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Abstract

We study how to sample paths of a random walk up to the first time it crosses a fixed
barrier, in the setting where the step sizes are independent and identically distributed with
negative mean and have a regularly varying right tail. We introduce a desirable property
for a change of measure to be suitable for exact simulation. We study whether the change
of measure of Blanchet and Glynn (2008) satisfies this property and show that it does so
if and only if the tail index α of the right tail lies in the interval (1, 3/2).
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1. Introduction

Barrier-crossing events of random walks appear in numerous engineering and science mod-
els. Examples range from stationary waiting times in queues to ruin events in insurance risk
processes [4], [13], [20]. Random walks with regularly varying step-size distributions are
of particular interest, and their special analytic structure facilitates an increasingly complete
understanding of associated rare events.

In this paper we consider the problem of sampling a path of a random walk until it crosses a
given fixed barrier in the setting of heavy-tailed step sizes with negative mean. The higher the
barrier, the lower the likelihood of reaching it. This poses challenges for conditional sampling,
since naive Monte Carlo sampling devotes much computational time to paths that never cross
the barrier and must therefore be ultimately discarded.

The ability to sample up to the first barrier-crossing time plays a central role in several
related problems, such as for sampling paths up to their maximum [10] or for sampling only
the maximum itself [14]. In turn, these have applications to perfect sampling from stationary
distributions [7], [11] and to approximately solving stochastic differential equations [12].

Main contributions. The central question in this paper is: can the change of measure
proposed by Blanchet and Glynn [8] be used for exact, that is, unbiased, conditional sampling
of heavy-tailed random walks given a barrier-crossing rare event? The Blanchet–Glynn measure
is designed to approximate such a conditional distribution, so one might therefore expect an
answer to this question in the affirmative. Surprisingly, we answer this question, by and large,
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in the negative: this measure cannot be used for conditional sampling. Our results are a conseq-
uence of a delicate second-order analysis of tail probabilities of a sum of heavy-tailed random
variables that are related to the residual life tail distribution of the random walk increments.
The asymptotic decomposition and analysis we put forth may be of interest in itself.

We introduce a ‘desirable’ property for a candidate change of measure to be suitable for our
exact sampling problem and reveal an intriguing dichotomy on the suitability of the Blanchet–
Glynn measure: this measure satisfies this property if and only if the tail index is below the
threshold 3/2. It is worthwhile to stress two immediate consequences. First, our result roughly
implies that only the heaviest tails stand a chance to be efficient in this setting, since the
desirable property we introduce is intuitively a proxy for efficiency of the proposal measure.
This is counterintuitive, since heavier tails typically make problems more difficult. Second,
the threshold is not directly connected to the existence of integer moments for the step-size
distribution.

The threshold 3/2 also arises in the simulation literature involving barrier-crossing events
with regularly varying step sizes [9], [19]. The nature of the threshold we obtain here is,
however, different from these works for three reasons. First, these papers focus on estimating
the rare event probability of exceeding a barrier; in contrast, our work focuses on sampling
barrier-crossing paths. Second, these papers obtain that the heaviest tails are inefficient in their
framework, while we obtain a form of inefficiency for lighter tails. Finally, and perhaps most
importantly, the threshold 3/2 in the existing literature is a direct consequence of requiring
second-moment conditions of the estimator, while a direct relation with moments is absent for
conditional sampling problems.

A by-product of our work is a counterexample for the statement of Proposition 4 of Blanchet
and Glynn [8]. This proposition states that, for a broad class of heavy-tailed step sizes, the
expected hitting time of the barrier grows linearly in the barrier level under the Blanchet–Glynn
change of measure. We show, though, that this result does not always hold. This proposition
is not central to the framework introduced in [8], and the issue we expose here can also be
deduced from Corollary 1 of [9], but our result reopens the question of when the measure of
Blanchet and Glynn induces a linear hitting time expectation.

Related literature. The primary means for exact or unbiased sampling from heavy-tailed
random walks is based on the change of measure technique. Simply put, this procedure
consists in sampling from a distribution different from the desired one and determining (or
computing) the output using the likelihood ratio. The essential idea is that the changed or
proposal distribution should emphasize characteristics of barrier-crossing paths.

The literature of exact simulation of barrier-crossing paths is closely related to the one of
estimating the probability of exceeding the barrier. In the heavy-tailed setting, the latter problem
has already been studied for two decades. In contrast, the exact path-sampling problem has
only recently received attention, mostly driven by applications of dominated coupling from the
past when in the presence of heavy tails; see [11].

For the probability estimating problem under heavy tails, early approaches can be found in
[2], [5], and [17]. An important contribution for the current paper is [8], which was later followed
by [9] and [19]. A recent new technique can be found in [16], in which Markov Chain Monte
Carlo was used to estimate the multiplicative inverse of the probability of crossing the barrier.

The problem of exact sampling of paths with heavy tails, on the other hand, has only
recently been tackled; see [11]. In this paper the authors modified the measure of [19], which
focused on the probability estimation problem, and built on the scheme for exact sampling
of paths introduced in [10, Section 4]. The approach studied in this paper is based on the
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Blanchet–Glynn change of measure, which is conceptually simpler than the approach proposed
in [11]. The search for a simpler algorithm provided the motivation for this paper.

Outline. This paper is organized as follows. In Section 2 we discuss the general preliminaries
for our conditional sampling problem: a change of measure technique and the criterion we
propose as a desirable property for efficiency for exact conditional sampling. In Section 3
we state our main result of efficiency for conditional sampling when using the Blanchet–
Glynn change of measure [8] and with regularly varying step sizes. In Section 4 we compare
our threshold result of Section 3 with similar ones in the literature of rare event sampling.
In Section 5 we state a proof of the main result of Section 4.

Notation. We denote by {Sn} the infinite length paths of the random walk. Given a probability
measure Q over {Sn}, we denote the expectation with respect to measure Q as EQ. We write
E

Q
y [·] := EQ[· | S0 = y] and omit y when y = 0, as customary in the literature. Given

two probability measures P and Q over the same space, we denote absolute continuity of P

with respect to Q as P � Q, meaning that, for all measurable B, Q(B) = 0 implies that
P(B) = 0. For x, y real, we denote x+ := max{x, 0}, x− := − min{x, 0}, x ∧y := min{x, y},
and x ∨ y := max{x, y}. Also, for two functions f and g, we write f (t) ∼ g(t) when
limt→∞ f (t)/g(t) = 1; we write f (t) = O(g(t)) when lim supt→∞ |f (t)/g(t)| < ∞, and
f (t) = o(g(t)) when limt→∞ |f (t)/g(t)| = 0.

2. Preliminaries

In this section we provide the background necessary for the exposition of our main result.
In Section 2.1 we describe techniques for exact, or unbiased, conditional sampling using the
change of measure technique. In Section 2.2 we give the criterion we propose as a desirable
property for efficiency for this problem. In Section 2.3 we briefly introduce the Blanchet–
Glynn [8] change of measure.

General setting. We consider a random walk Sn := ∑n
i=1 Xi , where Xi are independent and

identically distributed, E|Xi | < ∞, and S0 = 0 unless explicitly stated otherwise. We assume
that {Sn} has negative drift, meaning that EXi < 0. We also assume that Xi has unbounded
right support; that is, P(Xi > t) > 0 for all t ∈ R.

