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The Singular Nature of Spacetime

Vincent Lam†

We consider to what extent the fundamental question of spacetime singularities is
relevant for the philosophical debate about the nature of spacetime. After reviewing
some basic aspects of the spacetime singularities within general relativity, we argue
that the well known difficulty to localize them in a meaningful way may challenge the
received metaphysical view of spacetime as a set of points possessing some intrinsic
properties together with some spatiotemporal relations. Considering the algebraic for-
mulation of general relativity, we argue that the spacetime singularities highlight the
philosophically misleading dependence on the standard geometric representation of
spacetime.

1. Introduction. Despite Earman’s (1995) invitation to consider more
carefully the question of spacetime singularities, only a little literature in
spacetime philosophy has been devoted to this foundational issue. (Some
notable exceptions are Earman 1996, Curiel 1999, and Mattingly 2001.)
This paper aims to take up this invitation and to carry out philosophical
investigations about spacetime singularities in the framework of the con-
temporary debate about the status and the nature of spacetime. Indeed,
there are two main positions with respect to spacetime singularities and
their generic character due to the famous singularity theorems: first, they
can be thought of as physically meaningless, only revealing that in these
cases the theory of general relativity (GR) breaks down and must be
superseded by another theory (like a future theory of quantum gravity,
for instance).1 Therefore spacetime singularities as such do not tell us
anything physically relevant. Second, spacetime singularities can be taken
more ‘seriously’: they can well be considered as physically problematic
but nevertheless as involving some fundamental features of spacetime. In
this sense, their careful study at the physical, mathematical and conceptual

†To contact the author, please write to: Department of Philosophy, University of
Lausanne, CH-1015 Lausanne, Switzerland; e-mail: vincent.lam@unil.ch.

1. They may merely not occur in our universe if one of the (necessary) hypotheses of
the singularity theorems were violated (Mattingly 2001). For a detailed physical dis-
cussion of these hypotheses, see Senovilla 1997.
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levels may be helpful in order to understand the nature of spacetime as
described by GR. This paper aims to investigate this line of thought. In
this framework, the question of spacetime singularities is actually a fas-
cinating one, which may be related at the same time to the question of
the ‘initial’ state of our universe and to the question of the fundamental
structure of spacetime.

Roughly, the main question of this paper is the following one: in a
scientific realist perspective, and assuming that the spacetime singularities
tell us something about the nature of spacetime (again, this assumption
is not evident), what do they tell us? The (tricky) problem of the very
definition of spacetime singularities is an essential part of the question.

In Section 2, we will review the main concepts necessary to give an
account of spacetime singularities within GR. In particular we will see
that the various attempts to define the spacetime singularities in terms of
local entities (like some kind of ‘holes’ or ‘missing points’ for instance)
fail. We will then argue in Section 3.1 that this may constitute a strong
argument for considering spacetime singularities rather as a nonlocal
property of spacetime. The central part of the paper consists in evaluating
the possible consequences of spacetime singularities for the metaphysical
conception of spacetime.

Even if taken ‘seriously’, spacetime singularities are however not a
satisfactory part of GR. In this perspective, we will briefly consider in
Section 3.2 some recent theoretical developments within the algebraic
formulation of GR regarding the spacetime singularities. These devel-
opments draw some possible physical (and indeed mathematical) conse-
quences of the above mentioned aspects. This algebraic approach to space-
time takes the nonlocal aspects of the spacetime singularities as revealing
that spacetime is nonlocal and pointless at the fundamental level. The
considerations about the algebraic formulation of GR underline the fact
that the metaphysical conception of spacetime should not be dependent
on a particular formulation (like the inherently pointlike standard geo-
metric one for instance), as it seems to be often the case.

2. Some Aspects of the Singular Feature of Spacetime.

2.1. Extension and Incompleteness. At the present state of our knowl-
edge, it seems to be quite commonly accepted in the relevant physics
literature that there is no satisfying general definition of a spacetime sin-
gularity (for instance, Wald 1984, 212). In other terms, the notion of a
spacetime singularity covers various distinct aspects that cannot be all
captured in one single definition. We certainly do not pretend to review
all these aspects here. We rather want to focus on the first two fundamental
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notions that are at the heart of most of the attempts to define spacetime
singularities.

