
TPLP 22 (5): 739–754, 2022. c© The Author(s), 2022. Published by Cambridge University Press.

doi:10.1017/S1471068422000229 First published online 11 July 2022
739

A Neuro-Symbolic ASP Pipeline for Visual
Question Answering∗

THOMAS EITER, NELSON HIGUERA, JOHANNES OETSCH and
MICHAEL PRITZ

Institute of Logic and Computation,
Vienna University of Technology (TU Wien), Austria

(e-mails: eiter@kr.tuwien.ac.at, higuera@kr.tuwien.ac.at, oetsch@kr.tuwien.ac.at,

pritz@kr.tuwien.ac.at)

submitted 16 May 2022; accepted 8 June 2022

Abstract

We present a neuro-symbolic visual question answering (VQA) pipeline for CLEVR, which is a
well-known dataset that consists of pictures showing scenes with objects and questions related
to them. Our pipeline covers (i) training neural networks for object classification and bounding-
box prediction of the CLEVR scenes, (ii) statistical analysis on the distribution of prediction
values of the neural networks to determine a threshold for high-confidence predictions, and (iii)
a translation of CLEVR questions and network predictions that pass confidence thresholds into
logic programmes so that we can compute the answers using an answer-set programming solver.
By exploiting choice rules, we consider deterministic and non-deterministic scene encodings.
Our experiments show that the non-deterministic scene encoding achieves good results even if
the neural networks are trained rather poorly in comparison with the deterministic approach.
This is important for building robust VQA systems if network predictions are less-than perfect.
Furthermore, we show that restricting non-determinism to reasonable choices allows for more
efficient implementations in comparison with related neuro-symbolic approaches without losing
much accuracy.

KEYWORDS: answer-set programming, visual question answering, neuro-symbolic computation

1 Introduction

The goal in visual question answering (VQA) (Antol et al. 2015) is to find the answer

to a question using information from a scene. A system must understand the question,

extract the relevant information from the corresponding scene, and perform some kind

of reasoning. Neuro-symbolic approaches are useful in this regard as they combine deep

learning, which can be used for perception (e.g. object detection or natural language

processing), with symbolic reasoning (Xu et al. 2018; Manhaeve et al. 2018; Yi et al. 2018;

Yang et al. 2020; Basu et al. 2020; Mao et al. 2019). As the semantics of the employed

reasoning formalism is known, the way in which an answer is reached is transparent.

We present a neuro-symbolic VQA pipeline for the CLEVR dataset (Johnson et al.

2017) that combines deep neural networks for perception and answer-set programming

∗ This work was partially funded by the Bosch Center for Artificial Intelligence at Renningen, Germany.

https://doi.org/10.1017/S1471068422000229 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000229
https://orcid.org/0000-0001-6003-6345
https://orcid.org/0000-0003-3172-723X
https://orcid.org/0000-0002-9902-7662
https://orcid.org/0000-0003-2164-5759
mailto:eiter@kr.tuwien.ac.at
mailto:higuera@kr.tuwien.ac.at
mailto:oetsch@kr.tuwien.ac.at
mailto:pritz@kr.tuwien.ac.at
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068422000229&domain=pdf
https://doi.org/10.1017/S1471068422000229

740 T. Eiter et al.

(ASP) (Brewka et al. 2011) to implement the reasoning part. The system is publicly

available at

https://github.com/Macehil/nesy-asp-vqa-pipeline

ASP offers a simple yet expressive modelling language and efficient solver technology.

It is in particular attractive for this task as it allows to easily express non-determinism,

preferences, and defaults. The scene encoding in the ASP programme makes use of non-

deterministic choice rules for the objects predicted with high confidence by the network.

This means that we do not only consider the prediction with the highest score, but

also reasonable alternatives with lower ones. This allows our approach to make up for

mistakes made in object classification in the reasoning component as the constraints in

the programme exclude choices that do not lead to an answer.

For illustration, assume a scene with one red cylinder and the question “What shape is

the red object?”. Furthermore, assume that the neural network wrongly gives the cylinder

a higher score for being blue than red. The ASP constraints enforce that an answer is

derived. This entails that the right choice for the colour of the object must be red, and

the correct answer “cylinder” is produced in the end.

While non-determinism improves the robustness of the VQA system, the downside is

that, in case there are many object classes and the system is used with no restriction, it

can negatively impact the reasoning performance in terms of run time. The objective of

this paper is to introduce a new method for restricting non-determinism that is sensitive

to how well networks have been trained such that efficient reasoning is facilitated.

While several datasets have been published to examine the strengths and weaknesses

of VQA systems (Malinowski and Fritz 2014; Antol et al. 2015; Ren et al. 2015; Zhu

et al. 2016; Johnson et al. 2017; Sampat et al. 2021), CLEVR is an ideal test bed for the

purposes of this paper, since it is simple, well known, has detailed annotations describing

the kind of reasoning each question requires, and focuses on basic object detection.

We in fact omit natural language processing for the VQA tasks because this would

add a further variable and is not the focus of this work which is reasoning on top of object

detection. Instead, we use functional programmes which are structured representations

of the natural language questions already provided by CLEVR.

Our VQA pipeline for consists of the following stages:

(1) Training neural networks for object classification and bounding-box prediction of

the CLEVR scenes using the object detection framework YOLOv3 (Redmon and

Farhadi 2018).

