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The Turán number of a graph H , ex(n,H), is the maximum number of edges in any graph on

n vertices which does not contain H as a subgraph. Let Pl denote a path on l vertices, and

let k · Pl denote k vertex-disjoint copies of Pl . We determine ex(n, k · P3) for n appropriately

large, answering in the positive a conjecture of Gorgol. Further, we determine ex(n, k · Pl)

for arbitrary l, and n appropriately large relative to k and l. We provide some background

on the famous Erdős–Sós conjecture, and conditional on its truth we determine ex(n,H)

when H is an equibipartite forest, for appropriately large n.

1. Introduction

Our notation in this paper is standard (see, e.g., [3]). Thus G ∪ H denotes the disjoint

union of graphs G and H , and k · G denotes k disjoint copies of G. We write G + H for

the join of G and H , the graph obtained from G ∪ H by adding edges between all vertices

of G and all vertices of H , Kt for the complete graph on t vertices, Et for the empty graph

on t vertices, and Mt for a maximal matching on t vertices; that is, the graph on t vertices

consisting of � t
2
� independent edges. We will use N(S) to denote the neighbourhood of

the vertex set S , those vertices which are adjacent to some element of S . We also take this

opportunity to point out that unless explicitly stated, any graph named G is assumed to

be on vertex set V = [n] and edge set E; we also make no requirement that the subgraphs

we find be induced.

The Turán number, ex(n,H), of a graph H is the maximum number of edges in a graph

on n vertices which does not contain H as a subgraph. The problem of determining Turán

numbers for assorted graphs traces its history back to 1907, when Mantel (see, e.g., [3])

proved that the maximum number of edges in an n-vertex triangle-free graph is � n2

4
�. In

1940, Pál Turán [13, 14] proved that the extremal graph avoiding Kr as a subgraph is

the complete (r − 1)-partite graph on n vertices which is ‘as balanced as possible’: this is
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the Turán graph Tr−1(n) . Later, Simonovits [12] showed that for large n, the extremal

graph forbidding p · Kr is Kp−1 + Tr−1(n − p + 1). For notation, Hex(n, G) will be used to

represent a graph on n vertices with no copy of G as a subgraph, and exactly ex(n, G)

edges. We note that, in general, the extremal graph(s) may not be unique.

Recently, Gorgol [6] proved upper and lower bounds on the extremal number for

forbidding several vertex-disjoint copies of an arbitrary connected graph. We determine

this number for paths of length 3 in Section 2.1, longer paths in Section 2.2, and for

forests of equibipartite trees in Section 3.2. We also provide some background on the

Erdős–Sós conjecture in Section 3.1, as our result for trees is conditional on its validity.

2. Extremal numbers for disjoint paths

We start by looking at graphs with no disjoint paths of length three. The extremal case

here is slightly different than for longer paths, but the proof introduces the main ideas

we shall use in proving the result for all paths, as well as the general tools needed for our

results on forests.

2.1. Paths of length 3

As a starting point, we state the following trivial lemma.

Lemma 2.1. If G is a graph on n vertices which contains no P3, then G contains at most

� n
2
� edges; that is, ex(n, P3) = � n

2
�.

Proof. If G contains no P3, then no vertex can have degree � 2, and so G consists

of independent edges, giving ex(n, P3) � � n
2
�. Clearly this maximum number of edges

is obtained by a perfect matching when n is even and a matching leaving one vertex

uncovered when n is odd, and thus the lemma holds.

Gorgol [6] gave constructions giving the following lower bound regarding the extremal

number forbidding several paths of length three:

ex(n, k · P3) �
{(

3k−1
2

)
+ � n−3k+1

2
� for 3k � n < 5k − 1,(

k−1
2

)
+ (n − k + 1)(k − 1) + � n−k+1

2
� for n � 5k − 1.

Remark. This bound is obtained by noting that, for any connected graph G on v vertices,

and for any positive integers n, k such that n � kv, the graphs Hex(n − kv + 1, G) ∪ Kkv−1

and Hex(n − k + 1, G) + Kk−1 do not contain k vertex-disjoint copies of G. Applying this

to forbidding copies of K3 and counting the edges in these graphs gives the above bound.

Gorgol conjectured that this is the correct value of ex(n, k · P3), and proved that this is

indeed true for k = 2, 3. Our first result shows that the second construction is best possible

for any k and large enough n.

Theorem 2.2. ex(n, k · P3) =
(
k−1
2

)
+ (n − k + 1)(k − 1) + � n−k+1

2
�, for n � 7k.
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· · ·

Kk−1

· · ·
Mn−k+1

Figure 1. Hex(n, k · P3).

There is a unique graph for which this bound is attained, namely Kk−1 + Mn−k+1, as in

Figure 1. This graph does not contain k disjoint copies of P3, since each P3 must contain

at least one vertex from the (k − 1)-clique.

