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Radio frequency (RF) waves are routinely used in tokamak fusion plasmas for
plasma heating, current control, as well as in diagnostics. These waves are excited
by antenna structures placed near the tokamak’s wall and they have to propagate
through a turbulent layer known as the scrape-off layer, before reaching the core
plasma (which is their target). This layer exhibits coherent density fluctuations in the
form of filaments and blobs. The scattering processes of RF plane waves by a single
filament is studied with the assumption that the filament has a cylindrical shape and
infinite length. Furthermore, besides the major toroidal component of the externally
imposed magnetic field, there is also a small poloidal magnetic field component.
Considering also that the cylindrical filament’s axis is not necessarily aligned with
the toroidal direction, the total magnetic field is in general neither aligned with the
axis of the cylinder nor with the toroidal direction. The investigation concerns the
case of electron cyclotron (EC) waves (of frequency f0 = 170 GHz) for tokamak
applications. The study covers a variety of density contrasts between the filament and
the ambient plasma, different magnetic field inclinations with respect to the cylinder
axis (for the same magnitude of magnetic induction B = 4.5T) and a wide range of
filament radii.
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1. Introduction
An external antenna structure at the edge of a tokamak fusion device excites radio

frequency (RF) waves for heating and/or current drive. These waves propagate through
a turbulent scrape-off layer before they reach their intended target, in the plasma core.
The scrape-off layer is populated by filaments and blobs (see Krasheninnikov 2001;
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Grulke 2006; Myra et al. 2006; Myra, Russell & D’Ippolito 2006; Zweben 2007;
Pigarov 2012), where the plasma electron density differs from that in the background
environment. As a result, the plasma permittivity of these structures is different from
the background plasma’s permittivity. For this reason, the characteristic properties of
the incident radio frequency waves can change during their transition through the
scrape-off layer, so that the RF waves can be modified by these turbulent structures.

The study of the effects that the propagation through a different dielectric medium
(such as a filament) has on the incident wave’s properties could be based on the
geometric optics approximation (see Hizanidis 2010). However, there is a limitation
to the geometric optic’s applicability: the electrons density of the filament must be
close to the ambient electrons density, so that the absolute value of the relative density
contrast between the filament and the ambient electron density is very small (see Ram
2013, 2016), which is not the case: a typical experimental range of values is from 5 to
100 %. Thus, there is a physics reason to derive a more general approach with validity
in a much larger domain.

In this article, Maxwell’s equations are used to derive a full-wave analytical
model for the scattering process of RF waves by cylindrical density filaments. The
case of spherical density fluctuations has already been studied (see Ram 2013).
Moreover, elongated cylindrical density filaments have also been studied (see Ram
2016) but the axis of the cylinder was assumed to be aligned with the total magnetic
field. At this point, it should be noted that the total magnetic field in a tokamak
plasma is the result of the toroidal magnetic field component (which is externally
imposed) and the poloidal magnetic field component (which is generated by the
plasma current). The amplitude ratio, of the poloidal magnetic field component to
the toroidal magnetic field component, is known as the tangent of the magnetic field
pitch angle (see Prisiazhniuk 2017). This angle is not necessarily small, as there
are recorded experimental values of up to 40◦ (e.g. as referred to in Taylor 2005,
for the National Spherical Torus Experiment – NSTX). The combination of toroidal
and poloidal magnetic field components creates finally, in general, a helical total
magnetic field line structure and the magnetic field lines do not lie on a flux surface
but are open field lines. In the presence of this total magnetic field, the cylindrical
filaments created in the plasma are transported radially (towards the plasma edge, see
Krasheninnikov 2001; Grulke 2006), without having any physics reason for being
continually rotated in the way that would be needed to keep their orientation parallel
to the helical total magnetic field line. Furthermore, there is experimental evidence
(e.g. see Grulke 2014, referring to the fusion device Alcator C-Mod) proving that
the filaments are nearly, but not perfectly, aligned with the total magnetic field; thus,
there is a need to study the scattering effects in the general case, when the cylinder
axis is not parallel to the total magnetic field.

The study described here is a generalization of a previous work (Ram 2016): the
major magnetic field component is assumed to be along the axis of the cylindrical
filament, but in this article the presence of a magnetic field component with a different
orientation is also considered on the scattering of RF waves, so that the physics of
the scattering phenomenon changes. When there is only the major component of
the magnetic field, the component of the wave vector along the magnetic field k‖
is preserved; i.e. waves inside the filament and the scattered waves have the same
k‖ as the incident plane wave. In the presence of another magnetic field component
with general orientation this is no longer true, while only the component of the
wave vector along the cylinder axis kz is preserved. The scattered wave can have a
spectrum of k‖ which depends on the angle of inclination between the axis of the
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filament and the direction of the total magnetic field. In effect, the scattering process
broadens the k‖ spectrum of the waves transmitted towards the core plasma. This,
in turn, can affect the power deposition profile of the RF waves in the core of the
plasma.

So, by having no limitation for the total magnetic field to be aligned with the axis
of the cylinder, it is considered to be at an angle φ0 with respect to the axis. It must
be noted that for the purposes of this study, the toroidal plasma is assumed to have
a large aspect ratio, approximated by an infinitely extended slab, where the filaments
exist and the magnetic field is homogeneous. In addition, the axis of the cylindrical
filament is assumed to have infinite length, so that the edge effects can be ignored.
The background ambient plasma as well as the filament are assumed cold and uniform
with the respective permittivities being those of a cold plasma. First, in addition to
refraction, also reflection, diffraction and shadowing are incorporated. Moreover, the
fluctuations can couple power to other plasma waves (e.g. an ordinary mode wave can
activate an extraordinary mode one and vice versa). In addition, the scattered waves
propagate in all radial directions of the cylindrical filament and not only forward to
the core, so that there exists redirection of the incident power.

Another simplification made in this study is that the fluctuations in the scrape-off
layer are static: in fact, the fluctuations are moving. According to experimental
results, the speed of the toroidal propagation of the fluctuations around the tokamak
is approximately 5 × 103 m s−1, approximately five orders of magnitude below the
RF wave propagation speed, which is nearly the well-known speed of light in a
vacuum. That renders our simplification a valid assumption.

Concerning the structure of this paper, in order not to overwhelm readers with
the algebra – which the authors consider necessary and relevant to the complete
formulation – the following paragraphs outline the purpose of each section.

Section 2 starts with a geometrical aspect: two coordinate systems are defined. The
first coordinate system is with respect to the ambient magnetic field in which the
background plasma and the filament are embedded. The second coordinate system
is defined with respect to the axis of the filament. In a previous paper (Ram 2016)
the two coordinate systems were the same. The incident wave is best described in
the first coordinate system. The wave fields inside the cylindrical filament, and the
scattered fields are best described in the second coordinate system. For an overall
compatible description, the transformation between the two coordinate systems is set-
up in this section. Also, the incident wave is expressed in terms of the exponential
dyadic involving the complete set of the vector cylinder functions.

Next, in § 3 Maxwell’s equations are used to derive the appropriate fourth-order
cold plasma dispersion relation, which is set-up in both coordinate systems. The two
natural modes that satisfy the dispersion relation are categorized within and outside
the filament. Section 4 sets up the polarization of each of the two natural modes.

