

We also find the following fractional version of the Stein inequality ([34, Theorem
2.3]). We use Corollary 4.6 to prove it. This is new even in the commutative martingale
setting.

Proposition 4.7  Let M be a hyperfinite and finite von Neumann algebra. Let 0 < o <
1/p with1< p < oo, and let1/q =1/p — a. If sup,,, % = Cy < land (b,) c L,(M),
then

<Cy
q

w [(Siea®ar) | <] (Sie) |

Proof Since for « = 0, (4.6) is just [34, Theorem 2.3], we only consider 0 < a < 1/p.
If2 < p < oo, by the property €,(a)*E,(a) < €,(|a*) for a € Ly(M) (s > 2) and
Corollary 4.6, we have

1
2

[ Siezentenp)’

R AR

/2
= 2\ 2 %
<| X enterri],,
oo 5 % ~ N %
SCth ;|bn| ‘p/Z_CZtX (Zn:|bn|) P.

Now, it suffices to consider the case 1 < p < 2. For1 < g < 2, by the duality
(L (M, €5))* = L (M, £€5) (see [34]) and the proven result of the case 2 < p < oo, we
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then have

|(Siezeawar)

IN

(I Sesenonss) | ( Sie)’
(

(i Setzene) [ (Sle)
(k) | (Shzenenr) )]
(Shar)’

where the last “<” is due to (4.6) (note that1/q’ - 1/p’ =« and g’ > 2). If 2 < g < o0,
then take 0 < a; < 1and 0 < a; < 1such that « = a; + a3,

1 1 1 1
———=m and —-=-=a.
2 q p 2

q’ 1}
q' 1}

IA

supq |t

P/

<Cq

p)

Applying (4.6) for p = 2, we arrive at

[(Sizenwar)’

< Cyy
q

(SkeensR)’
(Shaf)’

where we have used (4.6) again with 1 < p < 2 and g = 2 to get the last “<”. The proof
is complete. u

2

< Cy,Coq,

P)

Since | [ a,,,_, . (,¢.) is @ quasi-norm, we cannot apply the idea used in the proof
of Theorem 4.3 to prove the weak type inequality in Theorem 4.4. We apply Gundy’s
decomposition to overcome this problem.

Observe that

[ 5 1/2 oo 5 1/2 oo
Ixloq < || (X ldex) ||, < 2 dix17a = 3 Il = Il
k=1 k=1 k=1

Combining this and Theorem 4.3, we get the result below.

Lemma 4.8 Let0 < a < 1. Assume that M is a hyperfinite and finite von Neumann
algebra. If sup,,,, % := Cy < 1, then there exists a constant C such that

(47) [€x)unly | ooy < Calxl  x € b W),

Now we are ready to prove Theorem 4.4. The idea of the proof is similar to the one
of Theorem 1.2. We need to do more calculations, so we still give the proof.

Proof of Theorem 4.4 By linearity and homogeneity, we can assume without loss of
generality that |x||; = 1. Set A = s for every fixed s > 0. Applying Lemma 3.2, for
A > 0, we get the Gundy decomposition

X=y+z+v+w.
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By the quasi-triangle inequality of A 1 (M, £o), it suffices to show

(4.8) [(Gaymmlla . ovew) < Callxlhs
(4.9) [(Cizn)mtlla sy < Callxlhs
and )

(4.10) [+ wha)mila e < Callxla

To show (4.8), take 1 < p < min{2, -} and 1/g = 1/p — a. Similar to the proof of

Theorem 1.2, we decompose y into the combination of four positive elements
y:hl—h2+il’l3—il’l4
such that
[hjlp < Uyl je{1,2,3,4).
By Lemma 2.7, we know that ||( €, (k)[4 < |E4(h;j )Hp | k||, for every n > 1and
j- Applying Theorem 4.3 and the definition of L, (M, T ), for every j € {1,2,3,4},
there exist positive elements a; satisfying for every n > 1,
Gi€n(hj) <aj, ajlly < Callhjlp < Callyllp-

Set

>

eJ:X(O’%)(aj) and e, = Ae;.

1

i
Then, for each j,

s
ej(nEu(hj)ej<ejaje;j < 7

which implies that
4
lesChn(y)eslos < 3 llejChEn(y)es]o0 <
=1

Note that | y[; < 8 and | y|2 < 61 (by Lemma 3.2(ii)) where A = s7=. The Chebyshev
inequality gives

4

sT(l—e) 7 <Y st(1—e) " ZST Xe, oy (@)

j=1

4
24 Sl—q(l—a) Hﬂ; ”Z(l—a)
=

IN

1
< Cg(l tx)4q+lsl—q(1—¢x) ”y”lq)(l—a)
Since 1< p < min{2, é}, it follows from the Holder inequality that

Ip1807%) = 2(|y[P|y2p~2)
q(1-a)

<Pl P2y )

@-p)q(1-0)  (p-Dq(1-a) _ (p-Dgq(1-a)
< P P P

q(1-a)

>

https://doi.org/10.4153/50008414X19000580 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X19000580

246 Y. Jiao, F. Sukochev and D. Zhou

which, together with the definition of A = s™, further implies

B e -pi0-0) _ (p=Da(1-0)
st(1- )7 < A0 4av1g=5 ’

According to the definition of A 1_ (M, €c), these finish the proof of (4.8).
It follows from (4.7) and Lemma 3.2(iii) that

[(Chzn)n=ila o ovew) < 1(Gazn)mall, Loned)
< Cullze < 6Ca Hbe

where the first inequality is due to the definitions of those two spaces. This is just
(4.9). Now we turn to show (4.10). Set

eg=1- ( \n/supp(dnv)) v ( \n/supp(dnw)).

Then it is easy to check that
eo(v+w)ey=0.

Note that A = s==. By the definition of A1 oo(M, £e) and Lemma 3.2(iv), we have

I+ w)w)nzalla . _(view) < SU(P)’ST(l— e) ™"

1-a’ >
<sups| ol Vsupp(d,v)) + 7| Vsupp(d,v )
S>(r)>( ( pp( )) ( pp( )))
<sups(2Ah)ITE =217,

s>0

The proof is complete. ]
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