(2) Statistical analysis on the distribution of prediction values of the neural networks

to determine a threshold for high-confidence predictions defined as a function of

mean and standard deviation of the distribution.

(3) Translating CLEVR questions and network predictions that pass confidence thresh-

olds into logic programmes so that we can compute the answers using an ASP

solver.

To determine what we regard as predictions of high confidence, we use statistical analysis

on the distribution of network prediction values and disregard predictions that are below

a threshold in Stage (2).

https://doi.org/10.1017/S1471068422000229 Published online by Cambridge University Press

https://github.com/Macehil/nesy-asp-vqa-pipeline
https://doi.org/10.1017/S1471068422000229

A Neuro-Symbolic ASP Pipeline for Visual Question Answering 741

Our non-deterministic scene encoding approach is inspired by the neuro-symbolic sys-

tems NeurASP (Yang et al. 2020) and DeepProbLog (Manhaeve et al. 2018). Deep-

ProbLog uses ProbLog, a probabilistic extension of Prolog, for reasoning. There, the

output of the neural network is passed to the logic programme using neural-annotated

disjunctions. NeurASP uses the same bridging idea, now called neural atoms, but uses

ASP instead of ProbLog. Similar to our approach, neural atoms are translated into choice

rules. NeurASP and DeepProbLog take multiple network predictions into account, in fact

they are designed to consider all network predictions which are treated as a probability

distribution. This can, as our experiments confirm, become a performance bottleneck if

there are many object classes. Both systems feature closed-loop reasoning, that is, the

outcome of the reasoning system can be back-propagated into the neural networks to fa-

cilitate better learning. Our pipeline is however uni-directional, as our goal is to explore

the interplay between non-determinism and confidence thresholds regarding efficiency

and robustness of the reasoning component. We leave the learning component for future

work as a scalable implementation is not trivial in our setting and thus outside the scope

of this paper.

We compare NeurASP and the reasoning component of DeepProbLog with our ap-

proach on the CLEVR data. Indeed, limiting non-determinism of neural network outputs

in ASP programmes to reasonable choices leads to a drastic performance improvement

in terms of run time with only little loss in accuracy and is thus important for efficient

reasoning. Furthermore, our experiments show that our system performs well even if the

neural networks are trained rather poorly and predictions by the network are less-than

perfect. This is important for robust reasoning as even well-trained networks can be

negatively affected by noise or if settings like illumination change.

The remainder of this paper is organised as follows. We first review ASP and CLEVR in

Section 2. Our VQA pipeline using ASP and confidence thresholds is detailed in Section 3.

Afterwards, we present an experimental evaluation of our approach in Section 4, discuss

further relevant related work in Section 5, and conclude in Section 6.

2 Background

We next provide preliminaries on ASP and background on the CLEVR dataset.

2.1 Answer-set programming

ASP is a declarative problem-solving paradigm, where a problem is encoded as a logic

programme such that its answer sets (which are special models) correspond to the solu-

tions of the problem and are computable using ASP solvers, for example, from potassco.

org or www.dlvsystem.com. We just briefly recall important ASP concepts; and refer for

more details to the literature (Brewka et al. 2011; Gebser et al. 2012).

An ASP programme is a finite set of rules r of the form

a1 | . . . | ak :− b1, . . . , bm, not c1, . . . , not cn, k,m, n ≥ 0, (1)

where all ai, bj , cl are first-order atoms and not is default negation; we denote by

H(r) = {a1, . . . , ak} and B(r) = B+(r) ∪ {not cj | cj ∈ B−(r)} the head and body

of r, respectively, where B+(r) = {b1, . . . , bm} and B−(r) = {c1, . . . , cn}. Intuitively, r

https://doi.org/10.1017/S1471068422000229 Published online by Cambridge University Press

potassco.org
potassco.org
www.dlvsystem.com
https://doi.org/10.1017/S1471068422000229

742 T. Eiter et al.

says that if all atoms in B+(r) are true and there is no evidence that some atom in B−(r)
is true, then some atom in H(r) must be true. If m = n = 0 and k = 1, then r is a fact

(with :− omitted); if k = 0, r is a constraint.

An interpretation I is a set of ground (i.e. variable-free) atoms. It satisfies a ground

rule r if H(r) ∩ I �= ∅ whenever B+(r) ⊆ I and I ∩B−(r) = ∅; I is a model of a ground

programme P if I satisfies each r ∈ P , and I is an answer-set of P if in addition no

J ⊂ I is a model of the Gelfond–Lifschitz reduct of P w.r.t. I (Gelfond and Lifschitz

1991).

Models and answer sets of a programme P with variables are defined in terms of the

grounding of P (replace each rule by its possible instances over the Herbrand universe).

We will also use choice rules and weak constraints, which are of the respective forms

i {a1; . . . ; an} j :− b1, . . . , bm, not c1, . . . , not cn, (2)

:∼ b1, . . . , bm, not c1, . . . , not cn. [w, t]. (3)

Informally, (2) says that when the body is satisfied, at least i and at most j atoms from

{a1, . . . , an} must be true in an answer set I, while (3) contributes tuple t with costs w,

which is an integer number, to a cost function, when the body is satisfied in I, rather

than to eliminate I; the answer set I is optimal, if the total cost of all such tuples is

minimal.