Given the form of the incident and scattered fields that exist in the background
plasma, and the confined fields inside the filament, a self-consistent solution is
obtained by satisfying the boundary conditions at the surface of the filament. It is
assumed that there are no free charges and currents on the surface. Then the requisite
boundary conditions follow from Faraday’s and Ampere’s equations. These are set-up
in § 5. An important consequence of the boundary conditions is that, for all waves,
the parallel to the magnetic field component of the wave vector (k‖) is not the same
if the axis of the filament is not aligned with the direction of the magnetic field. This
leads to the generalization of previous formulations of scattering theory (Ram 2016).

Section 6 sets up the form of the electric and magnetic fields and the Poynting flux
in the forward (to the plasma core) direction, that form the basis of our computations.
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FIGURE 1. Magnetic field and cylinder coordinate systems.

The numerical results are given in § 7 and cover a variety of different cases: magnetic
field inclination with respect to the filament axis varies while the magnitude of the
magnetic induction is kept the same B= 4.5T , different filament radii are simulated,
the relative density contrast between the filament and the ambient electrons density
varies also and the polarization mode of the incident wave can be an O-mode or X-
mode. In § 8, the main conclusions of this study are presented.

2. Main assumptions and the geometry

The total magnetic field lines are considered to be parallel to the (z–x)-plane with z
being the axis of the cylindrical filament and φ0 being the angle of the total magnetic
field lines (axis z′) with respect to z (see figure 1). In the cylinder (i.e. filament)
reference system, let ϕk be the azimuthal angle of a respective plane wave component.

The cylinder has radius a and it’s length, L, is assumed to be much larger than a
(a/L� 1). Thus, we assume that it has infinite length in order to exclude edge effects.
Note that for the case of a finite RF beam incident at the midlength of a long filament,
this approximation is adequate. The electron density inside the cylinder, as well as the
electrons density outside, is considered as homogeneous and the plasma is assumed
to be cold. There is no limitation for the ratio of these two different densities.

Let Ry(φ0) be the rotation matrix (see appendix A.1) which transforms from the
Cartesian filament reference system to the magnetic field (axis z′) primed reference
system. The magnetic field is assumed as homogeneous throughout this work. On the
other hand, let Rc(ϕk) be defined as the rotation matrix (see appendix A.2) which
transforms from the cylindrical reference system where a plane wave vector is defined,
to the Cartesian filament reference system.

The wave vector of an individual plane wave (either incident or scattered, etc.) is
denoted as k and the position vector in the filament reference system is denoted as r.
By normalizing these two vectors to the dimensionless ones n≡ kc/ω and ρ ≡ rω/c
with c being the speed of light in vacuum and ω= 2πf being the angular frequency

https://doi.org/10.1017/S0022377818001083 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818001083


Scattering of RF waves in the plasma edge 5

(while f is the frequency). The dot product of n · ρ (which is the normalized k · r)
can be calculated in cylindrical coordinates as:

n · ρ =
(
χ ψ ζ

)nx
ny
nz

 , (2.1)

where χ , ψ and ζ are the normalized coordinates x, y and z of the position vector
on the cylindrical reference system, respectively. According to (A 8a,b)

n · ρ =
(
ρ cos ϕ ρ sin ϕ ζ

)
Rc(ϕk)

nρ
0
nz

= nρρ cos(ϕ − ϕk)+ nzζ , (2.2)

where ϕ and ϕk are the azimuthal angles between the x-axis and ρ and n, respectively.
From now on, the subscript index ‘0’ is used when referring to the incident wave
(single plane wave), for which one may write:

n0 · ρ = n0ρρ cos(ϕ − ϕ0k)+ n0zζ . (2.3)

The respective incident RF wave, propagating in the background plasma and
impinging on the cylindrical filament, is therefore:

EI(ρ)=E0(n0, ω) exp(in0 · ρ). (2.4)

The normalized to its amplitude (E0) incident electric field intensity is:

EI(ρ)

E0
=

E0(n0, ω)

E0
exp(in0 · ρ)= eP

0 exp{i[n0ρρ cos(ϕ − ϕ0 + n0zζ )]}, (2.5)

with

eP
0 ≡

E0(n0, ω)

E0
(2.6)

being the electric field polarization vector of the incident wave. Similarly, one may
define the respective polarization for a plane wave mode ‘k’ as:

eP
k ≡

Ek(nk, ω)

E0
. (2.7)

In terms of the exponential dyadic involving the vector cylinder functions mn, nn and
ln (see appendix B) in the cylinder frame of reference (convenient), one has

eP
k exp(ink · ρ) = eP

k ·

n=∞∑
n=−∞

[
aknmn(nkρρ, nkzζ , ϕ)+ bknnn(nkρρ, nkzζ , ϕ)

+ cknln(nkρρ, nkzζ , ϕ)
]
, (2.8)

where the vectorial coefficients an, bn and cn in the dyadic of the exponential can be
calculated on the basis of the completeness property of the vector cylindrical functions
and the index ‘k’ is general (when ‘0’, it refers to the incident field). Thus, in the
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Cartesian coordinate system of the cylinder (the respective component is indicated by
a superscript):x̂

ŷ
ẑ

 eiρ·nk =

n=∞∑
n=−∞

ax
kn

ay
kn

az
kn

mn +

bx
kn

by
kn

bz
kn

 nn +

cx
kn

cy
kn

cz
kn

 ln

 , (2.9)

where after calculations, the coefficients are:ax
kn

ay
kn

az
kn

=
−sin ϕk

cos ϕk

0

 in+1e−inϕk

nkρ
(2.10)

bx
kn

by
kn

bz
kn

=−in nkz

nknkρ
e−inϕk


cos ϕk

sin ϕk

−
nkρ

nkz

 (2.11)

cx
kn

cy
kn

cz
kn

=−in+1 e−inϕk

n2
k

nkρ cos ϕk

nkρ sin ϕk

nkz

 . (2.12)

3. Propagation of RF waves in plasma and the dispersion relation
3.1. The electric field in general

For a cold plasma, the Faraday equation combined with the Ampere equation in the
Fourier domain renders (see Ioannidis 2017):

ε0∇×∇×E(ρ)−
(ω

c

)2
D(ρ)= 0. (3.1)

Note that Maxwell’s equations are expressed in cylindrical coordinates with respect
to the flux tube, in order to maximally exploit the cylindrical geometry. It is
assumed that the plasma equilibrium is time independent and the linearized perturbed
electromagnetic fields have a time dependence of the form e−iωt, with t being the
time. In normalized wave vector representation:

E(ρ)=
∫∫∫

E(n) exp(in · ρ) d3n. (3.2)

The combination of equations (3.1) and (3.2) leads to:

D(ρ)= ε0

∫∫∫
K ·E(n) exp(in · ρ) d3n, (3.3)

where K is the permittivity tensor (see Stix 1992). By substituting the (3.2) and (3.3)
into (3.1), it is:

D(n) ·E= 0, (3.4)

with D(n) = K + (nn − In2) being the dispersion tensor. For non-trivial solutions of
the electric field intensity, the determinant of the dispersion tensor must be zero. The
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latter requirement, the dispersion relation in other words, selects the sub-manifold in
the Fourier space, where non-trivial electric field Fourier components exist. That is:

det[D(n)] = 0 (3.5)

or, in a cylindrical frame of reference for the wave vector with a z-axis aligned with
the cylinder’s z-axis:

det[D(nkρ, nkz, ϕk)] = 0, (3.6)

which will lead to a fourth-order equation with respect to nkρ .

