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Abstract. A dispersion equation, which describes the interaction of low-density
electron beamwith a degenerate electron quantum plasma, is derived and examined
for some interesting cases. In addition to the instabilities similar to those for
classical plasma, due to the quantum effect, a new type of instability is found.
Growth rates of these new modes, which are purely quantum, are obtained. Fur-
thermore, the excitation of Bogolyubov’s type of spectrum by a strong electric field
is discussed.

Quantum plasmas are common in planetary interiors, in compact astrophysical
objects, in conductors, semiconductors and micro-mechanical systems, as well as
in the next generation intense laser-solid density plasma experiments. Though it
has a long and diverse tradition, the field of quantum plasma physics is evolving
and there are many questions and issues which one has to address. In the past
Klimontovich and Silin [1] have studied the properties of linear electron plasma
oscillations in a dense Fermi plasma, and since then a huge number of works have
been published on collective behavior of quantum plasmas using a set of incorrect
hydrodynamic equations [2, 3]. In the previous paper [4] this problem has been
solved by deriving a new type of quantum kinetic equations of the Fermi particles
of various species, and a general set of fluids equations describing the quantum
plasma was obtained. This novel kinetic equation for the Fermi quantum plasma
was used in [4] to study the propagation of small longitudinal perturbations in
an electron-ion collisionless plasmas, deriving a quantum dispersion equation. The
dispersion properties of electrostatic oscillations in quantum plasmas have been
discussed very recently in [5]. The effects of the quantization of the orbital motion
of electrons and the spin of electrons on the propagation of longitudinal waves in the
quantum plasma have been also reported [6]. Special interest was recently drawn
to paper by Zheng [7] criticizing [8], in which an attempt has been made to discuss
the quantum correction to the Landau damping of electron plasma waves even in
normal temperature and high-density plasmas. It is well known that in the classical
limit the quantum correction is negligible [9], in contrast to the results of [8]. In our
view, the above paper by Zheng [7] analyzing [8] also contains mistakes in physics
and mathematics, which we will report elsewhere.
In the present paper, we study an electron beam-plasma instabilities and excit-

ation of Bogolyubov’s type of spectrum in the Fermi quantum plasma. For our
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purpose, we employ the quantum kinetic equation derived in [4], which reads
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∂t
+ (�v · ∇) fα + eα

(
�E +

�vα × �H

c

)∂fα

∂�p
+

�
2

2mα
∇ 1

√
nα

Δ
√

nα
∂fα

∂�p
= C(fα ), (1)

where suffix α stands for the particle species, � is the Planck constant divided by 2π,
C(fα ) is the collision integral and the other notation is standard. It should be em-
phasized that this equation elaborates all the information on the quantum effects.
We also note specifically that this equation is rather simple from the mathematical
point of view.
Considering the propagation of small longitudinal perturbations ( �H = 0, �E =

−∇ϕ) in an electron-ion collisionless plasmas for a weak field, we look for the
electron and ion distribution functions in the form fα = fα0 + δfα , where fα0
is the stationary isotropic homogeneous distribution function unperturbed by the
field and δfα is the small variation in it due to the field. We linearize (1) with respect
to the perturbation and assume δfα and δϕ vary like exp i(�k · �r − ωt).
Using the Poisson’s equation

Δδϕ =
e

π2�3

{∫
d3pδfe −

∫
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}
(2)

and assuming the Fermi degeneracy temperature TF = εF

KB
(KB is the Boltzmann

coefficient, the Fermi distribution function is the step function fα0 = Θ(εF α − ε),
where εF α = mα v 2

F α

2 ) much higher than the Fermi gas temperature, we then obtain
after some algebra the quantum dispersion equation [4]
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,

and ω can be more or less than kvF e . Note that for ω � kvF i, Γi ≈ 1.
For the electron Langmuir waves supposing the ion massmi → ∞ and ω � kvF e ,

or the range of fast waves, when the phase velocity exceeds the Fermi velocity of
electrons, we recover the dispersion relation derived by Klimontovich and Silin [1]