2.2 The CLEVR dataset

CLEVR (Johnson et al. 2017) is a dataset designed to test and diagnose the reasoning

capabilities of VQA systems.1 It consists of pictures showing scenes with objects and

questions related to them; there are about ten questions per image. The dataset was

created with the goal of minimising biases in the data, since some VQA systems are

suspected to exploit them to find answers instead of actually reasoning about the question

and scene information (Johnson et al. 2017).

Each CLEVR image depicts a scene with objects in it. The objects differ by the values

of their attributes, which are size (big, small), colour (brown, blue, cyan, grey, green,

purple, red, yellow), material (metal, rubber), and shape (cube, cylinder, sphere). Ev-

ery image comes with a ground truth scene graph describing the scene depicted in it.

Figure 1 contains three images from the CLEVR validation dataset with corresponding

questions.

In CLEVR, questions are constructed using functional programmes that represent the

questions in a structured format. These programmes are symbolic templates for a ques-

tion which are instantiated with the corresponding values. For each such question tem-

plate, there are one or more natural language sentences to which they are mapped. For

illustration, the question “How many large things are either cyan metallic cylinders or

yellow blocks?” from Figure 1 can be represented by the functional programme shown

in Figure 2. There, function scene() returns the set of objects of the scene, the filter *

functions restrict a set of objects to subsets with respective properties, union() yields

the union of two sets, and count() finally returns the number of elements of a set. A

1 https://cs.stanford.edu/people/jcjohns/clevr/.

https://doi.org/10.1017/S1471068422000229 Published online by Cambridge University Press

https://cs.stanford.edu/people/jcjohns/clevr/
https://doi.org/10.1017/S1471068422000229

A Neuro-Symbolic ASP Pipeline for Visual Question Answering 743

Fig. 1. Three scenes and question-answer pairs from the CLEVR validation set.

Fig. 2. CLEVR functional programme representing the question: “How many large things are
either cyan metallic cylinders or yellow blocks?”.

Fig. 3. Overview of our neuro-symbolic VQA pipeline.

detailed description of functional programmes in CLEVR can be found in the dataset

documentation (Johnson et al. 2017).

3 The VQA pipeline

The architecture of our neuro-symbolic VQA pipeline that builds on object detection and

ASP solving is depicted in Figure 3. A particular VQA task, which consists of a CLEVR

scene and question, is translated to an ASP programme given predictions from a neural

network for object detection, a functional programme, and a confidence threshold; by

running an ASP solver, the answer to the CLEVR task is then figured out.

https://doi.org/10.1017/S1471068422000229 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000229

744 T. Eiter et al.

Before going into details of our VQA pipeline, we recapitulate the necessary stages of

establishing it for the CLEVR dataset:

1. Object detection: we train neural networks for bounding-box prediction and

object classification of the CLEVR scenes;

2. Confidence thresholds: we determine a threshold for network predictions that

we consider to be of high confidence by statistical analysis on the distribution of

prediction values of the neural networks;

3. ASP encoding: we translate CLEVR functional programmes that represent ques-

tions as well as network predictions that pass confidence thresholds into ASP pro-

grammes and use an ASP solver to compute the answers.

While the VQA tasks are designed to always have a unique answer, the ASP solver may

give multiple results that correspond to alternative interpretations of the scene through

the object detection network.

3.1 Object detection

We use YOLOv3 (Redmon and Farhadi 2018) for bounding-box prediction and object

classification, adopting that the object detector’s output is a matrix whose rows cor-

respond to the bounding-box predictions in the input picture. Each bounding-box pre-

diction is a vector of the form (c1, . . . , cn, x1, y1, x2, y2), where the pairs (x1, y1) and

(x2, y2) give the top-left and bottom-right corner point of the bounding box, respec-

tively, and c1, . . . , cn are class confidence scores with ci ∈ [0, 1] for 1 ≤ i ≤ n; as

customary, higher confidence scores represent higher confidence of a correct prediction.

Each ci represents the score for a specific combination of object attributes size, colour,

material and shape and their respective values; we call this combination the object class

of position i. For any object class c, let c̄ be the list size, shape,material, colour of its

attribute values. For example, assume c is the object class “large red metallic cylin-

der”, then c̄ = large, cylinder,metallic, red. In total, there are n = 96 object classes in

CLEVR.

Every row of the prediction matrix has also its own bounding-box confidence score.

The number of bounding-box predictions of the object detection system depends on the

bounding-box threshold, which is a hyper-parameter used to filter out rows with a low

confidence score. For example, setting this threshold to 0.5 discards all predictions with

confidence score below 0.5.

3.2 Confidence thresholds

Given class confidence scores c1, . . . , cn from an object detection prediction, we would

like to focus on classifications that have reasonable high confidence and discard others

with low confidence for the subsequent reasoning process. Using a fixed threshold hardly

achieves this, since it does not take the distribution of confidence scores in the application

area (or validation data for experiments) into account. Our approach solves this problem

by fixing the threshold based on the mean and the standard deviation of prediction

scores.

https://doi.org/10.1017/S1471068422000229 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000229

A Neuro-Symbolic ASP Pipeline for Visual Question Answering 745

More formally, given a list of prediction matrices X1, . . . ,Xm, where any Xi is of

dimension N i × M , N i is the number of bounding-box predictions in the input image

i, each of which is described by M features. We compute the mean μ and standard

deviation σ for the maximum class confidence scores:

μ =
1∑m

k=1 N
k

m∑
k=1

Nk∑
i=1

max
1≤j≤n

(Xk
i,j), (4)

