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The KP theory and Mach reflection
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Interactions of two line solitons in the two-dimensional shallow-water field are studied
based on the Kadomtsev–Petviashvili (KP) theory. With the use of the normal form,
the extended KP equation with higher-order correction is derived. This extended KP
theory improves significantly the predictability of the original KP theory for soliton
interactions with finite oblique angles. The previously existing discrepancy between
the experiments and the theory in the Mach reflection problem is now resolved by
the normal form theory.
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1. Introduction

Immediately after the discovery of soliton solutions of the Korteweg–de Vries (KdV)
equation, Kadomtsev & Petviashvili (1970) proposed a two-dimensional extension of
the KdV equation to study the stability of one soliton solution under the influence of
a weak transversal perturbation. This equation is now referred to as the KP equation.
It turns out that the Kadomtsev–Petviashvili (KP) equation is an integrable system
and admits exact soliton solutions in two spatial dimensions. They are localized
along distinct lines in the horizontal plane, called line-soliton solutions, and form
two-dimensional patterns due to interaction among the multiple line solitons.

The original description of the soliton interaction of the KP equation was based
on a two-soliton solution found in Hirota’s bilinear form (Hirota 2004), which has
the wave pattern of ‘X’, describing an intersection of two line solitons with oblique
angle and a phase shift at the intersection. Miles (1977a,b) pointed out that this
solution becomes singular if the oblique angle of the intersection is smaller than a
certain critical value depending on the amplitudes of the solitons. Miles introduced a
parameter k = Ψ0/

√
3a0, where Ψ0 is the oblique wave-propagation angle and a0 is

the normalized incident wave amplitude. When k 6 1, the two line solitons interact
resonantly and a third wave (soliton) is created at the intersect to make a ‘Y-shaped’
wave. Miles applied his resonant theory to study Mach reflection onto a vertical wall,
and predicted that, at the critical condition k= 1, the third wave (i.e. Mach stem) can
have the extraordinary 4-fold amplification of the incidence wave. There have been
several laboratory and numerical experiments attempting to validate his prediction
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The KP theory and Mach reflection 767

of 4-fold amplification, but with no definitive success (see for example Funakoshi
(1980), Tanaka (1993), Kato, Takagi & Kawahara (1998) for numerical experiments
and Perroud (1957), Melville (1980) for laboratory experiments).

Over the last 10 years, one of the present authors and his collaborators have been
working on the classification problem of the soliton solutions of the KP equation
(Kodama 2004; Chakravarty & Kodama 2009; Kodama, Oikawa & Tsuji 2009;
Kodama 2010; Yeh, Li & Kodama 2010; Kao & Kodama 2012). Their studies have
revealed a large variety of solutions that were overlooked in the past, and found
that some of those exact solutions can be applied to study the Mach reflection
phenomenon.

The main purpose of the present paper is to develop the higher-order KP theory,
which is done by extending the work of Kodama (2012) and Jia (2014). We derive
the KP equation in § 2 with higher-order corrections from the three-dimensional
Euler formulation for irrotational and incompressible fluids under the assumption of
weak nonlinearity and weak dispersion. Then we give a brief summary of the soliton
solution of the KP equation in § 3. Here, we introduce the τ function to generate
the general soliton solutions that can be parametrized by an N ×M matrix A and M
parameters κ = (κ1, . . . , κM). In § 5, we develop a higher-order KP theory using the
normal form theory. The goal of this section is to re-evaluate the previous numerical
and experimental results. We then demonstrate that the KP theory revised with the
higher-order correction provides an excellent model to describe Mach reflection
phenomena. Finally, § 6 is devoted to the summary and conclusion.

2. Basic formulation
Consider water waves propagating over a horizontal bed in which the flow field

is irrotational and incompressible, neglecting surface tension and assuming constant
pressure along the air–water interface. Let us first denote the following scales:

λ̃0 ∼ horizontal length scale= typical wave length,
h̃0 ∼ vertical length scale= quiescent water depth,

ã0 ∼ nonlinear scale= typical wave amplitude.

 (2.1)

Here, we consider shallow-water wave phenomena by setting h̃0 � λ̃0. The water
surface elevation η̃ and the velocity potential φ̃ and independent variables (x̃, ỹ, z̃, t̃)
are non-dimensionalized as

x̃= λ̃0x, ỹ= λ̃0y, z̃= h̃0z, t̃= λ̃0

c̃0
t,

η̃= ã0η, φ̃ = ã0

h̃0

λ̃0c̃0φ,

 (2.2)

where c̃0 =
√

g̃h̃0, in which g̃ is the gravitational acceleration and the corresponding
non-dimensional variables are {x, y, z, t, η, φ} with z pointing vertically upward from
the bed and (x, y) being the horizontal coordinates.

The shallow-water wave equation in the non-dimensional form is then expressed as

φzz + β1φ = 0 for 0< z< 1+ αη,
φz = 0 at z= 0,

}
(2.3a)
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768 Y. Kodama and H. Yeh

φt + 1
2
α|∇φ|2 + 1

2
α

β
φ2

z + η= 0

ηt + α∇φ · ∇η= 1
β
φz

 at z= 1+ αη, (2.3b)

where ∇= (∂/∂x, ∂/∂y) and ∆=∇2 is the two-dimensional Laplace operator for (x, y).
The parameters α and β are

α = ã0

h̃0

and β =
(

h̃0

λ̃0

)2

. (2.4a,b)

The weak nonlinearity implies α � 1 and the weak dispersion (or long-wave
assumption) implies β � 1, and we assume α ∼ β = O(ε) with a small parameter
ε� 1.

