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A new class of self-propelled droplets, coined superwalkers, has been shown to emerge
when a bath of silicone oil is vibrated simultaneously at a given frequency and its
subharmonic tone with a relative phase difference between them (Valani et al., Phys. Rev.
Lett., vol. 123, 2019, 024503). To understand the emergence of superwalking droplets,
we explore their vertical and horizontal dynamics by extending previously established
theoretical models for walkers driven by a single frequency to superwalkers driven by two
frequencies. Here, we show that driving the bath at two frequencies with an appropriate
phase difference raises every second peak and lowers the intermediate peaks in the vertical
periodic motion of the fluid surface. This allows large droplets that could otherwise not
walk to leap over the intermediate peaks, resulting in superwalking droplets whose vertical
dynamics is qualitatively similar to normal walkers. We find that the droplet’s vertical
and horizontal dynamics are strongly influenced by the relative height difference between
successive peaks of the bath motion, a parameter that is controlled by the phase difference.
Comparison of our simulated superwalkers with the experiments of Valani et al. (2019)
shows good agreement for small- to moderate-sized superwalkers.

Key words: drops, capillary waves, Faraday waves

1. Introduction

On vertically vibrating a bath of silicone oil at frequency f , a droplet of the same oil can
be made to bounce indefinitely on the free surface of the liquid (Walker 1978; Couder et al.
2005a). As the amplitude of the forcing is increased, the bouncing droplet destabilises
and transitions to a steady walking state (Couder et al. 2005b). The walking droplet, also
called a ‘walker’, emerges just below the Faraday instability threshold (Faraday 1831),
above which the whole surface becomes unstable to standing Faraday waves oscillating
at the subharmonic frequency f /2. On each bounce, the walker generates a localised
damped Faraday wave on the fluid surface. It then interacts with these waves on subsequent
bounces, giving rise to a self-propelled wave–droplet entity. Intriguingly, such walkers
have been shown to mimic several peculiar behaviours that were previously thought to
be exclusive to the quantum world. These include orbital quantisation in rotating frames
(Fort et al. 2010; Harris & Bush 2014; Oza et al. 2014) and harmonic potentials
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(Perrard et al. 2014a,b; Labousse et al. 2016), Zeeman splitting in rotating frames (Eddi
et al. 2012; Oza, Rosales & Bush 2018), wave-like statistical behaviour in confined
geometries (Harris et al. 2013; Gilet 2016; Cristea-Platon, Sáenz & Bush 2018; Sáenz,
Cristea-Platon & Bush 2018; Durey, Milewski & Wang 2020) as well as in an open system
(Sáenz, Cristea-Platon & Bush 2020) and tunnelling across submerged barriers (Eddi et al.
2009; Nachbin, Milewski & Bush 2017; Tadrist et al. 2020). They have also been predicted
to show anomalous two-droplet correlations (Nachbin 2018; Valani, Slim & Simula 2018).
A detailed review of hydrodynamic quantum analogues of walking droplets is provided by
Bush (2015) and Bush et al. (2018).

Recently, a new class of walking droplets, coined superwalkers, has been observed
(Valani, Slim & Simula 2019). These emerge when the bath is driven simultaneously
at two frequencies, f and f /2, with a relative phase difference Δφ. For a commonly
studied system with silicone oil of 20 cSt viscosity, single-frequency driving at f = 80 Hz
produces walkers with radii between 0.3 and 0.5 mm, and walking speeds up to 15 mm s−1,
with speed typically increasing with size (Moláček & Bush 2013b; Wind-Willassen et al.
2013). In the same system with two-frequency driving at f = 80 and f /2 = 40 Hz,
superwalkers can be significantly larger than walkers with radii up to 1.4 mm and walking
speeds up to 50 mm s−1 (Valani et al. 2019). Intriguingly, the walking speed and the
vertical dynamics of superwalkers are strongly dependent on the phase difference Δφ,
with peak superwalking speed occurring near Δφ = 140◦, while near Δφ = 45◦ they only
bounce or may even coalesce. For a fixed phase difference, smaller superwalkers typically
behave very similarly to walkers, with their speed increasing with their size and impacting
the surface once every two up-and-down cycles of the bath. Conversely, the speed of
larger superwalkers decreases with their size. These large superwalkers appear to impact
the bath twice every two up-and-down cycles of the bath and have prolonged contact
with the bath, with the largest ones hardly lifting from the surface. Using sophisticated
numerical simulations, Galeano-Rios, Milewski & Vanden-Broeck (2019) were able to
replicate superwalking behaviour for a single droplet of moderate radius R = 0.68 mm,
and reported a good match in the superwalking speed between their simulation and the
experiments of Valani et al. (2019). Although these two studies describe the characteristics
of superwalkers, an understanding of the mechanism that enables superwalking is still
lacking. In this paper, our aim is to understand this underlying mechanism by adapting the
theoretical models used for walkers driven with a single frequency, to superwalkers driven
with two frequencies.

Over the years, many theoretical models have been developed to describe the dynamics
of a walker. These range from phenomenological stroboscopic models that only capture
the horizontal dynamics to sophisticated models that resolve the vertical and horizontal
dynamics and the detailed evolution of the surface waves created by the walker.
Intermediate complexity models that resolve the vertical and horizontal dynamics but
assume a predetermined form for the standing wave generated by the droplet on each
impact have been widely used. In this latter category, Moláček & Bush (2013a) modelled
the vertical bouncing dynamics of the droplet using a linear spring model, inspired by the
investigations of Gilet & Bush (2009a) and Gilet & Bush (2009b) on droplets bouncing
on a soap film. They also developed a nonlinear logarithmic spring model, although it
is not clear whether this model is more accurate and hence the linear spring model is
often used for simplicity (Couchman, Turton & Bush 2019). Moláček & Bush (2013b) and
Couchman et al. (2019) coupled these vertical spring models with a horizontal dynamics
model comprising a propulsive force from the impact and a lumped drag force consisting
of aerodynamic drag and momentum drag during contact. The propulsive force is the
horizontal component of the normal force, which arises because the small-amplitude

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

74
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.742


Emergence of superwalking droplets 906 A3-3

waves incline the free surface. The waves are modelled by a linear superposition of
predetermined standing waves generated by the droplet on each impact. Milewski et al.
(2015) further refined the modelling by coupling the vertical and horizontal dynamics
models of Moláček & Bush (2013a,b) to a quasi-potential, weakly viscous wave model
for wave generation and evolution. Galeano-Rios, Milewski & Vanden-Broeck (2017)
developed a more complete model for the vertical dynamics of the droplet by imposing a
kinematic match between the motion of the free surface and that of the impacting droplet,
modelled as a solid sphere. Combining this vertical dynamics model with the free surface
evolution of Milewski et al. (2015), Galeano-Rios et al. (2019) were able to obtain an
accurate model for walking droplets free of any impact parametrisation. Such models
give an accurate description of the system at the time scale of a single bounce but they
become inefficient in calculating a droplet’s horizontal trajectory over long times. Hence,
stroboscopic models that average over the walker’s periodic vertical motion but capture the
horizontal motion have been developed to investigate the horizontal dynamics of walkers
over long time scales. Many of these stroboscopic models use a predetermined form of
the standing wave field (Protière, Boudaoud & Couder 2006; Oza, Rosales & Bush 2013;
Oza et al. 2017; Arbelaiz, Oza & Bush 2018; Couchman et al. 2019) while the model of
Durey & Milewski (2017) uses a more sophisticated wave model to accurately capture the
droplet’s wave field. A comprehensive review of the different walker models is given by
Turton, Couchman & Bush (2018).

In this study, we couple the vertical and horizontal dynamics models of Moláček & Bush
(2013a,b) along with a new model for the wave field of a superwalker to understand and
rationalise superwalking. In § 2, we provide a summary of the theoretical model, explore
the wave field for two-frequency driving and describe the nomenclature we use to describe
the bouncing modes. In § 3, we show that adding the second driving frequency with an
appropriate phase difference raises every second peak and lowers the intermediate peaks of
the bath’s motion, and that this allows larger droplets to leap over the intermediate peaks,
thereby enabling superwalking. We also show the importance of the phase difference Δφ

in the emergence of superwalking and compare the results from simulations with the
experiments of Valani et al. (2019). We discuss and conclude the study in § 4.

2. Theoretical model

Consider a droplet of mass m and radius R bouncing on a bath of liquid of density
ρ, kinematic viscosity ν and surface tension σ . The bath is vibrating vertically with
acceleration γ (t) = Γf g sin(Ωt) + Γf /2g sin(Ωt/2 + Δφ). Here, Ω = 2πf is the angular
frequency, Γf and Γf /2 are the acceleration amplitudes of the two frequencies relative to
gravity g and Δφ is the relative phase difference between them. This configuration is
shown schematically in figure 1. We describe our system in the oscillating frame of the
bath by horizontal coordinates x = (x, y) and vertical coordinate z, with z = 0 chosen to
coincide with the undeformed surface of the bath. In this frame, the centre of mass of the
droplet is located at a horizontal position xd and the south pole of the droplet at a vertical
position zd such that zd = 0 would represent initiation of contact with the undeformed
surface of the bath. The free surface elevation of the liquid filling the bath is at z = h(x, t).