σ =

√√√√ 1∑m
k=1 N

k

m∑
k=1

Nk∑
i=1

(max
1≤j≤n

(Xk
i,j)− μ)2. (5)

We suggest computing these values on the validation dataset used in training the object

detector. Then, we define the confidence threshold θ that determines what is considered

a confident class prediction as follows:

θ = max (μ− α · σ, 0). (6)

We consider class predictions as sufficiently confident if their confidence score is not

lower than the mean minus α many standard deviations. The value for α in Eqn. (6) is

a parameter we call the confidence rate. It must be provided and should depend on how

well the network is trained: for a fixed α, the number of class predictions that pass the

threshold decreases if the network gets better trained as the standard deviation becomes

smaller. For a fixed network, the number of class predictions that pass the threshold

decreases if α decreases and increases otherwise.

3.3 ASP encoding

To solve VQA tasks, we rely on ASP to infer the right answer given the neural network

output and a confidence threshold. We outline the details in the following.

3.3.1 Question encoding

The first step of our approach is to translate the functional programme representing a

natural language question into an ASP fact representation. We illustrate this for the

question “How many large things are either cyan metallic cylinders or yellow blocks?” in

Section 2.2. The respective functional programme in Fig. 2 is encoded by the following

ASP facts:

end(8) .

count(8, 7) .

filter large(7 , 6) .

union(6, 3, 5) .

filter cylinder(3, 2) . filter cube(5, 4) .

filter cyan(2, 1) . filter yellow(4, 0) .

filter metal(1, 0) .

scene(0) .

The structure of the functional programme is encoded using indices that refer to output

(first arguments) and input (remaining arguments) of the respective basic functions.

https://doi.org/10.1017/S1471068422000229 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000229

746 T. Eiter et al.

3.3.2 Scene encoding

Let X be a prediction matrix and θ be a confidence threshold as described in Section 3.2.

Recall that the output of the basic CLEVR function scene() corresponds to the objects

detected in the scene which in turn correspond to the individual rows of X.

For a row Xi with confidence class scores c1, ..., cn, set Ci contains every object class

cj with score greater or equal than θ. If no such cj exists, then Ci contains the k classes

with highest class confidence scores, where k ∈ {1, . . . , 96}, is a fixed integer; intuitively,

k is a fall-back parameter to ensure that some classes are selected if all scores are low.

For every row Xi with bounding-box corners (x1, y1) and (x2, y2), as well as Ci =

{c1, . . . cl}, we construct a choice rule of form

{obj (O, i, c̄1, x1, y1, x2, y2); . . . ; obj (O, i, c̄l, x1, y1, x2, y2)} = 1 :− scene(O).

Every object with sufficiently high confidence score will thus be considered for com-

puting the final answer in a non-deterministic way. For every c ∈ Ci, we add the weak

constraint

:∼ obj (O, i, c̄, x1, y1, x2, y2) [wc, i],

where the weight wc is defined as min(−1000 · ln(s), 5000), and s is the class confi-

dence score for c in Xi. This approach, which comes from the NeurASP implementation,

achieves that object selections are penalised by a weight which corresponds to the ob-

ject’s class confidence score. Resulting answer sets can thus be ordered according to the

total confidence of the involved object predictions. We refer to this encoding as non-

deterministic scene encoding, but we also consider the special case of a deterministic

scene encoding where each Ci holds only the single object class with the highest confi-

dence score.

3.3.3 Encoding of the basic CLEVR functions

We next present encodings for the remaining CLEVR functions.

Filter rules: The CLEVR filter rules restrict sets of objects. We only present the rule for

filter color(yellow); the rules for the other colours, materials, and shapes are analogous:

obj (T, I, . . . , yellow, . . .) :− filter yellow(T, T1), obj (T1, I, . . . , yellow, . . .) .

The variables T and T1 are used to indicate output resp. input references; I represents

the object identifier. We omit arguments irrelevant for the particular filter functions.

Count rule: Function count() returns the number of elements of a given set. We encode

it as follows:

int(T, V) :− count(T, T1), #count{I : obj(T1, I, ...)} = V.

Here, #count is an ASP aggregate function that computes the numbers of object identi-

fiers referenced by variable T1.

Rules for set operations: The two set operation functions in CLEVR are intersection

and union. We present respective ASP rules for each of them:

https://doi.org/10.1017/S1471068422000229 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000229

A Neuro-Symbolic ASP Pipeline for Visual Question Answering 747

obj (T, I, . . .) :− and(T, T1, T2), obj (T1, I, . . .), obj (T2, I, . . .) .

obj (T, I, . . .) :− or(T, T1, T2), obj (T1, I, . . .) .

obj (T, I, . . .) :− or(T, T1, T2), obj (T2, I, . . .) .

Uniqueness constraint: The CLEVR function unique() is used to assert that there is

exactly one input object, which is then propagated to the output. We encode this in

ASP using a constraint to eliminate answer sets violating uniqueness and a rule for

propagation:

:− unique(T, T1), obj (T1, I, . . .), obj (T1, I
′, . . .), I �= I ′.

obj (T, . . .) :− unique(T, T1), obj (T1, . . .) .