From the first two equations of (2.3a), φ can be written as

φ(x, y, z, t)= cos(z
√
β∆)ψ =ψ − β z2

2
1ψ + β2 z4

24
∆2ψ +O(ε3), (2.5)

where ψ(x, y, t)=φ(x, y, 0, t). Then the equations at the water surface z= 1+αη give
a Boussinesq-type system,

ψt + η+ α2 |∇ψ |
2 − β

2
1ψt

+ αβ
2
((1ψ)2 +∇ψ · ∇(1ψ)− 2η1ψt)+ β

2

24
∆2ψt =O(ε3), (2.6)

ηt +1ψ + α∇ · (η∇ψ)− β 1
6
∆2ψ

− αβ
2
(∇η · ∇(1ψ)+ η∆2ψ)+ β2

120
∆3ψ =O(ε3). (2.7)

We now derive the KP equation with the higher-order correction, which turns out
to be key for physical applications, as we will discuss in § 5. The KP equation is
based on the assumption of a weak dependence in the y direction while x denotes the
predominant wave propagation direction (i.e. quasi-two-dimensionality). Introducing a
small parameter γ , the y coordinate is scaled as

ζ :=√γ y, with γ =O(ε). (2.8)

Translating coordinates of the reference frame ξ = x − t, introducing the slow time
scale τ = εt and eliminating η in the equations (2.6) and (2.7) yield the KP equation
for v :=ψξ (ξ , ζ , τ ) with higher-order corrections up to O(ε2),

2εvτ + 3αvvξ + β3 vξξξ + γD−1vζ ζ

+ 19
180

β2vξξξξξ + αβ
(

15
6
vvξξξ + 53

12
vξvξξ

)
+ βγ

2
vξζ ζ − γ

2

4
D−3vζ ζ ζ ζ

+αγ
(

5
4
vD−1vζ ζ + 2vζD−1vζ − 3

4
D−1(v2)ζ ζ + 1

2
vξD−2vζ ζ

)
=O(ε3), (2.9)
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The KP theory and Mach reflection 769

where D−1 := ∂−1
ξ is a formal integral operator with respect to ξ . The first line of this

equation of the order O(ε) is the traditional KP equation, and the terms in the second
and third lines are the O(ε2) correction. The water surface η is expressed as

η= v + α
4
v2 − β

3
vξξ + γ2 D−2vζ ζ +O(ε2). (2.10)

Next, we transform (2.9) into a canonical form of the KP equation with the change
of variables,

ξ =√β X, ζ =√βγ Y, τ = 3ε
√
β

2
T, v = 2

3α
u. (2.11a−d)

Then (2.9) becomes

−4uT = 6uuX + uXXX + 3D−1uYY

+ 19
60 uXXXXX + 5

3 uuXXX + 53
6 uXuXX + 3

2 uXYY − 3
4 D−3uYYYY

+ 5
2 uD−1uYY + 4uYD−1uY − 3

4 D−1(u2)YY + uXD−2uYY +O(ε9/2), (2.12)

which we refer to as the higher-order KP equation. Here we have the orders u∼O(ε),
∂X ∼O(ε1/2), D−1∼O(ε−1/2) and ∂Y ∼O(ε). Note that the new variables (X, Y, T) are
related to the physical ones via

x̃− c̃0 t̃= h̃0X, ỹ= h̃0 Y, t̃= 3h̃0

2c̃0
T. (2.13a−c)

The water surface elevation η in terms of u is given by

αη= 2
3 u+ 1

9 u2 − 2
9 uXX + 1

3 D−2uYY +O(ε3). (2.14)

In the leading-order approximation, the physical water surface αη is expressed by
αη= 2u/3 with the KP water surface parameter u. Hereafter, we use the lower case
letters (x, y, t) for (X, Y, T), and the KP variables can be converted to the physical
variables (x̃, ỹ, t̃) and η̃= h̃0αη directly through the relations (2.13).

3. The KP solitons
A brief summary of soliton solutions of the KP equation is given here, while

we refer to Chakravarty & Kodama (2009) and Kodama (2004, 2010) for detailed
discussions. The canonical form of the KP equation is the first line of (2.12):

4ut + 6uux + uxxx + 3D−1uyy = 0. (3.1)

The solution is represented in the τ -function form,

u(x, y, t)= 2∂2
x ln τ(x, y, t). (3.2)

For soliton solutions, we consider the τ function in the Wronskian determinant with
N functions fn for n = 1, . . . , N (see, for example, Matveev 1979; Satsuma 1979;
Freeman & Nimmo 1983; Hirota 2004),

τ =Wr( f1, f2, . . . , fN). (3.3)
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770 Y. Kodama and H. Yeh

The functions {f1, . . . , fN} form a set of independent solutions of the linear equations,

∂yfn = ∂2
x fn, ∂t fn =−∂3

x fn. (3.4a,b)

In particular, we consider a set of solutions in finite Fourier series,

fn(x, y, t)=
M∑

m=1

an,mEm(x, y, t) with Em = eθm := exp(κmx+ κ2
my− κ3

mt). (3.5)

Thus this type of solution is characterized by the ordered κ parameters {κ1< · · ·<κM}
and the N ×M matrix A := (an,m) of rank (A)=N, so that

( f1, f2, . . . , fN)= (E1, E2, . . . , EM)A
T. (3.6)

Note here that if we use other set (g1, . . . , gN)= ( f1, . . . , fN)H for any H ∈GLN(R),
(GLN(R) is the general linear group of rank N), then the τ function changes only
by the constant factor of det(H). That is, the solution remains the same under this
transform with GLN(R), and this freedom in the A matrix can be fixed by expressing
A in the reduced row echelon form.

Now using the Binet–Cauchy Lemma for the determinant, the τ function of (3.3)
can be expressed in the form

τ(x, y, t)=
∑

16j1<···<jN6M

∆j1,...,jN (A)Ej1,...,jN (x, y, t), (3.7)

where ∆j1,...,jN (A) is the N × N minor of the A matrix with N columns marked by
{j1, . . . , jN} and Ej1,...,jN (x, y, t) is given by

Ej1,...,jN (x, y, t)=Wr(Ej1, . . . , EjN )=
∏
l<m

(κjm − κjl)Ej1 · · · EjN . (3.8)

Note that we are interested in non-singular solutions. Since the solution is given by
u= 2∂2

x (ln τ), the non-singular solutions are obtained by imposing the non-negativity
condition on the minors,

∆j1,...,jN (A)> 0, for all 1 6 j1 < · · ·< jN 6 M. (3.9)

This condition is sufficient for non-singularity of the solution for any initial data (see
Kodama & Williams (2013) for the necessary condition for regularity). We call a
matrix A having the condition (3.9) a totally non-negative matrix.