Given a barrier b ≥ 0, let τb := inf{n ≥ 0 : Sn > b} be the first barrier-crossing time.
Since the random walk has negative drift, we have Sn → −∞ almost surely (a.s.) as n → ∞,
and also P(τb = ∞) > 0.

Our main goal is to study the suitability, with efficiency in mind, of using a change of measure
to sample exactly paths (S1, . . . , Sτb

) conditional on {τb < ∞}.
We remark that, for the sake of clarity of exposition, we will abuse notation and write

‘(S0, . . . , Sτb
) follows the distribution P(· | τb < ∞)’ to mean that, for all finite n ∈ N, the

random vector (S0, . . . , Sτb
) with τb = n has the distribution P(· | τb = n).

2.1. Exact conditional sampling via change of measure

We tackle the problem of exact or unbiased conditional sampling using the acceptance–
rejection algorithm, which uses the change of measure technique. Here we give a brief
exposition of these two methods.

Change of measure technique. Let P(y, dz) be the transition kernel of the random walk,
that is, P(y, dz) = P(S1 ∈ dz | S0 = y). We consider a ‘changed’ or ‘proposal’ transition
kernel Q(y, dz), which may be chosen state dependent, meaning that Q(y1, y1 + ·) and
Q(y2, y2 + ·) may be different measures for y1 �= y2. We assume that P(y, ·) � Q(y, ·)
for all y, which implies that the likelihood ratio function dP/ dQ(y, ·) exists. Letting Q be the
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distribution of {Sn} induced by the proposal kernel Q, we slightly abuse notation and denote
by dP/ dQ(Sn : 0 ≤ n ≤ T ) the likelihood ratio of a finite path (S0, . . . , ST ). More precisely,
for T finite dP/dQ(Sn : 0 ≤ n ≤ T ) := LT , where LT is the nonnegative random variable
satisfying EQ[1BLT ] = EP[1B ] for all B in the σ -algebra σ(Sn : 0 ≤ n ≤ T ), where 1B is the
indicator on event B. With this, it holds that

dP

dQ
(Sn : 0 ≤ n ≤ T ) = dP

dQ
(S0, S1) · · · dP

dQ
(ST −1, ST )

for all T finite or Q-a.s. finite stopping time. See [1, Section XIII.3] for further details.
Acceptance–rejection algorithm for exact conditional sampling. This procedure considers

the situation of a distribution that is ‘difficult’ to sample from, and another distribution that is
‘easy’ to sample from; the aim is to simulate from the difficult distribution. The acceptance–
rejection algorithm allows one to sample from the difficult distribution by repeatedly sampling
from the easy, ‘proposal’, distribution. Here we show a known specialization of this technique
to the problem of sampling paths from the conditional distribution P(· | τb < ∞); see [10].

Let P be the transition kernel of the random walk, and consider a ‘proposal’ kernel Q,
possibly state dependent, such that P(y, ·) � Q(y, ·) for all y. Assume that, for some
computable constant C > 0, we have

dP

dQ
(Sn : 0 ≤ n ≤ τb)1{τb<∞} ≤ C, Q-a.s.

If U is uniformly distributed on [0, 1] under Q and drawn independently from {Sn}, then it can
be verified that

Q

(
U ≤ 1{τb<∞}

C

dP

dQ
(Sn : 0 ≤ n ≤ τb)

)
= P(τb < ∞)

C
, (2.1)

Q

(
{Sn} ∈ ·

∣∣∣∣ U ≤ 1{τb<∞}
C

dP

dQ
(Sn : 0 ≤ n ≤ τb)

)
= P({Sn} ∈ · | τb < ∞), (2.2)

over events B ∈ Fτb
such that B ⊆ {τb < ∞}.

The acceptance–rejection procedure consists of iterating the steps:

(i) sample jointly (U, (S0, . . . , Sτb
)) from Q, and

(ii) check whether

U ≤ 1{τb<∞}
C

dP

dQ
(Sn : 0 ≤ n ≤ τb) (2.3)

holds.

The algorithm stops, ‘accepts’, the first time (2.3) is satisfied, and then outputs the path
(S0, . . . , Sτb

). Equation (2.1) states that a sample is ‘accepted’ with probability P(τb <

∞)/C; and (2.2) assures that the simulation is exact, that is, the distribution of the output is
P(· | τb < ∞).

2.2. A desirable property for conditional sampling

We now propose a criterion for when a ‘changed’ or ‘proposal’ transition kernel Q is useful
in sampling paths up to τb from the conditional distribution P(· | τb < ∞). Simply put, our
proposed criterion states that all crossing events occur with higher probability under the proposal
measure than under the original. Intuitively thus, this criterion is an efficiency condition for
the exact conditional sampling problem.
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Definition 2.1. (Direct proposal for exact conditional sampling.) Let Q(y, dz) be a transition
kernel such that P(y, ·) � Q(y, ·) for all y. Let Q be the distribution of {Sn} on RN induced
by Q. We say that Q is a direct proposal for exact conditional sampling from P(· | τb < ∞)

if and only if
Q({Sn} ∈ B) ≥ P({Sn} ∈ B)

for all events B ∈ Fτb
such that B ⊆ {τb < ∞}, and the inequality is strict for some such B.

Here Fτb
is the usual σ -algebra associated to the stopping time τb.

We remark that the previous notion does not require Q(τb < ∞) = 1, although that is true
for the Blanchet–Glynn change of measure, as we will see in Proposition 3.2. We also remark
that, by the definition of the likelihood ratio, we have, for all B ⊆ {τb < ∞}, it holds that
P({Sn} ∈ B) = EQ[1B1{τb<∞} dP/ dQ(Sn : 0 ≤ n ≤ τb)]. Together with Definition 2.1, this
identity yields the following equivalent condition for a proposal measure being direct for exact
conditional sampling.

Corollary 2.1. The following statements are equivalent:

(i) Q is a direct proposal for exact conditional sampling from P(· | τb < ∞);

(ii) 1{τb<∞} dP/ dQ(Sn : 0 ≤ n ≤ τb) ≤ 1 holds Q-a.s.

An algorithmic equivalence and motivation. We now show yet another equivalent condition
for a measure to be a direct proposal for exact conditional sampling. Informally speaking, this
is an ‘algorithmic’ characterization, since it states the property of being a direct proposal as a
correctness property of a simulation algorithm. This algorithm has been a keystone of several
recent exact simulation works, see, e.g. [7], [10], [11], [12], and [18], since, in particular, it
samples a Bernoulli random variable with parameter P(τb < ∞), without the need to know the
actual value of P(τb < ∞). This algorithmic property initially motivated the research presented
in the current paper, and also motivates the terminology for calling a proposal direct for exact
conditional sampling.

Consider the following procedure: sample a path (S0, . . . , Sτb
) from Q; set I := 1 if

dP/ dQ(Sn : 0 ≤ n ≤ τb) ≤ 1, and I := 0 otherwise; output (I, (S0, . . . , Sτb
)). It holds that if

Q(τb < ∞) = 1 then parts (i) and (ii) of Corollary 2.1 are actually equivalent to the following
statement: I is distributed as a Bernoulli random variable with parameter P(τb < ∞) and if
I = 1 then the sample path (S0, . . . , Sτb

) follows the distribution P(· | τb < ∞). Indeed, this
is direct from (2.1) and (2.2) using C = 1, by Corollary 2.1(ii).