Proof. We proceed by induction on k. The case k = 1 is covered by Lemma 2.1. For the

induction step, suppose G is a graph on n vertices, with m >
(
k−1
2

)
+ (n − k + 1)(k − 1) +

� n−k+1
2

� edges, and containing no k · P3. The number of edges incident to any P3 in G

must be at least

m − ex(n − 3, (k − 1) · P3) �
(
k − 1

2

)
+ (n − k + 1)(k − 1) +

⌊
n − k + 1

2

⌋
+ 1

−
(
k − 2

2

)
− (n − k − 1)(k − 2) −

⌊
n − k − 1

2

⌋
= n + 2k − 3.

Otherwise, the graph induced by the vertices not on this P3 contains (k − 1) · P3 by

induction, showing that G does contain k · P3.

By the induction hypothesis we can find k − 1 vertex-disjoint copies of P3 in our graph,

and each of these must contain a vertex of degree at least (n + 2k − 3)/3. Otherwise, the

total number of edges with an endpoint on this P3 is smaller than n + 2k − 3. Taking

such a high-degree vertex from each P3 gives us a set U of k − 1 vertices, each of degree

at least (n + 2k − 3)/3.

Assume that G[V \ U] contains P3. Then, we can still construct another k − 1 copies

of P3, each centred on a vertex from U, as long as each vertex in U has degree large

enough to ensure it is connected to at least two vertices not contained on any of the

other k − 1 copies of P3, i.e., if (n + 2k − 3)/3 � 3k − 1, and this is the case when n � 7k.

Therefore G[V \ U] consists of independent edges and isolated vertices, and so G has at

most
(
k−1
2

)
+ (n − k + 1)(k − 1) + � n−k+1

2
� edges, a contradiction.

The above proof gives the extremal graph for n � 7k. No construction is known giving

a better bound for n � 5k − 1, and we conjecture that the above example is optimal in

this range.

https://doi.org/10.1017/S0963548311000460 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548311000460


840 N. Bushaw and N. Kettle

· · ·

Figure 2. Extremal graph forbidding P6.

2.2. Longer paths

We note at this point that in the proof of Theorem 2.2, in order to find a P3 it was enough

to find a vertex of degree two; to find subsequent copies of P3, it sufficed to find vertices

of large degree. To adapt this idea to longer paths, we will look for sets of vertices with

large common neighbourhood. This notion will continue to be an integral part of our

proofs, and thus we formalize it here.

Lemma 2.3. Let G be a graph on n vertices with m edges, t ∈ N, and let F1, F2 be arbitrary

graphs. Then if F1 ∪ F2 �⊆ G, any F1 in G contains t vertices with shared neighbourhood of

size at least n′ � m′−(n−r)(t−1)
r−t+1

/
(
r
t

)
, where m′ = m − ex(n − r, F2) −

(
r
2

)
, and r = |V (F1)|.

Proof. Assume F1 ⊆ G, say on vertex set U. Since G contains no F1 ∪ F2, G[V \ U]

contains no F2. Thus G[V \ U] contains at most ex(n − r, F2) edges, and so U must have

at least m − ex(n − r, F2) −
(
r
2

)
= m′ edges to V \ U. Let n0 be the number of vertices in

V \ U with neighbourhood of size at least t in U; that is, n0 = |{v ∈ V \ U : |NU(v)| � t}|.
Since U has at most n0r + (n − r − n0)(t − 1) edges to V \ U, n0r + (n − r − n0)(t − 1) �

m′, and so n0 � m′−(n−r)(t−1)
r−t+1

. Trivially, there are only
(
r
t

)
subsets of size t in F1, and so

some subset has shared neighbourhood of size n′ � m′−(n−r)(t−1)
r−t+1

/
(
r
t

)
as claimed.

The proof of Lemma 2.2 also required the value of ex(n, P3); for longer paths, we shall

use the following result due to Erdős and Gallai [5].

Theorem 2.4. For any n, l ∈ N, ex(n, Pl) � l−2
2
n.

We note that the bound in Theorem 2.4 is attained by taking disjoint copies of Kl−1 as

in Figure 2; this gives a tight result whenever n is divisible by l − 1.

We are now ready to prove the main result of this section.

Theorem 2.5. For k � 2, l � 4, and n � 2l + 2kl
(

 l

2
� + 1

)(
l

� l
2 �

)
,

ex(n, k · Pl) =

(
k� l

2
� − 1

2

)
+

(
k

⌊
l

2

⌋
− 1

)(
n − k

⌊
l

2

⌋
+ 1

)
+ cl ,

where cl = 1 if l is odd, and cl = 0 if l is even.