3.2. The dispersion relation derivation
In the magnetic field Cartesian frame of reference the permittivity tensor has the form
(see Stix 1992):

K cart
mag =

K⊥ −iK× 0
iK× K⊥ 0

0 0 K‖

 . (3.7)

With the help of the transformation formulas in appendix A, the permittivity tensor
can be expressed in the cylinder frame of reference, in Cartesian coordinates (see
(A 1)):

K cart
fila = R−1

y (φ0)K
cart
magRy(φ0), (3.8)

which renders:

K cart
fila =

 K⊥c2
0 +K‖s2

0 −iK×c0 c0s0(K‖ −K⊥)
iK×c0 K⊥ −iK×s0

c0s0(K‖ −K⊥) iK×s0 K⊥s2
0 +K‖c2

0

 , (3.9)

where
c0 ≡ cos φ0, s0 ≡ sin φ0. (3.10a,b)

It has to be emphasized that the angle φ0 is the angle between the axis of the
cylindrical filament and the magnetic field line and must not be confused with
the azimuthal angles in the cylindrical coordinate systems, which in general are
symbolized as ϕ. The dispersion tensor can be calculated from the permittivity tensor,
in the same Cartesian frame of reference, by using the following:

Dcart
fila = K cart

fila + (nn− In2)cart
fila . (3.11)

Now, in cylindrical coordinates in the filament’s frame of reference (see (A 6)):

Dcyl
fila = R−1

c (ϕk)D
cart
fila Rc(ϕk)

= R−1
c (ϕk)K

cart
fila Rc(ϕk)+ ncyl

fila(n
cyl
fila)

T
− In2. (3.12)

Note now that the index in the azimuthal angle refers to a particular wave vector in
a k-space coordinate system with the kz component along the axis of the filament
and the azimuthal angle of the projection of k on the (x − y) plane with respect to
the x-axis of the Cartesian filament-based system. In the following, without loss of
generality, the azimuthal component of the k-field is set to zero by definition: the
frame of reference can be chosen so that the azimuthal angle of the wave vector of
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FIGURE 2. Symmetry-based pairs (O and X).

the incident wave is zero and then, the scattered wave will be derived by the following
mathematical analysis. By executing the multiplications, the elements of the dispersion
tensor (Dcyl

fila)jl with j= 1, 2, 3 and l= 1, 2, 3 in cylindrical coordinates in the filament’s
frame of reference can be computed as functions of K⊥, K‖, K×, sk, ck, s0, c0, nρ, nϕ
and nz (see appendix C), where:

ck ≡ cos ϕk, sk ≡ sin ϕk. (3.13a,b)

Thus, the dispersion relation (3.6) written down previously in the filament cylindrical
frame of reference can be simplified as follows:

det(Dcyl
fila)= 0. (3.14)

In the general case of (3.14), we observe that, for a fixed n0z (which is preserved
for an infinite cylinder along the z-axis), (3.14) possesses four distinct roots nkρ for a
particular choice of the angle ϕk, labelled n(L)ρ with L= 1, 2, 3, 4. However, because of
the presence of the cosine of the azimuthal angle in the odd-order coefficients, these
roots, viewed as functions of the azimuthal angle ϕk, are symmetric with respect to
the midpoint ϕk =π and anti-symmetric with respect to ϕk =π/2 and ϕk = 3π/2.

In figure 2, (N11, N14), (N12, N13), (N21, N24), (N22, N23) are the symmetric pairs
(N =O, X), while (N11,N22), (N21,N12) are anti-symmetric pairs with respect to π/2
and (N23,N14), (N13,N24) are the respective ones with respect to 3π/2.

Thus, from one root function of ϕk, one may construct a second one by applying the
aforementioned symmetries. We may name this pair of solutions as ‘symmetry-based
pair’. Since there exist four roots, there must exist two symmetry-based pairs. It is
much more convenient to relabel the two pairs according to which one contains a
member which coincides with the radial index of the incident wave (in the cylinder
reference system). That is, one pair for the ambient environment will be labelled
as the O-pair (X-pair) if it contains the n0ρ of an incident O-mode (X-mode). The
respective pair for the filament parameters will retain the same characterization in
order to ensure that they coincide in the limit of zero contrast (between inside
and outside). The remaining pair automatically will be labelled as X-pair (O-pair).
Therefore, one may introduce the indices O1,O2,X1,X2, where now O1,O2 and X1,X2
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are the two symmetry-based pairs. The symmetries are as follows with M=O,X and
i= 1, 2:

nMi
kρ (ϕk = 0→π)=−nM3−i

kρ (ϕk =π→ 0) (3.15)

and
nMi

kρ (ϕk = 0→π)=−nMi
kρ (ϕk = 2π→π) (3.16)

or, equivalently:

nMi
kρ (ϕk)= nMi

kρ (2π− ϕk)=−nM3−i
kρ (π− ϕk)=−nM3−i

kρ (π+ ϕk). (3.17)

Of course, for ϕk = π, 3π/2 the members of each pair are opposite (in the general
sense, which means that the one is equal to the negative of the other). In the following,
only one member of each pair will enter into play: in the case of real roots only, the
positive (O and X) ones. In the case of imaginary roots, only, the ones with positive
imaginary part. And finally, for the case of complex roots (there will be two complex
conjugate pairs for real nz), the ones with positive imaginary part. These two roots
are going to be used in the polarizations below.

4. Wave polarizations
The time-independent electric field E in (3.2) can be written as

E(n, ω)= E0(Ekρ r̂k + Ekϕϕ̂k + Ekzẑk), (4.1)

with the hat signifying unit vector components in the wave vector reference system
(k-space), (Ekρ, Ekϕ, Ekz) being defined as

(Ekρ, Ekϕ, Ekz)≡
1√

|ekρ|
2 + |ekϕ|

2 + |ekz|
2
(ekρ, ekϕ, ekz) (4.2)

and also (ekρ, ekϕ, ekz) are the components of the (normalized to the amplitude of the
incident electric field) polarization vector eP

k , which was introduced in (2.7), also in
the wave vector reference system.

A propagating incident wave, depending on the conditions of the ambient medium,
is considered to be either an O- or an X-mode (in the following the labelling ‘O’ and
‘X’ refer to the incident field). Note that the vectorial expression for the O-mode type
of polarization is

eP
O ≡

EOz

E0
(rP

Oρ r̂k + rP
Oϕϕ̂k + rP

Ozẑ)≡ eP
Ozr

P
O, (4.3)

with eP
Oz≡EOz/E0 and rP

O≡ rP
Oρ r̂k + rP

Oϕϕ̂k + rP
Ozẑ and respectively, for the X-mode type

polarization,

eP
X ≡

EXρ

E0
(rP

Xρ r̂k + rP
Xϕϕ̂k + rP

Xzẑ)≡ eP
XρrP

X, (4.4)

with eP
Xρ ≡ EXρ/E0 and rP

X ≡ rP
Xρ r̂k + rP

Xϕϕ̂k + rP
Xzẑ. It is useful to renormalize the

polarization in such a way that leads in both cases to unitary complex vector of
polarization, that is,

eP
O ≡ eP

Oz

√
rP

O · (rP
O)
∗(ÊP

Oρ r̂k + ÊP
Oϕϕ̂k + ÊP

Ozẑ)≡ eP
Oz

√
rP

O · (rP
O)
∗Ê

P

O ≡ cP
OÊ

P

O(n0) (4.5)
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and

eP
X ≡ eP

Xρ

√
rP

X · (rP
X)
∗(ÊP

Xρ r̂k + ÊP
Xϕϕ̂k + ÊP

Xzẑ)≡ eP
Xρ

√
rP

X · (rP
X)
∗Ê

P

X ≡ cP
XÊ

P

X(n0), (4.6)

where, by definition now:

Ê
P

M · (Ê
P

M)
∗
= 1, M =O, X (4.7)

and the corresponding normalized vectorial electric field intensities eP
O and eP

X are
proportional to the respective unitary complex polarization vectors via the arbitrary
coefficients cP

M (the polarization amplitudes), which are functions of the azimuthal
angle and common n0z. Because of azimuthal symmetries described previously and
the requirement of azimuthal continuity (azimuthal invariance under a rotation by
π) they are related within pairs of modes (independently O or X). They are also
periodic functions of the azimuthal angle. For this reason, they can be written as a
superposition of azimuthal modes, which form a complete basis that is:

cP
Ms
(ϕk, nkz)=

n=∞∑
n=−∞

εMs
n (nkz)einϕk , (4.8)

where Ms= (O,FI), (O, SC), (X,FI), (X, SC) and εMs
n (nkz) are going to be determined.