Spatial-relation rules: Several CLEVR functions allow to determine objects in a certain

spatial relation with another object. We present the rule for identifying all objects that

are left relative to a given reference; the rules for right, front, and behind, are analogous:

obj (T, I, . . .) :− relate left(T, T1, T2), I �= I ′, X1 < X ′
1,

obj (T1, I, . . . , X1, . . .), obj (T2, I
′, . . . , X ′

1, . . .) .

Exist rule: The exist() rule in CLEVR returns true if the referenced set of objects is

not empty, and it returns false otherwise using default negation. Respective ASP rules

look as follows:

bool(T, true) :− exist(T, T1), obj (T1, . . .) .

bool(T, false) :− exist(T, T1), not bool(T, true) .

Query rules: Query functions allow to return an attribute value of a referenced object.

We present a rule to query for the size of an object; the rules for colour, material, and

shape look similar:

size(T,Size) :− query size(T, T1), obj (T1, . . . ,Size, . . .) .

Same-attribute-relation rules: Similar to the spatial-relation functions, same-attribute-

relation rules allow to select sets of objects if they agree on a specified attribute with a

specified reference object. We illustrate the ASP encoding for the size attribute, the ones

for colour, material and shape are defined with the necessary changes:

obj (T, I, . . .) :− same size(T, T1, T2), obj (T1, I, . . . ,Size, . . .),

obj (T2, I
′, . . . ,Size, . . .), I �= I ′ .

Integer-comparison rules: CLEVR supports the common relations for comparing inte-

gers like “equals”, “less-than”, and “greater-than”. We present the ASP encoding for

“equals”:

bool(T, true) :− equal integer(T, T1, T2), int(T1, V), int(T2, V) .

bool(T, false) :− equal integer(T, T1, T2), not bool(T, true) .

Attribute-comparison rules: To check whether two objects have the same attributes,

like size, colour, material, or shape, CLEVR provides attribute-comparisons rules. The

one for size can be represented in ASP as follows, the others are defined analogously:

https://doi.org/10.1017/S1471068422000229 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000229

748 T. Eiter et al.

bool(T, true) :− equal size(T, T1, T2), size(T1, V), size(T2, V) .

bool(T, false) :− equal size(T, T1, T2), not bool(V, true) .

In addition to the rules above, we also use rules to derive the ans/1 atom that extracts

the final answer for the encoded CLEVR question from the output of the basic function

at the root of the computation:

ans(V) :− end(T), size(T, V) . ans(V) :− end(T), shape(T, V) .

ans(V) :− end(T), color(T, V) . ans(V) :− end(T), bool(T, V) .

ans(V) :− end(T),material(T, V) . ans(V) :− end(T), int(T, V) .

:− not ans().

The last constraint enforces that at least one answer is derived.

Putting all together, to find an answer to a CLEVR question, we translate the cor-

responding functional programme into its fact representation and join it with the rules

from above. Each answer set then corresponds to a CLEVR answer founded in a partic-

ular choice for scene objects. For the deterministic, resp., non-deterministic encoding, at

most one, resp., multiple answer sets are possible; no answer set means imperfect object

recognition. In case of multiple answer sets, we use answer-set optimisation over the weak

constraints to determine the most plausible solution.

4 Experiments on the CLEVR dataset

Recall that the parameters of our approach are (i) the bounding-box threshold for object

detection, (ii) the confidence rate α for computing the confidence threshold as distance

from the mean in terms of standard deviations, and (iii) k as a fall-back parameter for

object-class selection. We experimentally evaluated our approach on the CLEVR dataset

to study the effects of different parameter settings. In particular, we study

• different bounding-box thresholds and training epochs for object detection,

• how the deterministic scene encoding compares to the non-deterministic one, and

• runtime performance of our approach in comparison with NeurASP and ProbLog.

For the non-deterministic scene encoding, we consider different settings for α and set

k = 1.

We restricted our experiments to a sample of 15000 CLEVR questions as the systems

NeurASP and ProbLog would exceed the memory limits on the unrestricted dataset.

All experiments were carried out on an Ubuntu (20.04.3 LTS) system with a 3.60GHz

Intel CPU, 16GiB of RAM, and an NVIDIA GeForce GTX 1080 GPU with 8GB of

memory installed.

4.1 Object-detection evaluation

For object detection, we used an open-source implementation of YOLOv3 (Redmon and

Farhadi 2018).2 The system was trained on 4000 CLEVR images with bounding-box

2 https://github.com/eriklindernoren/PyTorch-YOLOv3.

https://doi.org/10.1017/S1471068422000229 Published online by Cambridge University Press

https://github.com/eriklindernoren/PyTorch-YOLOv3
https://doi.org/10.1017/S1471068422000229

A Neuro-Symbolic ASP Pipeline for Visual Question Answering 749

Table 1. Precision and recall for object detection on CLEVR scenes

Epochs/Threshold 25/0.25 50/0.25 200/0.25 25/0.50 50/0.50 200/0.50

Recall 71.23% 96.39% 99.20% 44.41% 89.06% 98.03%
Precision 83.77% 98.27% 99.58% 97.17% 99.28% 99.82%

annotations, as suggested in related work (Yi et al. 2018). We used models trained for 25,

50, and 200 epochs, resp., to obtain different levels of training for the neural networks. For

the bounding-box thresholds, we considered two settings, namely 0.25 and 0.50. Table 1

summarises the results of the evaluation of how the networks of different training quality

perform for detecting the objects in the CLEVR scenes. We report on precision and recall,

which are defined as usual in terms of true positives (TP), false positives (FP), and false

negatives (FN). A TP (resp., FP) is a prediction that is correct (resp., incorrect) w.r.t.

the scene annotations in CLEVR. An FN is an object that exists according to the scene

annotations, but there is no corresponding prediction.