2.1. Vertical dynamics
We simulate the vertical droplet dynamics using the linear spring model of Moláček &
Bush (2013a) adapted for two-frequency driving. Using this model, the vertical equation
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(a)

zd
zd

h(x, t)

xd

z = 0

(b)

Propulsive force

Normal force

Effective gravity

Drag force
g + γ(t)

FIGURE 1. (a) Schematic of the system consisting of a bath of liquid vibrated vertically with
acceleration γ (t) and a droplet of the same liquid walking horizontally at velocity ẋd and located
at vertical position zd relative to the free surface of the liquid at rest. Panel (b) shows the vertical
and horizontal forces acting on the droplet in the comoving frame of the bath. In the vertical
direction, the droplet experiences an effective gravity, −m[g + γ (t)], and an upward normal
force, FN(t), during contact. In the horizontal direction the droplet experiences a propulsive
force, −FN(t)∇h(xd, t), during contact due to the slope of the wave field and a lumped drag
force composed of momentum loss during contact, −Dmom ẋd and air drag, −Dair ẋd.

of motion of the droplet in the comoving frame of the bath is given by

mz̈d = −m[g + γ (t)] + FN(t), (2.1)

where the first term on the right-hand side is the effective gravitational force on the droplet
in the bath’s frame of reference. The second term on the right-hand side is the normal
force imparted to the droplet during contact with the liquid surface. This normal force is
calculated by modelling interaction with the bath as a linear spring and damper according
to,

FN(t) = H(−z̄d) max
(−ksz̄d − b˙̄zd, 0

)
. (2.2)

Here, H is the Heaviside step function and z̄d = zd − h(xd, t) is the height of the droplet’s
south pole above the free surface of the bath (from here on simply referred to as the height
of the droplet). The maximum condition in (2.2) ensures a non-negative reaction force on
the droplet during contact. The constants ks and b are the spring constant and damping
force coefficient, respectively. We discuss appropriate values for these constants in § 2.4.

2.2. Horizontal dynamics
To describe the horizontal dynamics of the walking droplet, we use the model of Moláček
& Bush (2013b) for which the horizontal equation of motion is

mẍd = − [Dmom(t) + Dair] ẋd − FN(t)∇h(xd, t). (2.3)

The term in square brackets on the right-hand side is the total instantaneous drag force,
composed of momentum loss during contact, Dmom(t) = C

√
ρR/σFN(t), and an air drag

of the form Dair = 6πRμa. Here, μa is the dynamic viscosity of air and C is the contact
drag coefficient, an adjustable parameter. We discuss appropriate values for this coefficient
in § 2.4. The final term on the right-hand side is the horizontal component of the contact
force arising from the small slope, |∇h(xd, t)| � 1, of the underlying wave field during
contact.
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2.3. Wave field
The free surface z = h(x, t) is calculated as the linear superposition of all the individual
waves generated by the droplet on its previous bounces,

h(x, t) =
∑

n

hn(x, t), (2.4)

where hn(x, t) is the wave field generated by the nth bounce at location xn and time tn .
The individual waves generated by the droplet on each bounce are localised, damped

standing Faraday waves. Various different models of the waveform have been developed
to describe a single impact of a walker (Eddi et al. 2011; Moláček & Bush 2013b; Milewski
et al. 2015; Tadrist et al. 2018). One of the most commonly used wave models is that of
Moláček & Bush (2013b), given by

h(M)
n (x, t) = A(M)

√
t − tn

cos
(

Ωt
2

)
J0(kF|x − xn|) exp

[
− t − tn

TFMe(M)

]
, (2.5)

where kF is the Faraday wavenumber, TF = 4π/Ω is the Faraday period, and Me(M) =
Td/TF(1 − Γf /ΓF) is the memory parameter that determines the proximity to the Faraday
threshold. In this latter expression, Td = 1/νek2

F is the time constant for wave decay, νe
is the effective kinematic viscosity and ΓF is the dimensionless acceleration amplitude at
the Faraday threshold for single-frequency driving at frequency f . This model describes
a wave with the shape of a Bessel function of the first kind, J0, that oscillates at the
subharmonic frequency f /2 and decays exponentially in time with a decay constant
inversely proportional to the memory. The location and instant of the droplet’s impact
are approximated respectively by,

xn =
∫ tc

n

ti
n

xd(t′)FN(t′) dt′
/∫ tc

n

ti
n

FN(t′) dt′ and tn =
∫ tc

n

ti
n

t′FN(t′) dt′
/∫ tc

n

ti
n

FN(t′) dt′,

(2.6a,b)
where ti

n and tc
n are the times of initiation and completion of the nth impact. The equation

for the wave amplitude coefficient A(M) is

A(M) =
√

2νe

π

k3
F

3σk2
F + ρg

∫ tc
n

ti
n

sin
(

Ωt′

2

)
FN(t′) dt′. (2.7)

A detailed theoretical study of the wave field generated by a single bounce of a walker
was undertaken by Tadrist et al. (2018). They derived the following improved waveform for
the wave generated by an instantaneous impact of a walker of force strength F0 at location
xn and time tn ,

h(T)
n (x, t) = A(T)

0√
t − tn

cos
(

Ωt
2

+ θ+
F

)
J0(kF|x − xn|) exp

[
− (t − tn)

TFMe(T)
− TF|x − xn|2

8πD(t − tn)

]
.

(2.8)

In this expression, the memory parameter is given by Me(T) = −1/2πδ+
F with δ+

F the
dimensionless decay rate of the longest-lived Faraday wave. This improved form of the
wave field has two new additions: (i) the phase shift θ+

F of the Faraday waves relative to
the driving signal and (ii) an exponential spatial decay with diffusive spreading (with a
diffusion coefficient D). Note that similar additions can also be obtained following the
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derivation of Moláček & Bush (2013b) by including higher-order terms in their decay rate
expansions. The amplitude coefficient A(T)

0 takes the form,

A(T)

0 =
√

2π

Ω5D
2k2

F

πρ
B+

F (tn)F0, (2.9)

where B+
F (tn) is a function that prescribes the amplitude based on the instant of impact tn

and is given by

B+
F (tn) = −2 cos(Ωtn/2 + θ−

F )

(δ+
F − δ−

F )[cos(Ωtn + θ+
F + θ−

F ) + cos(θ+
F − θ−

F )] − 2 sin(θ+
F − θ−

F )
, (2.10)

where θ−
F and δ−

F are the phase shift and decay rate of a companion, short-lived Faraday
wave. The reader is referred to Tadrist et al. (2018) for further details on these parameters.
To extend this model to a finite contact time, we follow the suggestion in Tadrist et al.
(2018) of using Duhamel’s principle and the approach used in appendix A.4 of Moláček
& Bush (2013b), and integrate the impulse response with a time varying contact force
FN(t). This results in replacing the amplitude coefficient A(T)

0 in (2.8) by

A(T) =
√

2π

Ω3D
k2

F

πρ

∫ tc
n

ti
n

B+
F (t′)FN(t′) dt′, (2.11)

and replacing the initial impact location xn and time tn with their respective weighted
averages as defined in (2.6a,b). Moreover, in (2.11), the amplitude prescribing function
B+

F (t′) is identical to the one presented in (2.10).
To model the wave field generated by a superwalker with two-frequency driving, we

use a similar approach to that of Tadrist et al. (2018). A detailed derivation is presented
in appendix A. The final form of the wave field for the case of the bath being driven at
f = 80 and f /2 = 40 Hz is

h(SW)
n (x, t) = A40

cos(Ωt/2 + θ+
F40)√

t − tn
J0(kF40|x − xn|) exp

[
− t − tn

TFMe40
− TF|x − xn|2

8πD40(t − tn)

]

+ A20
cos(Ωt/4 + θ+

F20)√
t − tn

J0(kF20|x − xn|) exp
[
− t − tn

TFMe20
− TF|x − xn|2

8πD20(t − tn)

]
, (2.12)

where the impact location xn and the time of impact tn are calculated using (2.6a,b), and
the amplitude coefficients are given by

A40 =
√

2π

Ω3D40

k2
F40

πρ

∫ tc
n

ti
n

B+
F40(t

′)FN(t′) dt′, (2.13a)

A20 =
√

2π

Ω3D20

k2
F20

πρ

∫ tc
n

ti
n

B+
F20(t

′)FN(t′) dt′. (2.13b)

The interpretation of (2.12) is that a droplet bouncing under the prescribed two-frequency
driving excites two dominant waves at wavenumbers kF40 and kF20, corresponding to
frequencies of 40 and 20 Hz. These waves decay in time at rates Re(δ+

F40) and Re(δ+
F20),

which determine the corresponding memory parameters Me40 = −1/2πRe(δ+
F40) and

Me20 = −1/2πRe(δ+
F20). Here, Re(·) denotes the real part of the complex argument.
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The waves also spread diffusively with diffusion coefficients D40 and D20, and have phase
shifts θ+