ω2 = ω2
pe +

3k2v2
F e

5
+

�
2k4

4m2
e

+ . . . (4)

where ωpe is the electron plasma frequency. This expression shows that the high-
frequency oscillations of electrons of a degenerate plasma remain undamped in the
absence of particles collisions. Note that the Landau damping is also absent, since
according to the Fermi distribution there are no particles with velocities greater
than the Fermi velocity which could contribute to the absorption.
We now propose the excitation of the Klimontovich and Silin’s spectrum (4) by

a straight electron beam with the density nb much less than the plasma density,
which is injected into a degenerate electron gas. The electron beam is assumed to be
classical (since the density is low) obeying the Maxwellian distribution function with
non-relativistic temperatures. Taking into account theMadelung term in the kinetic
equation of the beam electrons, we write down the desired dispersion equation for
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the plasma-beam system

1 + δεp + δεb = 0 (5)
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where �u is the velocity of beam, vtb =
√

T/me and ωb are the thermal speed and
the Langmuir frequency of the beam electrons, respectively. The function I+(x) =
xe−x2 /2

∫ x

i∞ dτeτ 2 /2 has been studied in detail in [10] and has such asymptotes

I+(x) = 1 +
1
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3
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√
π

2
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I+(x) � −i

√
π

2
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With the asymptote (6) at hand, supposing ω � kvF e we obtain

1 − ω2
L

ω2 − ω2
b (1 + ιβ)

(ω − �k · �u)2 − ω2
q (1 + ιβ)

= 0, (8)

where ωL is the Klimontovich-Silin dispersion relation (4), ωq = �k2/2me is the
frequency of quantum oscillations of electron and β is due to Landau damping

β = −
√

π

2
(ω − �k · �u)3

(kvtb)3 exp

{
− (ω − �k · �u)2

2k2v2
tb

}
. (9)

We examine the dispersion (8), which describes the interaction of low-density
electron beam with the degenerate electron plasma, for some interesting cases.
First, we assume that the electron beam is a monoenergetic straight beam, so that
the thermal motion of electrons of the beam is neglected, β = 0. In this case
(8) reduces to the following dispersion relation, which was recently discussed by
Kuzelev and Rukhadze [11]

1 − ω2
L

ω2 − ω2
b

(ω − �k · �u)2 − ω2
q

= 0. (10)

As is known in the classical case (ωq = 0), the interaction of an electron beamwith
a plasma is strong when the Cherenkov resonance condition (ω � �k · �u) is fulfilled.
However, in the quantum plasma ωq �= 0, the quantum interaction is governed
by first-order poles (the last term in (10)). Hence, the quantum frequency ωq of
the de Broglie waves in (10) leads to the Doppler resonance alone, ω = �k · �u − ωq .
Equation (10), therefore, admits the solution at ω = ωL + γ and ω = �k · �u − ωq + γ,
with |γ| � ω

Imγ =
ωb

2

(ωL

ωq

)1/2
. (11)

This expression describes the excitation of the Klimontovich-Silin waves by the
monoenergetic electron beam. It should be noted that the growth rate is purely
quantum.
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Next, we consider the kinetic instability. Noting that |β| � 1, in (8) we neglect β

in the denominator at (ω −�k · �u)2 �= ω2
q and the beam contribution to the real part

in the numerator. With this assumption the dispersion relation (8) casts into the
form

1 − ω2
L

ω2 − ιω2
b β

(ω − �k · �u)2 − ω2
q

= 0, (12)

which has a solution of the form ω = ωL + ιγ, and the growth rate is

γ = −
√
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2k2v2
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}
. (13)

We note here that at �k · �u > ωL , γ > 0 and the growth rate due to the Cherenkov
resonance is larger than the classical one at ωq = 0.
Equation (8) has another solution due to the quantum effect. Namely, for the

range of frequencies ω < ωL, �k · �u and �k · �u � ωq , in which β is positive, from (8)
we get