The first is the notion of extension of a spacetime Lorentz manifold
(together with the interrelated notion of continuity and differentiability
conditions).2 The idea is to ensure that what we count as singularities are
not merely (regular) ‘holes’ or ‘missing points’ in our spacetime Lorentz
manifold that could be covered (‘filled’) by a ‘bigger’ but regular spacetime
Lorentz manifold with respect to some continuity and differentiability
conditions (or -conditions). These latter conditions (together with thekC
notion of extension) are therefore essential for any characterization of
spacetime singularities. But, at this level, there are two major ambiguities
that are part of the difficulties to define spacetime singularities. First,
extensions are not unique and all possible extensions must be carefully
considered in order to discard (regular) singularities that can be removed
by a mere regular extension. Given some -condition, we will alwayskC
consider maximal spacetime Lorentz manifolds.3 A spacetime singularity
will therefore be defined with respect to certain -conditions (and indeedkC
should be called a -singularity; these conditions are often implicit andkC
not always mentioned). This fact leads to the second difficulty: it is not
clear what exactly the necessary and sufficient continuity and differentia-
bility conditions are for a spacetime Lorentz manifold to be physically
meaningful.4

Strongly related to the idea of extension, the second essential notion
in order to give an account of spacetime singularities is the notion of
curve incompleteness, which is the feature that is widely recognized as the
most consensual characterization so far of spacetime singlarities (see, for
instance, Wald 1984, Section 9.1). Moreover, it is actually curve incom-
pleteness that is predicted by the singularity theorems as the generic sin-
gular behavior for a wide class of solutions.5 The broad idea is that we
should look at the behavior of physically relevant curves (namely, geo-
desics and curves with a bounded acceleration) in the spacetime Lorentz

2. An extension of a spacetime Lorentz manifold is any spacetime Lorentz(M, g)
manifold of the same dimension where is an envelopment of M and′ ′ ′(M , g ) (M ,J)
such that holds.′J*(g) p g FJ(M)

3. A spacetime Lorentz manifold is maximal with respect to some -conditionk(M, g) C
if there is no extension where the metric is at the boundary of′ ′ ′ k ′(M , g ) g C � M

in .′J(M) M

4. A possible guideline would be to require that these conditions secure that the fun-
damental laws of GR—that is, the Einstein field equations and the Bianchi identity,
are well defined; see Earman 1995, Section 2.7.

5. However, the notion of curve incompleteness does not encompass all aspects of
spacetime singularities (like for instance certain aspects linked with the violation of
the cosmic censorship).
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manifold for ‘detecting’ spacetime singularities (which actually do not
belong to the spacetime Lorentz manifold). In particular, the idea is that
an (inextendible) half-curve of finite length (with respect to a certain
generalized affine parameter) may indicate the existence of a spacetime
singularity. The obvious intuition behind this idea is that, roughly, the
(inextendible) curve has finite length because it ‘meets’ the singularity (it
must be clear that this way of speaking is actually misleading in the sense
that the ‘meeting’ does not happen in the spacetime Lorentz manifold).
Pictorially, anything moving along such an incomplete (nonspacelike)
curve (like an incomplete geodesic or an incomplete curve with a bounded
acceleration) would literally ‘disappear’ after a finite amount of proper
time or after a finite amount of a generalized affine parameter (again, we
must be very careful when using such pictures; for instance, the event of
the ‘disappearance’ itself is not part of the spacetime Lorentz manifold).
In more formal terms, a (maximal) spacetime Lorentz manifold is said
to be b-complete if all inextendible -half curves have infinite length as1C
measured by the generalized affine parameter (and it is b-incomplete oth-
erwise).6 The link with the initial intuition comes from the fact that it can
be shown that b-completeness entails the completeness of geodesics and
of curves with a bounded acceleration (but not vice versa).

2.2. Boundary. The most widely accepted standard definition of a sin-
gular spacetime is the following one: a (maximal) spacetime (Lorentz
manifold) is said to be singular if and only if it is b-incomplete. However,
b-incompleteness refers only indirectly (if at all) to spacetime singularities
in the sense of localized singular parts of spacetime (like spacetime points
where something ‘goes wrong’). Spacetime singularities are actually not
part of the spacetime Lorentz manifold representing spacetime(M, g)
(within GR) in the sense that they cannot be merely represented by points

(or regions) where some physical quantity related to the space-p � (M, g)
time structure (like the scalar curvature, for instance) goes to infinity.7

Boundary constructions can be understood as attempts to describe
spacetime singularities directly in terms of local properties that can be
ascribed to certain boundary points ‘attached’ to the spacetime Lorentz
manifold. The physical motivation is to do local physics, that is, to study