2.3. The Blanchet–Glynn change of measure

We now present the essential ideas of the Blanchet–Glynn change of measure [8]. This
measure proved efficient for estimating the probability P(τb < ∞) as b → ∞. In the current
paper we are interested in its use for the exact conditional sampling problem.

The main idea motivating the Blanchet–Glynn change of measure is to approximate the
transition kernel of the conditional distribution. Indeed, it is well known that the one-step
transition kernel of P(· | τb < ∞), say Qb,∞, satisfies

Qb,∞(y, dz) = P(y, dz)
Pz(τb < ∞)

Py(τb < ∞)
, (2.4)

where P is the original transition kernel of {Sn}; see [3, Section VI.7]. Here, the term
Py(τb < ∞) in the denominator of (2.4) can be interpreted as a normalizing term, since
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∫
P(y, dz)Pz(τb < ∞) = Py(τb < ∞) for all y. It is nevertheless impractical to simulate

from this kernel because usually the values of Pz(τb < ∞) for z < b are not readily known.
To be consistent with the notation of Blanchet and Glynn [8], we denote u∗(x) := Px(τ0 < ∞)

for all x ∈ R; in particular, the definition of Qb,∞ in (2.4) takes the form

Qb,∞(y, dz) = P(y, dz)
u∗(z − b)

u∗(y − b)
.

The idea put forth by Blanchet and Glynn is to approximate u∗ using the asymptotic
approximation given by the Pakes–Veraverbeke theorem; see [15, Chapter 5]. This result
states that

u∗(x) = Px(τ0 < ∞) ∼ 1

|EX|
∫ ∞

−x

P(X > s) ds as x → −∞ (2.5)

for random walks with negative drift and step sizes X which are (right) strongly subexponential.
Inspired by this fact, the Blanchet–Glynn change of measure uses the following transition kernel:

Qb,c(y, dz) := P(y, dz)
v(z − b − c)

w(y − b − c)
, (2.6)

where

v(x) := min

{
1,

1

|EX|
∫ ∞

−x

P(X > s) ds

}

and w(y −b − c) := ∫
P(y, dz)w(z − b − c) = ∫

P(y − b, dz)v(z−b − c) is a normalizing
term. The constant c ∈ R is a translation parameter, which in [8] and in our work, we will
see, is eventually chosen sufficiently large. Nonetheless, a heuristic but ultimately fallacious
argument for choosing large c is that if we could choose ‘c = ∞’then by the Pakes–Veraverbeke
asymptotic result (2.5), we would have ‘Qb,c = Qb,∞’, that is, the Blanchet–Glynn measure
Qb,c matches the conditional one-step transition kernel Qb,∞.

In proving our results for this transition kernel we heavily rely on the fact that the functions v

and w are closely related to the residual life tail distribution of X. That is, a random variable Z

with distribution given by

P(Z > t) := min

{
1,

1

|EX|
∫ ∞

t

P(X > s) ds

}
for all t . (2.7)

We thus have v(x) = P(Z > −x) and w(x) = P(X + Z > −x) for all x, and, in particular,
Qb,c(y, ·) = Qb,c(S1 − S0 ∈ · | S0 = y) = P(X ∈ · | X + Z > c + b − y), where X and Z

are independent. For further details, we refer the reader to [3, Section VI.7] and [8].

3. Main result: a threshold for being a direct proposal

In this section we present our main result on whether the Blanchet–Glynn [8] change of
measure is a direct proposal for exact conditional sampling of random walks with regularly
varying step sizes. Our main result is Theorem 3.1, in which we establish a dichotomy for the
tail index of the step-size distribution. We state two results from which our main result easily
follows. The first is a characterization for when the Blanchet–Glynn change of measure is a
direct proposal for exact conditional sampling, and the second explores this characterization in
the case of regularly varying step sizes. Finally, we study the time at which the barrier is hit
under the Blanchet–Glynn measure.
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Main result. We now describe the main result of this paper. We work under the following
assumptions on the distribution of the step sizes, in addition to the assumption of negative drift,
that is, EX < 0.

Assumption 3.1. We have the following assumptions.

(A1) The right tail P(X+ > ·) is regularly varying with tail index α > 1; that is, for all u > 0
we have P(X > ut) ∼ u−αP(X > t) as t → ∞.

(A2) The left tail P(X− > ·) decays fast enough so that there exists a function h(t) = o(t)

such that h(t) → ∞ and
∫ ∞
h(t)

P(X− > s) ds = o(t · P(X+ > t)) as t → ∞.

(A3) The step size distribution has a continuous density which is regularly varying with tail
index α + 1.

We note that the more natural condition P(X− > t) = o(P(X+ > t)) as t → ∞ does
not necessarily imply assumption (A2); although it does imply that

∫ ∞
h(t)

P(X− > s) ds =
o(h(t)P(X+ > h(t))) for all h such that h(t) → ∞. Nonetheless, assumption (A2) is not
overly restrictive. Indeed, a stronger condition is that there exists δ > 0 such that tδP(X− >

t) = O(P(X+ > t)) as t → ∞; the latter holds, for instance, when P(X− > ·) is light-tailed,
or when P(X− > ·) is regularly varying with tail index β satisfying β > α. We also note that
assumption (A3) can be replaced by the less restrictive assumption that the step-size distribution
be ultimately absolutely continuous with respect to Lebesgue measure, with continuous and
regularly varying density. More precisely, it can be replaced by the assumption that there exists
some t0 such that on [t0, ∞), the step-size distribution has a continuous density f (·) which is
regularly varying with tail index α + 1.

The main result of this paper follows.

Theorem 3.1. (Direct proposal with regularly varying right tails.) Let Qb,c be the distribution
of {Sn} induced by the transition kernel Qb,c defined in (2.6). Under assumptions (A1)–(A3)
the following hold.

(i) If α ∈ (1, 3/2) then there exists some sufficiently large c so that Qb,c is a direct proposal
for exact conditional sampling from P(· | τb < ∞) for all b ≥ 0.

(ii) If α ∈ (3/2, 2) then, for all c ∈ R and all b ≥ 0, it holds that Qb,c is not a direct proposal
for exact conditional sampling from P(· | τb < ∞).

It is noteworthy that the change of measure is direct for exact conditional sampling only for
step sizes with very heavy tails. Indeed, recall that the tail index α is an indicator of how heavy
a tail is; c.f. E[(X+)p] < ∞ for p ∈ (1, α) and E[(X+)p] = ∞ for p > α.

Proof elements. We show here the main elements of the proof of Theorem 3.1, and start by
investigating in Proposition 3.1 how the following statements are related. The proof is deferred
to Appendix A.

(S1c
b) The distribution Qb,c induced by the Blanchet–Glynn kernel (2.6) is direct for exact

conditional sampling from P(· | τb < ∞).

(S2) We have P(X + Z > t) ≤ P(Z > t) for all sufficiently large t , where Z has the residual
life distribution (2.7) and is independent of X.

