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Abstract. This paper has four main results: (i) it shows that left-invariant geodesic flows
on a broad class of two-step nilmanifolds—which are dubbed almost non-singular—are
integrable in the non-commutative sense of Nehoros̆ev; (ii) the left-invariant geodesic flows
on all Heisenberg–Reiter nilmanifolds are Liouville integrable; (iii) the topological entropy
of a left-invariant geodesic flow on a two-step nilmanifold vanishes; (iv) there exist two-
step nilmanifolds with non-integrable left-invariant geodesic flows. It is also shown that for
each of the integrable Hamiltonians investigated here, there is a C2-open neighbourhood in
C2(T ∗M) such that every integrable Hamiltonian vector field in this neighbourhood must
have wild first integrals.

1. Introduction
Riemannian geometry and Hamiltonian mechanics intersect in the study of the geodesic
flow of a Riemannian metric. The dynamics of a geodesic flow can be both complicated
enough to model many aspects of even more complicated Hamiltonian systems and simple
enough to understand the geodesic flow’s phase portrait—or at least important aspects
of it. Since the 1970s, many new integrable dynamical systems have been discovered,
amongst which are the Euler equations of a left-invariant metric on a semi-simple Lie
group [3, 4, 42, 46] and geodesic flows on certain quotients of compact, semisimple Lie
groups [11, 31, 32, 54]. In contrast, little is known about the integrability of geodesic flows
on compact quotients of nilpotent or solvable Lie groups or even the integrability of their
Euler equations (see [9, 12–14, 16] however).

1.1. Integrable geodesic flows on a class of two-step nilmanifolds. This paper studies
left-invariant geodesic flows on two classes of two-step nilpotent Lie groups and their
compact quotients. The former class is called almost non-singular after Eberlein’s [22]
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analogous definition of non-singular two-step nilpotent Lie groups and was first studied
by Lee and Park in [39]. The latter class consists of the so-called Heisenberg–Reiter
(HR) groups, which generalize the classical Heisenberg group. Two-step nilpotent Lie
groups are the ‘simplest’ non-Abelian Lie groups and their compact quotients—two-step
nilmanifolds—are also deceptively ‘simple’. Despite this, these groups and manifolds
possess geometric properties quite unlike their Abelian counterparts and have been studied
intensively by geometers in [2, 22, 23, 29, 36, 39, 44]. These papers have principally
addressed the connection between the length spectrum of the geodesic flow and the spectral
properties of the associated Laplacian. This paper studies these geodesic flows from the
point-of-view of the Hamiltonian formalism. The first results are as follows.

THEOREM 1.1.

(i) If G is a connected, simply connected two-step nilpotent Lie group whose Lie algebra
G is almost non-singular and rational, then for each discrete subgroup D ≤ G and
each left-invariant Riemannian metric g on G, the geodesic flow of g is smoothly
integrable on T ∗(D\G) in the non-commutative sense of Nehoros̆ev [48].

(ii) If G is a connected, simply connected two-step nilpotent Lie group whose Lie algebra
G is rational and HR (see Definition 2.21), then for each discrete subgroup D ≤ G

and each left-invariant Riemannian metric g on G, the geodesic flow of g is smoothly
Liouville integrable on T ∗(D\G).

The definition of non-commutative integrability and Nehoros̆ev’s Theorem is recalled
below. The geodesic flows in Theorem 1.1 are real analytic, while the first integrals are
only C∞. The next section attempts to explain why.

1.2. Wild first integrals. Before we explain the notion of a tame/wild map, let us recall
a related notion that frequently appears in the literature on integrable systems: non-
degenerate integrability.

To explain non-degenerate integrability, suppose that (M2n, ω) is a symplectic manifold
with the Hamiltonian action of the Abelian Lie group A � Rn and F : M2n → a∗ is the
momentum map of A’s action (a = Lie(A)), which is a submersion on an open dense set.
For each m ∈ M , let Km be the linear space of Hamiltonians f = 〈F, ξ〉, ξ ∈ a, such that
dfm = 0. Let Qm = {d2fm : f ∈ Km}. Finally, let Lm = TmA.mω be the ω-orthogonal
complement to the tangent space to A orbit through m. Then Lm/L

ω
m is a symplectic

vector space and Qm induces an Abelian subalgebra of linear Hamiltonian vector fields on
Lm/L

ω
m, call it Sm. We say that A’s action is non-degenerate if dim Sm = 1

2 dimLm/L
ω
m

for all m ∈ M [19, 20, 24, 35, 49, 55]. A Hamiltonian system is non-degenerately
integrable if it is Liouville integrable and its integrals generate a non-degenerate action
of Rn. Note that the non-degeneracy of A’s action is equivalent to dimQm = dimKm

for all m; this shows that the condition is really a condition on the singular set of the
momentum map.

Eliasson, Dufour-Molino and Ito [20, 24, 35] demonstrate that a non-degenerately
integrable system admits singular action-angle variables in a neighbourhood of so-called
elliptic singular strata of the first-integral map. Paternain [49] shows that the topological
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entropy of a non-degenerately integrable system must vanish and has asked if non-
degenerately integrable systems are generic (in the space of integrable systems) much like
Morse functions are generic.

In the two-degrees-of-freedom setting, Fomenko and his collaborators have called non-
degenerately integrable systems Bott integrable and an extensive classification theorem has
been deduced [25, 26]. One justification for studying this restricted class of integrable
Hamiltonian vector fields is that most known integrable mechanical systems are Bott-
integrable [5, 27, 37, 38].

Subsequent to the development of a classification theorem for Bott-integrable
Hamiltonian vector fields on four-dimensional symplectic manifolds, Matveev and
Fomenko [45] demonstrated that the types of bifurcations or surgeries of Liouville tori
encountered with tame first integrals are no larger than the bifurcations encountered in
Bott-integrable four-dimensional systems. In their definition, a smooth map is tame if
there is a triangulation of the singular set that extends to a neighbourhood. We will
adapt this definition: a smooth map F : M → N induces a stratification of N by strata
Sk := {F(m) : rank dFm = k} and M is stratified by sets Ck = F−1(Sk). The map F

is tame if C ⊂ M is a tamely embedded polyhedron and (S, F (M)) are simultaneously
triangulable; it is wild otherwise. By a theorem of Hardt on the triangulability of images
of proper real-analytic maps [33, 34], a real-analytically integrable geodesic flow on a
compact manifold has a tame first-integral map [52].

Let I (T ∗M) ⊂ C2(T ∗M;R) denote the set of C2 integrable Hamiltonians on T ∗M .
Let us say that H ∈ I (T ∗M) is tamely integrable if it has a proper first-integral map
J : T ∗M → Rm such that J is a tame map. Then we have the following.

THEOREM 1.2. Let Q be the set of compact real-analytic manifolds defined in
Theorem 1.1. Then for each M ∈ Q:
(i) T ∗M possesses an integrable metric Hamiltonian with a C∞ first-integral map;
(ii) if H ∈ C2(T ∗M;R) is an integrable mechanical Hamiltonian, then there is a

C2-open neighbourhood of H in I (T ∗M), call it UH , such that if F ∈ UH then
F is not tamely integrable.

In particular, we see that on the class of smooth manifolds studied here the geodesic
flows are not tamely integrable and they are not even C2 close to a tamely integrable
Hamiltonian system.

It is important to stress that Theorem 1.2 does not state that there do not exist
non-degenerately integrable mechanical Hamiltonians on the cotangent bundles of the
manifolds in question—although this is almost certainly true. Desolneux-Moulis [19]
observed that the first-integral map of a non-degenerately integrable system induces a
Whitney stratification of the phase space, which implies the map’s singular set is tamely
embedded. However, it is unclear if this is sufficient for the tameness of the first-integral
map. The basic difficulty in proving tameness is establishing that the induced stratification
of the image satisfies the strong ‘control’ hypotheses required (see [51]).

1.3. The Liouville foliation. Given a flow φt : X → X, there are natural stratifications
of X induced by the Ck first integrals of φt : Fk = X/ ∼ where x ∼ y if and only if for
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all Ck first integrals, f , of φt the point y lies in the connected component of f−1(f (x))

containing x. If φt is an integrable system with first-integral map F : X → Rm, then we
call the singular foliation of X whose leaves are the connected components of the level
sets of F the Liouville foliation of φt associated to F . In general, this foliation depends
on the particular choice of the first-integral map. However, this foliation does contain a
great deal of information about the dynamical behaviour of φt and in the case where we
consider only the regular fibres of F and φt is anisochronous—the trajectories of φt are
generically dense quasi-periodic windings on the regular fibres of F—then the foliation is
essentially independent of F . In §4 the Liouville foliation of an integrable geodesic flow
on quotients of the 2n+1-dimensional Heisenberg group is studied and it is shown that the
monodromy of the Liouville foliation reflects the algebraic structure of the fundamental
group quite strongly. Specifically we have the following.

THEOREM 1.3. Let D ≤ G be a discrete, cocompact subgroup of the 2n+ 1-dimensional
Heisenberg group G, let D have the presentation D = 〈w1, . . . , wn, v1, . . . , vn, z :
[wi, vj ] = zδij ki for all i, j = 1, . . . , n, [z, ·] = 1〉, where kj are positive integers such
that k1| · · · |kn, and let F ✁ D be the normal subgroup generated by v1, . . . , vn, z.

Let ( : Sr → R ×Rn
>0 ×Tn be the fibration of the dense, open subset Sr of T ∗(D\G)

by the Liouville tori of an integrable, left-invariant geodesic flow on T ∗(D\G). The bundle
( has the monodromy group isomorphic to D/F � Zn. The action of wiF on a privileged
basis [Cj ], j = 1, . . . , 2n+ 1, of 1 cycles of the fibres of ( is given by

wiF ∗ [Cj ] = [Cj ] + δij ki[Cn+1]. (1)

In particular, there do not exist global action-angle coordinates of( : Sr → R×Rn
>0×Tn.