Note that FI is referring to the interior of the filament and SC to the exterior.
For the incident field cP

k = 1 for either O- or X-mode. From the expressions (2.10)–
(2.12), (4.5) and (4.6), the dot products eP

k · am, eP
k · bm and eP

k · cm (with k=O,X) can
be calculated:

eP
k · am = cP

k ÊP
kϕk

im+1 exp(−imϕk)

nkρ
(4.9)

eP
k · bm = cP

k (Ê
P
kznkρ − ÊP

kρnkz)
im exp(−imϕk)

nknkρ
(4.10)

eP
k · cm =−cP

k (Ê
P
kρnkρ + ÊP

kznkz)
im+1 exp(−imϕk)

n2
k

. (4.11)

Note that for the incident wave cP
k = 1 and k is replaced by ‘k0’. Also, in all of the

following, the definition (4.12) holds:

n2
≡ n2

ρ + n2
0z. (4.12)

From (3.14) one can derive rP
Oρ , rP

Oϕ , rP
Oz, rP

Xρ , rP
Xϕ and rP

Xz as functions of n, nρ , n0z,
s, c, s0, c0, K‖, K⊥ and K× (see appendix D).

5. Boundary conditions and coefficient computation
On the cylinder surface, the Maxwell boundary conditions hold:

r̂× (eSC + e0 − eFI)= 0, r̂× (hSC + h0 − hFI)= 0, (5.1a,b)

where SC and FI stand for the exterior and the interior of the filament, respectively.
One can easily express the exterior products involved in the boundary conditions
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solely in terms of the vector functions and the tangential dyadics of unit vectors: ẑr̂
and ϕ̂ẑ:

r̂×mm = i(ẑr̂) · nm
nk

nkz
(5.2)

r̂× nm = i(ẑr̂) ·mm
nkz

nk
− (ϕ̂ẑ) · nm (5.3)

r̂× lm = (ẑr̂) ·mm − i(ϕ̂ẑ) · nm
nknkz

n2
kρ
. (5.4)

The vector functions are calculated at a (the normalized radius of the cylinder) and the
tangential components of the electric field are matched. The respective Bessel function
in the vector cylinder function expression for the incident field, are of Jm-type since
the incident field is launched at ρ →∞. The argument is anM

kρ . By truncating the
summation over n and writing down the conditions for the azimuthal modes, that is
for each m with m = −nmax to m = nmax, we obtain the following linear system to
be solved:

n=nmax∑
n=−nmax

(
aO,FI

j,mn ε
O,FI
n + aX,FI

j,mn ε
X,FI
n − aO,SC

j,mn ε
O,SC
n − aX,SC

j,mn ε
X,SC
n

)
= a0

j,m, j= 1, 2, 3, 4, (5.5)

with aO/X,FI/SC
j,mn and a0

j,m known (see appendix E).

6. Computation of electric field, magnetic field and Poynting vector
at arbitrary z

6.1. Synthesizing the fields at arbitrary z
As mentioned before, the cylinder is assumed to have infinite length in the direction
of z. So, the z-component has no effect in the computations of this study and the z
dependence can be integrated out. By expressing the electric field and the magnetic
field in terms of the vector cylinder functions (see appendix F) and by introducing
the respective expressions for the vector cylinder functions, one obtains for the
z-independent vector fields (denoted by a tilde over the vector functions) on the
x–y plane:

ẽ(ρ, ϕ)(FI,SC) =
∑

M=O,X

m=∞∑
m=−∞

imeimϕ
[
EM

mρ(ρ)r̂+ EM
mϕ(ρ)ϕ̂ + EM

mz(ρ)ẑ
]
(FI,SC)

, (6.1)

where EM
mρ(ρ)

EM
mϕ(ρ)

EM
mz(ρ)


(FI,SC)

=

∑
n

εM,(FI,SC)
n

∫ 2π

0

dϕk

2π
ei(n−m)ϕk

×


−iZ ′Mm ÊM

kρ −
mZM

m

nM
kρρ

Êkϕk

mZM
m

nM
kρρ

ÊM
kρ − iZ ′Mm ÊM

kϕk

ZM
m ÊM

kz


(FI,SC)

(6.2)
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and

h̃(ρ, ϕ)(FI,SC) =
E0

H0

√
ε0

µ0

∑
M=O,X

m=∞∑
m=−∞

imeimϕ

×
[
HM

mρ(ρ)r̂+HM
mϕ(ρ)ϕ̂ +HM

mz(ρ)ẑ
]
(FI,SC)

(6.3)

with HM
mρ(ρ)

HM
mϕ(ρ)

HM
mz(ρ)


(FI,SC)

=

∑
n

εM,(FI,SC)
n

∫ 2π

0

dϕk

2π
ei(n−m)ϕk

×


iZ ′Mm n0zÊM

kϕk
+

mZM
m

nM
kρρ

(nM
kρÊM

kz − n0zÊM
kρ)

iZ ′Mm (n
M
kρÊM

kz − n0zÊM
kρ)−

mZM
m

nM
kρρ

n0zÊM
kϕk

ZM
m nM

kρÊkϕk


(FI,SC)

. (6.4)

In these expressions Zm (Z′m) stands for the Hankel function of the first kind (its
derivative) (see Abramowitz 1972), with argument anM

kρ . Respectively for the incident
field:

ẽ0(ρ, ϕ)=

m=∞∑
m=−∞

imeimϕ
[
E0

mρ(ρ)r̂+ E0
mϕ(ρ)ϕ̂ + E0

mz(ρ)ẑ
]
, (6.5)

where

E0
mρ(ρ)

E0
mϕ(ρ)

E0
mz(ρ)

= e−imϕ0


−iJ

′0
mÊ0ρ −

mJ0
m

n0ρρ
Ê0ϕ0

mJ0
m

n0ρρ
Ê0ρ − iJ

′0
mÊ0ϕ0

J0
mÊ0z

 (6.6)

and

h̃0(ρ, ϕ)=
E0

H0

√
ε0

µ0

m=∞∑
m=−∞

imeimϕ
[
H0

mρ(ρ)r̂+H0
mϕ(ρ)ϕ̂ +H0

mz(ρ)ẑ
]
, (6.7)

with

H0
mρ(ρ)

H0
mϕ(ρ)

H0
mz(ρ)

= e−imϕ0


iJ
′0
mn0zÊ0ϕ0 +

mJ0
m

n0ρρ
(n0ρÊ0z − n0zÊ0ρ)

iJ
′0
m(n0ρÊ0z − n0zÊ0ρ)−

mJ0
m

n0ρρ
n0zÊ0ϕ0

J0
mn0ρÊ0ϕ0

 , (6.8)

where the superscript ‘0’ in the Bessel function refers to the mode type of the incident
plane wave (O or X).
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6.2. Calculating the time-independent Poynting vector and the Fourier spectrum
Now that all the electric and magnetic field components for every mode and
all regions (incident fields, scattered fields and filament fields) are derived, the
normalized and time-independent Poynting vector can be easily calculated by using
the well-known formula (see Griffiths 1999):

s̃= 1
2 Re {ẽ× h̃

∗

}. (6.9)

Equation (6.9) is used to compute all Poynting vector components for all waves and
regions. In § 7, it is used to plot the numerical results.