Proposition 3.1. (i) If (S2) holds then there exists some sufficiently large c so that (S1c
b) holds

for all b ≥ 0.
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(ii) Suppose that P(|X| ≤ δ) > 0 for all δ > 0. If (S1c
b) holds for some b ≥ 0 and some c ∈ R

then (S2) also holds.

We remark that part (i) says that the same parameter c, chosen sufficiently large, works for
all barriers b ≥ 0; that is, b is independent of c in this case. We also remark that in the case
of (ii), applying (i), we find that (S1c

b) actually holds for all b ≥ 0, possibly after changing the
constant c.

It is shown in [8] that P(X + Z > t) − P(Z > t) = o(P(X > t)) as t → ∞ for the family
of strongly subexponential distributions, which includes regularly varying tails. Hence, the
previous proposition shows that for a measure to be direct for exact conditional sampling it is
not enough to know that the difference decays faster than P(X > t), we actually need the sign
of the difference as t → ∞.

The following result shows that, in the case of step sizes satisfying assumptions (A1) and
(A2), the sign of P(X + Z > t) − P(Z > t) when t → ∞ is fully determined by the tail index
α of the right tail distribution. The proof is given in Section 5.

Theorem 3.2. Suppose that assumptions (A1)–(A3) hold. Let Z be a random variable inde-
pendent of X with the residual life distribution (2.7). Then the following statements hold.

(i) If α ∈ (1, 3/2) then P(X + Z > t) ≤ P(Z > t) for all t > 0 sufficiently large.

(ii) If α ∈ (3/2, 2) then P(X + Z > t) ≥ P(Z > t) for all t > 0 sufficiently large.

With this, Theorem 3.1 is a corollary of Proposition 3.1 and Theorem 3.2.
Hitting time analysis. We now investigate the finiteness and mean value of the hitting time τb

under the Blanchet–Glynn change of measure Qb,c. The motivation is that τb gives a rough
estimate of the computational effort of sampling a barrier-crossing path using the measure Qb,c.

The following result explores the hitting time in the regularly varying right tails setting of
assumptions (A1) and (A2). Its proof is deferred to Appendix B.

Proposition 3.2. (Hitting time under Qb,c.) Let Q be the distribution of {Sn} induced by the
transition kernel Qb,c defined in (2.6). Consider the setting of assumptions (A1)–(A3). For any
sufficiently large c, the following hold for all b ≥ 0.

(i) If α > 1 then Qb,c(τb < ∞) = 1.

(ii) If α ∈ (1, 3/2) then EQb,c
τb = ∞ for all b ≥ 0.

(iii) If α > 2 then EQb,c
τb = O(b) as b → ∞.

We remark that Proposition 3.1(ii), although a negative result, is actually independent of the
Blanchet–Glynn measure Qb,c and holds essentially because we have EP[τb | τb < ∞] = ∞
when α ∈ (1, 2); see, e.g. [4, Theorem 1.1]. In other words, if α ∈ (1, 2) no algorithm
or change of measure—direct or not—sampling paths (S0, . . . , Sτb

) from P(· | τb < ∞) can
produce paths of finite expected length.

We also remark that Proposition 3.2(ii) is a counterexample for Proposition 4 of [8]. Indeed,
the latter result claims that we have EQb,c

τb = O(b) as b → ∞ when the step sizes satisfy
EP[Xp; X > 0] < ∞ for some p > 1. Proposition 3.2(ii) shows that the latter condition is
not enough in general. Alternatively, this issue with Proposition 4 of [8] can also be derived
from Corollary 1 of [9]. The latter result shows that if α ∈ (1, 3/2) no change of measure can
be at the same time strongly efficient for importance sampling and have linear expected hitting
time; in contrast, Proposition 4 of [8] states that, for any α > 1, the Blanchet–Glynn measure
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is both strongly efficient for importance sampling and has linear expected hitting time. Clearly
both results are contradictory.

4. Threshold 3/2: a comparison

In this section we compare the threshold result of Theorem 3.1 with previous simulation
works where, when using regularly varying step sizes, some form of efficiency of the method
has given rise to the same threshold 3/2 for the tail index. We argue that the threshold arises in
this existing literature for reasons unrelated to our work.

Review. Previous works in which the 3/2 threshold appears in the context of efficiency are
Blanchet and Liu [9] and Murthy et al. [19]. In both papers, the authors focus on solving
the probability estimation problem via importance sampling; that is, their aim is to estimate
the probability P(τb < ∞) for arbitrarily large barriers b, using Monte Carlo sampling from
another measure. Blanchet and Liu proposed a parameterized and state-dependent change of
measure, say QBL, which in the regularly varying case takes the form of a mixture between a
big- and a small-jump transition kernel. Murthy et al. [19] proposed a similar big- and small-
jump mixture kernel, say QMJB, however their change of measure is state-independent and
additionally conditions on the time interval at which the barrier-crossing event occurs.

Both Blanchet and Liu [9] and Murthy et al. [19] have two requirements on their proposed
measures:

(i) the linear scaling EQτb = O(b) as b → ∞ of the hitting time, and

(ii) strong efficiency of the estimation procedure.

In short, the latter means that, under the proposed change of measure Q, the coefficient of
variation of the random variable

dP

dQ
(Sn : 0 ≤ n ≤ τb)1{τb<∞} (4.1)

stays bounded as b → ∞; this is a second-moment condition on (4.1). The authors of both
papers arrive at the same threshold result: for regularly varying step sizes, the proposed change
of measure satisfies the previous two requirements for some combination of tuning parameters
if and only if the tail index α is greater than 3/2.

Comparison. Given that the same threshold appears, it is natural to ask if there is a connection
between our result in Corollary 3.1 and the results in prior works. We now argue why there is
no clear or direct connection between these results.

In [9] and [19], the threshold 3/2 is strictly related to the second-moment condition over the
likelihood ratio (4.1) that is imposed by the requirement of efficiency for importance sampling.
More precisely, in both these works if a moment condition is imposed on a different moment
than the second, then we have a different threshold for the admissible tail indexes. In contrast,
our result arises from imposing an almost sure condition on the Blanchet–Glynn change of
measure. Indeed, by Corollary 2.1, the condition of a proposal measure being direct for exact
conditional sampling is a Q-almost sure condition on the random variable (4.1). In contrast,
and as said before, efficiency for importance sampling is a second-moment condition on (4.1).

5. Proof of Theorem 3.2

In this section we prove Theorem 3.2, which is the main component of our main result of
Theorem 3.1. That is, we prove that the tail index α completely determines the sign of the
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difference
P(X + Z > t) − P(Z > t) (5.1)

when t is large enough. We work under assumptions (A1)–(A3), which state, roughly speaking,
that the step sizes have regularly varying right tails with tail index α, and lighter left tails.
In short, in Theorem 3.2 we establish that if α ∈ (1, 3/2) then the difference (5.1) is negative
for large t , and positive if α ∈ (3/2, 2).

The following is a roadmap for the main steps of the proof. First, in Lemma 5.1 we write the
difference (5.1) as a sum of several terms. Second, in Lemma 5.2 we carry out an asymptotic
analysis to determine which terms dominate when t → ∞. It follows that the sign of the
difference (5.1) when t → ∞ can be reduced to the sign of the sum of dominant terms when
t → ∞. Finally, the latter is analyzed in Lemma 5.3, which reveals the dichotomy for α in
(1, 3/2) or (3/2, 2).