3.1. Soliton solutions and notations
One soliton solution is obtained by the τ function with M= 2 and N= 1, i.e. τ = f1=
a11E1+ a12E2 with A= (a11 a12). Since the solution u is given by (3.2), one can take
a11 = 1 and denote a12 = a> 0. Then we have

u= 2∂2
x ln τ = 1

2(κ1 − κ2)
2 sech2 1

2(θ1 − θ2 − ln a), (3.10)

of which the solution is localized along the line θ1 − θ2 = ln a. Note that the line
soliton appears at the boundary of two regions in the xy plane where either E1
or E2 is the dominant exponential term, and because of this we call this soliton a
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The KP theory and Mach reflection 771

[1,2]-soliton solution. Likewise, we refer to each of these asymptotic line solitons as
the [i, j]-soliton with i< j whose τ function around the soliton can be expressed by
τ ≈∆IEI +∆JEJ with the index sets I containing i and J containing j, which satisfy
I \ {i}= J \ {j}. The [i, j]-soliton solution has the same local structure as the one-soliton
solution and can be described as follows

u= A[i,j] sech2 1
2(K[i,j] · x−Ω[i,j]t+Θ0

[i,j]),

with some constant Θ0
[i,j]. The amplitude A[i,j], the wavenumber vector K[i,j] and the

frequency Ω[i,j] are expressed by

A[i,j] = 1
2(κj − κi)

2, K[i,j] = (κj − κi, κ
2
j − κ2

i ), Ω[i,j] = κ3
j − κ3

i . (3.11a−c)

The direction of the wavenumber vector K[i,j]= (Kx
[i,j],K

y
[i,j]) is measured in the counter-

clockwise direction from the y axis and it is given by

Ky
[i,j]

Kx
[i,j]
= tanΨ[i,j] = κi + κj, (3.12)

that is, Ψ[i,j] gives the angle between the line K[i,j] · x = const. and the y axis (see
figure 1). Note that K[i,j] and Ω[i,j] satisfy the soliton-dispersion relation,

4Ω[i,j]Kx
[i,j] = (Kx

[i,j])
4 + 3(Ky

[i,j])
2. (3.13)

The crest line of [i, j]-soliton is given by K[i,j] · x−Ω[i,j]t+Θ0
[i,j] = 0, i.e.

x+ tanΨ[i,j]y− V[i,j]t= x0 with V[i,j] =
κ3

i − κ3
j

κi − κj
= κ2

i + κiκj + κ2
j , (3.14)

for some constant x0. Note V[i,j] > 0, that is, each soliton propagates in the positive
x direction, which is important when we set-up the coordinates for a laboratory or
numerical experiment of shallow-water waves.

In figure 1, we illustrate one line-soliton solution of [i, j]-type. In the right panel of
this figure, we show a chord diagram which represents this single line-soliton solution.
The chord diagram is a product of the KP analysis made by Chakravarty & Kodama
(2009), which represents the asymptotic soliton solutions for y→±∞.

Now we describe some exact soliton solutions of the KP equation for two line
solitons. For two interacting line solitons, the matrix A = (aij) is a constant 2 × 4
matrix and each solution u(x, y, t) is determined by the A matrix and the κ parameters.
From (3.7), the τ function can be written as

τ(x, y, t)=
∑

16i<j64

∆i,j(A)Ei,j(x, y, t), (3.15)

where ∆i,j(A) is the 2 × 2 minors consisting of ith and jth columns of the 2 × 4
A-matrix, and Ei,j =Wr(eθi, eθj) = (κj − κi)eθi+θj (note Ei,j > 0 with the order κi < κj).
As shown by Chakravarty & Kodama (2009), τ function (3.15) generates a soliton
solution that consists of two line solitons for y→ ±∞. We call this type soliton
solution a (2,2)-soliton solution. In general, an (N−, N+) soliton means that the
solution has N− asymptotic line solitons for y� 0 and N+ asymptotic line solitons for
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772 Y. Kodama and H. Yeh

0

[i, j]

x

y

FIGURE 1. One line-soliton solution of [i, j]-type and the corresponding chord diagram.
The upper oriented chord represents the part of [i, j]-soliton for y� 0 and the lower one
for y� 0. The middle line of the chord diagram shows the coordinate axis for the κ
parameters. Notice that the wave amplitude is represented by A[i,j] = (κj − κi)

2/2 and the
counterclockwise shift of the wave propagation is expressed by tan Ψ[i,j] = κi + κj, which
is positive for this example.

(3412)

(4312)

(2413) (3142) (2143)

(4321)(3421)

FIGURE 2. The chord diagrams for seven different types of (2, 2)-soliton solutions. The
number in the parenthesis represents the permutation. After Chakravarty & Kodama
(2009).

y� 0. Those asymptotic soliton solutions can be parameterized by the permutations,
which lead to the chord diagram to express the classification of soliton solutions as
a chord joining a pair of parameters κj following the permutation. Figure 2 shows
seven possible types of (2, 2)-soliton solutions for 2× 4 matrix A. For example, the
chord diagram of (3142)-type soliton shows that there are [1,3]- and [3,4]-solitons
for y� 0 and [1,2]- and [2,4]-solitons for y� 0. Detailed mathematical descriptions
are given by Chakravarty & Kodama (2009).

4. Mach reflection
Miles (1977a,b) analysed obliquely incident solitons onto a reflective boundary (i.e.

vertical wall). Although he did not explicitly use the KP equation, his analysis led
to solutions equivalent to the KP theory under the assumptions of weak nonlinearity
and small incident angle. Miles found that there exists an angle Ψc such that, if the
incidence angle Ψ0 is larger than Ψc, the reflected wave behind the incidence wave has
the same angle Ψ0 with a phase shift at the intersection. If the angle is smaller than
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O O

(a) (b)

FIGURE 3. The Mach reflection. The lower part of (a) corresponds to the mirror image
of the upper part of the experimental waves. (b) Illustrates an equivalent system to the
experiment. The resulting wave pattern in (b) shown is a (3142)-soliton solution (see the
text for the details). For a (2143)-soliton solution, the angle Φ becomes zero if the initial
angle satisfies Ψ0 >Ψc, i.e. no stem formation.

Ψc, then the Mach stem appears and continually grows its crest length, as illustrated
in figure 3.

The incident wave, the reflected wave and the Mach stem interact and form a
resonant triad. Miles’s prediction for the maximum wave amplification αw – the ratio
of the wave amplitude at the wall aw to the incident wave amplitude a0 (= ã0/h̃0) –
is expressed as

αw := aw

a0
=

(1+ k)2, for k< 1,

4

1+√1− k−2
, for k> 1.