Let us define the functions

fAM(ρ, ϕ)≡ |Re {s̃AM}|, f0(ρ, ϕ)≡ |Re {s̃0}|, (6.10a,b)

where ‘AM’ and ‘0’ respectively refer to the region outside the filament and the
incident wave. One can Fourier transform (denoted as F ) with respect to normalized
ρ in the domain from ρ equal to the cylinder radius to an adequate value of ρ which
determines the maximum radial distance (note that ϕ is referring to the azimuthal
angle around the cylinder):

f̂AM(nρ, ϕ)≡F{ fAM(ρ, ϕ)}, f̂0(nρ, ϕ)≡F{ f0(ρ, ϕ)}, (6.11a,b)

where nρ is the normalized Fourier mode number. In § 7, the quantity log10{| f̂AM

(nρ, ϕ)|/max | f̂0(nρ, ϕ)|} versus the dimensionless nx and ny components of the wave
vector is plotted.

7. Numerical results
By using the above formulas, one can achieve results for a variety of different

scattering processes. In some cases, it is necessary to change the value of only one
parameter, while the others are kept the same, in order to easily understand the effect
of each one of them on the scattering. It must be emphasized that the main purpose
of this work is to present the method and its application. Thus, an exhaustive study of
cases is beyond its focus and constitutes a subject for future work. Therefore, without
sacrificing generality, for comprehensive presentation purposes, the magnitude of the
externally imposed magnetic induction is B = 4.5T , the ambient electron density is
1019 m−3, the frequency is 170 GHz and the propagation vector of the incident plane
wave is perpendicular to the magnetic field.

7.1. The way the filament radius affects RF scattering
Starting with the filament radius, one way to study the effect of the magnitude of the
cylinder radius on the scattering process, is by plotting figures of the time-independent
Poynting vector as in (6.9), especially of the component which points to the forward
direction. Figure 3 is referring to an incident wave of O-mode polarization and
presents the x- (a) and y- (b) components of the Poynting vector, for a filament with
radius equal to 2 mm, ambient density 1019 m−3, filament density 2.0× 1019 m−3 and
magnetic field inclination zero. It must be noted that the figure 3 filament radius is
of approximately the same size as the wavelength of the incident wave, since for the
frequency of 170 GHz and the given ambient density, the wavelength is approximately
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(a) (b)

FIGURE 3. Poynting vector x- (a) and y- (b) components, frequency 170 GHz, incident
wave polarization O-mode, filament radius 2 mm, ambient density 1019 m−3 and filament
density 2.0 × 1019 m−3, magnetic field inclination 0◦, magnitude of magnetic induction
B= 4.5T .

1.8 mm. The frequency of the RF wave has a major role in the scattering effects,
which are different, when the wavelength is bigger, smaller or approximately the
same size compared to the fluctuation. Figure 4 shows the x-component (a) and
y-component (b) of the Poynting vector for a bigger filament with radius equal to
10 mm, also at the same (EC) frequency of 170 GHz. The z-components of the
Poynting vector are not presented, while they are zero (for an incident wave of
O-mode polarization, there is by definition no z-component of the Poynting vector;
since the filament has no inclination with respect to the total magnetic field, kz is
preserved and thus, the scattered wave has no z-component, too).

In figure 5, one can see the Fourier spectrum (the left-hand side is the case with
2 mm radius and the right-hand side is the case with 10 mm radius). It is a polar
diagram of the normalized spectral amplitude as a function of the horizontal and
vertical projections of the Fourier mode number, normalized to the incident index of
refraction. The peak (dot) in the centre of the diagram (point (0, 0)), corresponds to
the spectrum of the incident wave. Without the scattering process which happens due
to the filament, the Fourier spectrum has only one peak (dot) in the centre of the
diagram (point (0, 0)). Because of the filament, the spectral amplitude is distributed
as a cardioid due to the presence of the filament. Note that the maximum of the
spectral density is in the forward direction. However, there is significant scattering at
the filament’s sides.

7.2. The way the filament density contrast affects RF scattering
Another interesting parameter for study is the density contrast between the cylindrical
filament and the background environment. As mentioned in the Introduction (§ 1), the
electron density of the filament can be very different compared to the ambient electron
density, so that the absolute value of the relative density contrast between the filament
and the ambient electron density can practically vary in a wide range of values: a
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(a) (b)

FIGURE 4. Poynting vector x- (a) and y- (b) components, frequency 170 GHz, incident
wave polarization O-mode, filament radius 10 mm, ambient density 1019 m−3 and filament
density 2.0 × 1019 m−3, magnetic field inclination 0◦, magnitude of magnetic induction
B= 4.5T .

(a) (b)

FIGURE 5. Fourier spectrum: polar diagram of the horizontal and vertical projections
of the Fourier mode number, normalized to the incident index of refraction. Frequency
170 GHz, incident wave polarization O-mode, ambient density 1019 m−3 and filament
density 2.0 × 1019 m−3, magnetic field inclination 0◦, magnitude of magnetic induction
B= 4.5T . (a) The case with 2 mm radius and (b) the case with 10 mm radius.

typical experimental range of values is inside (0.05, 1). In figure 6, the incident wave
is of O-mode polarization. The x- and y- components of the Poynting vector of EC
wave at frequency 170 GHz appear, for ambient density 1019 m−3 and filament density
1.2× 1019 m−3, radius equal to 10 mm. One can compare these results with the ones
in figure 4, to see the differences between the relative density contrasts of 20 % and
100 % respectively. The z-component of the Poynting vector is not presented as it is
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(a)(a) (b)

FIGURE 6. Poynting vector x- (a) and y- (b) components, frequency 170 GHz, incident
wave polarization O-mode, filament radius 10 mm, ambient density 1019 m−3 and filament
density 1.2 × 1019 m−3, magnetic field inclination 0◦, magnitude of magnetic induction
B= 4.5T .

FIGURE 7. Fourier spectrum: polar diagram of the horizontal and vertical projections
of the Fourier mode number, normalized to the incident index of refraction. Frequency
170 GHz, incident wave polarization O-mode, filament radius 10 mm, ambient density
1019 m−3 and filament density 1.2 × 1019 m−3, magnetic field inclination 0◦, magnitude
of magnetic induction B= 4.5T .

zero. The magnetic field inclination with respect to the cylinder axis, is also zero.
In figure 7, the Fourier spectrum is presented and one can compare it with the one
in figure 5 for the same cylinder radius, but different relative density contrast. It is
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(a) (b)

FIGURE 8. Poynting vector x- (a) and y- (b) components, frequency 170 GHz, incident
wave polarization O-mode, filament radius 10 mm, ambient density 1019 m−3 and filament
density 1.2× 1019 m−3, magnetic field inclination 50◦, azimuth 0◦, magnitude of magnetic
induction B= 4.5T .

evident that the spectral broadening due to the presence of the filament persists at
higher azimuthal angles when the relative density contrast is higher.