One way to interpret this result is that the monodromy in the Liouville foliation
causes the geodesic flow to be integrable with smooth, but not tame first integrals.
Indeed, the singular fibres of the first-integral map J : T ∗(D\G) → R2n+1 (see §4)
consist of three types of fibres: the first type have a neighbourhood diffeomorphic to
Tl[θ ] × D2k[p] × Dl[I ], where l + k = 2n + 1, and the first integral map ((θ, p, I) =
(p2

1 + p2
2, . . . , p

2
2k−1 + p2

2k, I ), i.e. there exist singular action-angle variables in a
neighbourhood of the type I singular fibres; the type II singular fibres are invariant
Lagrangian 2n+ 1-dimensional tori; and the type III singular fibre consists of the zero
set of the momentum map of the action of Z(G)/Z(D) � T1 on T ∗(D\G). The type III
singular fibre is a 4n+ 1-dimensional submanifold of T ∗(D\G), and the type II singular
fibres accumulate onto it. The type III fibre is itself fibred into invariant Lagrangian
2n+ 1-dimensional submanifolds each of which is diffeomorphic to D\G. It appears
that the action of the monodromy group makes it possible for the topology of the type II
singular fibres to change in the limit as they accumulate on the type III fibre.

1.4. The vanishing of topological entropy. A second concern in the theory of dynamical
systems is the relationship between the topological entropy of a flow and its integrability.
In essence, the topological entropy of a flow measures the supremum of the rate of
growth of separation of initially nearby solution curves. For an integrable system,
there is a dense set fibred by invariant Liouville tori on which the topological entropy
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vanishes. However, in [9] Bolsinov and Taı̆manov give an example of a solvmanifold
with an integrable geodesic flow and show that the singular set of this flow’s first-
integral map contains an invariant set on which the topological entropy of the flow
is positive. Loosely speaking, integrable behaviour is not incompatible with chaotic
behaviour. This paper shows that left-invariant geodesic flows on all two-step nilmanifolds
have zero topological entropy. Specifically, this paper proves the following.

THEOREM 1.4. Let G be a connected, simply connected, rational two-step nilpotent Lie
group and D ≤ G be a discrete, cocompact subgroup of G. If g is a left-invariant metric
on G and /t is the geodesic flow induced by g on T ∗(D\G) then

htop(/) = 0.

1.5. Non-integrable geodesic flows on a two-step nilmanifold. The class of two-step
nilmanifolds is rich in another important way: not only do some manifolds admit integrable
left-invariant geodesic flows, but some also do not.

THEOREM 1.5. Let G3 be the non-trivial extension of 12(R3) by R3 given by

[x + y, x ′ + y ′] := x ∧ x ′,

for all x, x ′ ∈ R3 and y, y ′ ∈ 12(R3). Let G3 be the associated connected, simply
connected two-step nilpotent Lie group. Then for each discrete cocompact subgroup
D ≤ G3 there is a left-invariant metric g such that the geodesic flow of g on T ∗(D\G3) is
non-integrable.

The proof of Theorem 1.5 does not use the standard Poincaré–Melnikov method [30]—
in light of Theorem 1.4 it does not work! Instead, the periodic geodesics of g are studied
directly and it is shown that these periodic geodesics carry enough algebraic structure to
show that no locally trivial, flow-invariant foliation by tori can exist. It should also be
noted that every left-invariant geodesic flow is non-integrable on T ∗(D\G3), where D is
discrete and cocompact. In fact, this is true for a wide class of two-step nilmanifolds whose
universal covering group G satisfies the algebraic condition that for µ ∈ G∗, there exists
a µ′ ∈ G∗ arbitrarily close to µ such that the stabilizers Gµ and Gµ′ do not commute.
The proof of this latter claim is more involved and will appear elsewhere (see [18]).

1.6. Outline. The plan of this paper is as follows: §2 proves Theorem 1.1; §3 proves
Theorem 1.2; §4 studies the Liouville foliation of an integrable geodesic flow on T ∗(D\G),
where G is the Heisenberg group and proves Theorem 1.3; §5 demonstrates Theorem 1.4;
§6 proves Theorem 1.5.

1.7. The Nehoros̆ev Theorem. The theorem of Nehoros̆ev is recalled [48].

THEOREM 1.6. (Nehoros̆ev [48]) Let F = (H = f1, . . . , fn−k, g1, . . . , g2k) be a smooth
map on the symplectic manifold (M2n,3), k ≥ 0, that satisfies the three conditions:
(i) rank dF = n+ k on an open, dense subset of M2n;
(ii) for all a, b = 1, . . . , n − k and all c = 1, . . . , 2k: {fa, fb} = {fa, gc} = 0;
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(iii) for each regular value c ∈ Rn+k , each connected component of F−1(c) is compact.
If c ∈ Rn+k is a regular of F and V ⊂ F−1(c) is a connected component of the level set,
then V is an embedded n− k-dimensional torus and there is an open neighbourhood U of
V with local coordinates f : U → Rn−k[I ] × Tn−k[θ ] × Rk[p] × Rk[q] such that
(i) the local coordinates are canonical

3|U = f ∗
( n−k∑

i=1

dIi ∧ dθi +
k∑

j=1

dpj ∧ dqj

)
;

(ii) for a = 1, . . . , n− k, fa = f̃a ◦ f and f̃a = f̃a(I );
(iii) The flow of XH is conjugate to a translation-type flow on Tn−k:

X
H̃

=



İi = 0, ṗj = 0,

θ̇i = ∂H̃ (I)

∂Ii
, q̇j = 0.

Remark 1.7. A Hamiltonian H that satisfies the hypotheses of the above theorem will be
referred to as integrable in the non-commutative sense of Nehoros̆ev or simply integrable.
It is clear that when k = 0, one gets the Liouville–Arnold Theorem [1].

2. Two-step nilpotent Lie groups
Let G be a two-step nilpotent Lie algebra with centre Z = Z(G), so that [G,G] ⊂ Z(G),
let 〈 , 〉 be an inner product on G and let

G = H⊕ Z,

be an 〈 , 〉-orthogonal decomposition of G. The Lie bracket on G is written as [x + y,

x ′ + y ′] = [x, x ′] for all x, x ′ ∈ H and y, y ′ ∈ Z and so the commutator defines a
skew-symmetric, bilinear form ω : H×H → Z by ω(x, x ′) = [x, x ′].

The Lie algebra G can also be given the structure of a Lie group (G, ∗) by X∗Y := X+
Y + 1

2 [X,Y ], so that G = Lie(G) and the exponential map is the identity. In the following,
elements in G will often be viewed as elements in G under the inverse (logarithm) map—
which is the identity map in these coordinates. If D is a discrete, cocompact subgroup
of G then there exists a generating set X1, . . . , Xh, Y1, . . . , Yz where Y1, . . . , Yz generate
Z(D) and the cosets X1 + Z(D), . . . , Xh + Z(D) generate D/Z(D) and h = dimH,
z = dimZ [41]. The generating set therefore determines a basis of G and an inner product
〈 , 〉′ relative to which it is an orthonormal basis.

LEMMA 2.1. Let D ≤ G be a discrete, cocompact subgroup and let ( , ) be an inner
product on G. Then there exists an automorphism f : G → G and a subgroup D′ =
f−1(D) with generators X1, . . . , Xh, Y1, . . . , Yz such that (Xi, Yj ) = 0. In addition, if
g is the left-invariant metric on G determined by ( , ), then (D′\G,f ∗g) is isometric to
(D\G,g).

Proof. Let G = H ⊕ Z be the 〈 , 〉-orthogonal decomposition of G. Let a(x) be the
( , )-orthogonal projection of x ∈ H onto Z . The map F : x + y → x − a(x) + y

for all x ∈ H and y ∈ Z is an automorphism of G; let f = exp ◦F ◦ log be the map
induced by F on G; f is an automorphism and by construction F(H) is ( , )-orthogonal
to Z . ✷
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This lemma is proved in [29] for Heisenberg groups. The importance of this lemma
is that, by fixing a discrete, cocompact subgroup D with a fixed generating set, attention
can be confined to those metrics that are block diagonal relative to this fixed basis of G.
Here and henceforth, 〈 , 〉 will be a fixed inner product on G relative to which G = H⊕Z ,
D will be a discrete, cocompact subgroup of G with 〈 , 〉-orthonormal generating set
X1, . . . , Xh,Y1, . . . , Yz, H = spanR{X1, . . . , Xh} and Z = spanR{Y1, . . . , Yz} and ( , )

will be a second inner product that is block diagonal: for all X,X′ ∈ H and Y, Y ′ ∈ Z

(X + Y,X′ + Y ′) = 〈X,AX〉 + 〈Y,BY ′〉 (2)

where Aij = (Xi,Xj ) and Bkl = (Yk, Yl). The metric g on G will be the left-invariant
metric determined by ( , ) or equivalently the pair A,B.

LEMMA 2.2. Let D ≤ G be a discrete, cocompact subgroup with generators X1, . . . , Xh,

Y1, . . . , Yz. Let (x, y) = (xiXi, y
jYj ) be coordinates of a point in G. Then Xl ∗ (x, y) =

(x+Xl, y+ 1
2 [Xl, x]) and Yk ∗(x, y) = (x, y+Yk); that is, xi ◦Xl = xi+δil , x

i ◦Yk = xi ,

yj ◦Xl = yj + 1
2ω

j
lαx

α and yj ◦ Yk = yj + δ
j
k .

2.1. Geodesic equations of motion. Let A : Z∗ → so(H) be defined for all x, x ′ ∈ H
and q ∈ Z∗ by 〈x,A(q)x ′〉 := q ◦ [x, x ′]. Let (x, y, p, q) be the coordinates of a point in
T ∗G = H×Z ×H∗ ×Z∗ via left trivialization. The Hamiltonian of the metric g on T ∗G
is Hg = 1

2 〈p,Rp〉+ 1
2 〈q, Sq〉 where R = A−1 and S = B−1. The equations of motion are

XHg =
{
q̇ = 0, ẏ = Sq + 1

2 [x,Rp],
ṗ = −A(q)Rp, ẋ = Rp.

(3)

Then q is a Z∗-valued first integral of XHg and F := p + A(q)x is an H∗-valued first
integral. Let qi := q(Yi) and Fj := F(Xj ) for i = 1, . . . , z and j = 1, . . . , h.

2.2. First integrals. Let R
1
2 denote the unique positive definite square root of R, and let

v = R
1
2 p and B(q) := R

1
2 A(q)R

1
2 . Then v̇ = −B(q)v. Let κ be −1 times the Killing

form on so(H) and let L : q → adB(q) be the map Z∗ → so(so(H)). If r is the maximal
rank of L(q), then the set of q such that rank L(q) = r is open and dense in Z∗; call this
set Z∗

r . Let so(H) = C(q)⊕F(q) be the eigenspace decomposition relative to L(q), where
C(q) = kerL(q) and F(q) is the [ , ]-orthogonal complement, which is L(q)-invariant.