Before embarking on the proof, some remarks on our notation are in order. Recall that we
say that the random variable Z has the residual life distribution of X if its distribution is given
by

P(Z > t) = min

{
1,

1

|EX|
∫ ∞

t

P(X > s) ds

}
for all t.

We write the left-most point of the support of Z as z0 := inf{t : P(Z > t) < 1}, which is finite
since EX is also finite. Additionally, we use the fact that the density of Z is P(X > t)/|EX|
for all t > z0 and that

∫ ∞
z0

P(X > s) ds = |EX|. We also use the notation F(t) := P(X ≤ t)

and F(t) := P(X > t) for all t . Finally, we recall that assumption (A1) establishes that the
right tail P(X > ·) is regularly varying with tail index α > 1.

We start with a general decomposition of the difference (5.1).

Lemma 5.1. Let X be a random variable with negative mean, and let Z be independent of X

with the residual life distribution of X. Consider any function h such that max{z0, 0} < h(t) <

t/2 for all t > max{2z0, 0}. Then the following holds for t > max{2z0, 0}:
P(X + Z > t) − P(Z > t) = p(t) − q(t) + ε1(t) − ε2(t),

where we define, for t > max{2z0, 0},

p(t) := 1

|EX|
∫ t−h(t)

h(t)

F (t − s)F (s) ds,

q(t) := F(t)

|EX|
∫ ∞

h(t)

[2F(s) − F(−s)] ds,

ε1(t) := 1

|EX|
[(∫ h(t)

0
+

∫ h(t)

z0

)
[F(t − s) − F(t)]F(s) ds

+
∫ 0

−h(t)

[F(t) − F(t − s)]F(s) ds

]
,

ε2(t) := 1

|EX|
∫ −h(t)

−∞
F(t − s)F (s) ds.

Proof. First note that

P(X + Z > t) − P(Z > t) = P(X + Z > t, Z ≤ t) − P(X + Z ≤ t, Z > t).
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For t satisfying max{z0, 0} < h(t) < t/2, we decompose the first term on the right-hand side
as follows:

P(X + Z > t, Z ≤ t) =
∫ t

z0

F(t − s)
1

|EX|F(s) ds

= 1

|EX|
[∫ h(t)

z0

F(t)F (s) ds +
∫ h(t)

z0

[F(t − s) − F(t)]F(s) ds

+
∫ t−h(t)

h(t)

F (t − s)F (s) ds +
∫ h(t)

0
F(t)F (s) ds

+
∫ h(t)

0
[F(t − s) − F(t)]F(s) ds

]
.

A similar decomposition follows for the second term:

P(X + Z ≤ t, Z > t) =
∫ ∞

t

F (t − s)
1

|EX|F(s) ds

= 1

|EX|
[∫ −h(t)

−∞
F(s)F (t − s) ds +

∫ 0

−h(t)

F (s)F (t) ds

+
∫ 0

−h(t)

F (s)[F(t − s) − F(t)] ds

]
.

Subtracting both terms, we obtain

|EX|[P(X + Z > t) − P(Z > t)]

=
∫ t−h(t)

h(t)

F (t − s)F (s) ds

− F(t)

[∫ 0

−h(t)

F (s) ds −
∫ h(t)

z0

F(s) ds −
∫ h(t)

0
F(s) ds

]

+
[(∫ h(t)

z0

+
∫ h(t)

0

)
[F(t − s) − F(t)]F(s) ds

−
∫ 0

−h(t)

[F(t − s) − F(t)]F(s) ds

]
−

∫ −h(t)

−∞
F(s)F (t − s) ds

= |EX|[p(t) − q(t) + ε1(t) − ε2(t)].
The last equality comes from using the definition of p, q, ε1, and ε2, and noting that |EX| =∫ ∞
z0

F(s) ds and EX < 0, so we have

∫ 0

−h(t)

F (s) ds −
∫ h(t)

z0

F(s) ds −
∫ h(t)

0
F(s) ds

= EX− − |EX| − EX+ + 2
∫ ∞

h(t)

F (s) ds −
∫ −h(t)

−∞
F(s) ds

=
∫ ∞

h(t)

[2F(s) − F(−s)] ds.

This concludes the proof. �
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The next step consists in determining which terms dominate when t → ∞; this is carried
out in the following result.

Lemma 5.2. Let X be a random variable with negative mean satisfying assumptions (A1)–(A3)
for some index of regular variation α ∈ (1, 2). Let Z be independent of X with the residual
life distribution of X. In the definition of p, q, ε1, and ε2, consider a function h satisfying
assumption (A2); in particular, h satisfies max{z0, 0} < h(t) < t/2 for all t > max{2z0, 0}, and
it holds that h(t) → ∞ and h(t) = o(t) as t → ∞. Then the following hold as t → ∞:

(i) p(t) − q(t) ∼ tF (t)2

|EX|
(

2
∫ 1/2

0
[(1 − u)−α − 1]u−α du − 2α

α − 1

)
,

(ii) ε1(t) = o(tF (t)2) and ε2(t) = o(tF (t)2).

We remark that Lemmas 5.1 and 5.2 together establish that if X satisfies assumptions (A1)–
(A3) and α ∈ (1, 2) then

P(X + Z > t) − P(Z > t) ∼ KαP(Z > t)P(X > t) as t → ∞, (5.2)

where

Kα := (α − 1)

∫ 1

0
((1 − u)−α − 1)(u−α − 1) du − (α + 1).

This comes from P(Z > t) ∼ tF (t)/((α−1)|EX|) by Karamata’s theorem [6, Theorem 1.6.1].
We note that, in contrast, Proposition 3 of [8] shows that P(X+Z > t)−P(Z > t) = o(P(X >

t)), so result (5.2) is much finer.

Proof of Lemma 5.2. (i) First rewrite |EX|(p(t) − q(t))/tF (t)2 as

2
∫ t/2

h(t)

F (t − s) − F(t)

F (t)

F (s)

tF (t)
ds − 2

∫ ∞
t/2 F(s) ds

tF (t)
+

∫ ∞
h(t)

F (−s) ds

tF (t)
.

The third term goes to 0 by assumption (A2), so we can ignore it for the proof of the statement.
For the second term, note that since α > 1, Karamata’s theorem [6, Theorem 1.6.1] yields

2
∫ ∞

t/2
F(s) ds ∼ tF (t/2)

α − 1
∼ 2α

α − 1
tF (t).