(4.1)

where k is the parameter defined by

k= Ψ0√
3a0

, (4.2)

in which Ψc =
√

3a0. Hereafter, we call k in (4.2) the Miles parameter. Under the
assumption of a small angle, Miles assumed that sinΨ0≈Ψ0, which turns out to be the
key assumption that causes discrepancy between the predictions and the experiments:
this will be discussed in § 4.2.

Miles derived (4.1) under the assumption of small incidence angle Ψ0, which is
referred to as a strong interaction. In the case of large Ψ0 (he assumed sin2 Ψ0� a0),
the following equation for the maximum amplification is obtained:

αw = 2+ a0

(
3

2 sin2 Ψ0
− 3+ 2 sin2 Ψ0

)
. (4.3)

In § 5, we will show that (4.3) is well approximated by (4.1) for k> 1 after modifying
the parameter k with the higher-order correction. This means that (4.3) is smoothly
connected to (4.1) for k> 1 with the new parameter.
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40

20

[3, 4] [1, 2]

[1, 2]

[3, 4]
[1, 3]

[1, 4]

[2, 4][1, 2][3, 4]

0

–20

–40
–40 –20 0 20 40

40

20

0

–20

–40
20 40 60 80

(a) (b)

FIGURE 4. Contour plots and chord diagrams. (a) (2143)-type solution. (b) (3142)-type
solution. The length of [1,4]-soliton in the right figure changes in t.

4.1. KP theory
Figure 4 illustrates the contour plots of (2143)-type and (3142)-type solutions of the
KP theory in the xy plane which are symmetric with respect to the x axis and the
corresponding chord diagrams, respectively. Recall that the upper chords represent the
asymptotic solitons [i, j] for y� 0 and the lower chords the asymptotic solitons [i, j]
for y � 0. Let us fix the amplitudes A[i,j] and the angles Ψ[i,j] of the solitons in
the positive x regions for both (2143)- and (3142)-types, so that those solutions are
symmetric with respect to the x axis:

A0 =
{

A[1,2] = A[3,4] (2143) type
A[1,3] = A[2,4] (3142) type,

(4.4a)

Ψ0 =
{−Ψ[1,2] =Ψ[3,4] > 0 (2143) type

−Ψ[1,3] =Ψ[2,4] > 0 (3142) type,
(4.4b)

Then we express the κ parameters in terms of A0 and tan Ψ0 with κ1 = −κ4 and
κ2 =−κ3 (due to the symmetry). In the case of (2143)-type. With the use of (3.11a)
and (3.12), we have

κ1 =− 1
2(tanΨ0 +

√
2A0), κ2 =− 1

2(tanΨ0 −
√

2A0). (4.5a,b)

The ordering κ2<κ3=−κ2 then implies tanΨ0>
√

2A0. On the other hand, for (3142)-
type, we have

κ1 =− 1
2(tanΨ0 +

√
2A0), κ2 = 1

2(tanΨ0 −
√

2A0). (4.6a,b)

The ordering κ2 <κ3 implies tanΨ0 <
√

2A0. Thus, if all the solitons in the positive x
region have the same amplitude A0 for both (2143)- and (3142)-types, then an (2143)-
type solution arises when tanΨ0 >

√
2A0 and a (3142)-type when tanΨ0 <

√
2A0.
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For (3142)-type, the solitons in the negative x region are smaller than those in
the positive region, i.e. A[3,4] = A[1,2] = (1/2)(κ1 − κ2)

2 = (1/2) tan2 Ψ0 < A0 with
A0 = A[1,3] = A[2,4]. Also, the angles of those waves depend only on the amplitude
of the waves in the positive x region, i.e. tan Ψ[3,4] =

√
2A0 = −tanΨ[1,2]. Two sets

of three solitons {[1, 3], [1, 4], [3, 4]} in y > 0 and {[2, 4], [1, 4], [1, 2]} in y < 0
show soliton resonances forming Y-shaped waves. Then the maximum amplitude of
(3142)-type soliton is given by the amplitude of the [1,4] soliton, that is,

A[1,4] = 1
2(κ4 − κ1)

2 = 1
2(tanΨ0 +

√
2A0)

2 = A0(1+ k)2, (4.7)

where A0 = A[1,3] = A[2,4] and the parameter k is given by

k= tanΨ0√
2A0

. (4.8)

We call this parameter the KP parameter. In § 5, we will express A0 in terms of the
physical amplitude a0 (see (2.14) and note that in the leading-order approximation, we
have a0 = 2A0/3). One should note that the amplification formula αw in (4.1) is the
same as that in (4.7), but the k parameter in (4.1) is now replaced by (4.8). Thus the
(3142)-soliton appears in the case with k< 1. In this soliton profile, the [1,4]-soliton
can be identified as the Mach stem wave and the maximum wave amplification is
given by αw = A[1,4]/A0 = (1+ k)2. The [1,2]-soliton (and [3,4]-soliton) in the profile
is then identified as the reflected wave, and the reflected wave amplification is given
by αr = A[1,2]/A0 = k2 with k in (4.8).

The (2143)-type solitons in the positive and negative x directions are identical
in amplitude and symmetric with respect to the y axis; hence, it forms a regular
reflection. One should however note that the intersection of the ‘X’ shape causes the
negative phase shift, which is given by

1x[1,2] = 1
κ2 − κ1

ln
(κ3 − κ2)(κ4 − κ1)

(κ4 − κ2)(κ3 − κ1)
= 1√

2A0
ln(1− k−2), (4.9)

where A0=A[1,2] and k is given by (4.8) (see Chakravarty & Kodama 2009). The phase
shift appears as a stem-like wave formation at the wall. Although |1x[1,2]| approaches
infinity as k→ 1+, such a large phase shift can be obtained only for the case of k
being very close to 1: note that the logarithmic function in (4.9) is extremely sensitive
near (1− k−2)→ 0+. The contour plot of (2143)-type shown in figure 4 is the case of
k = 1.04, which exhibits a very small phase shift. Even for k = 1.02 (very close to
1.0), we obtain 1x[1,2] ≈ −1.5λ0, where λ0(= √2/A0) represents the breadth of the
soliton and the magnitude of the phase shift is comparable to the soliton breadth (i.e.
not large). Because the KP equation is accurate up to O(ε), the prediction of a large
phase shift in such a narrow range of k(≈ 1+) may not be realizable for the KP
approximation (see Chakravarty & Kodama 2014). Therefore, the (2143)-type solitons
can only create a minute amount of phase shift; a definitive formation of the stem
wave often observed in laboratories and the field must be considered as a consequence
of the (3142)-type solitons.