F40 and θ+
F20 with respect to the driving signal. We refer the reader to appendix A

for explicit equations for these parameters.
Comparing the superwalker wave field in (2.12) to that of a walker in (2.8) leads to two

key observations: (i) Both models have a wave at frequency f /2 = 40 Hz. We note that
Tadrist et al. (2018) derived (2.8) by considering a cosine form of driving while we have
considered a sine form of driving to be consistent with experiments of Valani et al. (2019).
This results in a constant shift of π/4 in the phase shift θ+

F in (2.8) which has been taken
into account when comparing results. (ii) An additional wave of frequency f /4 = 20 Hz
appears in the wave field of a superwalker. However, in the region of (Γ80, Γ40) parameter
space where superwalking is realised, typically the amplitude of the 40 Hz wave, A40, is
4 to 8 times that of the 20 Hz wave, A20. Thus in general, our new two-frequency wave
model is not appreciably different from the single-frequency model of Tadrist et al. (2018).
This is illustrated further in figure 2 where the wave fields predicted using the models
of Moláček & Bush (2013b) in (2.5), Tadrist et al. (2018) in (2.8) and the superwalker
wave field in (2.12) are shown for an instantaneous impact at time 0.22TF, corresponding
to the typical impact phase for superwalkers, with an appreciable Γf /2 component. The
waves from our new two-frequency model (2.12) and the single-frequency (Tadrist et al.
2018) model (2.8) are quantitatively similar (figures 2a and 2c–e), except near times when
the overall wave field is quite flat and is changing rapidly (figure 2b). The comparison
with the single-frequency (Moláček & Bush 2013b) model appears poorer, however, the
difference is primarily in the far field and arises from the absence of diffusive spatial
decay in this model. In the near-field region of primary interest for walking, all three
models are quantitatively similar with a maximum relative error of approximately 20 %,
as shown in figures 2(e) and 2( f ). Moreover, as shown in figure 2( f ), the relative height
difference at the impact location between the waves of the Moláček & Bush (2013b)
model and the Tadrist et al. (2018) model is sinusoidal due to the added phase shift of
θ+

F ≈ −4◦ in the Tadrist et al. (2018) model for the chosen parameters in figure 2, and the
relative height difference at the impact location between the superwalker wave and that of
Tadrist et al. (2018) reveals the added 20 Hz wave in the superwalker wave field. Overall
these results suggest that the wave fields observed for two-frequency and single-frequency
driving remain very similar, an observation that was also made qualitatively by Valani
et al. (2019). In § 3, we present results using our new two-frequency model, but note that
results using either the Moláček & Bush (2013b) model or the Tadrist et al. (2018) model
are comparable; we provide details in appendix B.

2.4. Numerical method and parameter values
We solved (2.1) and (2.3) using the leap-frog method (Sprott 2003), a modified version
of the Euler method where the new horizontal and vertical positions of the droplet are
calculated using the old velocities and then the new velocities are calculated using the
new positions. To increase computational speed, we only stored the waves generated by the
100 most recent bounces of the droplet and discard the earlier ones, which have typically
decayed to below 10−5 of their initial amplitude. The simulations were initialised with
xd = (0, 0) mm, ẋd = (1, 0), żd = 0 mm s−1 and six different equally spaced vertical
positions zd = (0, 2, 4, 6, 8, 10)R. Multiple initial conditions were used so that different
modes existing at the same parameter values are likely to be captured.

The physical parameters were fixed to match the experiments of Valani et al. (2019):
ρ = 950 kg m−3, ν = 20 cSt, σ = 20.6 mN m−1 and f = 80 Hz. There are three adjustable
parameters in the model: the spring constant of the bath ks, the damping coefficient of the
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FIGURE 2. Comparison of the wave fields generated by an instantaneous impact at x = 0 and
at time ti = 0.22TF for typical superwalker parameter values. The wave fields from the Moláček
& Bush (2013b) model (green dashed-dotted curve), Tadrist et al. (2018) model (maroon dotted
curve) and the superwalker model of this work (blue solid curve) are shown at times (a) t1 =
ti + 0.23TF, (b) t2 = ti + 0.57TF, (c) t3 = ti + 0.76TF and (d) t4 = ti + 1.00TF. The evolution
of the absolute wave height h at x = 0 from an impact at ti (vertical red dashed line) is shown in
(e) and the relative wave height Δh/h(T)

∗ with respect to the Tadrist et al. (2018) model is shown
in ( f ). Here, h(T)

∗ is the wave field from Tadrist et al. (2018) model in (2.8) excluding the cosine
term to avoid singularities in Δh/h(T)

∗ , and Δh = h(SW) − h(T) or h(M) − h(T). The parameters
are Γ80 = 3.8, Γ40 = 0.6 and Δφ = 130◦.

bath b and the dimensionless contact drag coefficient C. The dimensionless parameters
corresponding to ks and b are K = ks/mω2

d and B = b/mωd, where ωd = √σ/ρR3 is
the droplet’s characteristic internal vibration frequency (Moláček & Bush 2013a). For
walkers, appropriate values were determined by fitting to experimental data (Moláček &
Bush 2013a,b) and typical values are K = 0.59 and B = 0.48 (Couchman et al. 2019), and
C = 0.17 (Moláček & Bush 2013b). For superwalkers, we also set C = 0.17, but adjust
K and B to best fit the available experimental data. The details of this fit are described in
appendix C. We use both constant values of K = 0.70 and B = 0.60, as well as allowing
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the parameter K to vary with droplet radius R according to

K = 1.06
√

Bo + 0.37 (2.14)

with a fixed B = 0.60, where Bo = ρgR2/σ is the Bond number of the droplet. We refer
the reader to appendix C for more details on how this relationship was obtained. We note
that these values give a good match with the experiments of Valani et al. (2019); however,
the qualitative behaviour of the results remains unchanged for a range of K and B values.

2.5. Description of vertical bouncing modes
The vertical bouncing dynamics is crucially important for the existence and characteristics
of superwalkers. Here, we provide a description of the nomenclature we use to distinguish
the different vertical bouncing modes.

We follow Valani et al. (2019) and use the notation (l, m, n) to indicate that the droplet
impacts the surface n times during m oscillation periods of the bath at frequency f , which
equals l oscillation periods of the bath at frequency f /2. For single-frequency driving,
the index l is dropped. For normal walking droplets, one of the most commonly observed
mode is (2, 1), with the droplets leaping over every second peak in the bath’s motion.
After Moláček & Bush (2013a), we distinguish two different styles of (2, 1) walking and
corresponding (1, 2, 1) superwalking, with a high-bouncing, short-contact mode denoted
by (2, 1)H and (1, 2, 1)H , and a low-bouncing, long-contact mode denoted by (2, 1)L and
(1, 2, 1)L. Droplets that have two peaks in the normal force during contact are classified
as (1, 2, 1)L while those that have only one peak are classified as (1, 2, 1)H (Galeano-Rios
et al. 2019). Another commonly observed mode is (2, 2) and corresponding (1, 2, 2), in
which the droplets no longer are able to leap over intermediate peaks and contact the
bath twice, typically a high bounce and a low bounce, every two up-and-down cycles
of the bath. Note that experimentally it is difficult to distinguish between a (2, 1)L and
(2, 2) mode (see figures 7 and 8 of Galeano-Rios et al. 2019). A less commonly observed
mode is (4, 2) and corresponding (2, 4, 2), in which the droplets leap over every second
peak, but each bounce in a pair has different amplitude. Finally, bouncing modes with no
discernible periodicity or those with periodic contact but aperiodic modulation of peak
bouncing heights are referred to as chaotic modes.

3. Emergence of superwalking

To illustrate the emergence of superwalking and its relationship with normal walking,
we begin by describing the dynamics of a relatively small normal walker with the bath
driven at a single frequency of f = 80 Hz and acceleration amplitude Γ80 = 3.8 (compared
to a Faraday threshold ΓF80 = 4.15). This results in a normal walker that is bouncing in
a (2, 1)H mode (see figure 3a). The (2, 1) bouncing mode is crucial for walking as the
droplet is bouncing at the same frequency as the frequency of the subharmonic Faraday
waves that emerge beyond the Faraday instability threshold. Thus the droplet’s bouncing is
in resonance with the damped Faraday waves it generates and with which it interacts. For
slightly larger droplets (see figure 3b), the same (2, 1)H bouncing mode is maintained but
the height of the bounces are reduced, while for larger droplets still, the bounces reduce
in height to such an extent that the droplet can no longer leap over the second peak in
the bath’s motion. For the chosen parameters, this results in the droplet transitioning to a
chaotic bouncing mode and no longer walking (figure 3c).