Note that the result above for k · Pl for l � 4 does not match the earlier result for k · P3

in Theorem 2.2.

https://doi.org/10.1017/S0963548311000460 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548311000460


Turán Numbers of Multiple Paths and Equibipartite Forests 841

· · ·

K
k l

2 −1

· · ·
P2 + E

n−k l
2 −1

Figure 3. Hex(n, k · Pl), for l odd.

· · ·

K
k l

2 −1

· · ·
E

n−k l
2 + 1

Figure 4. Hex(n, k · Pl), for l even.

The extremal graph here is G(n, k, l) := Kt + En−t, with a single edge added to the empty

class when l is odd, and t = k� l
2
� − 1, as seen in Figures 3 and 4 respectively.

Remark. We note that for paths of even lengths, the above bound can be proved, and

the extremal structure determined, via a paper of Balister, Győri, Lehel and Schelp [2]

as a consequence of a theorem regarding the maximal number of edges in a connected

graph containing no path of some fixed length. One can divide a long path into many

short even paths, and this allows one to deduce our Theorem 2.5 from their Theorem 1.3;

for odd length paths this result gives a non-optimal number of edges due to parity issues.

This extremal number within connected graphs was also determined earlier by Kopylov

in 1977 [7], but the approach in the proof given there did not give the extremal structure.

Proof. We proceed by induction on k, starting with the base case, k = 2. Let G be a

graph with

|V | = n � 2l + 4l

(⌈
l

2

⌉
+ 1

)(
l

� l
2
�

)
,

|E(G)| �
(

2� l
2
� − 1

2

)
+

(
2

⌊
l

2

⌋
− 1

)(
n − 2

⌊
l

2

⌋
+ 1

)
+ cl ,
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Figure 5. Flattening a hypergraph.

and which contains no 2 · Pl . As n � l2, we have that |E(G)| > ex(n, Pl), and so G contains

a Pl on vertex set U, say. Using Lemma 2.3 with F1 = Pl , F2 = Pl , and

m =

(
2� l

2
� − 1

2

)
+

(
2

⌊
l

2

⌋
− 1

)(
n − 2

⌊
l

2

⌋
+ 1

)
+ cl ,

some elementary simplification shows that any Pl contained in G must have at least � l
2
�

vertices sharing a neighbourhood of size at least

n′ =
m − ex(n − l, Pl) −

(
l
2

)
− (n − l)

(
� l

2
� − 1

)
(

 l

2
� + 1

)(
l

� l
2 �

)
�

(
2� l

2 �−1
2

)
+

(
2� l

2
� − 1

)(
n − 2� l

2
� + 1

)
(

 l

2
� + 1

)(
l

� l
2 �

)
+

cl − (n − l)
(
l
2

− 1
)

−
(
l
2

)
− (n − l)

(
� l

2
� − 1

)
(

 l

2
� + 1

)(
l

� l
2 �

)
�

(
1 − cl

2

)
(n − l)(


 l
2
� + 1

)(
l

� l
2 �

) . (2.1)

By our assumption on n, (2.1) is at least 2l.

We now create an � l
2
�-uniform hypergraph H with V (H) = V (G) as follows. For any

Pl ⊆ G, we find a subset U ′ of � l
2
� vertices with a large common neighbourhood, as above,

and add U ′ as an edge in H.

We now flatten this hypergraph to form a simple graph G′ on the same vertex set, with

uv ∈ E(G′) whenever u and v are contained in the same hyperedge.

Since vertices adjacent in G′ have large common neighbourhood in G, a path of length

� l
2
� in G′ lets us find a path of length l in G. More formally, as n′ � 2l, if G′ contains

2 · P� l
2 �, we can choose distinct common neighbours for each pair of consecutive vertices

in these paths, and distinct neighbours for the end vertices, giving us 2 · Pl in G. Thus G′

cannot contain 2 · P� l
2 �.

We further note that certainly two disjoint hyperedges in H give rise to two such disjoint

paths. Thus every pair of edges in H intersect; such a hypergraph is called intersecting.

We will further call a hypergraph k-intersecting if every pair of edges intersect in at least

k vertices.

We now claim that if there exists X ⊆ V (H), with |X| = t < � l
2
�, and such that X

contains some vertex from each edge in H, then |E(G)| < |E(G(n, 2, l))|. We will later refer

to this as Claim A, for clarity.
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x
e1 e2

e3

Figure 6. Case 1.

e1 e2

e3

x
e1 e2

e3

Figure 7. Case 2.

Indeed, assume X is such a set. By the construction of H, since H[V (H) \ X] contains

no hyperedges, G[V (G) \ X] contains no Pl , and so Theorem 2.4 tells us that

|E(G)| �
(
t

2

)
+ t(n − t) +

l − 2

2
(n − t) �

(
2

⌊
l

2

⌋
− 3

2

)
n.