LEMMA 2.3. There exist smooth sections Z∗ → so(H), q → Ci(q) ∈ C(q), i = 1, . . . , s
such that C1(q), . . . , Cs(q) is a basis of C(q) for an open, dense set of q ∈ Z∗

r .

Proof. Define the ‘centralizer bundle’ to be the bundle C → Z∗ with fibre C(q) over
q ∈ Z∗; this bundle is naturally a subset of the trivial bundle so(H) × Z∗ → Z∗ and
consequently there is a natural norm | · | on the fibres of C induced by κ . When restricted to
Z∗
r , C|Z∗

r
is a real-analytic vector bundle of rank s, where s = 1

2h(h−1)− r is the generic
dimension of C(q). Consequently, there exists s real-analytic sections of C|Z∗

r
that are

linearly independent over an open, dense subset of Z∗
r ; let these be denoted by S1, . . . , Ss .
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Let φ(x) := exp(−1/x2) and let m(q) be the sum of all squared r×r minors ofL(q) and let

k(q) :=
s∏

i=1

φ(|Si(q)|)|Si(q)|−1.

It is clear that φ ◦m and k extend to smooth functions on Z∗ that are non-zero on an open
dense subset. Let Ci(q) := φ(m(q))k(q)Si(q) for q ∈ Z∗

r and 0 elsewhere. It is clear that
Ci is a smooth section of the trivial bundle so(H)× Z∗ → Z∗ whose image lies in C and
C1(q), . . . , Cs(q) is a basis of C(q) for an open dense subset of q ∈ Z∗. ✷

LEMMA 2.4. There exist smooth sections Z∗ → so(H), q → Di(q), i = 1, . . . , s
such that D1(q), . . . ,Ds(q) is a basis of C(q) for an open, dense set of q ∈ Z∗

r and
D1(q), . . . ,Dn(q) span an Abelian subalgebra for all q ∈ Z∗ where n = [h/2] = rank
so(H).

Proof. For any q0 ∈ Z∗
r , the centralizer C(q0) of B(q0) contains an element X that is in

general position. Let q0 ∈ Z∗
r be such that the real-analytic sections S1, . . . , Ss : Z∗

r → C

evaluated at q0 form a basis of C(q0). Then X = ∑s
i=1 xiSi(q0) for some x1, . . . , xs ∈ R.

Let X(q) := ∑s
i=1 xiSi(q); by real-analyticity, X(q) is in general position for an open,

dense set of q ∈ Z∗
r . Let Y (q) := ∑s

i=1 xiCi(q), so that Y (q) = φ(m(q))k(q)X(q),
is a smooth section of C. Y (q) is in general position for an open dense set of q ∈ Z∗

r .
The sections Y (q), Y (q)3, . . . , Y (q)2n−1 ∈ C(q) are therefore linearly independent for an
open dense set of q and span an Abelian subalgebra. Let q1 ∈ Z∗ be some such generic
element; then by adding in s − n additional elements from {C1(q1), . . . , Cs(q1)}—say
the final s − n elements—the set {Y (q1), Y (q1)

3, . . . , Y (q1)
2n−1} can be completed to a

basis of C(q1). It is clear that letting Di = Y 2i−1 for i = 1, . . . , n and Di = Ci for
i = n+ 1, . . . , s gives the desired sections. ✷

LEMMA 2.5. The functions

hi(p, q) := 〈v,Di(q)
2v〉 = 〈p,R 1

2 Di(q)
2R

1
2 p〉

for i = 1, . . . , s where s = 1
2h(h − 1) − r ≥ n, are smooth, functionally independent

first integrals of XHg . For all i = 1, . . . , s, j = 1, . . . , z and l = 1, . . . , n: {hi, qj } =
{hi, fl} = 0. For i, j = 1, . . . , n: {hi, hj } = 0.

Proof. Xhi on G∗ is given by v̇ = −B(q)Di(q)
2v, q̇ = 0 so that {hi, hj }

= −〈B(q)Di(q)
2v,Dj (q)

2v〉 − 〈v,Dj (q)
2B(q)Di(q)

2v〉 = 0, because Di,Dj are
commuting sections of the centralizer bundle for B. Because hi is left-invariant, it Poisson
commutes with the right-invariant Hamiltonians qj and fl . ✷

Now let H∗ = K(q)⊕ F(q), where K(q) = kerB(q) and F(q) is the B(q)-invariant,
〈 , 〉-orthogonal complement of K(q). Let K → Z∗ be the sub-bundle of H∗ ×Z∗ → Z∗
whose fibre at q is K(q). The previous arguments may be repeated almost verbatim to
prove the following.

LEMMA 2.6. Let k = infq dimK(q) and suppose k > 0. Then, there exists smooth
sections K1, . . . ,Kk : Z∗ → K such that K1(q), . . . ,Kk(q) forms a basis of K(q) for an
open dense set of q ∈ Z∗.
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LEMMA 2.7. The smooth functions

ki := 〈Ki(q), v〉 = 〈R 1
2 Ki(q), p〉

are independent, Poisson-commuting first integrals of XHg for i = 1, . . . , k.

Proof. The functions ki(p, q) are Casimirs of the Poisson tensor on G∗. To see this, it will
be shown that for each µ = p + q ∈ G∗ the Hamiltonian vector field Xki (µ) = ad∗dki(µ)µ
vanishes. Recall that there is a canonical identification of G with G∗∗ so that

dki(p + q) = R
1
2 Ki(q)+

z∑
j=1

〈
R

1
2
∂Ki

∂qj
, p

〉
Zj .

Because p|[G,G] = 0:
ad∗dki(p+q)µ = ad∗

R
1
2 Ki(q)

q. (4)

Therefore, for all x ∈ G
(ad∗dki(p+q)q)(x) = −q ◦ [R 1

2 Ki(q), x] = 〈x,A(q)R 1
2 Ki(q)〉,

which is identically zero by hypothesis. Therefore ki Poisson commutes with all left-
invariant Hamiltonians. ✷

2.3. First integrals on almost non-singular 2-step nilpotent Lie groups.

Definition 2.8. (Almost non-singular Lie algebras) Let A : Z∗ → so(H) be the linear map
defined by 〈x,A(q)x ′〉 = q ◦ [x, x ′] for all x, x ′ ∈ H and q ∈ Z∗. The two-step nilpotent
Lie algebra G is almost non-singular if there exists q ∈ Z∗ such that detA(q)  = 0.

Remark 2.9. (i) Because the map A is linear, detA(q) is an algebraic function so that if it is
non-zero at some point q , it is non-zero on an open dense subset of Z∗. (ii) An equivalent
definition of an almost non-singular two-step nilpotent Lie algebra G is one for which dµ

has a nullity equal to dimZ for some µ ∈ G∗. The exterior derivative of µ ∈ G∗ is defined
by dµ(x, y) := −µ([x, y]) for all x, y ∈ G. (iii) A third, equivalent definition of an
almost non-singular two-step nilpotent Lie algebra is that for some µ ∈ G∗, the isotropy
algebra Gµ = {x ∈ G : ad∗xµ = 0} is equal to Z(G). (iv) A fourth way to characterize
an almost non-singular Lie algebra is that there exists a µ ∈ G∗ such that dµ induces
a symplectic form on G/Z(G). (v) In [47] there is a consideration of the representation
theory of nilpotent Lie groups with property (iv).

Remark 2.10. In the following, G = H ⊕ Z will be an almost non-singular two-step
nilpotent Lie algebra, dimH = 2n and dimZ = m for some integers n,m ≥ 1.

LEMMA 2.11. Let φ(u) = exp(−1/u2) for all u ∈ R and ψ : R/Z → R be a smooth,
one-periodic function. Suppose that G is almost non-singular and that D is a discrete,
cocompact subgroup of G. Then for each i = 1, . . . , 2n = dimH,

fi(x, p, q) := φ(detA(q))ψ(〈A(q)−1p + x,Xi〉)
is a smooth function on T ∗G that is invariant under the action of D and so descends to a
smooth function on T ∗(D\G).
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Proof. Left-trivialization gives T ∗G = G× G∗ and the left action of G on T ∗G becomes
simply left translation by G on the first factor. The action of the generators of D on G,
Lemma 2.2, means that 〈A(q)−1p+x,Xi〉 mod 1 is invariant. A(q) adjA(q) = detA(q)I ,
so since A(q) is a linear function of q , A(q)−1 is a rational function of q . The singularities
of A(q)−1 are the zeros of detA(q). Because ψ is smooth and one-periodic, all of its
derivatives are bounded, so the product φ(detA(q))ψ(〈A(q)−1p + x,Xi〉) vanishes to all
orders along the singular set detA(q) = 0. Therefore, fi is a C∞ function. ✷

Remark 2.12. The functions f1, . . . , f2n are first integrals of all left-invariant vector fields
on T ∗G, in particular of XHg , because they are functions of the Hamiltonians of cotangent
lifts of right-invariant vector fields on G.

In the almost non-singular case, Lemmas 2.4 and 2.5 can be strengthened for generic
left-invariant geodesic flows. By hypothesis, B(q) is 〈 , 〉-skew symmetric and non-
degenerate for almost all q ∈ Z∗. The skew-symmetric matrix B(q) is in general position
if it possesses 2n distinct eigenvalues. If B(q) is in general position for some q ∈ Z∗, then
it is in general position for an open dense subset of q; it is clear that for an open dense
subset of quadratic forms R, B(q) is in general position.

Definition 2.13. The linear map B : Z∗ → so(H) is in a general position if for some
q ∈ Z∗, B(q) has 2n = dimH distinct eigenvalues.

LEMMA 2.14. Let B : Z∗ → so(H) be in general position. The functions

hi(p, q) := 〈v,B(q)2i−2v〉 = 〈p,R 1
2 B(q)2i−2R

1
2 p〉

are first integrals of XHg for all i ≥ 1; moreover h1, . . . , hn are functionally independent
on an open dense subset of T ∗G.

Remark 2.15. The functions hi : G∗ → R constructed in Lemmas 2.5 and 2.14 clearly
descend to any quotient T ∗(D\G) = (D\G) × G∗ as first integrals of XHg . They also
Poisson commute with fj and ql (Lemma 2.11, equation (3)) for all j and l.