7.3. RF scattering with magnetic field inclination with respect to the cylinder axis
for O-mode incident waves

In figures 8 and 9, one can see the effect that the magnetic field inclination with
respect to the cylinder axis has on the scattering process, by keeping the same
magnitude of the magnetic induction B= 4.5T . These figures are referring to incident
waves of O-mode polarization. For presentation purposes, the magnetic field is chosen
to be at an angle of 50◦ with respect to the cylinder axis (which is, of course, a big
value), while the chosen frequency of 170 GHz is referring again to the EC waves
case, the filament radius is equal to 10 mm, the ambient density is 1019 m−3 and
the filament density is 1.2× 1019 m−3 (so that the relative density contrast is 20 %).
One can compare these results with the ones in figures 6 and 7. Note that the results
are presented in the magnetic field’s frame of reference, which now is different from
the cylindrical filament’s frame of reference and so, the cylinder appears to have an
elliptical shape. It is obvious, that the scattering pattern is much more intense in
the presence of inclination. This could be attributed to the excitation of additional
modes in the interior of the filament, due to the fact that there is now a multitude of
parallel to the magnetic field wave vectors not coinciding with the respective one for
the incident wave (which is the case for the aligned filament).

Figures 10 and 11, are also referring to incident waves of O-mode polarization
and the parameters are the same as the ones in figures 8 and 9, with the difference
that now, the ambient density is 1019 m−3 the filament density is 2.0× 1019 m−3 (so
that the relative density contrast is 100 % instead of 20 %). Note that the results are
presented in a different colour map. However, it is evident that the scattering is much
more intense in the case of higher relative density contrast. As a general remark, we
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(a) (b)

FIGURE 9. Poynting vector z-component (a), frequency 170 GHz, incident wave
polarization O-mode, filament radius 10 mm, ambient density 1019 m−3 and filament
density 1.2× 1019 m−3, magnetic field inclination 50◦, azimuth 0◦, magnitude of magnetic
induction B = 4.5T . Fourier spectrum (b) polar diagram of the horizontal and vertical
projections of the Fourier mode number, normalized to the incident index of refraction.

may observe that in both cases of low and high contrast, a considerable fraction of
the total power is channelled along the magnetic field lines, as expected.

7.4. RF scattering with magnetic field inclination with respect to the cylinder axis
for X-mode incident waves

In figures 12–15, one can see the effect that the magnetic field inclination with respect
to the cylinder axis has for incident waves of X-mode polarization.

Figure 12 presents the x- (a) and y- (b) components of the Poynting vector, for
a filament with radius equal to 10 mm, ambient density 1019 m−3, filament density
2.0× 1019 m−3 and magnetic field inclination zero. The z-components of the Poynting
vector are not presented as they are zero. In figure 13, the Fourier spectrum for the
same case appears.

In figures 14 and 15, the same case as for figures 12 and 13 is presented, with the
difference that the magnetic field inclination with respect to the cylinder’s axis is 50◦
instead of zero and as a result, the z-component of the Poynting vector is not zero.

8. Conclusions
The full-wave theoretical model presented in this paper, describes the scattering

process of plane RF waves by a cylindrical filament embedded in an ambient
magnetized plasma. In previous studies of RF scattering by cylindrical filaments,
the axis of the cylinder was assumed to be parallel to the total magnetic field (see
Ram 2016). The full-wave model presented has a main advantage compared to the
geometric optics approximation: the electron density of the filament does not have to
be close to the ambient electron density and thus, the full-wave approach has a more
general validity in a much larger domain.

Maxwell’s equations have been used to derive the full-wave analytical model. In
this study, due to the presence of a magnetic field component with general orientation
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(a) (b)

FIGURE 10. Poynting vector x- (a) and y- (b) components, frequency 170 GHz, incident
wave polarization O-mode, filament radius 10 mm, ambient density 1019 m−3 and filament
density 2.0 × 1019 m−3, magnetic field inclination 50◦, magnitude of magnetic induction
B= 4.5T .

(a) (b)

FIGURE 11. Poynting vector z-component (a), frequency 170 GHz, incident wave
polarization O-mode, filament radius 10 mm, ambient density 1019 m−3 and filament
density 2.0× 1019 m−3, magnetic field inclination 50◦, azimuth 0◦, magnitude of magnetic
induction B = 4.5T . Fourier spectrum (b): polar diagram of the horizontal and vertical
projections of the Fourier mode number, normalized to the incident index of refraction.

relative to the cylindrical filament, the physics of the scattering phenomenon changes:
while, in the case of a fully aligned with the magnetic field filament the component of
the wave vector along the magnetic field k‖ is preserved, in the case where a magnetic
field component with different orientation is present, only the component of the wave
vector along the cylinder axis kz is preserved. The latter is set by the incident wave.
This mere fact introduces dependence of the polarizations on the azimuthal angle in
the cylindrical filaments frame of reference. Thus, in the present analysis, in contrast
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(a) (b)

FIGURE 12. Poynting vector x- (a) and y- (b) components, frequency 170 GHz, incident
wave polarization X-mode, filament radius 10 mm, ambient density 1019 m−3 and filament
density 2.0 × 1019 m−3, magnetic field inclination 0◦, magnitude of magnetic induction
B= 4.5T .

FIGURE 13. Fourier spectrum: polar diagram of the horizontal and vertical projections
of the Fourier mode number, normalized to the incident index of refraction. Frequency
170 GHz, incident wave polarization X-mode, filament radius 10 mm, ambient density
1019 m−3 and filament density 2.0 × 1019 m−3, magnetic field inclination 0◦, magnitude
of magnetic induction B= 4.5T .

with the aligned case, this dependence leads to integration over the azimuthal angle of
all the modes involved and an additional summation over azimuthal numbers in the
expression for the fields (6.1)–(6.4). In the aligned case, the respective exponential
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(a) (b)

FIGURE 14. Poynting vector x- (a) and y- (b) components, frequency 170 GHz, incident
wave polarization X-mode, filament radius 10 mm, ambient density 1019 m−3 and filament
density 2.0 × 1019 m−3, magnetic field inclination 50◦, magnitude of magnetic induction
B= 4.5T .

(a) (b)

FIGURE 15. Poynting vector z-component (a), frequency 170 GHz, incident wave
polarization X-mode, filament radius 10 mm, ambient density 1019 m−3 and filament
density 2.0 × 1019 m−3, magnetic field inclination 50◦, magnitude of magnetic induction
B= 4.5T . Fourier spectrum (b) polar diagram of the horizontal and vertical projections of
the Fourier mode number, normalized to the incident index of refraction.

that contains the azimuthal angle collapses to a Kronecker delta function that isolates
a particular azimuthal mode number from the aforementioned summation. Therefore,
in the general model in hand and at the physics level, this leads to a scattered field
for a spectrum of k‖ values which depends on the angle φ0 of inclination between the
axis of the filament and the direction of the total magnetic field. Thus, the presence
of a broad k‖ spectrum of waves alters the power deposition profile of the RF waves
in the core of the plasma as compared to the aligned case.
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The dispersion relation (3.14) can be satisfied by two independent plasma waves,
one of which is the incident RF wave. Inside the filament, a set of wave modes are
excited by the incident RF wave and each one of them is a linear combination of the
two independent plasma waves. These wave modes propagate in all directions outside
the filament and create wave modes that are linear combinations of the cold plasma
waves. Therefore, there are scattered fields not only in the forward direction, but in
the backward direction and sideways too, as it is clearly shown in the figures of § 7
where the numerical results are presented. A useful tool implemented in this work is
the poloidal spectral diagram of the total power (the magnitude of the real part of
the Poynting flux) emanating from the filament. In this diagram, the azimuthal angle
refers to different azimuthal angles around the cylindrical filaments circumference
and, thus, the respective spectral intensity amplitude around the cylinder provides
a measure of the scattering process. The respective spectral figures of § 7 clearly
show a broad and distributed spectral intensity around the filament shaped as a broad
cardioid, instead of a single isolated dot which would present the Fourier spectrum
of a plane monochromatic wave in the case where the filament is not present.