In contrast, figure 3(d) shows the vertical dynamics of the same-sized droplet as in
figure 3(c) with the addition of the subharmonic frequency f /2 = 40 Hz and amplitude
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FIGURE 3. Emergence of a superwalker. (a–c) Vertical dynamics of a walker of radius (a)
R = 0.36 mm and (b) R = 0.40 mm bouncing in a (2, 1)H mode, and a bigger non-walking
droplet of radius (c) R = 0.54 mm bouncing in a chaotic mode. Here, the bath is driven at a
single frequency of f = 80 Hz with acceleration amplitude Γ80 = 3.8. (d) Vertical dynamics of
a superwalker of radius R = 0.54 mm bouncing in a (1, 2, 1)H mode. Here the bath is driven
at f = 80 and f /2 = 40 Hz with phase difference Δφ = 130◦ and acceleration amplitudes
Γ80 = 3.8 and Γ40 = 0.6. In (a–d), the solid black curves indicate the bath motion, B(t) =
−(Γf g/Ω2) sin(Ωt) − (4Γf /2g/Ω2) sin(Ωt/2 + Δφ), the coloured curves represent the motion
of the south pole of the droplet, zd(t) + B(t), and the filled blue regions illustrate the motion of
the liquid surface, h(xd, t) + B(t), all in the laboratory frame. The grey regions indicate times
at which the droplet is in contact with the bath. Panel (e) shows a schematic of the speed-size
characteristics for the droplets in (a–d). Here, the values of the parameters K and B are both fixed
to 0.70 and 0.60 respectively.

Γ40 = 0.6 (compared to a Faraday threshold ΓF40 = 1.22) at a phase difference of Δφ =
130◦. This additional subharmonic driving raises every second peak and lowers the
intermediate peaks in both the bath’s and the waves’ motion. This allows the bigger droplet
to clear every second peak in the bath’s motion and settle in a (1, 2, 1)H bouncing mode,
effectively identical to the (2, 1)H mode for a walker, and results in the emergence of a
superwalker. This jump from a walker to a superwalker is shown schematically on the
speed-size curve in figure 3(e).

3.1. Importance of the phase difference between the two driving frequencies
The phase difference between the two driving frequencies controls the relative height of
the two peaks in one full cycle of the periodic bath motion, equivalently two up-and-down
cycles, and it is therefore a crucial parameter for the emergence of superwalking.
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FIGURE 4. Effect of phase difference on superwalking behaviour. (a) Walking speed u as a
function of the phase difference Δφ for a superwalker of radius R = 0.54 mm with Γ80 = 3.8
and Γ40 = 0.6. The solid curve represents results from numerical simulations with colours
indicating different bouncing modes: (1, 2, 1)L in green, (1, 2, 1)H in blue and chaotic in purple.
The experimental results of Valani et al. (2019) are shown by points, with the style of marker
indicating the bouncing modes: (1, 2, 2) are red circles •, (1, 2, 1)H are blue triangles �,
transition between a (1, 2, 1)H and a (1, 2, 2) mode are grey squares � , and chaotic are purple
asterisks ∗. The dashed curve indicates the height difference ΔB between consecutive peaks
in one period of the bath motion. The data to the right of the vertical dotted line are repeated.
Panel (b) shows bouncing modes obtained for different values of Δφ from (a). In this panel, the
grey regions indicate times at which the droplet is in contact with the bath. The parameters K
and B are fixed to 0.70 and 0.60 respectively.

Figure 4(a) shows the walking speed u as a function of the phase difference Δφ for a
fixed-sized droplet that is too large to walk with single-frequency driving (the largest
droplet shown in figure 3). The different vertical modes at different Δφ are shown
in figure 4(b). Depending on the phase difference, the droplet either bounces without
walking or it superwalks. In the bouncing regime, 20◦ � Δφ � 90◦, the droplet’s vertical
dynamics appears chaotic. This can be attributed to the height difference ΔB between
successive peaks in the bath’s motion being small (see dashed curve in figure 4a)
and hence the droplet behaves similarly to the single-frequency case (see figure 3c).
Conversely, regions of high superwalking speed are associated with a large height
difference ΔB between the two peaks in the bath’s motion and a droplet can easily settle
in a (1, 2, 1) bouncing mode.

The predicted speeds from the numerical simulations agree well with experiments.
The chaotic mode in the bouncing regime and the (1, 2, 1)H bouncing mode in the
superwalking regime are also observed at parameter values comparable to those in
experiments. The numerically observed (1, 2, 1)L superwalkers were not reported in
experiments, instead (1, 2, 2) modes were observed at the corresponding parameter values.
However, as noted in § 2.5, it is difficult to distinguish between a (1, 2, 1)L and a (1, 2, 2)
mode experimentally. Hence, it is not clear whether all the (1, 2, 2) superwalkers reported
by Valani et al. (2019) are truly (1, 2, 2) superwalkers or if some may in fact be (1, 2, 1)L

superwalkers.

3.2. Speed-size characteristics of superwalking droplets
In the size range for which walkers exist, their walking speed typically increases with
their size (Moláček & Bush 2013b). For superwalkers, two trends were observed in
experiments: an ascending branch for smaller superwalkers where the speed increases with
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FIGURE 5. Speed of a superwalker as a function of its size at fixed Γ80 = 3.8 and Δφ = 130◦.
(a) Comparison of the speed-size characteristics of a droplet from numerical simulations (solid
curves) with experimental results of Valani et al. (2019) (black circles with empty circles
indicating coalescence) and the stroboscopic model of Oza et al. (2013) (dashed curve) at
Γ40 = 0.6. For the stroboscopic model, we set the adjustable parameters of the impact phase and
the non-dimensional drag coefficient to sin(Φ) = 0.2 and C = 0.17 respectively, while the other
parameters were chosen to match the experiments of Valani et al. (2019). The black horizontal
bars indicate where different bouncing modes in experiments were observed. Panels (c), (d) and
(e) show the speed-size characteristics at Γ40 = 0, Γ40 = 0.3 and Γ40 = 1 respectively. In each
panel the grey curve is for fixed parameter values of K = 0.70 and B = 0.60, and multicoloured
curve represents when K is varied as a linear function of the droplet radius R according to (2.14)
with a fixed B = 0.60. The colours on this curve represent a chaotic bouncing mode in purple,
(2, 4, 2) mode in yellow, (1, 2, 1)H mode in blue, (1, 2, 1)L mode in green and (1, 2, 2) mode in
red. Termination of the solid curves indicate coalescence. The typical bouncing modes from (a)
at different droplet radii are shown in (b). In this panel, the grey regions indicate times at which
the droplet is in contact with the bath.

size, followed by a descending branch for larger superwalkers where the speed decreases
with size (Valani et al. 2019). Figure 5 shows the speed-size characteristics of simulated
superwalkers at Γ80 = 3.8 and Δφ = 130◦ for a range of Γ40 values.

We begin by focusing on the comparison for the ascending branch. Simulated
superwalking speeds for different droplet radii for constant K = 0.70 and B = 0.60
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(grey curves) as used in the simulations shown in figures 3 and 4, and K linearly
increasing function of droplet radius as in (2.14) with a fixed B = 0.60 (coloured curves)
are shown. We refer the reader to appendix C for details on this linear relationship. Both
the superwalking speed and the bouncing mode are captured well for both combinations
for small- to moderate-sized superwalkers, and this is generally true for a broad range
of K and B values (see appendix C). By allowing K to vary linearly with the droplet
radius R (coloured curve), we obtain a better fit for droplets on the ascending branch
at relatively high Γ40 values (see figure 5e). Focusing on the vertical dynamics for this
fit when Γ40 = 0.6 (see figure 5a), we find that superwalkers on this branch universally
impact the bath once every two up and down cycles of the bath’s motion. For the smallest
superwalkers, the amplitude of the bounces is chaotic. As the droplet size increases, there
is a transition to a (2, 4, 2) mode in a narrow region near R = 0.51 mm. Beyond this, the
droplets bounce in a (1, 2, 1)H mode (blue) for the remainder of the ascending branch.
This agrees well with the experimental results of Valani et al. (2019) where chaotic and
(1, 2, 1)H bouncing modes were also reported on the ascending branch.

Simulations of larger droplets that lie on the descending branch in experiments reveal
that the model is unable to capture the larger superwalkers. We have explored different
constant values of K and B as well as varying K and B as a function of R but were
unable to obtain a better fit to the experimental superwalking speeds on this branch than
the relatively poor fits shown in figure 5. However, we note that the bouncing modes
predicted from simulations on the descending branch are comparable with experimental
observations. For the curves shown, the superwalkers on the descending branch bounce
typically bounces in a (1, 2, 1)L mode. Although only the (1, 2, 2) mode was reported in
experiments, as previously mentioned, (1, 2, 1)L and (1, 2, 2) are similar and have been
difficult to distinguish in experiments.

3.3. Superwalking behaviour in the (Γ80, Γ40) parameter space
By fixing the phase difference Δφ and the droplet radius R, we can explore the vertical and
horizontal dynamics of a droplet in the parameter space formed by the two acceleration
amplitudes Γ80 and Γ40. We choose a droplet radius of R = 0.60 mm and a phase difference
of Δφ = 130◦ to compare our results with the experimental results of Valani et al. (2019).
Figure 6(a) shows the region of parameter space where bouncing (lighter shades) and
superwalking (darker shades) are observed as well as the bouncing modes (different
colours) observed in those regions. Regions of bouncing (empty circles) and superwalking
(filled circles) that were identified in the experiments of Valani et al. (2019) are also shown.
We find an excellent agreement in the transition boundary from bouncing to superwalking.
Moreover, we identify that the superwalking region is dominated by the (1, 2, 1) bouncing
mode with a (1, 2, 1)L mode when Γ40 is small and a (1, 2, 1)H mode when Γ40 is large. In
contrast, the bouncing mode is nearly independent of Γ80 at a fixed Γ40 except at relatively
high Γ80 values.