Proof of Theorem 1.1(i). The vector field XHg has n+m Poisson-commuting first integrals
from Lemmas 2.14 and 2.5 and equation (3). From Lemmas 2.11 and 2.5, XHg has an
additional 2n first integrals that are first integrals of the n + m first integrals hi and ql .
Functional independence is obvious. Therefore, XHg has 3n+m independent first integrals
and n+m of these first integrals commute with all 3n+m. Since dimT ∗(D\G) = 4n+2m,
this proves the non-commutative integrability of XHg . ✷

2.4. Liouville integrability of left-invariant geodesic flows on HR manifolds.

Definition 2.16. Let W,V,Z be non-trivial finite-dimensional vector spaces over R and
let λ be a bilinear mapping W × V → Z . Define the Lie algebra Gλ = G := W ⊕ V ⊕ Z
with the Lie bracket [w + v + z,w′ + v′ + z′] := λ(w, v′)− λ(w′, v). Such a Lie algebra
will be called a HR-λ Lie algebra [40].

LEMMA 2.17. A HR-λ Lie algebra is an almost non-singular two-step nilpotent Lie
algebra if and only if there exists c ∈ Z∗ such that c ◦λ induces an isomorphism V � W∗.
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Proof. Let µ = a+b+c ∈ W∗⊕V∗⊕Z∗ and observe that dµ(w+v+z,w′+v′ +z′) =
−c ◦ λ(w, v′)+ c ◦ λ(w′, v). Let 〈 , 〉 be some fixed inner product on Gλ relative to which
W ⊕ V ⊕ Z is an orthogonal direct sum and define α : Z∗ → Hom(V,W) by

〈α(c)v,w〉 := c ◦ λ(w, v) (5)

for all c ∈ Z∗, w ∈ W and v ∈ V . With this convention the linear map A : Z∗ →
so(W ⊕ V) is given by

A(c) =
[

0 α(c)

−α(c)′ 0

]
, (6)

where α(c)′ is the transposed map. Therefore, detA(c)2 = detα(c)′α(c) detα(c)α(c)′.
This is non-zero for some c if and only if α(c) is a bijection if and only if v → α(c)v is an
isomorphism of V with W∗. ✷

Remark 2.18. The map α is linear in c and the injectiveness of α(c) is characterized by the
non-vanishing of the sum of squared l× l minors of α(c), so if α(c) is injective for some c,
then α(c) is injective for all c in the complement of an algebraic set.

Remark 2.19. An alternative proof of the previous lemma is, by the characterization of
Remark 2.9(iv), a two-step nilpotent Lie algebra is almost non-singular if and only if
there exists µ ∈ G∗ such that dµ is a symplectic form on G/Z(G) � V ⊕ W . Since V
(respectively W) is clearly a dµ-isotropic subspace, its dµ-symplectic dual is contained in
W (respectively V). By symmetry, V � W∗.

Remark 2.20. The HR Lie algebra Gλ is obviously independent of its presentation.
A canonical way to fix this presentation is to take the presentation of Gλ given by shrinking
W (respectively V) by the left (respectively right) kernel of λ: Gλ � (W/ kerL λ) ⊕
(V/ kerR λ)⊕ Z ′ where Z ′ = Z ⊕ kerL λ⊕ kerR λ.

Definition 2.21. Let Gλ be an HR Lie algebra with dimW ≥ dimV . If the bilinear map
c ◦ λ � α(c) : V → W induces an injection of V → W∗ for some c ∈ Z∗ then the
presentation Gλ = V ⊕W ⊕Z will be said to be an injective presentation.

From the previous remark, it is clear that any HR Lie algebra admits an injective
presentation.

THEOREM 2.22. (Theorem 1.1(ii)) Let Gλ be a rational, HR-λ Lie algebra and G = Gλ

its associated Lie group. Then for all left-invariant metrics g on G, the geodesic flow of g
is Liouville integrable on T ∗(D\G) for all cocompact, discrete subgroups D.

Proof. Let G = V ⊕ W ⊕ Z be an injective presentation of G. From Lemma 2.1 and
the subsequent discussion, a generating set of D, denoted by w1, . . . , wk, v1, . . . , vl and
z1, . . . , zm exists where wi (respectively vi , zi) lie in (commutative!) subalgebras of G
isomorphic to W (respectively V , Z). Define 〈 , 〉 so that this basis of G is 〈 , 〉-orthonormal
and let µ = a + b + c ∈ W∗ ⊕ V∗ ⊕ Z∗ = G∗ be the coordinates of a covector relative
to the induced splitting of G∗. The left-invariant metric Hamiltonian associated with the
left-invariant metric g can be written as

2Hg = 〈a,Aa〉 + 2〈a,Bb〉 + 〈b,Cb〉 + 〈c,Dc〉, (7)
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where notation is abused and 〈 , 〉 denotes both the inner product on G and its various
restrictions. The transformations A,B,C and D are defined as previously. The vector field
XHg on T ∗G = G× G∗ is then

XHg =



ȧ = −α(c)[B′a + Cb], ẇ = Aa + Bb,

ḃ = α(c)′[Aa + Bb], v̇ = B′a + Cb,

ċ = 0, ż = Dc + 1
2 [v +w,Aa + Bb + B′a + Cb],

(8)

where ′ indicates the transpose. Clearly a + α(c)v (respectively b − α(c)′w) is a W∗
(respectively V∗) -valued first integral of XHg .

Let m(c) = detα(c)′α(c). Then {m(c) = 0} is precisely the set of c ∈ Z∗ for
which α(c) is not an injective map. By hypothesis, α(c) is injective for some c ∈ Z∗,
so m(c)  ≡ 0. There exists a unique left inverse L(c) of α(c) that is defined on the open,
dense set {m(c)  = 0} as follows. The symmetric operator s(c) = α(c)′α(c) is positive
definite on the set {m(c)  = 0} so there exists the inverse s(c)−1 = (α(c)′α(c))−1 on this
set; then L(c) := (α(c)′α(c))−1α(c)′. It is clear that on the set {m(c)  = 0}, L(c) is a
real-analytic function (rational, even) in c. Extend L to a function L : Z∗ → Hom(W,V)
by setting L(c) = 0 on the set {m(c) = 0}. With φ(·) = exp(−1/(·)2) the functions
fi := φ(m(c)) sin 2π〈L(c)a + v, vi 〉, i = 1, . . . , l, are seen to be smooth functions on
T ∗(D\G).

From Lemma 2.5 and equation (8), the functions c1, . . . , cm, h1, . . . , hl and the
functions f1, . . . , fl , form a commutative Poisson algebra of independent first integrals
of XHg . From Lemma 2.6 there exist k − l smooth sections from Z∗ to the kernel of A(c),
but since α(c) is injective almost everywhere, these sections are into the kernel of α(c)′.
These sections provide an additional k − l first integrals that are Casimirs of the Poisson
bracket on G∗ and so they are in involution with all other first integrals (see Lemma 2.7).
This gives m+ k + l = 1

2 dimT ∗(D\G) independent, involutive first integrals of XHg . ✷

Remark 2.23. The simplest case of Theorem 2.22 occurs when V,W,Z = R and λ = 1,
which gives the classical three-dimensional Heisenberg group. The 2n + 1-dimensional
Heisenberg group appears when V,W = Rn, Z = R and λ is the standard inner product
on Rn. The case where V = R, W,Z = Rn and λ is scalar multiplication of V on W
is studied in [12, 14], where it is shown that for n ≥ 2 the geodesic flows are Liouville
integrable and generically quasiperiodic and non-degenerate in the sense of KAM theory.

3. Wild first integrals
In this section we will prove Theorem 1.2(ii) that if H ∈ C2(T ∗M) is C2 close to an
integrable geodesic flow constructed in the previous sections and H is integrable, then the
first-integral map for H must be wild.

The proof relies on an important fact from convex geometry: if K is a compact strictly
convex subset of finite-dimensional vector space V and 0 ∈ K, then there is a compact
strictly convex set K∗ ⊂ V ∗ containing 0 that is naturally ‘dual’ to K—and K∗ is as
smooth as K. The duality of K and K∗ is, in fact, simply a reflection of the Legendre
transformation and it is involutive: K∗∗ = K (see [28, §3.2]).
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On the other hand, if a function f : V → R is C2, then f is a strictly convex function if
and only if for all x ∈ V , d2fx is a positive definite quadratic form. Clearly, if g ∈ C2(V )

is C2-sufficiently close to f on a compact, convex set K , then g|K is also a strictly convex
function.

The idea of our proof is if F is C2 close to a metric (or a mechanical) Hamiltonian, then
the sublevel sets of F are also fibre-wise compact strictly convex sets. That is, the sets
{F ≤ c} intersect each fibre T ∗

mM in a compact strictly convex set. Thus, the convex duals
of F ’s sublevels (which lie in TM) are also compact and strictly convex, so this allows us to
define a C2 Lagrangian on TM which is proper and strictly convex. Compactness implies
the Euler–Lagrange flow is complete, and strict convexity implies that the Euler–Lagrange
flow satisfies the Hopf–Rinow property. A theorem due to Taı̆manov is adapted here to
deduce that if F is tamely integrable, then π1(M) must have an Abelian subgroup of finite
index. This will prove that M cannot be a compact two-step nilmanifold.

All objects (maps, flows, manifolds, etc.) in this section will be C2 unless stated
otherwise.

3.1. Geometric simplicity and Hopf–Rinow. Let π : E → M be a fibre bundle and
φt : E → E a complete flow.

Definition 3.1. If, for each m ∈ M and each non-trivial [c] ∈ π1(M;m) there exists
p ∈ π−1(m) and a T > 0 such that γ (t) := πφtT (p), 0 ≤ t ≤ 1, is a closed curve
homotopic to c, then we say φt is a Hopf–Rinow flow.

We will say that a vector field is Hopf–Rinow if its flow is. Observe that if two flows
are orbitally equivalent and one is Hopf–Rinow, then so is the other.

Let us now state a result which we will use below. We have adapted the definition of
geometric simplicity that Taı̆manov uses in [52, 53].

Definition 3.2. (cf. [52, 53]) Let M be a C1 manifold, E a compact fibre bundle over M ,
φt : E → E a complete flow and suppose that E = G " L such that:
(GS1) G is closed, φt invariant and nowhere dense;
(GS2) for each p ∈ E and open neighbourhood U # p, there is an open neighbourhood

W of p, W ⊆ U , such that L∩W has finitely many path-connected components;
(GS3) L = ∐k

i=1 Li and each Li is an open path-connected component of L and is
homeomorphic to Tl × Dm (l +m = dimE).

Then we will say that φt is geometrically simple.

THEOREM 3.3. (cf. Taı̆manov [52, 53]) Let E be a compact fibre bundle over M . If φt :
E → E is Hopf–Rinow and geometrically simple, then π1(M) has a finite-index Abelian
subgroup.