Recall that

|E(G(n, 2, l))| =

(
2� l

2
� − 1

2

)
+

(
2

⌊
l

2

⌋
− 1

)(
n − 2

⌊
l

2

⌋
+ 1

)
+ cl

�
(

2

⌊
l

2

⌋
− 1

)
n − l2,

and so as n > 2l2, |E(G)| < |E(G(n, 2, l))|. Thus Claim A holds.

Now, assume we have at least 2� l
2
� vertices contained in edges of H, but without 2 · P� l

2 �
in G′. We will now show that no two hyperedges can intersect in only a single vertex.

If E1, E2 ∈ E(H) with E1 ∩ E2 = {x}, then |E1 ∪ E2| = 2� l
2
� − 1 vertices, and so H

contains an edge E3 not contained in their union. We may assume that this edge intersects

E1 ∪ E2 outside {x}, as if no such edge exists, we are done by Claim A applied to the set

{x}. Without loss of generality, E3 ∩ E1 �⊆ E2.

Let us consider two cases.

Case 1: E3 ∩ (E2 \ E1) �= ∅. Then we can find a cycle in G′ through all the vertices in

E1 ∪ E2. Since we have at least 2� l
2
� vertices in edges of G′, there is another vertex

adjacent to this cycle. This gives us a path of length 2� l
2
�, and so G′ contains 2 · P� l

2 �.

Case 2: E3 ∩ (E2 \ E1) = ∅. Then there is some y ∈ E3 \ (E1 ∪ E2), and so we can form

one P� l
2 � in (E1 \ {x}) ∪ {y} and a disjoint P� l

2 � entirely inside E2.
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B C D

A

Figure 8. A vertex in D of degree 2.

B C D

A

Figure 9. An edge inside B.

We now have that H is an intersecting hypergraph, with at least 2� l
2
� vertices contained

in its edges, and no two edges can intersect in a single vertex, and so H is 2-intersecting.

The edge set of H is non-empty, so pick an edge E, and any vertex in x ∈ E. Each edge

in H intersects E in at least two vertices, so any edge in H intersects E \ {x}, a set of size

� l
2
� − 1. We have already ruled out such a set of vertices in Claim A.

We now know that all edges of H are contained in a set A of vertices with |A| � 2� l
2
� − 1,

and hence any Pl in G contains at least � l
2
� vertices from A. We define three more sets of

vertices as follows:

B =

{
x ∈ G \ A | dA(x) �

⌊
l

2

⌋}
,

C =

{
x ∈ G \ A |

⌊
l

2

⌋
> dA(x) > 0

}
,

D = {x ∈ G \ A | dA(x) = 0}.

Certainly D can contain no Pl , since every Pl meets A. Thus the number of edges entirely

within D is at most l−2
2

|D| by Theorem 2.4.

We now claim that every vertex x ∈ B ∪ C is the end vertex of a Pl in G, with alternate

vertices in A, which also misses any given y1, y2 ∈ B ∪ C . Since x is adjacent to some

y ∈ A, and y is contained in some hyperedge E, as long as n′ > |A| + � l
2
� + 2, we can find

� l
2
� vertices in (B ∪ C) \ {x, y1, y2} adjacent to all vertices in E, allowing us to find such a

Pl .

Further, no vertex in D can have degree more than 1 to B ∪ C; assume uv, uw are

both edges with u ∈ D, and v, w ∈ B ∪ C . We can find a Pl leaving v, that misses w, with

alternate vertices in A. This gives a Pl starting at w with only � l
2
� − 1 vertices from A, as
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in Figure 8. A vertex in B ∪ C with degree 2 to B ∪ C allows us to create a path in the

same way, so our graph contains none of these.

Similarly, if l is even, an edge inside B allows us to create a Pl using only � l
2
� − 1

vertices from A, as in Figure 9, so in this case B must be empty. If l is odd, then since

every vertex in B is adjacent to vertices in every edge of H, then the existence of two

disjoint edges in B allows us to create a Pl with only � l
2
� − 1 vertices from A. A single

edge does not create this problem, however: this is where the cl in the theorem arises.