As expected, our results show that the total number of FP and FN decreases for the

better trained YOLOv3 models. Naturally, a low bounding-box threshold yields more FP

detections, while the number of FN decreases. Setting the bounding-box threshold to a

higher value usually leads to fewer FP but also more FN.

4.2 Question-answering evaluation

We used the ASP solver clingo (v. 5.5.1) to compute answer sets.3 Table 2 sheds light on

the impact of the training level and bounding-box thresholds of the models on question

answering for the deterministic and non-deterministic scene encodings. Our system yields

either correct, incorrect, or no answers to the CLEVR questions, and we report respective

rates. The non-deterministic scene encoding outperformed the deterministic approach

for all settings of training epochs and bounding-box thresholds, and the rate of correct

answers increases with larger α. The differences are considerable if the networks are

trained rather poorly and and become small or even disappear for well-trained ones. It

thus seems beneficial to consider more than one prediction of the object detection system

if network predictions are less than perfect. Also, lower bounding-box thresholds lead to

more correct results in all cases, especially for the deterministic encoding. Hence, being

too selective in the object detection is counterproductive.

4.3 Comparison with NeurASP and ProbLog

The related systems NeurASP and DeepProbLog also embody the idea of non-

determinism for object classifications, but they do not incorporate a mechanism to restrict

object classes to ones with high confidence like in our approach; this can drag down per-

formance considerably. We conducted different experiments to investigate the impact of

limiting the number of object classes as in our approach on runtimes and accuracy of the

questions answering task in comparison with the aforementioned related systems.

3 https://potassco.org/clingo/.

https://doi.org/10.1017/S1471068422000229 Published online by Cambridge University Press

https://potassco.org/clingo/
https://doi.org/10.1017/S1471068422000229

750 T. Eiter et al.

Table 2. Results for CLEVR question answering

Epochs/Threshold 25/0.25 50/0.25 200/0.25 25/0.50 50/0.50 200/0.50

Deterministic Scene Encoding
Correct 64.39% 92.93% 97.01% 42.33% 82.79% 95.05%
Wrong 17.60% 3.06% 1.11% 29.55% 8.65% 2.22%
No answer 18.01% 4.01% 1.88% 28.12% 8.56% 2.73%

Non-Deterministic Scene Encoding
α = 0.5 Correct 74.12% 93.13% 96.94% 72.36% 92.54% 96.71%

Wrong 12.29% 2.60% 1.01% 13.21% 2.98% 1.27%
No answer 13.59% 4.27% 2.05% 14.43% 4.48% 2.02%

α = 1.0 Correct 76.17% 93.13% 96.94% 74.29% 92.54% 96.71%
Wrong 12.53% 2.60% 1.01% 13.47% 2.98% 1.27%
No answer 11.30% 4.27% 2.05% 12.24% 4.48% 2.02%

α = 1.5 Correct 80.61% 93.13% 96.94% 78.83% 92.55% 96.71%
Wrong 13.02% 2.60% 1.01% 14.00% 2.98% 1.27%
No answer 6.37% 4.27% 2.05% 7.17% 4.47% 2.02%

α = 2.0 Correct 84.09% 93.17% 96.94% 82.65% 92.56% 96.71%
Wrong 13.52% 2.60% 1.01% 14.53% 2.98% 1.27%
No answer 2.39% 4.23% 2.05% 2.82% 4.46% 2.02%

The choice rules in NeurASP always contain the 96 CLEVR object classes, whose

scores come from the YOLOv3 network. In addition, we also used a setup for NeurASP

where only the highest prediction is considered while the probabilities of all other atoms

are set to 0. While the former setting is more similar to our approach, the latter is the

one used by Yang et al. (2020) in their object detection example. Table 3 summarises

the results on question answering accuracy, and Table 4 shows the total runtime for the

different systems under consideration on the 15,000 questions. NeurASP outperforms our

approach in terms of correct answers as it does not restrict the number of atoms for the

choice rules. However, this comes at a price as runtimes are much longer, which can be

explained by the inflation of the search space due to the unrestricted choice rules. Also,

the rate of incorrect answers is higher for NeurASP while our approach will more often

remain agnostic when in doubt. For the non-deterministic encoding of our approach, we

observe a similar jump in runtimes for α = 2.5 as more object classes are included in the

choice rules.

We could not use DeepProbLog for CLEVR directly as annotated disjunctions that

depend on a variable number of objects in a scene are not supported and would require

some extensions. Instead, we evaluated a translation to ProbLog, as DeepProblog’s in-

ference component is essentially the one of Problog (Manhaeve et al. 2018). Recall that

for NeurASP and DeepProbLog, neural network outputs are interpreted as probability

distributions. While NeurASP does not strictly require this and works also in our setting,

ProbLog is less lenient and network outputs need to be normalised so that the sum of

their scores does not exceed 1. This does however not change results as only the relative

https://doi.org/10.1017/S1471068422000229 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000229