It remains to investigate the first term. To this end, we first rewrite the integral as∫ 1/2

h(t)/t

[
F(t (1 − u))

F (t)
− 1

]
F(tu)

F (t)
du; (5.3)

we need to show that as t → ∞ this integral converges to
∫ 1/2

0 [(1 − u)−α − 1]u−α du. To this
end, consider δ ∈ (0, 1

2 ) and note that, since h(t) = o(t), we can write (5.3), for all sufficiently
large t, as∫ δ

h(t)/t

[
F(t (1 − u))

F (t)
− 1

]
F(tu)

F (t)
du +

∫ 1/2

δ

[
F(t (1 − u))

F (t)
− 1

]
F(tu)

F (t)
du. (5.4)

We start by analyzing the second term in (5.4). Since F is regularly varying with tail index α,

by the uniform convergence theorem [6, Theorem 1.2.1], we obtain

sup
u∈[δ,1/2]

∣∣∣∣
[
F(t (1 − u))

F (t)
− 1

]
F(tu)

F (t)
− [(1 − u)−α − 1]u−α

∣∣∣∣ → 0 as t → ∞,
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so ∫ 1/2

δ

[
F(t (1 − u))

F (t)
− 1

]
F(tu)

F (t)
du →

∫ 1/2

δ

[(1 − u)−α − 1]u−α du as t → ∞. (5.5)

We next analyze the first term in (5.4). Using assumption (A3), we apply the mean value theorem
on the interval (0, u) to the function s �→ F(t (1 − s)) and establish that F(t (1 − u))/F (t)

− 1 = f (t (1 − ξ))tu/F (t) for some ξ = ξ(t, u) ∈ (0, u), where f is the density of X.
Additionally, for all sufficiently large t, it holds that f (t (1 − ξ))t/F (t) ≤ 2(1 + 2α+1)α for all
ξ ∈ (0, δ). Indeed, since f is regularly varying with tail index α+1 then by Karamata’s theorem
[6, Theorem 1.6.1], we obtain tf (t)/F (t) → α; additionally, by the uniform convergence
theorem [6, Theorem 1.2.1], we have, for any large enough t,

sup
ξ∈(0,δ)

∣∣∣∣f (t (1 − ξ))

f (t)
− 1

(1 − ξ)α+1

∣∣∣∣ ≤ 1,

so f (t (1 − ξ))/f (t) ≤ 1 + 1/(1 − ξ)α+1 ≤ 1 + 2α+1 for all sufficiently large t and for all
ξ ∈ (0, δ) ⊂ (0, 1

2 ). We conclude that F(t (1 − u))/F (t) − 1 ≤ 2(1 + 2α+1)αu for all large
enough t . We use this inequality to bound the term in the brackets of the first term of (5.4),
obtaining, for all sufficiently large t,

∫ δ

h(t)/t

[
F(t (1 − u))

F (t)
− 1

]
F(tu)

F (t)
du ≤ 2(1 + 2α+1)α

∫ δ

h(t)/t

tuF (tu)

tF (t)
du.

We now argue that
∫ δ

h(t)/t
(tuF (tu))/(tF (t)) du ≤ 2δ2−α/(2 − α) for all sufficiently large t .

Indeed, ∫ δ

h(t)/t

tuF (tu)

tF (t)
du =

(∫ δt

0
−

∫ h(t)

0

)
sF (s)

t2F(t)
ds,

so using the fact that tF (t) is regularly varying with tail index α − 1 ∈ (0, 1), we can apply
Karamata’s theorem [6, Theorem 1.6.1] and the fact that h(t) → ∞ to obtain

∫ δ

h(t)/t

tuF (tu)

tF (t)
du ∼ 1

2 − α

(
δ2 F(δt)

F (t)
−

(
h(t)

t

)2
F(h(t))

F (t)

)
∼ δ2−α

2 − α
as t → ∞.

Indeed, note that since h(t) = o(t) and s �→ s2F(s) is regularly varying with tail index α−2 ∈
(−1, 0) then (h(t)/t)2(F (h(t))/F (t)) → 0. All in all, we find that the first term of (5.4)
satisfies, for all large enough t ,

∫ δ

h(t)/t

[
F(t (1 − u))

F (t)
− 1

]
F(tu)

F (t)
du ≤ 4(1 + 2α+1)α

2 − α
δ2−α.

Finally, note that δ ∈ (0, 1
2 ) is arbitrary, so letting δ decrease to 0 in the latter inequality leads

to

lim
δ↘0

lim sup
t→∞

∫ δ

h(t)/t

[
F(t (1 − u))

F (t)
− 1

]
F(tu)

F (t)
du = 0. (5.6)

Similarly, letting δ decrease to 0 in (5.5), we obtain

lim
δ↘0

lim
t→∞

∫ 1/2

δ

[
F(t (1 − u))

F (t)
− 1

]
F(tu)

F (t)
du =

∫ 1/2

0
[(1 − u)−α − 1]u−α du. (5.7)

From (5.6), (5.7), and (5.4) (the decomposition of (5.3)), we obtain the desired result.

https://doi.org/10.1017/jpr.2017.60 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2017.60


1226 A. B. DIEKER AND G. R. LAGOS

(ii) First, we show that ε1(t) = o(tF (t)2). To this end, it is sufficient to prove
∫ h(t)

0 [F(t − s)−
F(t)]F(s) ds = o(tF (t)2). Indeed, if z0 < 0 it holds that

∫ h(t)

z0
[F(t − s) − F(t)]F(s) ds =

o(tF (t)2) as t → ∞, since∣∣∣∣
∫ 0

z0

[F(t − s)−F(t)]F(s) ds

∣∣∣∣ ≤
∫ |z0|

0
[F(t)−F(t + s)] ds ≤ |z0| sup

s∈[t,t+|z0|]
f (s) ∼ |z0|f (t)

by the uniform convergence theorem [15, Chapter 2] and because f is, in particular, long-tailed
by assumption (A3); and since α ∈ (1, 2) then f (t) = o(tF (t)2). It is sufficient then to prove
that the expression

∫ h(t)

0

F(t − s) − F(t)

F (t)

F (s)

tF (t)
ds =

∫ h(t)/t

0

[
F(t (1 − u))

F (t)
− 1

]
F(tu)

F (t)
du

goes to 0 as t → ∞. We proceed by using the same line of reasoning used to prove (5.6), which
is delineated in the following. First, apply the mean value theorem on the interval (0, u) to the
function s �→ F(t (1 − s)), and then use the uniform convergence theorem [6, Theorem 1.2.1]
to find that, for all sufficiently large t,

∫ h(t)/t

0

[
F(t (1 − u))

F (t)
− 1

]
F(tu)

F (t)
du ≤ 2(1 + 2α+1)α

∫ h(t)/t

0

tuF (tu)

tF (t)
du. (5.8)

Second, apply Karamata’s theorem [6, Theorem 1.6.1] to obtain
∫ h(t)/t

0

tuF (tu)

tF (t)
du =

∫ h(t)

0

sF (s)

t2F(t)
ds ∼ 1

2 − α

(
h(t)

t

)2
F(h(t))

F (t)
, (5.9)

since h(t) → ∞. Third, since the function s �→ s2F(s) is regularly varying with 2−α ∈ (0, 1)

and h(t) = o(t) then (h(t)/t)2F(h(t))/F (t) → 0 when t → ∞. The latter fact, together with
(5.8) and (5.9), allows us to conclude the desired result.

Finally, ε2(t) = o(tF (t)2) also holds because
∫ −h(t)

−∞
F(t − s)

F (t)

F (s)

tF (t)
ds =

∫ ∞

h(t)

F (t + s)

F (t)

F (−s)

tF (t)
ds ≤

∫ ∞

h(t)

F (−s)

tF (t)
ds,

with the last term going to 0 as t → ∞ by assumption (A2). �
From the previous result we see that when t → ∞, the sign of the difference P(X + Z >

t) − P(Z > t) reduces to the sign of the term p(t) − q(t). We now show that the latter is fully
determined by the tail index α being either in (1, 3/2) or in (3/2, 2).