We have now counted edges between B and C and between B ∪ C and D respectively,

and counted the edges inside each of B, C and D. We can use the degree conditions in

their definitions to count edges from A to B, C and D. Putting these together, we see that

|E(G)| �
(

|A|
2

)
+ (n − |A| − |C| − |D|)|A| (2.2)

+

(
1 +

⌊
l

2

⌋
− 1

)
|C| +

(
1 +

l − 2

2

)
|D| + cl ,

=

(
|A|
2

)
+ (n − |A|)|A| +

(⌊
l

2

⌋
− |A|

)
|C| +

(
l

2
− |A|

)
|D|. (2.3)

As any Pl in G contains at least � l
2
� vertices of A, |A| � � l

2
�. If |A| = � l

2
�, then

|D| � n − |A|, and so, whenever n > |A| + 2,

|E(G)| �
(

|A|
2

)
+ (n − |A|)|A| +

cl

2
(n − |A|) + cl

=

(
|A| + 1

2

)
+ (n − |A| − 1)(|A| + 1) +

(
cl

2
− 1

)
(n − |A| − 1) +

3

2
cl

<

(
|A| + 1

2

)
+ (n − |A| − 1)(|A| + 1) + cl .

In fact, |A| + 1 � 2� l
2
� − 1, and so |E(G)| < |G(n, 2, k)|.

If |A| > � l
2
�, the coefficients of |C| and |D| in (2.3) are negative, and so |E(G)| is

maximized when C and D are empty. This gives our bound on |E(G)| as claimed. Further,

since C and D must be empty to attain this bound, it also shows that the extremal graph

is G(n, 2, l) = K2� l
2 �−1 + En−2� l

2 �+1 with an extra edge in the empty class for odd l, as in

the statement of the theorem.

We have now established the base case k = 2. Somewhat surprisingly, the inductive step

is easy to show.

Let G be a graph on n vertices with

m �
(
k� l

2
� − 1

2

)
+

(
k

⌊
l

2

⌋
− 1

)(
n − k

⌊
l

2

⌋
+ 1

)
+ cl
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edges, not containing k · Pl . This graph does contain a Pl , and from Lemma 2.3, we can

find � l
2
� vertices with shared neighbourhood of size at least

n′ =

(
k� l

2 �−1
2

)
+

(
k� l

2
� − 1

)(
n − k� l

2
� + 1

)
(

 l

2
� + 1

)(
l

� l
2 �

)
+

cl − ex(n − l, (k − 1) · Pl) −
(
l
2

)
− (n − l)

(
� l

2
� − 1

)
(

 l

2
� + 1

)(
l

� l
2 �

)
=

(
k� l

2 �−1
2

)
+

(
k� l

2
� − 1

)(
n − k� l

2
� + 1

)
(

 l

2
� + 1

)(
l

� l
2 �

)
+

cl −
((k−1)� l

2 �−1
2

)
−

(
(k − 1)� l

2
� − 1

)(
n − l − (k − 1)� l

2
� + 1

)
(

 l

2
� + 1

)(
l

� l
2 �

)
+

−cl −
(
l
2

)
− (n − l)

(
� l

2
� − 1

)
(

 l

2
� + 1

)(
l

� l
2 �

)
=

n + k� l
2
�2 − 3

2
� l

2
�2

+ clk� l
2
� − 5+4cl

2
� l

2
� − 2cl(


 l
2
� + 1

)(
l

� l
2 �

)
� n − l(


 l
2
� + 1

)(
l

� l
2 �

) .
The second equality is valid since

n − l � 2l + 2l(k − 1)

(⌈
l

2

⌉
+ 1

)(
l

� l
2
�

)
.

Note that by our assumption on n, n′ � 2kl. Write U for the set of vertices given by

Lemma 2.3. Then G[V \ U] is a graph on n − � l
2
� vertices and at least ex

(
n − � l

2
�, (k − 1) ·

Pl

)
edges. If we can find (k − 1) · Pl , then since n′ � kl, we can find another Pl in G disjoint

from these k − 1. Therefore there cannot be k − 1 disjoint copies of Pl in G[V \ U], so by

the inductive hypothesis, G[V \ U] = G
(
n − � l

2
�, k − 1, l

)
. Thus G = G(n, k, l).

The above proof shows that our construction is optimal for n = Ω(kl
3
2 2l). We conjecture

that this construction is optimal for n = Ω(kl). We also note a comparison between

Theorem 2.5 for even paths and Theorem 2.4: certainly if one forbids k · P2l , then one

is also forbidding P2kl . Thus an easy upper bound on ex(n, k · P2l) is ex(n, P2kl). The

difference between this bound and the precise result established above is relatively small,

(kl − 1)
(
kl
2

)
. In particular, it is not dependent on n for fixed k and l, despite the significant

difference between the extremal graphs.

3. Trees

Throughout the following section, we need an analogue of Lemma 2.1 as a starting point.

For longer paths, we used the Erdős–Gallai result, Lemma 2.4. The analogous result for

trees is known as the Erdős–Sós conjecture.
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3.1. The Erdős–Sós conjecture

We note that a path can be viewed as an extreme kind of tree: l − 2 vertices have degree

two, and the two leaves of course have degree one. The opposite extreme is the star: one

central vertex of degree l − 1, and the other k − 1 vertices are leaves. For both examples,

it is easily seen that ex(n, G) = l−2
2
n. Legend has it that Vera T. Sós presented the proofs

of these two results to her graph theory class in Budapest in 1962, and left the following

conjecture as a homework problem; by now, this is known as the notoriously difficult

Erdős–Sós conjecture.