A Neuro-Symbolic ASP Pipeline for Visual Question Answering 751

Table 3. Comparisons with NeurASP and ProbLog

Epochs/Threshold 25/0.25 50/0.25 200/0.25 25/0.50 50/0.50 200/0.50

NeurASP
Correct 86.09% 96.74% 98.53% 84.87% 96.17% 98.20%
Wrong 13.88% 3.21% 1.45% 15.09% 3.77% 1.77%
No answer 0.03% 0.05% 0.03% 0.04% 0.06% 0.03%

NeurASP (best prediction)
Correct 75.63% 95.78% 98.33% 53.12% 88.21% 96.87%
Wrong 23.51% 4.14% 1.63% 38.17% 11.30% 3.06%
No answer 0.87% 0.08% 0.03% 8.71% 0.49% 0.07%

ProbLog
Correct 83.84% 96.25% 98.33% 81.97% 95.27% 97.85%
Wrong 14.46% 2.66% 1.14% 15.45% 3.13% 1.34%
No answer 1.70% 1.09% 0.53% 2.57% 1.59% 0.81%

Table 4. Comparison of total VQA runtimes (in seconds)

Epochs/Threshold 25/0.25 50/0.25 200/0.25 25/0.50 50/0.50 200/0.50

NeurASP 9149 4375 4364 8750 4234 4694

NeurASP (best prediction) 3114 3628 3575 1245 3174 3577

ProbLog 6235 6894 6463 5311 5883 6138

Deterministic Scene Encoding 84 89 87 81 89 85

Non-Det. Scene Encoding with α = 0.5 112 123 130 109 124 131

α = 1.5 141 125 126 140 125 133

α = 2.0 154 126 130 165 125 135

α = 2.5 3656 127 128 3541 123 128

order of the object-class scores is relevant for determining the most plausible answer. For

the case of the unrestricted 96 object classes, computing results on our hardware was

infeasible. We thus considered only the three object classes with highest confidence scores

for every bounding-box prediction in our experiments. Results on runtimes and accuracy

are therefore lower bounds for the unrestricted case. The picture for ProbLog is quite

similar to that of NeurASP: While additional predictions help for question answering to

some extent, this is at the cost of a considerable increase in runtime.

Overall, the experiments further support our belief that non-determinism is useful for

neuro-symbolic VQA systems and suitable mechanisms to restrict it do reasonable choices

allows for more efficient implementations.

5 Further related work

Purely deep-learning-based approaches (Yang et al. 2016; Lu et al. 2016; Jabri et al. 2016)

led to significant advances in VQA. Some systems rely on attention mechanisms to focus

on certain features of the image and question to retrieve the answer (Yang et al. 2016;

https://doi.org/10.1017/S1471068422000229 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000229

752 T. Eiter et al.

Lu et al. 2016). Jabri et al. (2016)) achieved good results by framing a VQA task as a

classification problem. Some VQA systems are however suspected to not learn to reason

but to exploit dataset biases to find answers, as described by Johnson et al. (2017).

Besides these purely data driven attempts, there are also systems which incorporate

symbolic reasoning in combination with neural-based methods for VQA (Yi et al. 2018;

Basu et al. 2020; Mao et al. 2019). The system proposed by Yi et al. (2018) consists

of a scene parser, which retrieves object level scene information from images, a ques-

tion parser, which creates symbolic programmes from natural language questions, and

a programme executor that runs these programmes on the abstract scene representa-

tion. Our system is akin to this system, but we use ASP for scene representation as

well as question encoding, and our programme executor is an ASP solver. A similar

system architecture appears in the approach by Mao et al. (2019) with the difference

that scene and question parsing is jointly learned from image and question-answer pairs,

whereas the components of Yi et al.’s system are trained separately. This means that

annotated images are not necessary for training, which makes the system more versatile.

The approach of Basu et al. (2020) builds like ours on ASP. They use object-level scene

representations and parse natural language questions to obtain rules which represent the

question. The answer to a question is given by the answer set for the image-question

encoding which is combined with commonsense knowledge. However, their approach is

not amenable to non-determinism for the scene encoding in order to deal with competing

object classifications as we do.

Riley and Sridharan (2019) present an integrated approach for deep learning and ASP

for representing incomplete commonsense knowledge and non-monotonic reasoning that

also involves learning and programme induction. They apply their approach to VQA

tasks with explanatory questions and are able to achieve better accuracy on small data

sets than end-to-end architectures. As in our work, they use neural networks to extract

features of an image. We focus however more narrowly on the interface between the

neural network outputs and the logical rules and turn network outputs into choice rules

to further improve robustness, which has not been considered by Riley and Sridharan.

6 Conclusion

We have introduced a neuro-symbolic VQA pipeline for the CLEVR dataset based on a

translation from CLEVR questions in the form of functional programmes to ASP rules,

where we proposed a non-deterministic and a deterministic approach to encode object-

level scene information. Notably, non-determinism is restricted to network predictions

that pass a confidence threshold determined by statistical analysis. It takes the variance

of prediction quality into account and can be adjusted by the novel confidence rate

parameter α, which supports control of non-determinism, resp. disjunctive information.

Our experiments confirm that, on the one hand, non-determinism is important for

robustness of the reasoning component especially if the neural networks for object

classification are not well-trained or predictions are negatively affected by other causes.

On the other hand, unrestricted non-determinism as featured by related neuro-symbolic

systems can pose a performance bottleneck. Our method of using a confidence threshold

is a viable compromise between quality of question answering and efficiency of the rea-

soning component. The insight that it makes sense to deal with uncertainty at the level

https://doi.org/10.1017/S1471068422000229 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000229

A Neuro-Symbolic ASP Pipeline for Visual Question Answering 753

of the reasoning component is in fact not restricted to ASP and therefore also provides

directions to further improve related approaches.