Lemma 5.3. The quantity
∫ 1/2

0
[(1 − u)−α − 1]u−α du − 2α−1

α − 1
(5.10)

is negative for α ∈ (1, 3/2) and positive for α ∈ (3/2, 2).

Proof. First note that, for fixed u ∈ (0, 1
2 ), the function [(1 − u)−α − 1]u−α is strictly

increasing in α > 0, so
∫ 1/2

0 [(1 − u)−α − 1]u−α du is also strictly inceasing. Also, since
2β/β is strictly decreasing for β ∈ (0, 1) then −2α−1/(α − 1) is strictly increasing in α when
α ∈ (1, 2). Thus, (5.10) is strictly increasing in α for α ∈ (1, 2). Finally, it is easy to verify
that if α = 3/2 then (5.10) is equal to 0. �
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With the results of the previous lemmas, the proof of Theorem 3.2 is straightforward.

Proof of Theorem 3.2. Consider, in the definition of p, q, ε1, and ε2, a function h satisfying
assumption (A2); in particular, it satisfies max{z0, 0} < h(t) < t/2 for all t > max{2z0, 0},
h(t) → ∞, and h(t) = o(t) as t → ∞. By Lemma 5.1 and Lemma 5.2, we have, as t → ∞,

P(X + Z > t) − P(Z > t)

tF (t)2
= p(t) − q(t)

tF (t)2
+ o(1).

We conclude from Lemma 5.3 that as t → ∞, the right-hand side is negative for α ∈ (1, 3/2)

and positive for α ∈ (3/2, 2). �

Appendix A. Proof of Proposition 3.1

Proof of Proposition 3.1. (i) Assume that (S2) holds; that is, we have P(X + Z > t) ≤
P(Z > t) for all sufficiently large t . Then take sufficiently large c so that P(X + Z > c + t) ≤
P(Z > c + t) holds for all t ≥ 0. Thus, we have, by the definition of v and w,

w(y − b − c)

v(y − b − c)
≤ 1 for all y ≤ b. (A.1)

Then using the definition of Qb,c from (2.6), the following holds for S0 = 0 and all b ≥ 0:

1{τb<∞}
dP

dQb,c
(Sn : 0 ≤ n ≤ τb) = 1{τb<∞}

w(S0 − b − c)

v(Sτb
− b − c)

τb−1∏
n=1

w(Sn − b − c)

v(Sn − b − c)

≤ 1{τb<∞}
w(S0 − b − c)

v(Sτb
− b − c)

.

Conditional on τb < ∞, it follows that w(S0 − b − c) ≤ v(S0 − b − c) ≤ v(Sτb
− b − c) by

inequality (A.1) and the monotonicity of v. From this, we obtain 1{τb<∞} dP/ dQb,c(Sn : 0 ≤
n ≤ τb) ≤ 1. We conclude that statement (S1b,c) holds, by Corollary 2.1.

(ii) Assume that (S1b,c) holds for some b ≥ 0 and some c ∈ R; that is, Qb,c is a direct
proposal for conditional sampling from P(· | τb < ∞). We proceed by contradiction and
assume that (S2) does not hold, that is, for all t, we have that there exists a t0 > t such
that P(X + Z > t0) > P(Z > t0). Using the fact that w(y) = P(X + Z > −y) and
v(y) = P(Z > −y), it follows that the previous hypothesis implies, in particular, that, for all
y ≤ b, there exists y0 < y such that w(y0 − b − c)/v(y0 − b − c) > 1 holds.

With this, we will show that necessarily the following holds:

Qb,c

(
1{τb<∞}

w(S0 − b − c)

v(Sτb
− b − c)

τb−1∏
n=1

w(Sn − b − c)

v(Sn − b − c)
> 1

)
> 0, (A.2)

that is, Qb,c(1{τb<∞} dP/ dQb,c(Sn : 0 ≤ n ≤ τb) > 1) > 0. The latter is a contradiction with
hypothesis (S1b,c), by Corollary 2.1. Now, to prove (A.2) the main idea is to construct paths
(Sn : 0 ≤ n ≤ τb) under Qb,c that, before crossing the barrier b, spend a sufficiently large
amount of time in the set

Y
c,b
>1 :=

{
y ≤ b : w(y − b − c)

v(y − b − c)
> 1

}
.

For that we distinguish two cases: if S0 = 0 ∈ Y
c,b
>1 or not. We start with the former case.
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Case 1: if c and b ≥ 0 are such that S0 = 0 ∈ Y
c,b
>1 . In this case, it holds that, for all C > 0,

there exists N > 0 such that

P

(N−1∏
n=1

w(Sn − b − c)

v(Sn − b − c)
> C

)
> 0.

Indeed, this comes from the fact that P(|X| ≤ δ) > 0 for all δ > 0 and that the function
w(· − b − c)/v(· − b − c) is continuous; hence, the random walk can stay for an arbitrary
amount of steps in a small neighborhood of S0 = 0, a subset of Y

c,b
>1 . It follows that, for a

sufficiently large N > 0,

P

(
τb = N;

N−1∏
n=1

w(Sn − b − c)

v(Sn − b − c)
>

v(SN − b − c)

w(S0 − b − c)

)
> 0,

since X has unbounded right support and v(· − b − c) ≤ 1. Using then the absolute continuity
of P with respect to Qb,c over paths with finite number of steps, we obtain

Qb,c

(
τb = N;

N−1∏
n=1

w(Sn − b − c)

v(Sn − b − c)
>

v(SN − b − c)

w(S0 − b − c)

)
> 0. (A.3)

We conclude that (A.2) also holds, since the event in (A.3) is a subset of the event in (A.2). This
proves (A.2), which is a contradiction with hypothesis (S1b,c).

Case 2: if c and b ≥ 0 are such that S0 = 0 �∈ Y
c,b
>1 . The idea for this case is to reduce it

to the previous one, by constructing paths that, first, move to the set Y
c,b
>1 , and second, spend a

sufficiently large amount of time in Y
c,b
>1 . For that, first define τ>1 := inf{n ≥ 0 : Sn ∈ Y

c,b
>1 }.

Then take a compact set A ⊆ R and a large enough M > 0, so that they satisfy

P(τ>1 = M; Sn − b ∈ A for n = 0, . . . , M) > 0;
here, A is chosen to satisfy S0 − b ∈ int(A) and Y

c,b
>1 ∩ int(A) �= ∅. Note that, it holds that

sup{∏M
n=1v(yn −b − c)/w(yn −b − c) : y0, . . . , yM ∈ A+b} is finite, since A is compact and

v(· − c)/w(· − c) is continuous. With this, and using the same arguments of case 1, it follows
that there exists a large enough N > 0 such that

P

(
τb = N + M; v(S0 − b − c)

w(SN+M − b − c)

M+N−1∏
n=1

w(Sn − b − c)

v(Sn − b − c)
> 1

)
> 0. (A.4)

Indeed, it is sufficient to condition the probability on the left-hand side of (A.4) on the event
{τ>1 = M; S0, . . . , SM ∈ A + b} and use the strong Markov property. It follows that, by the
absolute continuity of P with respect to Qb,c over paths with finite number of steps,

Qb,c

(
τb = N + M; v(S0 − b − c)

w(SN+M − b − c)

M+N−1∏
n=1

w(Sn − b − c)

v(Sn − b − c)
> 1

)
> 0. (A.5)

Clearly, (A.2) holds, since the event of the latter inequality contains the event in (A.5). We have
arrived to a contradiction with hypothesis (S1b,c). �
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Appendix B. Proof of Proposition 3.2

Before showing the proof of Proposition 3.2, we establish the following lemma, which is a
direct corollary of [9, Lemma 2]. It will be used to prove part (iii) of the latter result.