To understand how the superwalking speed u changes as a function of Γ40, we show
a slice of the (Γ80, Γ40) parameter space at Γ80 = 3.8 in figure 6(b) with corresponding
bouncing modes in figure 6(c). We find that the walking speed is initially zero for all
Γ40 � 0.3 before increasing rapidly with Γ40 to a peak value near Γ40 = 0.7 and then
marginally decreasing. This illustrates the rather abrupt rise in walking speed that occurs
once the asymmetry between the heights of succeeding peaks in the bath’s and waves’
motion is sufficient. Comparison of this numerically simulated walking speed u versus
acceleration amplitude Γ40 curve with that obtained from the experiments of Valani et al.
(2019) for a droplet radius of R = (0.63 ± 0.03) mm, shows good agreement highlighting
the success of the present model for small- to moderate-sized superwalkers.
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FIGURE 6. Superwalking behaviour in the (Γ80, Γ40) parameter space. (a) Bouncing modes
shown as different colours for a droplet of radius R = 0.60 mm in the (Γ80, Γ40) parameter
space with multiple colours at the same (Γ80, Γ40) values indicating multiple bouncing modes
that were observed at the same (Γ80, Γ40) values. The lighter shade of each colour indicates
bouncing and the darker shade is where superwalking is observed with walking speed indicated
by dotted constant speed contours in mm/s. The markers indicate bouncing (empty circles) and
superwalking (filled circles) for a droplet of radius R = (0.60 ± 0.05) mm from the experiments
of Valani et al. (2019). (b) A vertical slice of the parameter space in (a) (solid line) showing
walking speed u as a function of Γ40 at a fixed Γ80 = 3.8. The solid curve is the result
from simulations with colours indicating bouncing modes and the filled black markers are the
experimental walking speeds from Valani et al. (2019) for a droplet of radius R = (0.63 ± 0.03)
mm. The grey shaded region indicates the jump in walking speed for this droplet when Γ40 is
appreciable. The different bouncing modes at different Γ40 values are shown in (c) with the grey
regions in this panel indicating contact with the bath. The phase difference is fixed to Δφ = 130◦.
The parameters K and B are fixed to 0.70 and 0.60 respectively.

4. Discussion and conclusions

We have studied the dynamics of bouncing droplets on a vibrating liquid bath under
two-frequency driving using the theoretical model of Moláček & Bush (2013a,b) and a
new model for the wave field to understand the emergence of superwalkers. We have shown
that two-frequency driving at f and f /2 with an appropriately chosen phase difference
Δφ lifts every second peak and lowers the intermediate peaks in the bath’s motion. This
allows larger droplets to bounce in a resonant (1, 2, 1) mode where they can efficiently
excite damped subharmonic Faraday waves that enable them to superwalk. We note that
superwalking would not be expected for two arbitrary frequency combinations, as the
lowering of every second peak is crucial for droplets to remain in a (1, 2, 1) mode. For
example, for two-frequency driving at f = 80 and 4f /5 = 64 Hz, Sampara & Gilet (2016)
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reported chaotic bouncing modes with irregular walking at typical speeds of only
5 mm s−1.

We have shown that the phase difference Δφ plays a crucial role in the dynamics of
superwalking droplets because it controls the relative amplitudes of two succeeding peaks
in one full cycle of the bath’s motion. Fast superwalking occurs for phase differences
between 130◦ and 180◦ where there is a larger difference between these amplitudes, while
phase differences around 45◦, where the amplitude difference between succeeding peaks
is small, correspond to stationary bouncing or coalescence. Extending these observations,
it will be interesting to use our model to explore a system with slightly detuned driving
frequencies of f and f /2 + ε with ε � f /2. This is equivalent to driving at frequencies of
f and f /2 with a slowly varying phase difference Δφ(t) = Δφ + 2πεt. Such traversal
of the phase difference gives rise to new types of locomotion in the walking droplet
system where, e.g. the droplet alternates periodically between superwalking and stationary
bouncing. Such behaviour was observed experimentally by Valani et al. (2019) and was
coined stop-and-go motion. We aim to discuss the details of such motion in a future work.

On comparing the speed-size characteristics of simulated superwalkers with the
experimental results of Valani et al. (2019), we find excellent agreement on the ascending
branch, with (1, 2, 1)H superwalkers primarily observed. These observations also explain
the good agreement noted by Valani et al. (2019) between superwalking speeds obtained in
experiments and those predicted using the stroboscopic model of Oza et al. (2013) (dashed
curve in figure 5a). The latter is a reduced form of the full Moláček & Bush (2013a,b)
model predicated on a (2, 1)H bouncing mode and our two-frequency model would reduce
to essentially the same model for such modes.

The superwalking speed of larger superwalkers is not captured well by the current
model. This suggests that the model does not include the fundamental mechanism that
allows the largest superwalkers to walk, and even exist. Indeed, Valani et al. (2019)
noted that the largest superwalkers on the descending branch undergo significant internal
deformations (Valani et al. 2019). In appendix B, we present results incorporating
deformation of the droplets by modelling them as a vertical spring following Blanchette
(2016) and Gilet et al. (2008), and find this to have a limited effect on the speed-size curve.
We also present results using the nonlinear logarithmic spring model of Moláček & Bush
(2013b) for the vertical dynamics with no better success. Another observation made by
Valani et al. (2019) was that larger superwalkers have a prolonged contact time with the
bath. This prolonged contact time, potentially in combination with internal deformation,
may change the wave field in the vicinity of the droplet and the long-time approximation
of the standing wave field in (2.12) may break down. Perhaps a more refined modelling
of the system that incorporates the detailed contact interaction between the droplet and
the bath, the wave evolution and droplet deformations might be required to capture the
behaviour of these larger superwalkers.
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Appendix A. Derivation of waves generated by a superwalker

To derive the form of the surface waves generated by a superwalker, we closely follow
the approach of Tadrist et al. (2018) who considered walkers driven at a single frequency.
We consider an incompressible, Newtonian liquid in a bath that is infinitely large in
horizontal extent and infinitely deep. The bath is subjected to periodic vertical vibrations
that result in a modulation of the effective gravity in the frame of the bath g∗(t) = g[1 +
Γf sin(Ωt) + Γf /2 sin(Ωt/2 + Δφ)], where g is the gravitational acceleration constant
and Γf and Γf /2 are dimensionless acceleration amplitudes of the two frequencies with
a relative phase difference of Δφ. For the sake of notational clarity, we will refer to
specific frequencies f = Ω/2π = 80 and f /2 = 40 Hz, but the derivation is general. The
horizontal coordinates are (x, y) and the vertical coordinate is z with the origin located on
the free surface of the undeformed liquid. The evolution of the liquid is governed by the
incompressible Navier–Stokes equations,

∇ · v = 0 and
∂v

∂t
+ (v · ∇)v = − 1

ρ
∇P − g∗(t)k̂ + ν∇2v, (A 1a,b)

where v(r, t) is the velocity field, P(r, t) is the pressure field relative to atmospheric
pressure, r = (x, y, z) is the position vector, k̂ is a unit vector in the z direction, ρ is the
density and ν is the kinematic viscosity. At the free surface of the liquid, z = h(x, y, t),
the kinematic boundary condition implies

∂h
∂t

+ v · ∇(h − z) = 0, (A 2)

while balancing stresses requires

− Pn̂ + ρν
(∇v + ∇vT) · n̂ = −Pex tn̂ − σ(∇ · n̂)n̂, (A 3)

where σ is the coefficient of surface tension, Pex t(x, y, t) is the pressure exerted by the
droplet on the free surface through the intervening air layer and n̂ is the unit normal out of
the liquid. Assuming that the pressure distribution imparted by the droplet during contact
is uniform in the contact region we get

Pex t(x, y, t) = Pex t(t) = FN(t)/πw2, (A 4)

where w is the effective radius of the contact area and FN(t) is the normal force as
described in § 2.1.