Unlike [1,4]-soliton of (3142)-type, the phase shift is steady and it does not
correspond to a soliton. Those distinct behaviours for (2143)-type and (3142)-type
are verified experimentally in the laboratory wave tank, as shown in figure 5. Note
that the laboratory data in the figure are obtained with the use of the same apparatus
and procedure used by Li, Yeh & Kodama (2011). In figures 5 and 6, at the
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(a)

(d )

y

y

(b) (c)

(e) ( f )

FIGURE 5. Laboratory realization of (2, 2)-soliton solutions: (a–c) (2143)-type wave-
profile evolution with incidence wave amplitudes a0= 0.083 with Ψ0= 0.52 rad and (d–f )
(3142)-type a0 = 0.322 with the same angle Ψ0 = 0.52 rad; (a,d) x= 10.2, (b,e) 40.7 and
(c, f ) 71.1.

(a)

y

y

(b)

FIGURE 6. (2143)-type and (3142)-type KP solutions corresponding to the waves in
figure 5. The κ parameters are (a) (κ1, . . . , κ4)=(−0.495,−0.082,0.082,0.495) for (2143)-
type soliton and (b) (κ1, . . . , κ4)= (−0.683,−0.106, 0.106, 0.683) for (3142)-soliton.

location x = 10.2 that is immediately after the incident soliton meets the vertical
wall, the wave patterns of (2143)-type and the (3142)-type are similar: the region
of wave–wave intersection is small and the reflected wave angle is larger than that
of the incident wave. This is because both (2143)-type and (3142)-type interactions
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The KP theory and Mach reflection 777

are in the development stage. The larger reflected wave angle is a consequence of
undeveloped wave reflection: note that, as depicted in figure 3, only the incident wave
was generated in the laboratory. Once wave reflection is developed, the (2143)-type
exhibits the stem-like wave formation but its length remains short and constant; this
stem-like appearance is a consequence of the phase shift arising from the wave–wave
intersection. For the (2143)-type reflection, the reflected wave angle becomes the
same as the incident wave angle Ψ0, resulting in symmetrical wave formation, as
shown in figure 5(c). On the other hand, the (3142)-type shows continual growth
of the stem wave. As shown in figure 5( f ), the reflected wave angle remains larger
than that of the incident wave. This wave pattern is consistent with the theoretical
prediction shown in figure 4. With the experimental parameters, a0 and Ψ0, the exact
KP solitons are shown in figure 6. The KP parameters κi values and the matrix A
are calculated explicitly from the laboratory setting. In particular, the κ parameters
are obtained using the KP amplitude A0 from (5.14) that includes the higher-order
corrections (the higher-order corrections will be discussed in § 5).

Chakravarty & Kodama (2009) found that the maximum amplitude of a (2143)-type
soliton at the intersection is

Amax = 4A0

1+√1− k−2
with A0 = A[1,2] = A[3,4], (4.10)

which is equivalent to (4.1). One should again note that the k parameter here is given
by (4.8) instead of the Miles parameter (4.2).

The limiting value at κ2 = κ3 (= 0) defines the critical angle Ψc,

tanΨc :=
√

2A0. (4.11)

This limit corresponds to the critical cases of (2143)-type and (3142)-type, and at
this critical state, the phase shift (4.9) for the (2143)-type soliton becomes infinite.
This means, as depicted in figure 7, that the (degenerate) chord diagram in the limit
splits into two diagrams for y� 0 and y� 0 describing two sets of resonant Y-shape
solitons in those regions. Notice that at the critical angle, the τ function has only three
exponential terms, i.e. E12=E13,E14 and E24=E34 (E23= 0), resulting in the resonant
Y-shape solution. This is equivalent to Miles’s 4-fold amplification of the stem wave
at the critical angle Ψc or at k = 1 in (4.1). The 4-fold amplification is interpreted
from the cord diagram in figure 7: A[1,4] = (1/2)(κ4 − κ1)

2 = 4((1/2)(κ3 − κ1)
2) =

4((1/2)(κ4 − κ2)
2). According to (4.11), the critical state is at k = 1 in which k in

the KP theory is given by (4.8). Note that the Miles parameter k expressed in (4.2)
is for small angle Ψ0 ≈ tan Ψ0. One should however note that the parameter k was
obtained under the assumption sin Ψ0 ≈ Ψ0, and, as will be discussed in § 5.3, the
difference between tanΨ0 and sinΨ0 is quite significant for larger angle Ψ0.

4.2. Previous laboratory and numerical results
Preceding Miles’s analysis by 20 years, Perroud (1957) was the first to experimentally
investigate soliton reflection with oblique incidence. Perroud used a small tank (6.1 m
long, 1.1 m wide, 0.13 m deep) to generate a soliton by displacing a paddle driven
by a weight with a pulley system. The water depths h̃0 used for the experiments were
4 and 6 cm, and the wave amplitudes were a0= ã0/h̃0= 0.05–0.43. A few years after
Miles’s analysis, Melville (1980) conducted the laboratory experiments specifically to
attempt to validate Miles’s theory. The experiments were carried out in a wave basin
(18.3 m long, 6.2 m wide with water of 20 and 30 cm depth). Figure 8(a) compares
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FIGURE 7. Splitting the degenerate chord diagram at the critical angle.

4.0(a)

3.5

3.0

2.5

2.0

1.5

4.0

3.5

3.0

2.5

2.0

1.5

0.5 1.0 1.5 2.0 2.5 3.0

0.5 1.0 1.5 2.0 2.5 3.0

(b)

FIGURE 8. Experimental results of the amplification factor αw versus Miles’s parameter
k. (a) Laboratory results. The open circles ◦ show the results of Perroud (1957), the
open squares @ show Melville (1980) and the solid circles u are the data by Li et al.
(2011) with Ψ0 = 0.35 rad, solid triangleq with Ψ0 = 0.52 rad, and solid squarep with
Ψ0= 0.70 rad. (b) Numerical results. The crosses × show the results of Funakoshi (1980)
and the open trianglesA show the results of Tanaka (1993).