In [52, 53], Taı̆manov assumes that φt is a geodesic flow on the unit tangent bundle, but
only the Hopf–Rinow property and geometric simplicity are used to prove the theorem;
the theorem stated here is an immediate consequence of his proof. Note also that the fibre
bundleE may have a boundary; the example we have in mind is the unit disk bundle in TM.
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3.2. Tame integrability. Let us recall the notion of tameness that was mentioned in the
introduction. We will say that a topological space is a polyhedron if it is homeomorphic
to a locally compact simplicial complex; in this case we will also say that the space is
triangulable. If K ⊂ L and L admits a triangulation that extends a triangulation of K ,
then we will say that the pair (K,L) is triangulable. A subset K ⊂ M is said to be
a tamely embedded polyhedron if there is a neighbourhood L ⊂ M of K , such that
(K,L) is triangulable. In other words, there is a triangulation of K that is extendable
to a neighbourhood of K in M .

Definition 3.4. Let F : M → N be a C1 map, S ⊂ N the critical-value set of F and
C = F−1(S). F is tame if: (T1) C is a tamely embedded polyhedron in M; and (T2)
(S, F (M)) is triangulable. If F is not tame, we say F is wild.

We say a Hamiltonian flow is tamely integrable if it has a proper first-integral map
which is a tame map; otherwise, we say it is wildly integrable.

If M is compact, M and N are real-analytic manifolds (possibly with boundary) and
F is a real-analytic map, then C (respectively S) is a compact subanalytic subset of M
(respectively S). A theorem of [33, 34] asserts that both (C,M) and (S, F (M)) are
triangulable (see [50, 51] for further references).

LEMMA 3.5. If φt : T ∗M → T ∗M is tamely integrable, ξ ⊂ T ∗M is a compact,
φt -invariant disk sub-bundle and φt |ξ is Hopf–Rinow, then there is a compact disk sub-
bundle E containing ξ such that φt |E is Hopf–Rinow and geometrically simple.

The following is inspired by a similar proof in [52].

Proof. Clearly, if ξ ⊂ E, E is invariant and φt |ξ is Hopf–Rinow, then φt |E is Hopf–Rinow.
Let J : T ∗M → Rm be a tame first-integral map for φt . Let C be the critical-point

set for J , S = J (C). Thus, C is a tamely embedded polyhedron in T ∗M and (S, Im J ) is
triangulable.

Let N be a compact polyhedral neighbourhood in Im J that contains J (ξ). Since ξ is
compact, the neighbourhoodN exists. Let E = J−1(N). Since J is proper, E is compact.

Let S(N) be the m − 1 skeleton of N and let G = J−1(S(N)), and L = E − G.
The invariance of G is obvious. Because J is tame and has at least one regular value,
the set S(N) contains all critical values of J |E and G contains all critical points of J |E.
Since J is continuous, G is closed. If intG  = ∅ then G would contain an open set of regular
points for J so J (G) would contain an open set, contradicting the fact that S(N) = J (G)

is nowhere dense. Hence G satisfies (GS1).
Since C has a polyhedral neighbourhood in T ∗M , by taking barycentric subdivisions,

(GS2) is easily seen to be satisfied for any point p ∈ C ∩ G. If p ∈ G − C, then p is a
regular point for J and J is a submersion on any sufficiently small neighbourhood of p.
Thus, any neighbourhood V of p contains a neighbourhood W homeomorphic to A × B

where B ⊂ Rm is a small open disk about J (p) and A is a small open disk about p in
the fibre J−1(J (p)). By taking barycentric subdivisions of N , we may assume that B is
the interior of a small complex containing p. Then B − S(N) ∩ B contains finitely many
path-connected components and so L ∩W has finitely many path-connected components,
which proves (GS2).
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Let D ⊂ N be the interior of a simplex in N . Since D contains only regular values of
J , J |J−1(D) → D is a proper submersion with a contractible image. Hence, it is a trivial
fibration. The compactness of E implies the number of connected components in J−1(D)

is finite, so J−1(D) is homeomorphic to a finite union of Tl × Dm. Since N is a compact
polyhedron, this proves that L is a finite, disjoint union of path-connected sets Li such that
Li � Tl × Dm. Thus (GS3) is true. ✷

3.3. Proof of Theorem 1.2(ii). Let us make the following observation.

LEMMA 3.6. If D < G is a discrete, cocompact subgroup of a connected, simply-
connected two-step nilpotent Lie group G, then D does not contain an Abelian subgroup
of finite index.

Proof. [Satya Mohit, personal communication] From the remarks at the beginning of §2,
there exist x1, x2 ∈ D such that [x1, x2]  = 1. Let z = [x1, x2]. Because G is two-step
nilpotent, [xk1 , xk2 ] = zk

2
for all k ∈ Z; because G is connected and simply connected, D

is torsion free so zk  = 1 for all k  = 0. Assume now that A < D is a finite-index Abelian
subgroup. Then there exists a k  = 0 such that xk1 , x

k
2 ∈ A. Then 1 = [xk1 , xk2 ] = zk

2  = 1.
Absurd. ✷

Let us now turn to the main result of this section.

Remark 3.7. Ck(T ∗M;R) is equipped with the topology of uniform convergence of all
derivatives up to order k on compact sets. A C2 open neighbourhood of H ∈ C2(T ∗M;R)

can be described as follows: let g be a complete metric on M with Levi–Civita connection
∇ and let | · | denote the extension of the norm induced by g to all tensors on M;
let ∇̄ denote the Levi–Civita connection of the Sasaki metric induced by g on T ∗M .
Let hessH(X, Y ) := ∇̄X∇̄YH − dH(∇̄XY ) for H ∈ C2 and smooth vector fields X,Y

on T ∗M . Given a compact set K ⊂ T ∗M and ε > 0, a C2 open neighbourhood of H then
consists of all C2 functions h such that supp∈K {|H(p) − h(p)|, |dH − dh|p, | hessH −
hessh|p} < ε.

Proof of Theorem 1.2(ii). Let Q be the set of compact two-step nilmanifolds from §2 and
let M ∈ Q. Suppose that H = T + V is an integrable C2 mechanical Hamiltonian on
T ∗M , with T (p) = 1

2g
−1(p, p) the kinetic term and V = V (m) the potential energy.

Let h > h0 = supm∈M V (m). For each h > h0 the sublevel set H−1((−∞, h]) is a
compact, C2, fibre-wise strictly convex submanifold-with-boundary of T ∗M that contains
the zero section. The boundary H−1(h) is a regular level set for H .

Fix some h > h0, let K = H−1((−∞, 2h]) and let 0 < ε < 1
2 (h− h0). Let UH be the

C2 open neighbourhood of H determined by K and ε, and let F ∈ UH .
For each l ∈ R let Kl := F−1((−∞, l]) ∩ K . If ε is sufficiently small, then for all

F ∈ UH , ∂Kh is a regular level for F |K , and Kh is a C2 submanifold-with-boundary of
T ∗M that is C2 close to H−1((−∞, h]). In particular, the zero section of T ∗M lies in Kh

and Kh is a compact, fibre-wise strictly convex set. Since strict convexity is a C2-open
property, it follows that for all l sufficiently close to h, Kl is a compact fibre-wise strictly
convex set that contains the zero section. By compactness, the fibre-wise strict convexity
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of Kl and the fact that it contains the zero section, for each p ∈ T ∗
mM , p  = 0, there is a

unique λ > 0 such that λp ∈ ∂Kl . Define:

Fl (m, p) := λ−1 (9)

for all m ∈ M and non-zero p ∈ T ∗
mM . Because Kl is a compact fibre-wise strictly convex

C2 submanifold of T ∗M , Fl is C2 off the zero section and extends as a C0 function to
all of T ∗M . In addition, Fl is positively homogeneous of degree 1. (See [28, §3.2], Fl is
analogous to the gauge function defined there.)

Because F−1
l (1) = ∂Kl = F−1(l)∩K , and ∂Kl is a regular level for both Hamiltonians,

the flow of XFl |∂Kl is a time change of XF |∂Kl .
Let Ql = 1

2 F2
l , which is C2 off the zero-section and C1 everywhere. The function

Ql is fibre-wise strictly convex, so we perform a Legendre transform with respect to Ql .
Let Gl : TM → R be the Legendre transform of Ql ; it is non-negative, C2 off the zero-
section, C1 everywhere, fibre-wise strictly convex and positively homogeneous of degree 2.
The function Ll := √

2Gl therefore determines a Finsler metric on M . (See [28, §3.2],
Ll is analogous to the support function defined there.)

By the Hopf–Rinow Theorem for Finsler metrics (see [28, Theorem 2, §4.2]), the
Finsler metric induced by Ll is complete. Hence, the Euler–Lagrange flow of Gl is
Hopf–Rinow. Since the Euler–Lagrange flow of Gl is conjugate to the Hamiltonian flow
of Ql , the latter is also Hopf–Rinow. Therefore, the flow of XQl

and hence XFl is
Hopf–Rinow. Since the flow of XFl |Fl

−1(c) is orbitally equivalent to that of XFl |∂Kl for
any c > 0, it follows that XFl |∂Kl is Hopf–Rinow. Hence, XF |∂Kl is Hopf–Rinow.

Since the above arguments hold for l < h, l sufficiently close to h, it follows that XF |Kh

is Hopf–Rinow. Recall that Kh is a compact disk bundle over M .
If XF is tamely integrable on T ∗M , then Lemma 3.5 implies that XF |E is geometrically

simple for some compact, invariant disk bundle E containing Kh. Theorem 3.3 implies
that π1(M) is almost Abelian. By hypothesis, the manifold M has a two-step nilpotent
fundamental group. Absurd. ✷

Remark 3.8.
(i) The first integral maps constructed in §2 are wild; Theorem 1.2(ii) shows that this

wildness is rooted in the topological complexity of the two-step nilmanifold M .
(ii) This proof also demonstrates that the integrable geodesic flows exhibited on the two-

step solvmanifolds in [9] and the n-step nilmanifolds in [13] also possess a C2 open
neighbourhood which is devoid of tamely integrable Hamiltonian systems.