We consider small perturbations from the stationary equilibrium state v = 0, P =
−ρg∗(t)z and h = 0. We linearise the above equations about this equilibrium state with
pressure perturbation p(r, t), velocity perturbation v(r, t) and free surface perturbation
h(r, t) and follow the steps outlined in § 2.1 of Tadrist et al. (2018). For the remainder
of this Appendix, we will use the dimensionless time τ = Ωt/2 for ease of comparison
with their equations and will revert back to the dimensional time t in the final expressions.
Taking a Fourier transform in x and y of the linearised equations, followed by a Laplace
transform and some algebra, we obtain the equation

fk(s)hk,s + 2Γ80gk
iΩ2

(hk,s−2i − hk,s+2i) + 2Γ40gk
iΩ2

(hk,s−i eiΔφ − hk,s+i e−iΔφ) + Πk,s = 0
(A 5)
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for the transformed free surface hk,s. Here, the Fourier transform for an arbitrary variable
X(x, y, τ ) is defined as

Xk(τ ) =
∫ ∞

0

∫ ∞

0
X(x, y, τ ) exp[−i(kx x + ky y)] dx dy (A 6)

with k = |k| and the Laplace transform is defined as

Xk,s =
∫ ∞

0
Xk(τ ) e−sτ dτ. (A 7)

Furthermore,
fk(s) = (s + γk)

2 − γ
3/2
k

√
γk + 2s + ω2

k , (A 8)

with γk = 4νk2/Ω and ω2
k = 4[gk + (σ/ρ)k3]/Ω2. This function and all its derivatives

obey fk(z̄) = fk(z) where the overline denotes complex conjugation. The last term of
(A 5) described the transformed pressure distribution from droplet’s impact Πk,s =
(4k/Ω2ρ)Pex t

k,s. Using the definition of Fourier transform and (A 4) we get assuming
wk � 1, Pex t

k,s = Pex t(s)
∫ w

0 J0(kr)r dr ≈ FN(s)/2π with r = √x2 + y2. Hence we obtain

Πk,s = 2k
πΩ2ρ

FN(s), (A 9)

where Pex t(s) and FN(s) are the Laplace transforms of Pex t(τ ) and FN(τ ) respectively. We
note that (A 5) reduces to (2.2) of Tadrist et al. (2018) on setting Γ40 = 0, with the caveat
that our driving is a sine function while Tadrist et al. (2018) use a cosine. We have chosen
a sine function for driving for the sake of consistency with the experiments of Valani et al.
(2019).

We first consider Faraday waves in the absence of external pressure perturbations, which
reduces (A 5) to

fk(s)hk,s + 2Γ80gk
iΩ2

(hk,s−2i − hk,s+2i) + 2Γ40gk
iΩ2

(hk,s−i eiΔφ − hk,s+i e−iΔφ) = 0. (A 10)

Due to the periodic driving of the system, a Floquet ansatz is appropriate in the time
domain. The form we assume and its corresponding Laplace transform are given by
(Besson, Edwards & Tuckerman 1996)

hk(τ ) =
∞∑

l=−∞
h(l)

k eilτ eδkτ and hk,s =
∞∑

l=−∞

h(l)
k

s − il − δk
. (A 11a,b)

Here, δk is a complex perturbation whose real part vanishes when the Faraday instability
threshold is reached. Substituting this form into (A 10), we obtain

∞∑
l=−∞

h(l)
k

[
fk(s)

s − il − δk
− iΓ80βk

(
1

s − i(l + 2) − δk
− 1

s − i(l − 2) − δk

)

−iΓ40βk

(
1

s − i(l + 1) − δk
eiΔφ − 1

s − i(l − 1) − δk
e−iΔφ

)]
= 0, (A 12)

with βk = 2gk/Ω2. Using the Heaviside cover-up method (Thomas & Finney 1996) yields
an infinite-dimensional linear system Ah = 0 coupling the Floquet components together
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(Kumar & Tuckerman 1994; Besson et al. 1996; Kumar 1996; Tadrist et al. 2018). Here A
is the pentadiagonal matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .
...

...
... . . .

. . . fk(−2i + δk) ϒk αk 0 0 . . .

. . . ϒ̄k fk(−1i + δk) ϒk αk 0 . . .

. . . ᾱk ϒ̄k fk(δk) ϒk αk . . .

. . . 0 ᾱk ϒ̄k fk(1i + δk) ϒk
. . .

. . . 0 0 ᾱk ϒ̄k fk(2i + δk)
. . .

. . .
...

...
...

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A 13)

with αk = iΓ80βk and ϒk = iΓ40βk e−iΔφ , and h is a vector of the Floquet components h(l)
k .

To obtain non-trivial solutions of this linear system requires

det(A) = 0. (A 14)

A.1. Decay rate of damped Faraday waves and the Faraday instability threshold
Solving (A 14) for fixed Γ80, Γ40 and Δφ, we obtain δk as a function of the wavenumber
k. Below the Faraday instability threshold, this corresponds to a decay rate for the
waves Re(δk) and a dispersion relation Im(δk). Results for typical parameter values of
superwalkers are shown in figure 7. Figure 7(a) shows the numerically converged Re(δk)

as a function of k (solid curves). We see two different Faraday windows, one in which
the waves are locked at Im(δk) = 1/2 (the blue-shaded region in figures 7a,b) and one in
which waves are locked at Im(δk) = 0 (the red-shaded region in figures 7a,c). In each of
these windows, we see two different branches for the decay rate Re(δk), an upper branch
corresponding to a slowly decaying wave and a lower branch corresponding to a more
rapidly decaying wave.

To obtain analytical forms of these results, we truncate the infinite dimensional
matrix equation to a few dominant modes. For the Im(δk) = 0 (red) Faraday window in
figure 7(a), we find that the dominant contribution to the amplitude is from the two modes
with l = ±1 (see figure 7e) corresponding to a frequency of ±40 Hz. Denoting the decay
rate in this Faraday window by Re(δk40) and using this two-mode approximation, (A 14)
reduces to

fk(−i + Re(δk40))fk(i + Re(δk40)) − |αk|2 = 0. (A 15)

We can obtain a good approximation to this decay rate by following an approach similar
to § 2.2.2 of Tadrist et al. (2018) and expanding the function fk(±i + Re(δk40)) to second
order in the small decay rate Re(δk40) to get

Re(δ±
k40) = − bk(i)

2ak(i)

(
1 ∓

√
1 − 4ak(i)ck(i, αk)

b2
k(i)

)
, (A 16)
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FIGURE 7. Properties of two-frequency, damped Faraday waves. (a) Decay rate Re(δk) as a
function of wavenumber k for Γ80 = 3.8, Γ40 = 0.6 and Δφ = 130◦ using a 21-mode truncation
corresponding to |l| ≤ 10 (solid black curve). The blue and red dotted curves show the decay
rate of the slowly decaying wave using the two-mode approximation Re(δ+

k20) in the blue Faraday
window and the two-mode approximation Re(δ+

k40) in the red Faraday window, respectively. The
grey dashed curves are second-order approximations to these decay rates at the peak values
in each Faraday window. Panels (b,c) show the dispersion relation Im(δk) in the two Faraday
windows. In (d,e), the magnitude of the amplitudes h(l)

kF40 and h(l)
kF20 of the different modes

l are shown at the most unstable wavenumbers in each Faraday window using the 21-mode
truncation, with the dominant modes coloured. These correspond to the eigenvectors of Ah = 0
with eigenvalue 0. Note that these amplitudes only yield information about the relative values of
each mode.

where the functions

ak(u) = ḟk(u)ḟk(−u) + 1
2 f̈k(u)fk(−u) + 1

2 f̈k(−u)fk(u), (A 17)

bk(u) = ḟk(u)fk(−u) + ḟk(−u)fk(u), (A 18)

ck(u, Z) = fk(u)fk(−u) − |Z|2. (A 19)

Here, Re(δ+
k40) and Re(δ−

k40) correspond to the decay rates of the slowly and quickly
decaying wave respectively. This approximation for the slowly decaying wave Re(δ+

k40) is
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shown as a red, dotted curve in figure 7(a). We can further approximate this decay rate
near the most unstable wavenumber kF40 by

Re(δ+
k40) ≈ Re(δ+

F40) − D40(k − kF40)
2, (A 20)

where Re(δ+
F40) = limk→kF40 Re(δ+

k40) and D40 = − 1
2 d2Re(δ+

k40)/dk2|k=kF40 is the diffusion
coefficient, both of which can be calculated from (A 16). This approximation of Re(δ+

k40)
is shown as a grey, dashed curve in figure 7(a).

We follow a similar approach to obtain an analytical expression for the decay rate in
the Im(δk) = 1/2 (blue) Faraday window in figure 7(a). In this window, the dominant
contribution is from the l = −1 and 0 modes (see figure 7d), corresponding to frequencies
±20 Hz. Using this two-mode approximation and denoting the decay rate by Re(δk20),
(A 14) reduces to

fk(−i/2 + Re(δk20))fk(i/2 + Re(δk20)) − |ϒk|2 = 0. (A 21)

A good approximation for this decay rate is obtained by expanding the function fk(±i/2 +
Re(δk20)) to second order, giving us

Re(δ±
k20) = − bk(i/2)

2ak(i/2)

(
1 ∓

√
1 − 4ak(i/2)ck(i/2, ϒk)

b2
k(i/2)

)
, (A 22)

where Re(δ+
k20) and Re(δ−

k20) correspond to the decay rates of the slowly and quickly
decaying wave respectively. We can further approximate Re(δ+

k20) near the most unstable
wavenumber kF20 by

Re(δ+
k20) ≈ Re(δ+

F20) − D20(k − kF20)
2, (A 23)

where Re(δ+
F20) = limk→kF20 Re(δ+

k20) and D20 = − 1
2 d2Re(δ+

k20)/dk2|k=kF20 is the diffusion
coefficient corresponding to this Faraday window. These approximations of Re(δ+

k20) from
(A 22) and (A 23) are shown in figure 7(a) as a blue dotted and a grey dashed curve
respectively.