Perroud and Melville’s experimental data with Miles’s prediction (4.1). Melville’s data
show that the maximum amplification αw= amax/a0 at the wall was 2.0 (simple linear
superposition) when the Miles parameter k = 1.43; this amplification is smaller than
Perroud’s observation αw = 2.4. Both Perroud and Melville’s data indicate that the
measured amplification monotonically increases with the Miles parameter k, which
is qualitatively in disagreement with the theory that predicts the formation of peak
amplification at k= 1.
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Li et al. (2011) revisited the problem, performing laboratory experiments with a
wave basin (7.3 m long and 3.6 m wide with water depth of 6.0 cm). They found
that discrepancies between the previous laboratory results (Perroud 1957; Melville
1980) and Miles’s prediction (4.1) are attributed partly to the insufficient propagation
distance in the laboratory experiments so that the asymptotic state could have not
been reached. To circumvent this shortcoming, Li et al. (2011) conducted so called
‘patched’ experimental runs: taking advantage of the precision laboratory apparatus,
wave measurements at a long propagation distance were accomplished by generating
the observed waveform from the parent experiment with a wavemaker and patching
the data with those from the subsequent extended experiment. Figure 8(a) shows the
measured data, effectively at x= 121.1 with Miles’s parameter k. The result exhibits
a peak in amplification at the Miles parameter k = 0.753. The measured maximum
amplification factor is αw = 2.92, that is, less than Miles’s 4-fold prediction, but
substantially more than linear superposition.

Funakoshi (1980) conducted the numerical experiments: see figure 8(b), Funakoshi’s
results deviate from Miles’s theory in spite of identical assumptions and approxi-
mations used in his model as were used in Miles’s analysis. The asymptotic state
could not be attained in the numerical simulations at k ≈ 1.0; consequently, he
could not demonstrate the critical amplification factor of αw = 4.0. The numerical
experiments performed by Tanaka (1993) were based on the Euler formulation with
the use of the higher-order spectral method developed by Dommermuth & Yue
(1987). This higher-order model allowed him to study conditions less restricted in
the nonlinearity parameter α = (ã0/h̃0) and the incident wave angle Ψ0. As shown in
figure 8(b), Tanaka’s higher-order numerical results deviate more than those calculated
by Funakoshi (1980) – note that both Tanaka and Funakoshi’s numerical results show
the pattern of amplification being shifted to the lower value of k. The value of k
where the maximum amplification αw = 2.897 is, however, in good agreement with
the laboratory results of Li et al. (2011), presented in figure 8(a): αw = 2.92 at
k= 0.753.

According to Li et al. (2011), the discrepancy in amplification αw must stem from
the assumptions in the theory: particularly, small incident wave angle Ψ 2

0 = O(ε).
This condition is clearly violated in Tanaka’s numerical experiments: Tanaka (1993)
used a0 = 0.3 in his numerical experiments so that Ψ0 = 0.95 rad at k = 1 that is
hardly ‘small’. On the other hand, Funakoshi (1980) used a0 = 0.05 in his numerical
experiments so that Ψ0=0.39 rad at k=1. This must be the reason why the agreement
of Funakoshi’s results with the theory is better than Tanaka’s (see figure 8b). The
incident wave angles Ψ0 used in the laboratory experiments are also not small: the
experiments by Perroud (1957) were done with Ψ0 = 0.13 ∼ π/2; Melville (1980)
used Ψ0= 0.17–0.79 rad and Li et al. (2011) used Ψ0= 0.35–0.70 rad. In addition to
the need for a long propagation distance (or computation time) to achieve the 4-fold
amplification in numerical and laboratory experiments, we recognize that the critical
condition k = 1 is unstable: according to (4.1), the gradient of αw becomes −∞ at
k→ 1+. A gradual viscous attenuation would prevent the wave from sustaining the
critical condition at k = 1. A similar problem exists in the numerical experiments
due to small but unavoidable numerical noise, including numerical dissipation and
dispersion.

One should note here that the previous numerical studies used the Miles parameters
(4.2) for analysis, even for the cases where the approximation Ψ0 ≈ tan Ψ0 fails.
Therefore, their analyses lead to the discrepancy between the Miles prediction and
the numerical results. In § 5, we will derive a new k parameter to include the
higher-order approximations of quasi-two-dimensionality and weak nonlinearity, and
re-evaluate those results based on the new parameter.
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4.3. Remark on the quasi-two-dimensional approximation
In order to remedy the discrepancy caused by a finite value of Ψ0, Li et al. (2011)
proposed a heuristic fix for the KP soliton paradox. Recall that, in terms of physical
coordinates, the KP equation is written as(

η̃t̃ + c̃0η̃x̃ + 3c̃0

2h̃0

η̃η̃x̃ + c̃0h̃2
0

6
η̃x̃x̃x̃

)
x̃

+ c̃0

2
η̃ỹỹ = 0. (4.12)

As an exact solution of (4.12), we find a soliton solution in the coordinate
perpendicular to the wave crest, χ̃ = x̃ cosΨ0 + ỹ sinΨ0:

η̃= ã0 sech2

√
3ã0

4h̃3
0 cos2 Ψ0

[
χ̃ − c̃0 cosΨ0

(
1+ ã0

2h̃0

+ 1
2

tan2 Ψ0

)
t̃
]
. (4.13)

Recall that the KP equation is derived with the assumption of quasi-two-dimensionality,
that is γ = tan2 Ψ0 = O(ε). It is recognized that the solution (4.13) is unphysical in
the case of a finite angle Ψ0 6= 0. While (4.13) is an exact solution to the KP
equation (4.12), the breadth of the wave profile depends on the propagation direction,
Ψ0. More precisely, the width of the soliton artificially changes by rotating the
coordinate system. To correct this artefact, a heuristic fix is proposed by defining a
new amplitude parameter â0 = ã0/ cos2 ψ = ã0(1+ tan2 ψ)= ã0(1+O(ε)). Using this
re-defined amplitude â0, (4.13) can be reduced to the KdV soliton:

η̃' â0 sech2

√
3â0

4h̃3
0

[
χ̃ − c̃0

(
1+ â0

2h̃0

)
t̃
]
+O(ε2). (4.14)

It is remarked that this heuristic modification makes the solution no longer exact to
the KP equation (4.12). With the newly defined wave amplitude â0, Miles’s parameter
(4.2) is modified for a finite-but-small value of Ψ0 as

k= tanΨ0√
3a0 cosΨ0

. (4.15)

Comparing this with (4.8), we have

a0 = 2
3

A0

cos2 Ψ0
+O(ε2). (4.16)

This relation between the physical wave amplitude and the KP wave amplitude gives
the higher-order correction to the quasi-two-dimensional approximation, as will be
shown in (5.14). In the next section, we show how it can be formally corrected using
a normal form theory concerning the higher-order correction to the KP equation.