Conjecture 3.1 (Erdős–Sós conjecture). For any tree T on l vertices, ex(n, T ) = l−2
2
n.

In 2008, a proof of the conjecture was announced for very large trees by Ajtai, Komlós,

Simonovits and Szemerédi. For small trees, however, the conjecture is mostly open. There

is a sequence of results in the direction of the full theorem for smaller trees. We present a

representative sample of these results here, which is certainly only the tip of the iceberg.

Many more partial results related to the Erdős–Sós conjecture exist; see, for example, [1]

and [15]. The first result here establishes the conjecture for graphs of large girth and is

due to Dobson [4].

Theorem 3.2. If T is a tree on l vertices, and G is a graph with girth at least five and

minimum degree δ � l
2
, then G contains T . Thus Conjecture 3.1 holds if the maximum

number edges is taken over all T -free graphs of girth at least five.

Similarly, Saclé and Woźniak [10] proved that whenever G is a graph with at least l−2
2
n

edges and no C4, G contains any tree on l vertices. In 2005, McLennan [8] proved the

Erdős–Sós bound for trees of diameter at most four.

The Erdős–Sós conjecture has also been proved for caterpillars; this result is attributed

to Perles in [9]. Later, Sidorenko [11] showed that the Erdős–Sós conjecture holds for

trees of order l containing a vertex which is the parent of at least l−1
2

leaves.

3.2. Forests of equibipartite trees

Our proof of Theorem 2.5 can be adapted to work on a significantly larger class of

graphs. A key element of our proof was finding a set of vertices which intersected every

long path in at least half its vertices. This continues to be an essential idea, and thus

we restrict ourselves to trees which have the same number of vertices in each vertex

class, when viewed as a bipartite graph. We call such trees equibipartite, and a forest in

which each component is an equibipartite tree is called an equibipartite forest. Clearly

any equibipartite tree or equibipartite forest has an even number of vertices.

If we allow ourselves the considerable benefit of assuming that Erdős–Sós holds for all

equibipartite trees, we can determine the extremal number for any equibipartite forest,

for large n. There is a slight difference in the extremal number and the structure of the

extremal graph depending on whether the forest admits a perfect matching.
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· · ·

Kl−1

· · ·

En−l+1

Figure 10. Hex(n,H), for H containing a perfect matching.

· · ·

El−1

· · ·

En−l+1

Figure 11. Hex(n,H), for H containing no perfect matching.

Theorem 3.3. Let H be an equibipartite forest on 2l vertices which comprises at least two

trees. If the Erdős–Sós conjecture holds for each component tree in H , then for n � 3l2 +

32l5
(
2l
l

)
,

ex(n,H) =

{(
l−1
2

)
+ (l − 1)(n − l + 1) if H admits a perfect matching,

(l − 1)(n − l + 1) otherwise.

Remark. The extremal graphs here are Kl−1 + En−l+1 for any forest with a perfect

matching, and El−1 + En−l+1 for any forest with no perfect matching, as in Figures 10

and 11. To prove the eventual extremal number for equibipartite trees as in Theorem 3.3,

we do not need the full strength of the Erdős–Sós conjecture; in fact, it suffices to

know that ex(n, T ) = |T |−2
2

n + o(n) for any of the equibipartite trees T ⊆ H . In this case,

however, the bound on n for which the result holds is worse. We also note that in order

to avoid many lower-order terms, the bound on n in the statement of the theorem has

not been optimized.

Lemma 3.4. Let H be a equibipartite tree on 2l vertices. If H contains a perfect matching,

then every partition of V (H) into two classes of different sizes is such that the larger class

induces at least one edge.
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x

y x y

Figure 12. Example partition for Lemma 3.4.

x

y
x y

Figure 13. Example partition for Lemma 3.5.

Proof. If H contains a perfect matching, M ⊆ E(H), then for any partition of V (H)

into non-equal classes, |V1| < |V2|, the number of edges in M which meet V1 is at most

|V1| < l, and so some edge lies inside V2.

Lemma 3.5. Let H be a equibipartite tree on 2l vertices. If H does not contain a perfect

matching, then there exists a partition of V (H) into two classes of different sizes such that

the larger class induces no edges and the smaller class induces exactly one edge.