6. The generalized affine parameter, u, for a -half-curve, , is defined by1C g(t) u :p
, where , and is the tangent vector ex-

3t a 2 1/2 ′ a ′ ′(� (V (t)) ) dt V(t ) p V (t )e (p) p p g(t )∫0 aap0

pressed in the parallel propagated orthonormal basis .ea

7. Spacetime is represented within GR by a pair , where M is in general assumed(M, g)
to be a ‘nice’ (paracompact, connected, Hausdorff, oriented) 4-dimensional differen-
tiable manifold and g is a ( in general) Lorentz metric, a solution of the EinsteinkC k ≥ 2
field equations and defined everywhere on M.
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the spacetime structure ‘near’ (or even ‘at’) the singularities. It will suffice
for our purpose here to consider only briefly some aspects of the so called
b-boundary and a-boundary constructions.

The main idea of the b-boundary construction is to consider the b-
incomplete curves to define (singular) boundary points (as their endpoints)
that can be ‘attached’ to the spacetime Lorentz manifold. Schmidt’s pro-
cedure provides a way to construct such a (singular) boundary (called�M
a b-boundary) using the equivalence between the b-completeness of the
spacetime Lorentz manifold and the Cauchy completeness of the(M, g)
total space OM of the orthonormal frame bundle (Schmidtp : OM r M
1971). In order to make physical sense of the idea of localizing the space-
time singularities with the help of these boundary points, it is necessary
to endow the singular boundary with some differential or at least some
topological structure. But it has been shown that the b-boundary of the
closed Friedman-Lemaı̂tre-Robertson-Walker (FLRW) solution, which is
part of the ‘standard model’ of contemporary cosmology, consists of a
single point that is not Hausdorff separated from points of the spacetime
Lorentz manifold (Bosshard 1976; Johnson 1977). Being not Hausdorff
separated from points of M, this unique boundary point, which should
represent the two singularities of the closed FLRW model, is actually
‘arbitrarily close’ to the points of M.8 It is then very difficult to give
physical meaning to such a behavior in terms of local entities or properties
since any (regular) point has the singular boundary point inp � (M, g)
its (arbitrarily small) neighborhood:9 at least any (usual) sense of local-
ization of the singularities, which is indeed one of the main motivations
for boundary points, seems then to be lost (Earman 1995, 36–37). More-
over, such bad topological behavior has been shown to be a feature of
all boundary constructions that share with the b-boundary construction
certain natural (and rather weak) conditions (Geroch, Can-bin, and Wald
1982).

With the help of the central notion of extension or envelopment, the
a-boundary construction aims to truly capture the idea of ‘missing points’,
according to which spacetime singularities have to be considered as points
in a ‘bigger’ manifold. More precisely, the motivation of the a-boundary
construction is that singularities in a spacetime Lorentz manifold have to
be considered as points (or subsets) of the topological boundary of the

8. A topological space is Hausdorff if open sets suchM G p, q � M, p ( q, a U,V O M
that and and ; p and q are said to be Hausdorff separated.p � U q � V U ∩ V p M
So, if two points of a topological space (like ) are not Hausdorff separated, it is notM
possible for them to have two (‘arbitrarily small’) disjoint neighborhoods (open sets):
it is in this topological sense that they can be considered as ‘arbitrarily close’.

9. The same problem arises in the case of the Schwarzschild solution.
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(image of the) manifold with respect to an envelopment (such subsets are
called boundary sets). In order to overcome the already mentioned dif-
ficulty of the nonuniqueness of the possible envelopments of a given man-
ifold (Section 2.1), the a-boundary is defined as a set of equivalence classes
of boundary sets (with respect to different envelopments) under a relevant
equivalence relation (called the ‘mutual covering relation’; see Scott and
Szekeres 1994). The a-boundary points representing (essential) spacetime
singularities are further defined with respect to incomplete curves. Avoid-
ing the technical details, it is sufficient for our purpose here to emphasize
that a spacetime singularity is then represented by an equivalence class
of boundary sets, most of which are in general not singletons (and not
even necessarily connected). In this framework, any interpretation of a
spacetime singualrity as a pointlike or local spacetime entity to which
local properties could be ascribed seems problematic also (Curiel 1999,
133–136).