When Re(δk) > 0 for any wavenumber k, growing Faraday waves are predicted. For
two-frequency driving at f and f /2, either f /2 Faraday waves or f /4 Faraday waves can
emerge depending on the relative strength of the acceleration amplitudes and the phase
difference (Müller 1993; Valani et al. 2019). The marginal stability curves representing the
acceleration amplitudes at onset of Faraday waves, ΓF80 and ΓF40, can be found by setting
Re(δk) = 0 when solving (A 14). From figure 7(a), we see two Faraday windows where
Re(δk) can potentially cross zero corresponding to either the f /2 instability of frequency
40 Hz or the f /4 instability of frequency 20 Hz. Figure 8(a) shows the comparison of
the numerically converged marginal stability curve obtained using a 21-mode truncation
(yellow solid curve) and the two-mode approximation for the 20 Hz (blue dashed curve)
and 40 Hz (red dashed curve) Faraday waves, with the experiments of Valani et al.
(2019) (circles). Figure 8(b) shows the numerically converged marginal stability curves
at different phase differences Δφ. We note that changes in Δφ cause appreciable changes
in the 20 Hz Faraday threshold.

A.2. Amplitude and phase shift of damped Faraday waves
In figure 7(d,e), the relative amplitudes of the Floquet modes are shown for the slowest
decaying modes in the 20 Hz and 40 Hz Faraday windows respectively. We now turn to
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FIGURE 8. Faraday threshold curves for two-frequency driving. (a) Comparison of the Faraday
threshold curves for Δφ = 130◦ obtained using 21 modes (solid yellow curves) and using
the two-mode approximations (dotted curves) together with the experimental results (circles)
of Valani et al. (2019). For the latter, empty circles indicate that flat liquid surfaces were
observed while filled circles indicate that Faraday waves were observed. (b) Faraday thresholds
for different values of the phase difference Δφ using a 21-mode calculation.

calculating these amplitudes for our reduced-mode approximations and use these to obtain
expressions for the wave profile generated by a single bounce of a droplet.

Using the two-mode approximation for the 40 Hz window, we can write the Floquet
ansatz in (A 11a,b) as

hk(τ ) ≈
(

h(−1)

k e−iτ + h(1)

k eiτ
)

eδkτ , (A 24)

and the infinite-dimensional linear system Ah = 0 reduces to a 2 × 2 matrix system
A2h2 = 0. Since the determinant of the matrix A2 is zero, we obtain the amplitudes h2

from the null space vector, which gives h(−1)

k = cξ±
40 with ξ±

40 = i
√

αk/fk(−i + δ±
k40) and

h(1)

k = h(−1)

k , where c is a free parameter. Substituting this solution into (A 24) and using
Im(δ±

k40) = 0 in this window, we obtain the wave forms

h±
k40(τ ) = c

[
ξ±

40 e−iτ + ξ̄±
40 eiτ ] exp(Re(δ±

k40)τ ). (A 25)

Thus, the total wave field in this Faraday window can be represented as

hk40(τ ) = ζ+
40 exp(Re(δ+

k40)τ ) cos(τ + θ+
k40) + ζ−

40 exp(Re(δ−
k40)τ ) cos(τ + θ−

k40), (A 26)

where

θ±
k40 = arctan

(−Im(ξ±
40)

Re(ξ±
40)

)
. (A 27)

and ζ±
40 = 2c|ξ±

40|. These (A 27) and (A 26) are equivalent to (2.47) and (2.48) of Tadrist
et al. (2018). Similar to § 2.3 of Tadrist et al. (2018), we now continue by modelling the
temporal profile of a droplet’s impact by a delta function. The corresponding pressure and
force exerted by the droplet on the liquid is then

Πk(τ ) = (2k/πΩ2ρ)FN(τ ) = δ(τ − τi)vk. (A 28)

By integrating the time domain version of (A 5) across the delta kick, we find that
vk corresponds to negative change of velocity of hk following impact. If the surface
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is perfectly flat and at rest before the impact, the wave profile is axisymmetric i.e.
hk(τ ) = hk(τ ). Using the initial conditions as τ −→ τi that hk = 0 and ∂hk/∂τ = −vk we
get ζ±

40 = vkα
±
40, where

α±
40 = −2 cos(τi + θ∓

k40) exp(−Re(δ±
k40)τi)

(Re(δ±
k40) − Re(δ∓

k40))(cos(2τi + θ±
k40 + θ∓

k40) + cos(θ±
k40 − θ∓

k40)) − 2 sin(θ±
k40 − θ∓

k40)
.

(A 29)

Taking a similar approach, we can obtain an equation for the wave field by using the
two-mode approximation in the 20 Hz Faraday window. The two-mode approximation of
(A 11a,b) gives

h±
k20(τ ) = (h(−1)

k e−iτ/2 + h(0)

k eiτ/2) exp(Re(δ±
k20)τ ). (A 30)

Solving for the null space of the matrix equation we get h(−1)

k = cξ±
20 with ξ±

20 =
i
√

ϒk/fk(−i/2 + Re(δ±
k20)) and h(0)

k = h(−1)

k , where c is a free parameter.
For this we obtain the amplitudes

h±
k20(τ ) = c(ξ±

20 e−iτ/2 + ξ̄±
20 eiτ/2) exp(Re(δ±

k20)τ ). (A 31)

Hence, we can express the total wave field for this Faraday window as

hk20(τ ) = ζ+
20 exp(Re(δ+

k20)τ ) cos(τ/2 + θ+
k20) + ζ−

20 exp(Re(δ−
k20)τ ) cos(τ/2 + θ−

k20),
(A 32)

where

θ±
k20 = arctan

(−Im(ξ±
20)

Re(ξ±
20)

)
. (A 33)

Using the same initial conditions as for 40 Hz waves we get ζ±
20 = vkα

±
20, where

α±
20 = −2 cos(τi/2 + θ∓

k20) exp(−Re(δ±
k20)τi)

(Re(δ±
k20) − Re(δ∓

k20))(cos(τi + θ±
k20 + θ∓

k20) + cos(θ±
k20 − θ∓

k20)) − 2 sin(θ±
k20 − θ∓

k20)
.

(A 34)

A.3. Wave field of a superwalker
For late times after the impact, τ  τi, and when the acceleration amplitudes are close
to their respective Faraday thresholds, Γ80 � ΓF80 and Γ40 � ΓF40, the wave field is
dominated by the slowly decaying Faraday waves from both the 40 and 20 Hz modes.
Hence, we can approximate the final wave field generated by the impact of the droplet as

hk(τ ) = α+
40vk exp(Re(δ+

k40)τ ) cos(τ + θ+
k40) + α+

20vk exp(Re(δ+
k20)τ ) cos(τ/2 + θ+

k20).
(A 35)

Transforming back to the spatial domain with an inverse Fourier transform yields

h(x, y, τ ) = 1
2π

∫ ∞

0

∫ ∞

0
hk(τ ) exp[i(kx x + ky y)] dkx dky. (A 36)
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Since the wave profile is radially symmetric, the above inverse Fourier transform reduces
to an inverse Hankel transform,

h(x, y, τ ) =
∫ ∞

0
hk(τ )J0(kr)k dk. (A 37)

Hence, the wave profile in the real space is given by

h(x, y, τ ) =
∫ ∞

0
B+

k40vk exp(Re(δ+
k40)(τ − τi)) cos(τ + θ+

k40)J0(kr)k dk

+
∫ ∞

0
B+

k20vk exp(Re(δ+
k20)(τ − τi)) cos(τ/2 + θ+

k20)J0(kr)k dk, (A 38)

where B+
k40 = α+

40 exp(Re(δ+
k40)τi) and B+

k20 = α+
20 exp(Re(δ+

k20)τi). Using the second-order
expansion for Re(δ+

k40) and Re(δ+
k20) in (A 20) and (A 23), we get the following

approximation to the above integral in the limit τ −→ ∞ (for details see appendix C of
Tadrist et al. 2018)

h(x, y, τ ) = Ã(0)

40 (τi)
cos(τ + θ+

F40)√
τ − τi

J0(kF40|x − x i|) exp
[
− τ − τi

2πMe40
− |x − x i|2

4D40(τ − τi)

]

+ Ã(0)

20 (τi)
cos(τ/2 + θ+

F20)√
τ − τi

J0(kF20|x − x i|) exp
[
− τ − τi

2πMe20
− |x − x i|2

4D20(τ − τi)

]
, (A 39)

where xi is the location of the impact and the memory parameters Me40 and Me20 are given
by Me40 = −1/2πRe(δ+

F40) and Me20 = −1/2πRe(δ+
F20). Furthermore,

Ã(0)

40 = kF40

√
π

D40
vkB+

F40(τi) and Ã(0)

20 = kF20

√
π

D20
vkB+

F20(τi). (A 40a,b)

To include a finite contact time, we follow the suggestion in Tadrist et al. (2018) of using
Duhamel’s principle and the approach used in appendix A.4 of Moláček & Bush (2013b),
and integrate the impulse response with a time varying impact signal Πk(τ ). This results
in replacing the amplitude coefficients Ã(0)

40 and Ã(0)

20 by

Ã40 = kF40

√
π

D40

∫ τ c
n

τ i
n

B+
F40(τ

′)Πk(τ
′) dτ ′, (A 41)

Ã20 = kF20

√
π

D20

∫ τ c
n

τ i
n

B+
F20(τ

′)Πk(τ
′) dτ ′. (A 42)

We change the dimensionless time τ back to dimensional time t and replace Πk(t) by
(2k/πΩ2ρ)FN(t) using (A 9). We also replace the initial contact time ti and location of
contact x i by their weighted average values tn and xn as given in (2.6a,b), and replace the
dimensionless amplitudes Ã40 and Ã20 by A40 = √

2/ΩÃ40 and A20 = √
2/ΩÃ20 which

gives (2.13b) and results in the wave field equation (2.12).