5. Normal form for the KP equation with higher-order corrections
We now construct a normal form of the KP equation with the higher-order

corrections given by (2.9). The basic idea of the normal form theory has been
presented by Kodama (1985, 1987), Kodama & Mikhailov (1996) and Hiraoka &
Kodama (2009). The goal of this section is to show that solutions of the normal
form can be used to describe the Mach reflection even under the condition with a
not-so-small finite value of Ψ0. The normal form theory also provides the next-order
correction to the approximation of weak nonlinearity.
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5.1. The normal form for the KdV equation
Before discussing a normal form for (2.9), we give a brief summary of the result for
the case of the KdV equation. Taking ∂Yu= 0 in (2.12), we have the KdV equation
with higher-order corrections:

−4ut = 6uux + uxxx +
(

19
60 uxxxxx + 5

3 uuxxx + 53
6 uxuxx

)+O(ε9/2). (5.1)

(As stated earlier, the lower case letters (x, y, z) are used instead of (X, Y, T) for
succinct expression.) According to Kodama (1985), one can transform (5.1) with a
formal change of variable,

u=U + (Uxx + 4
3 U2 + 1

2 UxD−1U
)+O(ε3), (5.2)

into the equation which we refer to as the normal form of (5.1):

− 4Ut = 6UUx +Uxxx + 19
60(Uxxxxx + 10UUxxx + 20UxUxx + 30U2Ux)+O(ε9/2). (5.3)

Note that the higher-order term of O(ε7/2) in this equation is the fifth-order symmetry
of the KdV equation, and hence the normal form is integrable up to O(ε7/2). That
is, we have an integrability not only at the KdV of O(ε5/2) but also at the next-
order correction of O(ε7/2). This means that the solitary waves are robust and their
interaction properties remain the same as the KdV solitons even including the next-
order correction.

This is true even for the general form of the higher-order correction,

α1uxxxxx + α2uuxxx + α3uxuxx + α4u2ux, (5.4)

with arbitrary coefficients α1, . . . , α4. This implies that any weakly nonlinear long-
wave equation whose leading order is approximated by the KdV equation is
asymptotically integrable up to the next-order approximation. Then, using the
transformation (5.2), one can find higher-order corrections of the KdV solitons
including the phase shifts due to the soliton interactions (see Hiraoka & Kodama
2009).

Note that the normal form up to O(ε7/2) admits a one-soliton solution in the form,

U = A0 sech2

√
A0

2
(x+ x0(t)), (5.5)

where x0(t) is determined by (dx0/dt) := (1/2)A0 + (19/60)A2
0 + O(ε3). Then the

solution of the higher-order KdV equation (5.1) is given by the transformation (5.2):

u= A0S2 + (A2
0S2 − 2

3 A2
0S4)+O(ε3), (5.6)

where S := sech
√

A0/2(x+ x0). Note that the water surface η of (2.10) for the KdV
case is given by

αη= 2
3 A0S2 + 2

9 A2
0S2 + 1

3 A2
0S4 +O(ε3). (5.7)

This formula is consistent with the one obtained by Grimshaw (1971), who derived
the correction up to the third order.
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5.2. Normal form of the KP equation
Now we define a normal form of (2.12) using the following transformation,

u=U + (β1Uxx + β2U2 + β3UxD−1U + β4D−2Uyy)+O(ε3), (5.8)

where the βj values are determined in such a way that the transformed equation
(normal form) has a ‘good’ property. First, we require that the normal form is
reduced to the KdV normal form when we have ∂yu = 0. That is, from (5.2), we
have β1 = 1, β2 = (4/3), β3 = (1/2), but β4 remains undetermined. Then we require
that the normal form admits a solitary wave in the form of one-soliton solution,

U = A0 sech2

√
A0

2
(x+ x0(y, t)). (5.9)

This determines uniquely β4 = 1/2 and the normal form of (2.12) is now given by

−4Ut = 6UUx +Uxxx + 3D−1Uyy

+ 19
60(Uxxxxx + 10UUxxx + 20UxUxx + 30U2Ux)+ 3

2 Uxyy − 3
4 D−3Uyyyy

−UD−1Uyy + 7UyD−1Uy + 1
4 D−1(U2)yy + 5

2 UxD−2Uyy +O(ε9/2). (5.10)

The phase x0(y, t) satisfies

−4
∂x0

∂t
= 2A0 + 3

(
∂x0

∂y

)2

+ 19
15

A2
0 + 3A0

(
∂x0

∂y

)2

− 3
4

(
∂x0

∂y

)4

+O(ε3). (5.11)

Setting the angle Ψ0 of the soliton with (∂x0/∂y) = tan Ψ0, we have the velocity
(∂x0/∂t) of the KP soliton with the higher-order corrections. The corresponding
solitary wave solution u is then given by

u= A0S2 + (A2
0S2 + 1

2 A0 tan2 Ψ0S2 − 2
3 A2

0S4)+O(ε3), (5.12)

and the water surface η of (2.10) is given by

αη = 2
3 A0S2 + 2

3 tan2 Ψ0S2 + 2
9 A2

0S2 + 1
3 A2

0S4 +O(ε3)

= 2
3 [A0]S2 + 2

9 [A0]2S2 + 1
3 [A0]2S4 +O(ε3), (5.13)

where [A0] := A0(1 + tan2 Ψ0) = A0/cos2 Ψ0 (see § 4.3). It is interesting to note that
the correction to the quasi-two-dimensional approximation is entirely absorbed into the
amplitude of the KdV equation (cf. (5.7)). This formula gives the relation between the
observed amplitude a0 from numerical or laboratory experiments of a shallow-water
wave system and the KP amplitude A0. More explicitly, the observed amplitude a0 of
one soliton up to O(ε2) is given by

a0 = 2
3
[A0] + 5

9
[A0]2 which gives A0 = 3a0 cos2 Ψ0

1+√1+ 5a0
. (5.14)

This is a key equation when we apply the KP theory to laboratory experiments of
shallow-water waves with finite values of Ψ0 and a0.
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5.3. Re-evaluation of the previous results based on the normal form
Recall that the KP equation is derived under the assumptions of quasi-two-
dimensionality, weak dispersion and weak nonlinearity. Here, we show that it is
necessary to include a higher-order correction for physical applications of the KP
theory. Specifically, the observed wave amplitude in the laboratory and numerical
experiments should be converted to the corresponding KP amplitude via the formula
(5.14) that was derived from the normal form of the higher-order KP equation
(5.10). Then, the KP parameter k of (4.8) can be expressed in terms of the observed
incident-wave amplitude a0 and the incident angle Ψ0 by

k= tanΨ0√
2A0
=
√

1+√1+ 5a0 tanΨ0√
6a0 cosΨ0

. (5.15)

Note that, for small a0, the KP parameter k, including the higher-order corrections,
reduces to the heuristically derived parameter in (4.15). The maximum wave
amplification α̂ in the KP theory can be obtained as follows.