Lemma B.1. Let Q be a measure over paths of {Sn}. Assume that we have, for any large
enough b > 0,

lim inf
y→−∞

{
EQ[S1 − S0 | S0 = y] −

∫ ∞

b−y

Q(S1 − S0 > u | S0 = y) du

}
> 0. (B.1)

Then EQτb = O(b) as b → ∞.

Proof. The proof consists in showing that if (B.1) holds then the function h(y) := (C +|b−
y|)1{y≤b} satisfies the hypothesis of [9, Lemma 2] for some C > 0. That is, E

Qb,c

y [h(S1)] −
h(y) < −ρ for all y ≤ b and for some ρ > 0. In order to achieve this, note that, for y < b,

EQ[h(S1) − h(y) | S0 = y]
= −EQ[S1 − S0 | S0 = y] +

∫ ∞

b−y

Q(S1 − S0 > u | S0 = y) du − CQ(S1 > b | S0 = y).

Therefore, lim supy→−∞ EQ[h(S1) − h(y) | S0 = y] < 0 is equivalent to (B.1). Then using

[9, Lemma 2], we conclude that EQτb ≤ h(0)/ρ = C/ρ + ρ−1b = O(b). �
Proof of Proposition 3.2. (i) We have to show that Qb,c(τb < ∞ | S0 = 0) = 1 holds for

all b ≥ 0. We will actually show that this holds for all c ∈ R.
For that, first consider any c ∈ R and note that, from [8, Lemma 1], we have

lim
y→−∞ EQb,c [S1 − S0 | S0 = y] > 0.

This result applies in our case because X is strongly subexponential, since X has regularly
varying right tails with tail index α > 1. Also, it can be checked that

EQb,c [S1 − S0 | S0 = y] = EP[X | X + Z > c + b − y] (B.2)

holds, since

Qb,c(S1 − S0 ∈ · | S0 = y) = P(X ∈ · | X + Z > c + b − y), (B.3)

where X and Z are independent and Z has the residual life distribution of X.
Thus, we have that there exist ε > 0 and y0 ∈ R such that for all y ≤ y0, and we have

EQb,c [S1 − S0 | S0 = y] > ε. It follows that Qb,c(τy0 < ∞ | S0 = y) = 1 holds for all
y ≤ y0. We distinguish two cases now: if b ≤ y0 and if y0 < b. In the former case, it is direct
that Qb,c(τb < ∞ | S0 = 0) ≥ Qb,c(τy0 < ∞ | S0 = 0) = 1 holds, since 0 ≤ b ≤ y0. In the
latter case, on the other hand, that is, if y0 < b, we can use a standard geometric trials argument
to obtain, for all y ≤ y0,

Qb,c(τb < ∞ | S0 = y) ≥ Qb,c(geom(γ ) < ∞) = 1.

Here, geom(γ ) is an independent geometric random variable with parameter

γ := inf
y∈[y0,b] Q

b,c(S1 − S0 > b − y0 | S0 = y),
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where γ > 0 owing to (B.3) and using the fact that the function y �→ P(X > c+b−y | X+Z >

c + b − y) is continuous and strictly positive. Indeed, it is continuous because both X and
Z have absolutely continuous distributions, the former by assumption (A3) and the latter by
definition (2.7). In both cases, b ≤ y0 and y0 < b, we have shown that Qb,c(τb < ∞ | S0 =
y) = 1.

(ii) We proceed by contradiction and assume that EQb,c [τb] < ∞. By [4, Theorem 1.1], for
α ∈ (1, 2), it holds that EP[τb | τb < ∞] = ∞. But since Qb,c is a direct proposal for exact
conditional sampling when α ∈ (1, 3/2), by Corollary 2.1(ii), we have

EQb,c [τb] = EQb,c

[∑
n≥0

n1{τb=n}
]

≥ EP

[∑
n≥0

n1{τb=n}
]

= EP[τb1{τb<∞}] = ∞,

which is a contradiction.

(iii) By Lemma B.1, it is sufficient to show that (B.1) holds. For that, note that by the definition
of the Blanchet–Glynn kernel in (2.6) and the fact that

v(y) = P(Z > −y)= 1

|EPX|E
P[[X + y]+] (B.4)

and

w(y) = P(X + Z > −y)= EP[v(y + X)], (B.5)

we have
Qb,c(S1 − S0 ∈ · | S0 = y) = P(X ∈ · | X + Z > −y + c),

where Z is independent of X and has the residual life distribution of X. With this, (B.2), and
(B.3), we obtain

EQb,c [S1 − S0 | S0 = y] −
∫ ∞

b−y

Qb,c(S1 − S0 > u | S0 = y) du

= EP[X | X + Z > c + b − y] −
∫ ∞

b−y

EP[1{X>u} | X + Z > c + b − y] du

= EP[X | X + Z > c + b − y] − EP[[X − b + y]+ | X + Z > c + b − y]. (B.6)

For the first term in the right-hand side of (B.6), we obtain

lim inf
y→−∞ EP[X | X + Z > c + b − y] ≥ (α − 1)|EPX|

by following the same arguments as in the proof of [8, Lemma 1] and using the fact that
tP(X > t) ∼ |EPX|(α − 1)P(Z > t) as t → ∞, which is direct from Karamata’s theorem;
see [6, Theorem 1.6.1]. For the second term in the right-hand side of (B.6), it follows that,
if b − y > z0 then by (B.4) and (B.5), we have

EP[[X − b + y]+ | X + Z > c + b − y]

= EP[[X − b + y]+1{X+Z>c+b−y}]
P(X + Z > c + b − y)

= v(y − b − c)

w(y − b − c)

∫ ∞
b−y

P(X > u, X + Z > c + b − y) du

P(Z > c + b − y)
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≤ v(y − b − c)

w(y − b − c)

∫ ∞
b−y

P(X > u) du

P(Z > c + b − y)

= v(y − b − c)

w(y − b − c)

P(Z > b − y)

P(Z > c + b − y)
|EPX|.

It follows that

lim sup
y→−∞

EP[[X − b + y]+ | X + Z > b − y + c]≤|EPX|,

since v(y − b − c)/w(y − b − c) → 1 as y → −∞ by [8, Proposition 3], and since Z is
long-tailed because it is regularly varying with tail index α − 1 > 0.

We have thus obtained

lim inf
y→−∞

{
EQb,c [S1 − S0 | S0 = y] −

∫ ∞

b−y

Qb,c(S1 − S0 > u | S0 = y) du

}
≥ (α − 2)|EPX|,

so applying Lemma B.1, we conclude that if α > 2 then EQb,c
τb = O(b) as b → ∞. �
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