While CLEVR is well-suited for the purposes of this work, the scenes are quite simple

and do not require advanced features of ASP like expressing common-sense knowledge.

For future work, we intend to apply our approach also to other datasets, especially ones

that do not use synthetic scenes and where object classification might be harder, resulting

in increased uncertainty. There, using additional domain knowledge and representing it

with ASP could come in handy. Furthermore, we plan to extend our pipeline to closed-

loop reasoning, that is, using the output of the ASP solver also in the learning process.

References

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C. L. and Parikh, D.

VQA: Visual question answering. In Proceedings of the 2015 IEEE International Conference
on Computer Vision (ICCV) 2015, pp. 2425–2433. IEEE.

Basu, K., Shakerin, F. and Gupta, G. AQuA: ASP-based visual question answering. In Pro-
ceedings of the 22nd International Symposium on Practical Aspects of Declarative Languages
(PADL 2020) 2020, vol. 12007. Lecture Notes in Computer Science. Springer, 57–72.

Brewka, G., Eiter, T. and Truszczyński, M. 2011. Answer set programming at a glance.
Communications of the ACM, 54, 12, 92–103.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2012. Answer Set Solving in
Practice, volume 6 of Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9, 3–4, 365–385.

Jabri, A., Joulin, A. and Van Der Maaten, L. Revisiting visual question answering base-
lines. In Proceedings of the 14th European Conference on Computer Vision (ECCV 2016)
2016, vol. 9912. Lecture Notes in Computer Science. Springer, 727–739.

Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C. L. and Gir-

shick, R. B. CLEVR: A diagnostic dataset for compositional language and elementary visual
reasoning. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) 2017. IEEE, 1988–1997.

Lu, J., Yang, J., Batra, D. and Parikh, D. Hierarchical question-image co-attention for
visual question answering. In Advances in Neural Information Processing Systems (NIPS
2016) 2016, vol. 29. Curran Associates, Inc., 289–297.

Malinowski, M. and Fritz, M. A multi-world approach to question answering about real-
world scenes based on uncertain input. In Advances in Neural Information Processing Systems
(NIPS 2014) 2014, vol. 27. Curran Associates, Inc., 1682–1690.

Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T. and Raedt, L. D. DeepProbLog:
Neural probabilistic logic programming. In Advances in Neural Information Processing Sys-
tems (NeurIPS 2018) 2018, vol. 31, 3753–3763.

Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B. and Wu, J. The neuro-symbolic concept
learner: Interpreting scenes, words, and sentences from natural supervision. In Proceedings of
the 7th International Conference on Learning Representations (ICLR 2019) 2019.

Redmon, J. and Farhadi, A. 2018. YOLOv3: An incremental improvement. arXiv preprint
arXiv:1804.02767, abs/1804.02767.

Ren, M., Kiros, R. and Zemel, R. Exploring models and data for image question answering.
In Advances in Neural Information Processing Systems (NIPS 2015) 2015, vol. 28. Curran
Associates, Inc., 2953–2961.

https://doi.org/10.1017/S1471068422000229 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000229

754 T. Eiter et al.

Riley, H. and Sridharan, M. 2019. Integrating non-monotonic logical reasoning and inductive
learning with deep learning for explainable visual question answering. Frontiers in Robotics
and AI, 6:125.

Sampat, S. K., Kumar, A., Yang, Y. and Baral, C. CLEVR HYP: A challenge dataset and
baselines for visual question answering with hypothetical actions over images. In Proceedings
of the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT 2021) 2021. Association for Com-
putational Linguistics, 3692–3709.

Xu, J., Zhang, Z., Friedman, T., Liang, Y. and Van den Broeck, G. A semantic loss
function for deep learning with symbolic knowledge. In Proceedings of the 35th International
Conference on Machine Learning (ICML 2018) 2018, vol. 80. Proceedings of Machine Learn-
ing Research. PMLR, 5502–5511.

Yang, Z., He, X., Gao, J., Deng, L. and Smola, A. Stacked attention networks for image
question answering. In Proceedings of the 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) 2016, 21–29.

Yang, Z., Ishay, A. and Lee, J. NeurASP: Embracing neural networks into answer set pro-
gramming. In Proceedings of the 29th International Joint Conference on Artificial Intelligence
(IJCAI 2020) 2020. International Joint Conferences on Artificial Intelligence Organization,
1755–1762.

Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P. and Tenenbaum, J. Neural-symbolic
VQA: Disentangling reasoning from vision and language understanding. In Advances in Neu-
ral Information Processing Systems (NeurIPS 2018) 2018, vol. 39. Curran Associates, Inc.,
1039–1050.

Zhu, Y., Groth, O., Bernstein, M. and Fei-Fei, L. Visual7w: Grounded question answering
in images. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) 2016, 4995–5004.

https://doi.org/10.1017/S1471068422000229 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000229

	Introduction
	Background
	Answer-set programming
	The CLEVR dataset

	The VQA pipeline
	Object detection
	Confidence thresholds
	ASP encoding

	Experiments on the CLEVR dataset
	Object-detection evaluation
	Question-answering evaluation
	Comparison with NeurASP and ProbLog

	Further related work
	Conclusion
	References