3. Singular Feature and Spacetime Metaphysics.

3.1. A Nonlocal Feature of Spacetime. We have seen that spacetime
singularities cannot be described merely by spacetime Lorentz manifold
points (or regions) where something ‘goes wrong’ (where the scalar cur-
vature ‘blows up’ for instance). This is actually intimately related to the
dynamical nature of the spacetime structure as described by GR: space-
time singularities are indeed singularities of the spacetime structure itself
and there is no a priori fixed (spacetime) structure or entity with respect
to which the spacetime singularities could be defined. The point is that
the very characterizations of spacetime singularities within GR, in terms
of curve (b-)incompleteness or with the help of boundary constructions,
do not enable us to conceive spacetime singularities as meaningful local
entities or properties, which are defined here to be those that can be
associated with (and determined at) a spacetime point and its (arbitrarily
small) neighborhood. In order to be physically meaningful, such definition
of local entities and propeties requires that a (topological) separation
assumption holds among the spacetime points. For instance, it seems
meaningful to require that distinct local properties can be associated with
(determined at) distinct spacetime points together with their disjoint (ar-
bitrarily small) neighborhood, no matter how close to one another they
are (Hausdorff condition). Such a (topological) separation assumption
then lies at the heart of the definition of local entities and properties and
is in general part of the standard differential geometric representation of
spacetime, in which, therefore, “a significant amount of locality is being
presupposed” (Earman 1987, 453). As we have seen above, this aspect of
locality can be violated by spacetime singularities in some physically im-
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portant cases. In general, there is no clear and necessary link between the
singular behavior of spacetime and the existence of any particular local
entities like spacetime (boundary) points or local properties instantiated
at particular spacetime (boundary) points. (This is clearly underlined in
Curiel 1999; see also Dorato 1998, 340.) In this sense, this singular be-
havior seems to constitute an irreducible nonlocal feature of spacetime.10

More precisely, and as a consequence of this nonlocal aspect, the singular
behavior of spacetime cannot be reduced to (is not supervenient on) some
intrinsic properties instantiated at some particular spacetime (boundary)
points.11 In this perspective, it bears some analogy with some other non-
local aspects of the spacetime structure, like the gravitational energy and,
in a certain sense, some (irreducible) global topological properties. But it
does not merely amount to the widely recognized (Cleland 1984) non-
supervenience of spacetime relations on intrinsic properties of the space-
time points (or pointlike bits of matter; the main claim here does not side
with any position in the debate between substantivalism and relationalism,
but for simplicity we mainly use the spacetime points talk). Whereas a
particular spacetime relation needs to be instantiated between particular
spacetime points, what we want to stress here is that spacetime may possess
some fundamental features that are actually independent of the existence
of any particular spacetime points (and of any intrinsic properties in-
stantiated at particular spacetime points). Such nonlocal features of space-
time may therefore challenge the received atomistic (local) view of space-
time (and of the world) as a set of points possessing some intrinsic
properties together with some spacetime relations (as within Lewis’s thesis
of Humean supervenience). (To include merely the nonlocal features of
spacetime in the supervenience basis would be a rather ad hoc solution.)
So, it seems that not only quantum physics, but also classical general
relativistic physics may threaten this traditional metaphysical conception
of the world.12

This should prevent us from limiting our ontological considerations
about spacetime only to local properties and entities. In particular, we
should not put too much ontological weight on local and intrinsic prop-
erties of spacetime points (as well as on spacetime points themselves).
Indeed, this sceptical attitude towards spacetime points and their possible

10. From the semantical point of view, this then favors the “adjective conceptions of
spacetime singularities” (Earman 1995, 28).

11. In the standard view, intrinsic properties are those whose instantiation is indepen-
dent of accompaniment or loneliness; see Langton and Lewis 1998.

12. Butterfield (2006) has recently argued that classical mechanics also excludes this
atomistic conception about spacetime and the world, which, following Lewis, he calls
‘pointillisme’.
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intrinsic properties may well receive support from the GR principle of
active general covariance (or of invariance under active diffeomorphisms)
and the related hole argument. Due to this fundamental physical principle,
a wide range of philosophers of physics and physicists agree on the fact
that, within GR, spacetime points cannot be physically individuated (and
therefore ‘localized’), possessing intrinsic properties, for instance, inde-
pendently of the spacetime relations (structure) as represented by the
metric (for instance, Dorato 2000; Rovelli 2004, Chapter 2).