ω2
L

ω2 + ι
ω2

b

ω2
q β

= 0. (14)

The solution of which is

ω =
1 + ι√

2
ωLωq

ωb
β1/2 . (15)

It should be emphasized that this instability has no analogy in the classical plasma.
We now return to (3) and introduce the Thomas-Fermi screening wave vector

kT F =
√

3ωp e

vF e
. Noting that in the limit k2 � k2

T F , ω tends to kvF e (at mi → ∞)
and we obtain from (3)

ω = kvF e
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⎭

⎞
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If we neglect the quantum term ωq in (16), then we recover waves known as the zero
sound, which are the continuation of the electron Langmuir wave (4) into the range
of short wavelength. Thus the expression (16) represents the quantum correction
to the zero sound.
In the following we discuss the excitation of the zero sound by a low-density

cold beam. As we have shown above, at ω = �k · �u − ωq + γ, |γ| � ω the dielectric
permittivity of the beam is

δεb =
ω2

b

2ωqγ
, (17)

whereas in the dielectric permittivity of the plasma δεp , we suppose that

ω ≈ kvF e + γ. (18)
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Substituting (17) into (5) and taking into account (18), we get the spectrum (16)
for real ω and for the growth rate
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ωLkvF e
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⎭

⎞
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Note that this growth rate is also purely quantum.
We next consider the excitation of Bogolyubov’s type of spectrum, derived in the

previous paper [4], by a strong electric field. We recall here that in the adiabatic
approximation the velocity of electron may be regarded as constant (ions are
assumed to be immobile). The electron part of the dielectric permittivity now reads

δεe =
3ω2

pe

k2v2
F e

1
Γe

{
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2kvF e
ln
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}
. (20)

Here

Γe = 1 +
3ω2
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{
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}
.

In the range of frequencies ω � kvF i and |ω − �k · �u| � kvF e from (3), where ω is
displaced by ω − �k · �u, we obtain

δεe =

3ω 2
p e

k 2 v 2
F e

(
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√
π
2
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kvF e

)
1 + 3ω 2
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and

δεi = −
ω2

pi

ω2 . (22)

One can immediately see that (3) reduces to the simple dispersion relation δεe +
δεi = 0, solutions (ω = ω′ +ιω′′) of which are the Bogolyubov’s type of spectrum [4]

ω′ = k

√
2εF e

3mi
+

�2k2

4mime
(23)

and the imaginary part

ω′′ = − π

12
kpF e

mi

ω′ − �k · �u

ω′ . (24)

For an instability, the following inequality should be satisfied

u >
1

cos θ

√
p2

F

3memi
+

�2k2

4memi
. (25)

In the absence of the external field (�u = 0) (24) reduces to the expression of damping
rate obtained in [4]

ω′′ = − π

12
k

pF e

mi
, (26)

which is much less than ω′. The expression (26) indicates that the damping rate is
determined by the electrons alone.
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To summarize, we have investigated the excitation of longitudinal waves in a
degenerate non-magnetized quantum plasma. Namely, we derived the dispersion
equation, which describes the interaction of low-density electron beam with the
degenerate electron quantum plasma, and examined it for some interesting cases.
In particular, we have shown the excitation of Klimontovich-Silin waves by the
monoenergetic electron beam, the growth rate of which is purely quantum. Next,
we studied the kinetic instability demonstrating that the growth rate due to the
Cherenkov resonance is larger than the classical one. In addition, we disclosed a
novel instability due to the quantum effect, which has no analogy in the classical
plasma. We obtained the growth rate of this new mode. The excitation of the zero
sound by a low-density cold beam is also discussed and the growth rate, which
is also purely quantum, is derived. Furthermore, we considered the excitation of
Bogolyubov’s type of spectrum by a strong electric field. These investigations may
play an essential role for the description of complex phenomena that appear in
dense astrophysical objects, as well as in the next generation intense laser-solid
density plasma experiments.
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