For the case with k< 1 (the Mach reflection), we have

α̂ = A[1,4]
A0
= αw(1+

√
1+ 5a0)

(1+√1+ 5αwa0) cos2 Ψ0
, (5.16)

where we have used (5.14) to evaluate the stem wave amplitudes A[1,4] and the incident
wave amplitude A0 = A[1,3] = A[2,4]. It is emphasized that (5.16) shows the relation
between the physical wave amplification αw and the KP amplification α̂.

For the case k> 1 (regular reflection), we use the same formula in (4.1) with (5.15)
which gives

α̂ = 4

1+√1− k−2
≈ 2

(
1+ 1

4k2

)
= 2

(
1+ 3a0 cos2 Ψ0

2(1+√1+ 5a0) tan2 Ψ0

)
≈ 2+ 3a0(1− sin2 Ψ0)

2

2 sin2 Ψ0
= 2+ a0

(
3

2 sin2 Ψ0
− 3+ 3

2
sin2 Ψ0

)
. (5.17)

Note here that the difference between (4.3) and this formula is (1/2) sin2 Ψ0, which
is negligible for this approximation.

The numerical and laboratory results are now re-evaluated with the new formulae
(5.16) and (5.17) with (5.15), and the results are shown in figure 9(b). For comparison,
the original prediction of Miles is also shown in figure 9(a). Laboratory data by
Perroud (1957) and Melville (1980) are not presented here because the propagation
distance in their experiments was too short to achieve the asymptotic state.

Since the numerical simulations of Funakoshi (1980) were conducted with small
incident waves (a0= 0.05), his results match the KP predictions very well; the slightly
shifted deviation to the left in k with the original Miles’s theory (figure 9a) is now
corrected. Tanaka (1993)’s results also match the theory; the higher-order correction
substantially shifts his numerical data to the positive k value. Note that Tanaka’s
numerical experiments were undertaken with a relatively large value of a0 and a large
value of the incidence angle Ψ0. The higher-order correction of the amplification
factors (5.16) and (5.17) is very effective, although the agreement of Tanaka’s results
with the KP theory is not as good as Funakoshi’s, especially for the data near k= 1.
This is because the KP theory, even at higher order, still assumes small values of a0
and tanΨ0. (Recall that Tanaka’s results were with a0 = 0.3 and Ψ0 ≈ 1 near k= 1.)
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FIGURE 9. Numerical and experimental results of (a) the amplification factor αw
versus k, the Miles parameter (4.2) and (b) the KP amplification factor α̂ versus
the new higher-order KP parameter (5.15). The crosses × show the numerical
results by Funakoshi (1980), the hollow triangles A show the numerical results by
Tanaka (1993), the solid circles u are the laboratory data by Li et al. (2011) with
Ψ0 = 0.35 rad, solid triangles q with Ψ0 = 0.52 rad and solid squares p with
Ψ0 = 0.70 rad.

As shown in figure 9, the higher-order KP theory results in a striking improvement
in agreement of the laboratory data with the theory. While the laboratory data with the
different incident wave angles appear in the separate datasets in the plot with Miles’s k
(in figure 9a), the plot of the same datasets with the higher-order KP theory (figure 9b)
emerges as a single coherent dataset. In particular, the data with Ψ0= 0.35 rad exhibit
substantial improvement in the amplification factor.

To obtain the maximum amplification near k≈ 1, Tanaka (1993) used the incident
wave amplitude a0= 0.3 in his numerical experiments and our laboratory experiments
used the amplitude a0 = 0.277. The resulting amplifications for both numerical and
laboratory results are α̂ ≈ 3. Because the wave amplitude along the wall is close
to unity (6= O(ε)), such not-so-small finite-amplitude conditions clearly violate the
assumption of weak nonlinearity. Nonetheless, all of the numerical and laboratory data
shown in figure 9 are in good agreement with the higher-order KP theory. In spite of
the violations of the small parameters a0 and Ψ0, this rather unexpected performance
of the theory is remarkable.
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6. Summary and conclusion

We first reviewed a solution methodology for the KP equation that was established
by one of the present authors and his colleagues (e.g. Chakravarty & Kodama 2009;
Kodama et al. 2009; Kodama 2010). The exact solutions, called KP solitons, are
presented. The (2,2)-soliton solutions are considered, which can be classified to seven
types and each of them is effectively represented by the corresponding chord diagram
(figure 2). Among them, the (3412)-type and the (2143)-type forming an ‘X-shaped’
wave pattern are analysed. It is shown that those two types are realized quantitatively
in the laboratory environment.

We then examine the generation processes of the (2,2)-soliton solutions from the
initial state of a single soliton obliquely incident onto a perfectly reflective wall. This
creates a symmetrical pattern (or mirror image) about the wall, and the asymptotic
state of the KP theory is the (3412)-type or the (2143)-type. It is shown that the
critical condition of the 4-fold amplification predicted by Miles (1977b) can be
interpreted from the chord diagram at the confluent state of the (3412)-type and
the (2143)-type (figure 7). This theoretical prediction of the amplification was not
verified previously in the physical domain, partly because the process to reach its
asymptotic state takes a long time in the laboratory and numerical experiments, and
more importantly the assumption of ‘small’ wave incident angle Ψ0 is sensitive and
difficult to realize in the physical domain. To remedy these shortcomings, we extend
the KP theory to include a higher-order correction with the use of normal form theory.
It is demonstrated that the higher-order theory is capable of predicting accurately the
Mach reflection phenomenon resulting from the laboratory and numerical experiments;
therefore, the critical 4-fold amplification of two oblique solitons interacting is now
likely accepted to be reality.
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