As regards the ontological status of spacetime, taking into consideration
(‘seriously’) the singular feature of spacetime (and more generally non-
local—or global—aspects of spacetime) seems to favor a nonatomistic
spacetime metaphysics, be it substantivalist or relationalist. Such a con-
ception is understood in the broad sense of an ontology that does not
give priority to local entities, like spacetime points or pointlike bits of
matter, with or without intrinsic properties, over the global structure in
which they are embedded, like the spacetime or world structure with its
nonlocal aspects. Of course, this broad metaphysical framework can be
refined, according to the ‘ontological space’ one leaves to local entities.13

We argue that both substantivalism and relationalism need to accom-
modate these nonatomistic (or structural) and nonlocal (or global) as-
pects.14 Indeed, within a scientific realist perspective, this focus on struc-
tures has strong flavors of a structural realist metaphysics.

According to a rather radical approach to the question of the singular
behavior of spacetime, it may be the case that the moral of the ‘spacetime
singularities problem’ is that the very concept of a spacetime point (or
pointlike bits of matter) is challenged at the fundamental level. (This
amounts to reducing the ‘ontological space’ of local entities to zero, i.e.,
rejecting them from our ontology.) The singular feature would then reveal
the fundamental nonlocal and nonpointlike (or pointless) nature of space-
time, which would need to be described in other mathematical (nonpoint-
like or pointless) terms. These could be algebraic.

3.2. Algebraic Approaches. If the philosophical analysis of the singular
feature of spacetime is able to shed some new light on the possible nature
of spacetime (as we have tried to show), one should not lose sight of the

13. For instance, we have just seen that there is a strong argument against intrinsic
properties of spacetime points, therefore reducing their ontological weight: at best, they
are on the same ontological footing as spacetime relations, their identity being entirely
determined by relational properties; see Esfeld and Lam 2008.

14. Indeed, it seems that it is exactly what it is done in the recent ‘sophisticated’
substantivalist and relationalist positions that seek to account for the hole argument;
see Rickles and French 2007 and references therein.
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fact that, although connected to fundamental issues in cosmology, like
the ‘initial’ state of our universe, spacetime singularities involve unphysical
behavior (like, for instance, the very geodesic incompleteness implied by
the singularity theorems or some possible infinite value for physical quan-
tities) and therefore constitute a physical problem that should be over-
come. (However this does not entail that GR is either false or incomplete;
see Earman 1996.) We now want to consider some recent theoretical
developments that directly address this problem by drawing some possible
physical (and mathematical) consequences of the above considerations.

Indeed, according to the algebraic approaches to spacetime, the singular
feature of spacetime is an indicator of the fundamental nonlocal character
of spacetime: it is conceived actually as a very important part of GR that
reveals the fundamental pointless structure of spacetime. This latter can-
not be described by the usual mathematical tools like standard differential
geometry, since, as we have seen above, it presupposes some ‘amount of
locality’ and is inherently pointlike. The mathematical roots of such con-
siderations are to be found in the full equivalence of, on the one hand,
the usual (geometric) definition of a differentiable manifold, M, in terms
of a set of points with a topology and a differential structure (compatible
atlases) with, on the other hand, the definition using only the algebraic
structure of the (commutative) ring of the smooth real functions�C (M )
on M (under pointwise addition and multiplication; indeed is a�C (M )
(concrete) algebra). For instance, the existence of points of M is equivalent
to the existence of maximal ideals of .15 Indeed, all the differential�C (M )
geometric properties of the spacetime Lorentz manifold are encoded(M, g)
in the (concrete) algebra . Moreover, the Einstein field equations�C (M )
and their solutions (which represent the various spacetimes) can be con-
structed only in terms of the algebra . (The original idea is due to�C (M )
Geroch [1972].) Now, the algebraic structure of can be considered�C (M )
as primary (in exactly the same way in which spacetime points or regions,
represented by manifold points or sets of manifold points, may be con-
sidered as primary) and the manifold M as derived from this algebraic
structure. Indeed, one can define the Einstein field equations from the
very beginning in abstract algebraic terms without any reference to the
manifold M, as well as the abstract algebras, called the ‘Einstein algebras’,
satisfying these equations. The standard geometric description of space-
time in terms of a Lorentz manifold can then be considered as(M, g)
inducing a mathematical (Gelfand) representation of an Einstein algebra.