4. Monodromy of the Liouville Foliation
This section studies the bifurcations of the Liouville tori and the monodromy of the
Liouville foliaton induced by the Liouville-integrable vector field XHg on T ∗(D\G)

where G is the 2n + 1-dimensional Heisenberg group. In [29] it is proven that if D is
a discrete cocompact subgroup of the 2n + 1-dimensional Heisenberg group, then there
exist positive integers 1 ≤ k1| · · · |kn and generators w1, . . . , wn, v1, . . . , vn, z1 such that
D = 〈w1, . . . , vn, z1 : [wi, vi ] = z

ki
1 for all i = 1, . . . , n and all other commutators are

trivial 〉. We identify W (respectively V,Z) with the span of the wi (respectively vi ,z1).
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In the notation of the previous section:

XHg =



ȧ = −c[B′a + Cb], ẇ = Aa + Bb,

ḃ = c[Aa + Bb], v̇ = B′a + Cb,

ċ = 0, ż = Dc + 1
2 [w + v,Aa + Bb + B′a + Cb].

(10)

Some obvious first integrals of XHg are given by: c, fi = φ(c) sin 2π((bi/c) − wi).
There is a unique symplectic linear transformation (a, b) → (r, s) that block diagonalizes
2Hg = 〈a,Aa〉+2〈a,Bb〉+〈b,Cb〉+Dc2 = ∑n

i=1 µi(r
2
i +s2

i )+Dc2. This transformation
preserves the Poisson bracket on G∗. Then hi = 1

2r
2
i + 1

2 s
2
i for i = 1, . . . , n are first

integrals for XHg . The family c, f1, . . . , hn is a complete, involutive, independent family
of first integrals for XHg .

Remark 4.1.

(i) The functions gi = φ(c) sin 2π((ai/c)+vi) are additional, independent first integrals
that are not in involution with the family fi .

(ii) The constants µi may be made periodic functions of vi , an operation that
preserves the Liouville integrability of XHg . There is, therefore, an explicit,
infinite-dimensional parametrized family of Liouville integrable geodesic flows on
T ∗(D\G).

The following lemmas are clear. The singular fibres of types I, II and III (see the
introduction) are the singular sets

⋃n
i=1 Hi ,

⋃n
i=1 Fi and O , respectively.

LEMMA 4.2. Let J := (c, h1, . . . , hn, f1, . . . , fn) : T ∗(D\G) → R × Rn
≥0 × Rn be the

first integral mapping. Let Hi := {hi = 0}, Fi := {fi = ±φ(c)} and O := {c = 0}. Then

crit(J ) = O ∪
( n⋃

i=1

Hi

)
∪

( n⋃
i=1

Fi

)
. (11)

LEMMA 4.3. Let L denote the critical-value set of J , R denote the regular-value set and
let Im J = L ∪ R. Then

Im J = {(α, β, γ ) ∈ R × Rn
≥0 × Rn : −φ(α) ≤ γi ≤ φ(α), i = 1, . . . , n}, (12)

L = (O ∩ Im J ) ∪
( n⋃

i=1

Hi ∩ Im J

)
∪

( n⋃
i=1

Fi ∩ Im J

)
(13)

where O is hyperplane defined by α = 0, Hi = {βi = 0} and Fi = {(α, β, γ ) : γi =
±φ(α)}.

Let Lr := O ∪ (⋃n
i=1 Hi

)
, and define the map ( := (c, h1, . . . , hn, θ1, . . . , θn)

where θj := (bj /c) − wj mod 1. Then ( : T ∗(D\G) − Lr → R × Rn
>0 × Tn is a

proper, real-analytic submersion with Lagrangian tori as fibres, hence ( is a real-analytic
Lagrangian fibration. The monodromy of the bundle is determined by the action of the
fundamental group of the base B = R×Rn

>0 ×Tn on the fibres. The most straightforward
way to see this action is to lift the Lagrangian fibration ( to a Lagrangian fibration
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(̃ : S̃r → B̃ = R × Rn
>0 × Rn. The following diagram realizes this lifting:

S̃r
N−→ Sr

(̃ ↓ ↓ (

B̃
π−→ B

where Sr = T ∗(D\G) − Lr . The covering N : S̃r → Sr is obtained by taking
the Abelian subgroup F = 〈v1, . . . , vn, z〉 of D and forming the covering N :
T ∗(F\G) → T ∗(D\G). Then one takes S̃r = N−1(Sr ) and observes that the map
(̃ = (c, h1, . . . , hn,O1, . . . ,On) with Oi = (bi/c) − wi is a proper, real-analytic
Lagrangian fibration. Since the image of (̃ is contractible, S̃r is a trivial T2n+1 bundle.
The covering map π : B̃ → B is the map (α, β, γ ) → (α, β, γ mod Zn).

The action of π1(B) on the bundle ( is obtained by identifying the fibres of (̃ under
the action of D on S̃r . Because F ✁ D is normal in D, D acts on the left on F\G by
d ∗ Fg := Fdg for all d ∈ D and g ∈ G. The action of F is clearly trivial, and so we only
need to consider the action of D/F � 〈w1, . . . , wn〉 on T ∗(F\G). It is clear that π1(B) is
naturally identified with D/F .

Let us now fix a basis of one-cycles for the fibres of the map (̃ in S̃r as follows. Let
σ = (α, β1, . . . , βn, γ1, . . . , γn) be the coordinates on R×Rn

>0×Rn and define the section
of the bundle (̃ by:

ξ(σ ) =



c = α, z = 0 + Z,

ri = 0, si = √
2βi,

wi = bi(r, s)

c
− γi, vi = 0 + Z.

(14)

Let g = (w, v, z) and P = (r, s, c) and:

ci(t,Fg, P ) := ((tvi ) ∗ Fg, P ),

cn+1(t,Fg, P ) := ((tz1) ∗ Fg, P ),

cn+i+1(t,Fg, P ) := (Fg, (r + ei(ri(cos 2πt − 1)+ si sin 2πt),

s + ei(ri sin 2πt + si (cos 2π − 1)t), c)), (15)

for i = 1, . . . , n; ei is the ith standard basis vector of Rn. Note that 0, vi, z1 ∈ F so the ci
do define closed loops in T ∗(F\G).

Let Cj (t, σ ) := cj (t, ξ(σ )), t ∈ R/Z, which define a basis of π1((̃
−1(σ ); ξ(σ ))

that smoothly varies with σ . We will let [Cj ](σ ) denote the homotopy class in
π1((̃

−1(σ ); ξ(σ )) of Cj(t, σ ). The action of wiF on [Cj ](σ ) is given by left translation.
The only component of (̃ altered by translation by wiF is Oi : it is decreased by 1. Thus,
the translated cycle lies in π1((̃

−1(α, β, γ − ei); ξ(α, β, γ − ei)). A simple calculation
using the multiplication structure on G shows that

wiF ∗ [Cj ](α, β, γ ) = [Cj ](α, β, γ − ei)+ δij ki[Cn+1](α, β, γ − ei) (16)

for i = 1, . . . , n and j = 1, . . . , 2n+ 1. This proves

THEOREM 4.4. (Theorem 1.3) The bundle ( has the monodromy group isomorphic to
Zn � D/F . In particular, there do not exist global action-angle coordinates of ( :
T ∗(D\G) −Lr → R × Rn

>0 × Tn [21].
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Remark 4.5. Lemma 4.2 shows that the Liouville foliations of any two left-invariant
metric Hamiltonians are isomorphic. That is, if H and H ′ are two left-invariant
metric Hamiltonians and J (J ′) is the first-integral map for H (H ′), then there exists a
diffeomorphism φ : T ∗(D\G) → T ∗(D\G) such that J ′ = J ◦ φ. On the other hand, a
calculation shows that if D is normalized to 1 and the constants µi of H (µ′

i of H ′) satisfy∑n
i=1 µi  = ∑n

i=1 µ
′
i , then there does not exist a homeomorphism ϕ : T ∗(D\G) →

T ∗(D\G) such that ϕ maps the trajectories of XH onto those of XH ′ . That is, there is
no orbital equivalence of these geodesic flows. This compares with the situation observed
by Bolsinov and Fomenko, who show that the geodesic flow on ellipsoids E, E′ ⊂ R3

are orbitally equivalent iff the ellipsoids are similar while the Liouville foliations of the
geodesic flows on all ellipsoids are isomorphic [8].

5. htop(/) = 0
In this section, Theorem 1.4 is proven. The proof of this theorem follows the idea in [12].
An incorrect proof of the vanishing of the topological entropy for a left-invariant geodesic
flow on a nilmanifold occurs in [43]. The author there makes the assumption that the
metric’s exponential map coincides with the group’s, which is incorrect. In [17], the present
author constructs examples of three-step nilmanifolds with positive entropy, left-invariant
geodesic flows. To prove Theorem 1.4, most of the work is done by the following two
theorems due to Bowen [10].

THEOREM 5.1. [10] Let T : X → X be a continuous endomorphism of the compact
metric space X and suppose that f : X → Y is a continuous endomorphism of compact
metric spaces that is T -invariant. Then

htop(T ) = sup
y∈Y

htop(T |f−1(y)).

THEOREM 5.2. [10] Let T : X → X be a continuous endomorphism of the compact
metric space X and let G be a compact topological group that acts freely as a group of
automorphisms of X. Let π : X → Y be the orbit map. If T is G-invariant and S : Y → Y

is the endomorphism of Y induced by T , S ◦ π = π ◦ T , then

htop(T |X) = htop(S|Y ).
It is recalled that the topological entropy of a geodesic flow φt : T ∗M → T ∗M

is the topological entropy of the time-1 map of the geodesic flow restricted to the unit
cotangent bundle. In this section, notation will be abused and the topological entropy of
a (complete) vector field will be understood to mean the topological entropy of the time-1
map of its flow.

The equations of motion for the left-invariant Hamiltonian H : T ∗G → R are given by
(equation (3)):

XH(x, y, p, q) =
{
ẋ = R

1
2 v, v̇ = −B(q)v,

ẏ = Sq + 1
2 [x,R

1
2 v], q̇ = 0,

(17)
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where v = R
1
2 p. The vector field XH on T ∗(D\G) restricts to the unit cotangent bundle

{H = 1
2 }, which is compact. By Theorem 5.1, it suffices to consider the restriction

of XH to Eq := {H = 1
2 , q = constant} to determine the topological entropy of

the geodesic flow. The vector field XH |Eq is invariant under the action of the compact
symmetry group Z(D)\Z(G) � Tz where z = dimZ(G). This symmetry group acts
freely on Eq—because it is the cotangent lift of the right action of Z(G) on D\G—so
the space Mq := Eq/T

z is a manifold. Indeed, Mq = Th × Sz−1
r in the case where

r2 = 1 − 〈q, Sq〉 > 0, Skr is the k-dimensional sphere of radius r > 0 and Mq = Th in the
case r2 = 0. The induced vector field on Mq in the first case is

YH,q(x, p) = {ẋ = R
1
2 v, v̇ = −B(q)v, (18)

where notation is abused and the coordinates (x, v) are employed on this reduced space; in
the second case, the induced vector field YH,q ≡ 0. It is clear that only the first case where
r > 0 is relevant. In this case, the vector field YH,q is invariant under the free action of the
torus Th on Mq which acts by θ : (x, v) → (x + θ, v). The manifold Mq can be reduced
by this action to obtain Mq/T

h = Sz−1
r . The vector field YH,q descends to

ZH,q(p) = {v̇ = −B(q)v. (19)

Applying Bowen’s Theorem 5.2 twice yields that the topological entropy of the time-1
map of XH |Eq equals the topological entropy of the time-1 map of ZH,q . Because B(q) is
skew-symmetric, the time-1 map of ZH,q is an isometry, so its topological entropy is zero.
That is

htop(XH |S∗(D\G)) = sup htop(XH |Eq) = suphtop(YH,q) = suphtop(ZH,q) = 0.