The filament radius can be of approximately the same, bigger than or smaller than
the wavelength of the incident wave. To this end, filaments of different radii have
been shown in § 7.1. As expected, the respective scattering effects are not the same.
In fact, the scattering effects are stronger when the filament’s radius increases. At
this point, it must be mentioned that for the EC frequency of 170 GHz and the
ambient density of 1019 m−3 which are both the same for all figures in § 7, the
wavelength of the incident wave is approximately 1.8 mm. Concerning the relative
density contrast between the filament and the ambient electron density, as referred
to in the Introduction (§ 1), it can practically vary in a wide range of values and a
typical experimental range of values is inside (0.05, 1). The numerical simulations
in § 7.2 have been made for a relative density contrast of 20 % and their results
(figures 6 and 7) are compared to the ones in § 7.1 (figures 4 and 5) which are
referring to a relative density contrast of 100 %. It is evident from these results,
that the spatial variations in the power flow increase as the density contrast between
the filament and the background increases. When the filament’s density gets larger
relative to the background density, the scattering effects become stronger. When the
density contrast between the filament and the background tends to zero, that is when
the filament becomes indistinguishable from the ambient plasma, the scattering effects
must tend to disappear.

In the figures of §§ 7.3 and 7.4, there are cases in which the total magnetic field is
at a non-zero angle φ0 with respect to the axis of the cylindrical filament. It must be
noted that the chosen values for φ0 for the simulations in the whole of § 7 are φ0= 0
and φ0 = 50◦. The value φ0 = 50◦ is intentionally large in order to demonstrate the
differences between the general case of the present work and the previous cases for
the fully aligned filament (see Ram 2016). In the figures of §§ 7.3 and 7.4, we observe
that the scattering pattern is more intense in the presence of a poloidal magnetic field
component, when the total magnetic field is at a non-zero angle φ0 with respect to the
axis of the cylindrical filament. This could be attributed to the excitation of additional
modes in the interior of the filament. This, in turn, is due to the fact that there is
now a multitude of parallel to the magnetic field wave vectors not coinciding with
the respective one for the incident wave (which is the case for the aligned filament).
Moreover, comparing the figures of § 7.3 with the figures of § 7.4, it must be noticed
that the scattering process has different characteristics when the incident wave is of
O-mode polarization and when it is of X-mode polarization.
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Appendix A. Transformation matrices
A.1. Transforming from the magnetic field coordinate system to the infinite length

cylindrical filament coordinate system
In order to transform between the Cartesian coordinate systems of the filament and the
magnetic field one has to rotate around the fixed axis y with the help of the turning
matrix

Ry(φ0)≡

cos φ0 0 −sin φ0

0 1 0
sin φ0 0 cos φ0

 (A 1)

to obtain:x̂′

ŷ′

ẑ′

= Ry(φ0)

x̂
ŷ
ẑ

 ,
x̂

ŷ
ẑ

= Ry(−φ0)

x̂′

ŷ′

ẑ′

≡ R−1
y (φ0)

x̂′

ŷ′

ẑ′

 , (A 2a,b)

where the primed unit vectors refer to the magnetic field line coordinate system with
the same y-axis. Similarly, for any vector a:a′x

a′y
a′z

= Ry(φ0)

ax

ay

az

 ,
ax

ay

az

= Ry(−φ0)

a′x
a′y
a′z

≡ R−1
y (φ0)

a′x
a′y
a′z

 (A 3a,b)

and (
a′x a′y a′z

)
=
(
ax ay az

)
Ry(−φ0)≡

(
ax ay az

)
R−1

y (φ0) (A 4)(
ax ay az

)
=
(
a′x a′y a′z

)
Ry(φ0). (A 5)

A.2. Transforming from Cartesian to cylindrical coordinates and vice versa
While in the cylinder (filament) based frame of reference, one can transform from a
Cartesian coordinate system to cylindrical coordinates in the same frame. Thus, by
using the transformation matrix

Rc(ϕk)=

cos ϕk −sin ϕk 0
sin ϕk cos ϕk 0

0 0 1

 (A 6)

one obtains:x̂
ŷ
ẑ

= Rc(ϕk)

 r̂
ϕ̂

ẑ

 ,
 r̂
ϕ̂

ẑ

= Rc(−ϕk)

x̂
ŷ
ẑ

≡ R−1
c (ϕk)

x̂
ŷ
ẑ

 . (A 7a,b)
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Here, ϕk refers to the azimuthal angle in the filament-based coordinate system.
Similarly, for any vector a:ax

ay

az

= Rc(ϕk)

ar

aϕ
az

 ,
ar

aϕ
az

= Rc(−ϕk)

ax

ay

az

≡ R−1
c (ϕk)

ax

ay

az

 (A 8a,b)

and (
ax ay az

)
=
(
ar aϕ az

)
Rc(−ϕk)≡

(
ar aϕ az

)
R−1

c (ϕk) (A 9)(
ar aϕ az

)
=
(
ax ay az

)
Rc(ϕk). (A 10)

Appendix B. Cylindrical vector functions
The cylindrical vector functions (see Stratton 1941) in cylindrical coordinates are as

follows:

mn(nρρ, nzζ , ϕ)≡

[
in

Zn(nρρ)
ρ

r̂−
dZn(nρρ)

dρ
ϕ̂

]
exp[i(nzζ + nϕ)] (B 1)

nn(nρρ, nzζ , ϕ)≡

{
nz

n

[
i
dZn(nρρ)

dρ
r̂− n

Zn(nρρ)
ρ

ϕ̂

]
+

n2
ρ

n
Zn(nρρ)ẑ

}
exp[i(nzζ + nϕ)]

(B 2)

and

ln(nρρ, nzζ , ϕ)≡

[
dZn(nρρ)

dρ
r̂+ in

Zn(nρρ)
ρ

ϕ̂ + inzZn(nρρ)ẑ
]

exp[i(nzζ + nϕ)]. (B 3)

Note that these vector functions are expressed in terms of the position in space (in
cylindrical coordinates), while the wave enters only via its axial and radial refractive
indices in the cylinder frame of reference. For the incident wave the Bessel functions
involved are Jn. The vector functions obey the following relations:

∇ ·mn = 0, ∇ · nn = 0, ∇ · ln =−n2Zn exp[i(nzζ + nϕ)] (B 4a−c)

as well as:
∇× ln = 0, ∇×mn = nnn, ∇× nn = nmn. (B 5a−c)

Appendix C. The dispersion tensor
The dispersion tensor elements in cylindrical coordinates, in the filament’s frame of

reference, are:

(Dcyl
fila)11 = c2

k(K⊥c2
0 +K‖s2

0)+K⊥s2
k − n2

ϕ − n2
z (C 1)