15. A maximal ideal of a commutative algebra is the largest proper subset of—A
indeed a subgroup of the additive group of— closed under multiplication by anyA
element of . The corresponding maximal ideal of to a point is the set�A C (M) p � M
of all vanishing functions at p.
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Without entering into too many technical details, the important point for
our discussion is that Einstein algebras and sheaf-theoretic generalizations
thereof reveal the above discussed nonlocal feature of (essential) spacetime
singularities from a different point of view.16 In the framework of the b-
boundary construction (see Section 2.2), the (generalized)M p M ∪ �M
algebraic structure C corresponding to M can be prolonged to the (gen-
eralized) algebraic structure corresponding to the b-completed suchC M
that , where is the restriction of to M; then in the singularC p C C CM M

cases (like the closed FLRW solution), only constant functions (and there-
fore only zero vector fields) can be prolonged. (In the algebraic formalism,
vector fields are abstract ‘derivations’.) This underlines the nonlocal fea-
ture of the singular behavior of spacetime, since constant functions are
nonlocal in the sense that they do not distinguish points. This fundamental
nonlocal feature suggests noncommutative generalizations of the Einstein
algebraic formulation of GR, since noncommutative spaces are highly
nonlocal (see, for instance, Demaret, Heller, and Lambert 1997 and ref-
erences therein). We will not discuss this matter here. It is sufficient for
us to stress that, in general, noncommutative algebras have no maximal
ideals, so that the very concept of a point has no counterpart within this
noncommutative framework. Therefore, according to this line of thought,
spacetime, at the fundamental level, is completely nonlocal (pointless in-
deed). Then it seems that the very distinction between singular and non-
singular is not meaningful anymore at the fundamental level; within this
framework, spacetime singularities are ‘produced’ at a less fundamental
level, together with standard physics and its standard differential (com-
mutative) geometric representation of spacetime (see Heller 2001 and ref-
erences therein).

Although these theoretical developments are rather speculative, it must
be emphasized that the algebraic representation of spacetime itself is “by
no means esoteric” (Butterfield and Isham 2001, Section 2.2.2). Starting
from an algebraic formulation of the theory, which is completely equiv-
alent to the standard geometric one, it provides another point of view on
spacetime and its singular behavior that should not be dismissed too
quickly. At least it underlines the fact that our interpretative framework
for spacetime should not be dependent on the traditional atomistic and
local (pointlike) conception of spacetime (induced by the standard dif-

16. There are indeed several algebraic approaches to GR. For instance, according to
the Abstract Differential Geometry program of Mallios and Raptis (2003), spacetime
singularities are merely direct artifacts of our mathematical ( -)representation of�C
spacetime: indeed, they simply disappear once GR is written in purely algebraic (sheaf-
theoretic) terms. In the following, we rather brielfy consider the (less radical) approach
of Heller (2001), which emphasizes some interesting points for our discussion.
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ferential geometric formulation). Indeed, this misleading dependence on
the standard differential geometric formulation seems to be at work in
some standard arguments in contemporary philosophy of spacetime, as
in the hole argument (recently discussed by Bain [2003] within the frame-
work of the algebraic formulation of GR), or in the field argument (Field
1980, 35). According to the latter argument, field properties occur at
spacetime points or regions, which must therefore be presupposed. Such
an argument seems to fall prey to the standard differential geometric
representation of spacetime and fields, since within the algebraic formal-
ism of GR, (scalar) fields—elements of the algebra —can be interpreted�C
as primary and the manifold (points) as a secondary, derived notion (and
this does not even take into account the fact that, within sheaf-theoretic
or noncommutative generalizations, the very concept of a point may be
challenged at the fundamental level).

4. Conclusion. Taking up Earman’s invitation to consider spacetime sin-
gularities ‘seriously’ has led us to deal with fundamental issues about the
nature of spacetime. Indeed, we have seen that spacetime may possess
some fundamental nonlocal features, like the singular feature, that chal-
lenge the traditional atomistic view about spacetime (as in Lewis’s Humean
supervenience thesis). According to this received view, spacetime is con-
ceived as a set of points, at which intrinsic properties are instantiated,
together with the spacetime relations. Indeed, the very concept of a space-
time point seems to lie at the heart of the challenge. It cannot be merely
postulated anymore (as in the field argument), since it is indeed a sec-
ondary, derived, notion within the algebraic formulation of GR. This
latter formualtion may with reason be considered as deserving to play a
role in the interpretative issues about spacetime—at least to the same
extent as the standard differential geometric formulation does. Actually,
the alleged interpretational problems with respect to spacetime singular-
ities may find part of their roots in the misleading dependence on the
atomistic and local conception of spacetime, which is actually induced by
this standard differential geometric representation of spacetime. And this
gives a structuralist flavor to spacetime as described by GR and inde-
pendently of the formulation. But this is a story for another time.
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