6. Non-integrable geodesic flows on G3

6.1. A remark on non-integrability. This section offers a generalized definition of
integrability inspired by that of Bogoyavlenskij [6, 7]. A criterion is developed for
manifolds with a non-commutative fundamental group that allows one to demonstrate the
complete absence of flow-invariant toroidal neighbourhoods.

Definition 6.1. Let φt : M → M be a one-parameter group of homeomorphisms of M
(a flow). Then φt is locally integrable at m ∈ M if there exists a neighbourhood U

of m and a homeomorphism h : U ↪→ Ds × Tr such that h ◦ φt ◦ h−1 = Tt where
Tt (x, θ) = (x, θ + tω(x)) and ω : Ds → Rr is a continuous map.

In the following, [c] will denote the homotopy class of a curve and c̄ will denote its free
homotopy class.

Definition 6.2. Let F(M) denote the set of free homotopy classes of curves in M , M an
arc-wise connected space. Then c̄, c̄′ ∈ F(M) commute if for some m ∈ M , there exists
[c], [c′] ∈ π1(M;m) such that [c] ∗ [c′] = [c′] ∗ [c] and [c] ∈ c̄, [c′] ∈ c̄′. Let C(c̄;M)

denote the set of free homotopy classes in M that commute with c̄.

We note that the commutativity of free homotopy classes is well-defined: if n ∈ M is
a second point then π1(M; n) is isomorphic to π1(M;m) and the isomorphism preserves
free homotopy classes.

https://doi.org/10.1017/S0143385702001517 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385702001517


Wild first integrals 791

LEMMA 6.3. Let φt : M → M be a one-parameter group of homeomorphisms of M that
is locally integrable at m ∈ M . Then there is an open, φt -invariant neighbourhood U of
m such that if n, n′ ∈ U are periodic points of φt then the free homotopy classes of these
orbits commute.

Proof. The neighbourhood U is homeomorphic to Ds × Tr , so π1(U ;m) � Zr and any
closed curve c : T1 → U is freely homotopic to a closed curve based at m. Hence,
C(c̄;U) = F(U). Therefore, the free homotopy classes of φt ’s periodic orbits in U all
commute. ✷

Remark 6.4. The contrapositive of Lemma 6.3 says simply that if m ∈ M is a periodic
point of the flow φt and in any neighbourhoodU of m, there exists a periodic point m′ such
that the free homotopy classes of the periodic orbits through m and m′ do not commute,
then φt is not locally integrable at m.

6.2. An example: non-integrable geodesic flows on two-step nilmanifolds. Let G =
G3 = (R3 ×12(R3), ∗) with multiplication on G defined by

(x, y) ∗ (x ′, y ′) := (x + x ′, y + y ′ + 1
2x ∧ x ′),

where ∧ is the exterior product in R3. By choosing the standard basis in R3, 12(R3)

may be identified with R3 and ∧ may be identified with the cross product. G may also be
viewed as the extension 0 → 12(R3) → G → R3 → 0.

6.2.1. Discrete, cocompact subgroups of G.

LEMMA 6.5. Let D be a cocompact, discrete subgroup of G. Then for some k ∈ Z3+,
k1|k2|k3, there is an automorphism φ : G → G such that φ(D) = D(k) where

D(k) : = 〈a1, a2, a3, b1, b2, b3 : [a1, a2] = b
k3
3 ,

[a2, a3] = b
k1
1 , [a3, a1] = b

k2
2 , [bi, ·] = 1〉.

The generators of D(k) are ai := (ei, 0) and bi := (0, k−1
i ei), where ei are the standard

basis vectors of R3.

The proof of this lemma is straightforward. Most important for our purposes is that it
can be assumed that D = D(k) contains the subset Z3 × Z3.

6.2.2. A family of left-invariant geodesic flows. Left-trivialization of the cotangent
bundle T ∗G produces the identification T ∗G � R3 × R3 × R3 × R3 with coordinates
(x, y, p, q). A Riemannian metric g on G naturally induces a Hamiltonian on T ∗G via
the Legendre transform: F : V ∈ TxG → P = gx(V, ·) ∈ T ∗

x G. The solutions
of Hamilton’s equations on T ∗G for the Hamiltonian 2H(x, P ) = gx(F

−1P,F−1P)

project to g-geodesics on G. On T ∗G, a left-invariant metric has the Hamiltonian
2H = 〈p,Ap〉 + 2〈p,Bq〉 + 〈q,Cq〉 where 〈 , 〉 is the Euclidean inner product on R3

and A,B,C are symmetric 3 × 3 matrices. The left-invariant Hamiltonian

2H := |p|2 + 1

2π
µ|q|2, (20)
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where µ ∈ Q and | · | is the Euclidean norm on R3, yields the vector field:

XH :=


ṗ = A(q)p, q̇ = 0,

ẋ = p, ẏ = 1

2π
µq + 1

2
x ∧ p.

(21)

The matrix A(q) is defined by A(q)p = q ∧ p. Let φt denote the flow of XH on T ∗G and
let /t denote the induced flow on T ∗(D(k)\G).

6.2.3. Proof of the non-integrability of /t .

LEMMA 6.6. Let 0  = l ∈ Z3, |l| ∈ Z. Let Ql be the set of (x, y, p, q) ∈ T ∗G for which
there exists t ∈ R and m ∈ Z3 such that φt(x, y, p, q) = (x + l, y + m + 1

2 l ∧ x, p, q).
Then Pl := ⋃

a∈Z Qal is dense in T ∗Gl := {(x, y, p, q) : q ∈ spanR{l}}.
COROLLARY 6.7. Let P := ⋃

l∈Z3,|l|∈Z Pl . Then P is a dense subset of T ∗G.

Proof of Corollary 6.7. Assuming Lemma 6.6, it is only necessary to show that⋃
l∈Z3,|l|∈Z T ∗Gl is dense in T ∗G. This is equivalent to the density of rational points

on the unit sphere in R3. By stereographic projection, this is clear. ✷

We now prove the following theorem, which clearly implies Theorem 1.5.

THEOREM 6.8. The flow /t is non-integrable in the sense of Definition 6.1 on any open
subset U of T ∗(D(k)\G).

Proof. For a path-connected topological space X, the free homotopy classes of maps
C0(T1,X) are in one-to-one correspondence with the conjugacy classes of the fundamental
group π1(X; x) for an arbitrary point x ∈ X. In the case of T ∗(D(k)\G), its fundamental
group π1(T

∗(D(k)\G); (D(k)e, P )) � D(k) in the natural way; it follows that the
free homotopy classes of maps C0(T1; T ∗(D(k)\G)) can naturally be identified with the
conjugacy classes of D(k). This identification can be made explicit as follows. Let c ∈ c̄

be a loop in the free homotopy class c̄ that is based at (D(k)e, 0), let c̃ : [0, 1] → T ∗G be
the unique lift of c such that c̃(0) = (e, 0) ∈ T ∗G; because c(1) = c(0), c̃(1) = d ∈ D(k).
The free homotopy class c̄ is then identified with the conjugacy class of d: c̄ ≡ {gdg−1 :
g ∈ D(k)}. This identification is used in the proof.

Assume Lemma 6.6 and Corollary 6.7. Then, if U is an open subset of T ∗(D(k)\G),
there exists n, n′ ∈ U such that the flow /t is periodic through each point and the free
homotopy classes of these periodic orbits (call them c̄ and c̄′) are c̄ = {(l,m+h) : (0, h) ∈
[D(k),D(k)]} and c̄′ = {(l′,m′ + h) : (0, h) ∈ [D(k),D(k)]} for some l, l′ ∈ Z3 such
that l ∧ l′  = 0. Therefore, the free homotopy classes c̄ and c̄′ do not commute; now apply
Theorem 6.3. ✷

Remark 6.9. Because the geodesic flow onH−1(a) for a > 0 is a time reparametrization of
the geodesic flow on H−1( 1

2 ), this proves the absence of any open sets U ⊂ S∗(D(k)\G)

that are fibred by invariant tori.

Proof of Lemma 6.6. Fix 0  = l ∈ Z3 such that |l| ∈ Z. It may be assumed that the vertical
momentum q  = 0, since this is a dense subset of T ∗G. Let p = u + v be the orthogonal
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decomposition of p relative to q:

u = u(p, q) = 〈p, q〉
〈q, q〉 q and v = v(p, q) = p − u.

(Recall that we have identified R3 ≡ 12(R3) via the Euclidean inner product.) The set of
p such that u, v  = 0 is a dense subset of T ∗G, so it will be assumed that u, v  = 0. In order
that φt(x, y, p, q) = (x + l, y +m+ 1

2 l ∧ x, p, q) it is necessary that there exist t, c ∈ R

such that

expA(q)t = 1, (22)

tu = l, (23)

q = cl. (24)

The skew-symmetric matrix A(q) is not invertible on R3; nonetheless, its restriction to
spanR{q}⊥, the orthogonal complement to the subspace spanned by q , is invertible. In the
sequel, A(q)−1 will denote the inverse on spanR{q}⊥. Then,

m = x ∧ l + l ∧A(q)−1v + 1

2
tA(q)−1v ∧ v + t

µ

2π
cl. (25)

There is a redundancy in the parameters due to the fact that the flow φt on different
energy levels is simply a reparametrization of the flow on S∗G. For this reason, it can be
assumed that |q| = 1; then t = 2πn for some n ∈ Z, c = |l|−1 and A(q)−1 = −A(q) =
−|l|−1A(l). Therefore,

m = [x + |l|−1A(l)v] ∧ l + πn|l|−1v ∧ A(l)v + nµ|l|−1l. (26)

The former term lies in spanR{l}⊥ while the latter two terms lie in spanR{l}. Let L :=
spanQ{l} be the rational span of l and L⊥ be the rational subspace that is orthogonal
to L. The set of p = u + v such that u ∈ (1/π)L and v ∈ (1/

√
π)L⊥ is dense in R3.