Proof. Consider H as a bipartite graph with bipartition V (H) = (A,B). Since H contains

no perfect matching, there is a set S ⊆ A for which Hall’s condition (see, e.g., [3]) fails,

namely |N(S)| < |S |. If we take S minimal, then H[S ∪ N(S)] is connected, as otherwise

one of its components would fail Hall’s condition. Consider H[(A \ S) ∪ (B \ N(S))]. Each

component of this graph is joined to N(S) by a single edge. Since the union of these

components has larger intersection with B than with A, at least one of the components

does. Let C be such a component, and let xy be the unique edge between C and N(S),

with x ∈ C and y ∈ N(S).

Consider the partition (C,V (H) \ C). Then taking the set of vertices Vx,y which are in

the same bipartite class as x in C or in the same bipartite class as y in V (H) \ C as one

class of our new partition, and V (H) \ Vx,y as the other, forms a partition of V (H) with

exactly one edge in Vx,y , and none in V (H) \ Vx,y .

Since our tree is equibipartite, |Vx,y ∩ (V (H) \ C)| + |(V (H) \ Vx,y) ∩ C| = l. By our

definition of C , |Vx,y ∩ C| < |(V (H) \ Vx,y) ∩ C|. By construction, each of the sets Vx,y ∩
(V (H) \ C), (V (H) \ Vx,y) ∩ C , and Vx,y ∩ C are non-empty. Then

|Vx,y| = |Vx,y ∩ C| + |Vx,y ∩ (V (H) \ C)| < |(V (H) \ Vx,y) ∩ C| + |Vx,y ∩ (V (H) \ C)| = l,

and so our partition is an unbalanced partition with no edges in the larger class and

exactly one edge in the smaller class, as claimed.

https://doi.org/10.1017/S0963548311000460 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548311000460


850 N. Bushaw and N. Kettle

See Figures 12 and 13 for an example of a partition of a tree with and without a perfect

matching, respectively.

Proof of Theorem 3.3. Let H have components H1, H2, . . . , Hk , each on 2l1, 2l2, . . . , 2lk
vertices respectively, and G be a graph on n vertices with m edges which does not contain

H , and with m � (l − 1)(n − l + 1). Without loss of generality, l1 � li, for each i. For

notational ease, we also define H ′ = H2 ∪ · · · ∪ Hk and l′ = 1
2
|H ′| = l − l1.

As n � l2, m � ex(n,H ′) by induction (or Erdős–Sós, if H ′ is a tree), and so we can find

a copy of H ′ ⊆ G. As in the proof of Lemma 2.3, for any copy of H ′ we can bound from

below the size of the set E ′ of edges between H ′ and G \ H ′ by m −
(
2l′

2

)
− ex(n − 2l′, H1).

By the Erdős–Sós conjecture, this is at least (l − 1)(n − l + 1) −
(
2l′

2

)
− (n − 2l′)(l1 − 1) �

l′n − 3l2.

Consider the set of vertices X = {v ∈ G \ H ′ : |N(v) ∩ H ′| � l′}. Then

2l′|X| + (l′ − 1)(n − 2l′ − |X|) � |E ′| � l′n − 3l2.

Thus |X| � n−3l2

l′+1
. As there are only

(
2l′

l′

)
sets of l′ vertices in H ′, we can find a set A of

l′ vertices in H ′ with at least

n′ =
n − 3l2

(l′ + 1)
(
2l′

l′

)
common neighbours. By our assumption on n, n′ � 32l3.

Interchanging the roles of H1 and H ′, for any H1 we similarly bound from below the

size of the set E1 of edges between H1 and G \ H1 by m −
(
2l1
2

)
− ex(n − 2l1, H

′). Note that

n − 2l1 is much larger than needed in the condition of the inductive hypothesis, and so

|E1| � (l − 1)(n − l + 1) −
(

2l1
2

)
− (n − 2l1 − l′ + 1)(l′ − 1) −

(
l′ − 1

2

)
� l1n − 3l2. (3.1)

With this in mind, we define the following set of vertices which are not in A, but which

are still of large degree:

B =

{
w ∈ G | w �∈ A and dG(w) � n − 3l2

l1 + 1

}
.

Now, any copy of H1 in G must contain at least l1 vertices from A ∪ B, as otherwise

the sum of the degrees of vertices in H1 is less than (l1 + 1) n−3l2

l1+1
+ (l1 − 1)n, contradicting

(3.1) above.

As a rough bound on the number of edges in G, we note that if G contained more than

2ln edges, we can find a copy of H ′ by induction (or by the Erdős–Sós conjecture if H ′ is

a single tree). Removing this copy of H ′ leaves a graph on n − 2l′ vertices with more than

2l1n � 2l1(n − 2l′) edges, since each vertex is of course adjacent to at most n edges. Again

by Conjecture 3.1, we can find a copy of H1. Thus our graph can have at most 2ln edges.

https://doi.org/10.1017/S0963548311000460 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548311000460


Turán Numbers of Multiple Paths and Equibipartite Forests 851

This means that for any c > 0, there are at most 4ln
c

vertices of degree at least c.