Appendix B. Comparison of different droplet models

To test the robustness of the superwalking behaviour, we explored superwalkers using
alternative models for the vertical dynamics, the wave field generated, and adding droplet
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FIGURE 9. Comparison of the speed-size characteristics of different models at Γ80 = 3.8,
Γ40 = 0.6 and Δφ = 130◦. In each panel, the black circles are experimental results of Valani
et al. (2019), grey curves are the results using the model presented in this paper and the coloured
curves are results from different models stated below with the colour indicating bouncing mode
using the same conventions as in figure 5. Termination of the solid curves indicate coalescence.
Results of using two alternative vertical spring models, a simple linear spring model and the
logarithmic spring model of Moláček & Bush (2013a), are shown in (a) and (b), respectively.
Results obtained using a wave field from the model of Moláček & Bush (2013b) and Tadrist et al.
(2018) are shown in (c) and (d), respectively. Results obtained by adding droplet deformation
based on Blanchette (2016) and Gilet et al. (2008) are shown in (e) and ( f ), respectively. For the
grey curves and the coloured curves in all panels except (b), the linear spring model was used for
the vertical dynamics with the parameters K defined according to (2.14) and a fixed B = 0.60.

deformations to the model presented in § 2. Comparison of these models with the model
presented in this paper and the experimental results of Valani et al. (2019) for a typical
speed-size curve of superwalkers is presented in figure 9.

Apart from the linear spring model used in this work, two alternative spring models for
the vertical dynamics of a bouncing droplet were presented by Moláček & Bush (2013a):
(i) a simple linear spring model that does not restrict the normal force to be positive i.e.
without the maximum condition in (2.2), and (ii) a logarithmic spring model, which can
be implemented by replacing (2.1) with

⎛
⎜⎜⎝1 + C3

ln2

∣∣∣∣C1R
z̄d

∣∣∣∣

⎞
⎟⎟⎠mz̈d + 4

3
πνρRC2

ln2

∣∣∣∣C1R
z̄d

∣∣∣∣
˙̄zd + 2πσ

ln
∣∣∣∣C1R

z̄d

∣∣∣∣
z̄d = −m[g + γ (t)], (B 1)

when the droplet is in contact with the bath, and using mz̈d = −m[g + γ (t)] when the
droplet is in the air. We fixed the parameter values to C1 = 2, C2 = 12.5 and C3 = 1.4
which are typical values used for walkers (Moláček & Bush 2013a). Coupling these
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vertical dynamics models with the wave field and the horizontal dynamics described in
§ 2, we obtain the speed-size curves presented in figures 9(a) and 9(b).

Using the wave field of a walker from the Moláček & Bush (2013b) model presented in
(2.5) and the Tadrist et al. (2018) model presented in (2.8) in place of the superwalker wave
field that was used in this work, we obtain the speed-size curves shown in figures 9(c) and
9(d). These curves also show good match with the experiments on the ascending branch.
We note that for a droplet in a (1, 2, 1)H bouncing mode, the subsequent bounce would
occur one Faraday period after the initial impact. At this time, there is approximately
a 10 % difference in the amplitudes between the three models, and a slightly greater
difference in the gradients (see figure 2). This would suggest a comparable difference
in the walking speeds. However, although in figure 9(c), the peak of the speed-size curve
from the wave model of Moláček & Bush (2013b) only goes up to approximately 17 mm
s−1 for the present choice of K and B values, we obtain a better fit to the experimental
results by alternate choices of parameters K and B. Hence, by tuning the K and B values
and using the wave model of Moláček & Bush (2013b), we can obtain good fit to the
experimental data which is comparable to the fit obtained from the superwalker wave
model. The speed-size curve from the wave model of Tadrist et al. (2018) is identical to
the curve from the superwalker wave model on the ascending branch. On the descending
branch, we see that lower speeds are obtained from the Tadrist et al. (2018) model
compared to the superwalker wave field. This shows that the added 20 Hz waves seems
to slightly speed up larger droplets on the descending branch in (1, 2, 1)L bouncing
mode.

Finally, to account for droplet deformations, we couple the droplet deformation models
of Blanchette (2016) and Gilet et al. (2008) to the theoretical model presented in § 2. The
additional droplet deformation equation for the model of Blanchette (2016) is

mR̈v + cdṘv + mω2(Rv − R) = −FN(t), (B 2)

where Rv is the vertical radius of the droplet, cd = 3.8mν/R2 is the effective damping
coefficient of the droplet deformation, and ω = √Nωσ/ρR3 is the droplet’s natural
frequency with Nω = 5.84. The model of Gilet et al. (2008) after some algebra also
reduces to an effectively similar equation for droplet deformations and is given by

c3mR̈v + c5 mν

R2
Ṙv + c4σ(Rv − R) = −c6FN(t), (B 3)

where the parameters c3 = 0.1, c4 = 10, c5 = 3.3 and c6 = 1. While implementing both of
these models, the criteria for contact changes from z̄d ≤ 0 to z̄d + R − Rv ≤ 0. Coupling
these droplet deformation models to the theoretical model in § 2 results in the speed-size
curves shown in figures 9(e) and 9( f ). We see that the model of Gilet et al. (2008) seems
to have an insignificant effect on the speed-size characteristics with the curves completely
overlapping each other. The model of Blanchette (2016) increases the walking speed of
droplets in a small neighbourhood around R = 0.7 mm but the model is still unable to
capture the large superwalkers.

Appendix C. Determination of parameters K and B

The theoretical model for simulating superwalkers presented in § 2 has three free
parameters that are not known for superwalkers: (i) the dimensionless spring constant K
(ii) the dimensionless damping coefficient B and (iii) the contact drag coefficient C. In our
study we fixed C = 0.17, a typical value that is used for walkers (Moláček & Bush 2013b).
To determine values of K and B, we simulated superwalkers in the (K, B) parameter
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FIGURE 10. Determination of the parameter values K and B. Bouncing modes (markers) and
relative difference between the numerical and the experimental values of the walking speed
Δu/uexp = (u − uexp)/uexp (contours) in the (K, B) parameter space for three different droplet
radii (a) R = 0.5 mm, (b) R = 0.6 mm and (c) R = 0.7 mm at Γ80 = 3.8, Γ40 = 1 and Δφ =
130◦. In all the three panels, blue circles • are (1, 2, 1)H , green triangles � are (1, 2, 1)L, yellow
asterisks ∗ are (2,4,2) and purple squares � represent chaotic or other higher periodicity bouncing
modes. The cyan solid lines represent the boundaries of the region inside which |Δu/uexp| <
20 % and the red circle corresponds to our chosen K according to (2.14) and a fixed B = 0.60.

space and selected values that provide a good fit to the experimental results of Valani
et al. (2019). We found that using constant values of K = 0.70 and B = 0.60 provided a
reasonably good fit for small- to moderate-sized superwalkers on the ascending branch of
the speed-size curves presented in figure 5, but failed for the largest superwalkers on the
ascending branch for Γ40 = 1. By allowing K to vary linearly with the droplet radius R
while keeping B fixed to 0.60, we were able to obtain a better fit on the ascending branch
for the results presented in figure 5. To arrive at this linear relationship, we simulated
superwalkers for a fixed Γ80 = 3.8, Δφ = 130◦ and four different values of Γ40 = 0, 0.3,
0.6 and 1. Droplet size that corresponds to the ascending branch in figure 5 were simulated.
Typical graphs for the droplet speed and bouncing modes are shown in figure 10. For
each droplet size and Γ40 = 0.6 and 1, the region of the (K, B) parameter space where
the relative difference between the speed of simulated superwalker and the corresponding
experimental value of Δu/uexp = (u − uexp)/uexp is within 20 % was determined and then
a value of K was selected from that region that matched with the experimentally observed
bouncing mode. A linear best fit through all such K values for different sized droplets
results in one generic linear relationship given in (2.14).
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