Then πn|l|−1v ∧ A(l)v ∈ L for p in a dense set and, for v fixed, there is a dense set of x
such that [x + |l|−1A(l)v] ∧ l ∈ L⊥.

Therefore, in a neighbourhood of any point (x ′, y ′, p′, q = |l|−1l), there exists an
(x, y, p, q = |l|−1l) such that m ∈ L ⊕ L⊥ = Q3. By taking some multiple al

of l for a ∈ Z and taking n ∈ Z large enough (without altering the starting point
(x, y, p, q = |l|−1l)), the two components of m can therefore be made to lie in Z3 and
so m ∈ Z3. ✷

Remark 6.10. (i) This proof uses only two properties of G: (i) for µ,µ′ ∈ G∗ in general
position, the sum of the stabilizer subalgebras Gµ + Gµ′ is not a commutative subalgebra;
(ii) the periodic points of /t are dense in T ∗(D(k)\G). Eberlein, Lee and Park, and
Mast [22, 39, 44] have studied a question connected with (ii): given a left-invariant metric
g on G, when are the periodic points of the quotient geodesic flow on T ∗(G\G) dense for
all discrete, cocompact subgroups G? Let us note that the metric defined in equation (20)
does not satisfy this property. Let α = diag(u1, u2, u3) satisfy detα = 1; let 12α denote
the linear map on 12(R3) induced by α and let φ = diag(α,12α). The linear map φ

is an automorphism of G3 for all such α. Assume that u1, u2 ∈ R are chosen so that
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Q < Q(u1) < Q(u1, u2) are transcendental field extensions and let G = φ(D(k)) for
any k. Then the set of periodic points in T ∗(G\G3) of the geodesic flow of equation (20)
is nowhere dense. Note the contrast with the almost non-singular nilpotent Lie groups:
a left-invariant geodesic flow on one of these Lie groups has a dense set of periodic
points on one compact quotient if and only if the periodic points are dense on all compact
quotients [22, 39]. We believe that this uniformity across compact quotients is equivalent
to integrability in the two-step case.

7. Concluding comments
In this paper, we have seen that two wide classes of two-step nilmanifolds admit integrable
geodesic flows. The integrability of these left-invariant geodesic flows has been seen to
depend crucially on the geometric properties of the coadjoint orbits of the covering Lie
groups, G. Specifically, both almost non-singular and HR Lie groups have the property
that if µ,µ′ ∈ G∗ are in general position, then Gµ+Gµ′ is a commutative subalgebra of G.
That is, there is an Abelian subgroup A such that for µ ∈ G∗ in general position, Gµ ⊂ A.
A is necessarily normal in G.

If H : T ∗G → R is a metric Hamiltonian, then how many first integrals can be
found for H that push down to a quotient T ∗(D\G)? Clearly, if i is the index of G,
then i = dimG − dimO(µ) Casimirs of { , } on G∗ push down. When H is quadratic,
an additional n − 1

2 i quadratic integrals push down where n = dimG. If we take the
momentum map ψ(g,µ) = Ad∗gµ of the left action of G on T ∗G, then ψ is a first integral
of a left-invariant Hamiltonian H . The question then becomes to what extent can ψ be
‘pushed down’ to T ∗(D\G). Let us note that we want to find functions f : G∗ → R

such that f ◦ ψ is D invariant. Because ψ(Dg,µ) = {Ad∗dgµ : d ∈ D}, this is
equivalent to studying the action of D on G∗. Now, O(µ) � G/Gµ � H/Hµ where
H = G/Z(G) and Hµ = Gµ/Z(G), so D\O(µ) � E\H/Hµ where E = D/Z(D).
In our case, E\H � Tp and Hµ acts on this torus by translation, so we can form the
projection E\H/Hµ → E\H/Hµ � Tlµ where Hµ is the closure of E\Hµ in E\H and
lµ = dim Hµ.

In general, one expects that lµ will jump around as µ varies and the rationality properties
of Hµ relative to E change. There is an exceptional case, however, when Gµ ≤ A

for µ ∈ G∗ in general position and A is an Abelian subgroup. Then Hµ ⊂ B, where
B is the closure of E\B in the torus E\H and B = A/Z(G). One has the projection
Tp � E\H/Hµ → E\H/Hµ → E\H/B � Tl . Observe that l is a geometric-algebraic
invariant of the pair (D,G) and that E\H/B � Tl is a Poisson manifold, the rank of which
is constant for µ in general position.

In this special case, then, one can construct an algebra of integrals on T ∗(D\G) whose
dimension is 1

2 (n+ i)+ p − l where p = dimH (see §2). The dimension of the centre of
this algebra is 1

2 (n + i)+ s where s is dominated by the dimension of a maximal Abelian
subalgebra of C∞(E\H/B). Letting i = q+j where q = dimZ(G), we get the condition
that

s = l − j (27)

in order for H to be integrable in the non-commutative sense. In §2 we studied the special
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case where l = j = 0. In order for H to be Liouville integrable, one has the condition that

p + j = 2l. (28)

In §2.4, we studied this case.
All of these considerations suggest that the study of integrable left-invariant

Hamiltonians on T ∗(D\G) for G a simply connected Lie group and D a discrete subgroup
of G, reduces to a simultaneous investigation of the integrability of the Euler equations on
G∗ and the coadjoint action of D on G∗. With this idea we are able to prove the following.

THEOREM 7.1. Let C : T ∗SL2;R → R denote the Casimir, C(g, p) = trace p2,
D ≤ SL2;R be a discrete subgroup and H : T ∗SL2;R → R be a smooth, left-
invariant function. Then H is both Liouville and non-commutatively integrable on the
open submanifold {C > 0} in T ∗(D\SL2;R).

In addition, if D is a lattice subgroup and µ is a left-invariant probability measure
on S∗(D\SL2;R), then for any ε > 0 there exists metric Hamiltonians H± :
T ∗(D\SL2;R) → R such that the µ-measure of the set of XH±-invariant Liouville tori
on S∗(D\SL2;R) is great than or equal to 1 − ε (respectively less than or equal to ε).

Details of this will appear elsewhere.
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(4) 27(5) (1994), 611–660.

[23] P. Eberlein. Geometry of 2-step nilpotent groups with a left invariant metric. II. Trans. Amer. Math. Soc.
343(2) (1994), 805–828.

[24] L. H. Eliasson. Normal forms for Hamiltonian systems with Poisson commuting integrals—elliptic case.
Comm. Math. Helv. 65(1) (1990), 4–35.

[25] A. T. Fomenko. A Morse theory for integrable Hamiltonian systems. Dokl. Akad. Nauk SSSR 287(5)
(1986), 1071–1075.

[26] A. T. Fomenko. The topology of surfaces of constant energy of integrable Hamiltonian systems and
obstructions to integrability. Izv. Akad. Nauk SSSR Ser. Mat. 50(6) (1986), 1276–1307, 1344.

[27] A. T. Fomenko. Symplectic topology of completely integrable Hamiltonian systems. Usp. Mat. Nauk
44(1(265)) (1989), 145–173, 248.

[28] M. Giaquinta and S. Hildebrandt. The Hamiltonian formalism. Calculus of Variations. II. Springer, Berlin,
1996.

[29] C. S. Gordon and E. N. Wilson. The spectrum of the Laplacian on Riemannian Heisenberg manifolds.
Michigan Math. J. 33(2) (1986), 253–271.

[30] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector
Fields. Springer, New York, 1990.

[31] V. Guillemin and S. Sternberg. On collective complete integrability according to the method of Thimm.
Ergod. Th. & Dynam. Sys. 3(2) (1983), 219–230.

[32] V. Guillemin and S. Sternberg. Multiplicity-free spaces. J. Diff. Geom. 19(1) (1984), 31–56.
[33] R. M. Hardt. Stratification of real analytic mappings and images. Invent. Math. 28 (1975), 193–208.
[34] Robert M. Hardt. Triangulation of subanalytic sets and proper light subanalytic maps. Invent. Math. 38(3)

(1976/77), 207–217.
[35] H. Ito. Action-angle coordinates at singularities for analytic integrable systems. Math. Z. 206(3) (1991),

363–407.
[36] A. Kaplan. On the geometry of groups of Heisenberg type. Bull. London Math. Soc. 15(1) (1983), 35–42.
[37] M. P. Kharlamov. Bifurcation of common levels of first integrals of the Kovalevskaya problem. Prikl.

Mat. Mekh. 47(6) (1983), 922–930.
[38] M. P. Kharlamov. Topological analysis of classical integrable systems in the dynamics of a rigid body.

Dokl. Akad. Nauk SSSR 273(6) (1983), 1322–1325.

https://doi.org/10.1017/S0143385702001517 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385702001517


Wild first integrals 797

[39] K. B. Lee and K. Park. Smoothly closed geodesics in two-step nilmanifolds. Indiana Univ. Math. J. 45(1)
(1996), 1–14.

[40] J. F. Torres Lopera. The cohomology and geometry of Heisenberg–Reiter nilmanifolds. Differential
Geometry, Pensicola 1985. Springer, Berlin, 1986, pp 292–301.

[41] A. I. Malcev. On a class of homogeneous spaces. Amer. Math. Soc. Translation 1951(39) (1951) 33.
[42] S. V. Manakov. A remark on the integration of the Eulerian equations of the dynamics of an n-dimensional

rigid body. Funkcional. Anal. i Priložen. 10(4) (1976), 93–94.
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[51] M. Shiota. Thom’s conjecture on triangulations of maps. Topology 39(2) (2000), 383–399.
[52] I. A. Taı̆manov. Topological obstructions to the integrability of geodesic flows on nonsimply connected

manifolds. Izv. Akad. Nauk SSSR Ser. Mat. 51(2) (1987), 429–435, 448.
[53] I. A. Taı̆manov. Topology of Riemannian manifolds with integrable geodesic flows. Trudy Mat. Inst.

Steklov., 205(Novye Rezult. v Teor. Topol. Klassif. Integr. Sistem) (1994), 150–163.
[54] A. Thimm. Integrable geodesic flows on homogeneous spaces. Ergod. Th. & Dynam. Sys. 1(4) (1981)

(1982), 495–517.
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