Choosing

c =
8ln

n′ =
8l(l′ + 1)

(
2l′

l′

)
n

n − 3l2
,

there are at least n′

2
common neighbours of A with degree at most c. Since n � 6l2,

c � 16l(l′ + 1)
(
2l′

l′

)
. Then since n′

2
� l′, we can find a copy of H ′ with l′ vertices in A and

the other l′ vertices having degree at most c.

Since this copy of H ′ is incident to at least l′n − 3l2 edges, any vertex in A has degree

at least

l′n − 3l2 − l′c − (l′ − 1)(n − 1) (3.2)

� n − 3l2 − l′c

= n − c′.

There are at most 4ln
c

= n′

2
vertices of degree at least c, and at most l′c′ vertices not

adjacent to all of A. Since

n − 3l2

l1 + 1
− n′

2
� n − 3l2

2(l1 + 1)
� 16l4

(
2l

l

)
> l′c′,

by the definition of B each vertex x ∈ B is adjacent to a vertex y which is adjacent to all

of A and such that dG(y) � c.

This condition on the vertices in B enables us to find, for each x ∈ B, a copy of H ′ from

which l′ − 1 of the vertices have small degree, and whose intersection with B contains x

as a leaf. Further, we can find a set U of l′ − 1 vertices of degree at most c which are

each adjacent to all of A, so for any z ∈ A, G[(U ∪ {x} ∪ {y} ∪ (A \ {z}))] is a graph on 2l′

vertices which contains a copy of Kl′ ,l′−1 with an extra vertex x adjacent to some vertex

in the larger set. We can find a copy of H ′ in this by letting a leaf of H ′ correspond to

x, and so as in (3.2), every vertex in B must have degree at least n − c′. If B contained

at least l1 vertices, they would have common neighbourhood of size at least n − l1c
′ � l,

allowing us to find H1 in G[V (G) \ A], and again as the common neighbourhood of A

is of size at least 2l, we can find a disjoint copy of H ′, giving a copy of H in G. Thus

|B| � l1 − 1, and so |A ∪ B| � l′ + l1 − 1 = l − 1.

We now define two more sets of vertices as follows:

D = {x ∈ G \ (A ∪ B) | dA∪B(x) � l1},
E = {x ∈ G \ (A ∪ B) | dA∪B(x) < l1}.

We note that any vertex not in A ∪ B which is adjacent to all of A is in D, and thus

|E| � l′c′. There can be no H1 in E, so the number of edges in E is at most (l1 − 1)|E| by

Erdős–Sós. We now claim that no vertex v ∈ D can have a neighbour y ∈ D ∪ E. Indeed,

we can find a set U of l1 − 1 vertices in A ∪ B adjacent to v since each vertex in A ∪ B

has degree at least n − c′. Further, we can find W ⊆ (D ∪ E) \ {v, y} consisting of l1 − 1

vertices adjacent to all of U. As before we can find a copy of H1 on U ∪ W ∪ {v, y} with

only l1 − 1 vertices from A ∪ B, a contradiction. Thus all edges in G[D ∪ E] are in E.
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Letting |A ∪ B| = t, we bound the number of edges in G by(
t

2

)
+ t(n − t − |E|) + (l1 − 1)|E| + (l1 − 1)|E| (3.3)

=

(
t

2

)
+ t(n − t) + (2l1 − 2 − t)|E|.

If t < l − 1, then since |E| � l′c′ the number of edges in G is at most
(
t
2

)
+ t(n − t) +

2l1l
′c′ < (l − 1)(n − l + 1), for n � 2l2c′ + l2, and hence |A ∪ B| = l − 1.

The common neighbourhood of A ∪ B has size at least n − (l − 1) − (l − 1)c′, as each

vertex in A ∪ B is adjacent to all but c′ vertices in G. Thus we can find a copy of

Kl−1,n−(l−1)(c′+1) ⊆ G, where the smaller class is A ∪ B. If H does not contain a perfect

matching, then by Lemma 3.5 we can partition the vertices into unequal sets X,Y , the

larger of which is empty, and the smaller of which contains one edge. This is clearly

present in G if A ∪ B contains an internal edge.

Counting all edges in G, we see that by (3.3),

|E(G)| � (l − 1)(n − l − 1) − (l − 2l1 + 1)|E| + CH,

where CH =
(
l−1
2

)
if H admits a perfect matching, and CH = 0 otherwise. As l1 is minimal,

(l − 2l1 + 1) > 0, and so the number of edges is maximized when |E| = 0.

It is unlikely that the bound on n in Theorem 3.3 is optimal. Determining the minimal

value of n for which this construction is optimal remains an open question.
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