(Dcyl
fila)12 =−skck(K⊥c2

0 +K‖s2
0)+K⊥skck − iK×c0 + nρnϕ (C 2)

(Dcyl
fila)13 = ckc0s0(K‖ −K⊥)− iK×s0sk + nρnz (C 3)

(Dcyl
fila)21 =−skck(K⊥c2

0 +K‖s2
0)+K⊥skck + iK×c0 + nρnϕ (C 4)

https://doi.org/10.1017/S0022377818001083 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818001083


Scattering of RF waves in the plasma edge 25

(Dcyl
fila)22 = s2

k(K⊥c2
0 +K‖s2

0)+K⊥c2
k − n2

ρ − n2
z (C 5)

(Dcyl
fila)23 =−skc0s0(K‖ −K⊥)− iK×s0ck + nϕnz (C 6)

(Dcyl
fila)31 = ckc0s0(K‖ −K⊥)+ iK×s0sk + nρnz (C 7)

(Dcyl
fila)32 =−skc0s0(K‖ −K⊥)+ iK×s0ck + nϕnz (C 8)

(Dcyl
fila)33 = (K⊥s2

0 +K‖c2
0)− n2

ρ − n2
ϕ. (C 9)

Appendix D. Wave polarizations

By solving the system of (3.14), rP
Oρ , rP

Oϕ , rP
Oz, rP

Xρ , rP
Xϕ and rP

Xz are:

rP
Oρ =

1
dO
(K⊥ −K‖)[nρn0zs0s2

+ (K⊥ − n2)c0c]s0 − (K⊥ − n2)nρn0z −K2
×

c0s0c

+ iK×(K‖ − n2)ss0

rP
Oϕ =

1
dO

{
K2
×

c0 + [nρn0zcs0 − (K⊥ − n2
0z)c0](K⊥ −K‖)

}
ss0

+ iK×[(K‖ − n2
0z)s0c+ nρn0zc0]

rP
Oz = 1,

where

dO ≡ (n2
− n2

ρs2)(K⊥ −K‖)s2
0 + (K⊥c2

0 +K‖s2
0 − n2)K⊥ − (K⊥ − n2)n2

0z −K2
×

c2
0


(D 1)

and

rP
Xρ = 1

rP
Xϕ =

1
dX
(K⊥ −K‖)nρn0zs0c0s+ [K2

×
− (K⊥ −K‖)(K⊥ − n2

ρ)]css2
0

− iK×[(K‖ − n2
ρ)c0 + nρn0zs0c]

rP
Xz =

1
dX
(K⊥ −K‖)[nρn0zs0s2

+ (K⊥ − n2)c0c]s0 − (K⊥ − n2)nρn0z −K2
×

s0c0c

− iK×(K‖ − n2)s0s,

where

dX ≡ −(K⊥ − n2)n2
ρ − n2K‖c2

0 + (s
2s2

0 + c2
0)K⊥K‖

+
{
[K⊥(K⊥ − n2

ρ)−K2
×
]c2
−K‖n2

ρs2
−K⊥n2

0z

}
s2

0.


(D 2)

Appendix E. The linear system that boundary conditions imply
The linear system that the boundary conditions imply, is described by the (5.5) with

the coefficients aO/X,FI/SC
j,mn and a0

j,m being calculated as follows:

aM,FI
1,mn =

∫ 2π

0

dϕk

2π
ei(n−m)ϕk

(
iÊM

kϕk
J
′M
m − ÊM

kρ
mJM

m

nM
kρa

)
(E 1)

aM,SC
1,mn =

∫ 2π

0

dϕk

2π
ei(n−m)ϕk

(
iÊM

kϕk
H
′(1)M
m − ÊM

kρ
mH(1)M

m

nM
kρa

)
(E 2)
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a0
1,m = e−imϕ0

(
iÊ0ϕ0J

′0
m − Ê0ρ

mJ0
m

n0ρa

)
(E 3)

aM,FI
2,mn =

∫ 2π

0

dϕk

2π
ei(n−m)ϕk(ÊM

kzJ
M
m ) (E 4)

aM,SC
2,mn =

∫ 2π

0

dϕk

2π
ei(n−m)ϕk(ÊM

kzH
(1)M
m ) (E 5)

a0
2,m = e−imϕ0(Ê0zJ0

m) (E 6)

aM,FI
3,mn =

∫ 2π

0

dϕk

2π
ei(n−m)ϕk

[
i(ÊM

kzn
M
kρ − ÊM

kρn0z)J
′M
m − ÊM

kϕk
n0z

mJM
m

nM
kρa

]
(E 7)

aM,SC
3,mn =

∫ 2π

0

dϕk

2π
ei(n−m)ϕk

[
i(ÊM

kzn
M
kρ − ÊM

kρn0z)H
′(1)M
m − ÊM

kϕk
n0z

mH(1)M
m

nM
kρa

]
(E 8)

a0
3,m = e−imϕ0

[
i(Ê0zn0ρ − Ê0ρn0z)J

′0
m − ÊM

0ϕ0
n0z

mJ0
m

n0ρa

]
(E 9)

aM,FI
4,mn =

∫ 2π

0

dϕk

2π
ei(n−m)ϕk(ÊM

kϕk
nM

kρJM
m ) (E 10)

aM,SC
4,mn =

∫ 2π

0

dϕk

2π
ei(n−m)ϕk(ÊM

kϕk
nM

kρH(1)M
m ) (E 11)

a0
4,m = e−imϕ0(Ê0ϕ0n0ρJ0

m). (E 12)

Appendix F. Expressions of electric and magnetic field in terms of the cylindrical
vector functions

Equation (3.2) takes the general form

E(ρ)=
4∑

M=1

∫ 2π

0
dϕk

∫
∞

−∞

dnkzEk[nkρ(nkz, ϕk), nkz, ϕk] exp(in · ρ), (F 1)

with the letter ‘M’ denoting which one of the four solutions is referred to.
Equivalently, by using the solutions of (F 1):

E(ρ, ϕ, ζ ) =
4∑

M=1

∫ 2π

0
dϕk

∫
∞

−∞

dnkzEM
k [n

M
kρ(nkz, ϕk), nkz, ϕk]

× exp
{

i
[
ρnM

kρ cos(ϕ − ϕk)+ nkzζ
]}
. (F 2)

By normalizing the expression (F 2) for the electric field, one obtains:

e(ρ) =
E(ρ)
E0
=

∫ 2π

0
dϕk

∫
∞

−∞

dnkz

×

∑
M=O,X

{eM
k [n

M
kρ(ϕk, nkz), ϕk, nkz] + eM

k [−nM
kρ(ϕk, nkz), ϕk, nkz]}einM

kρρ cos(ϕ−ϕk)+inkzζ ,

(F 3)

where E0 is the amplitude of the electric field intensity and also each one of the
eigenmodes under the integral sign is spatially constant. For the incident field on the
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other hand,

e0(ρ)=
E0(ρ)

E0
= e0(ϕ0, n0z)ein0ρρ cos(ϕ−ϕ0)+in0zζ . (F 4)

In terms of the cylindrical vector functions and the exponential dyadic, finally
we have:

e(ρ) =
m=∞∑

m=−∞

im
∫ 2π

0
dϕk

∫
∞

−∞

dnkz

∑
M=O,X

n=∞∑
n=−∞

εM
n (nkzei(n−m)ϕk

×

{
i
ÊM

kϕk

nM
kρ

mm(ρnM
kρ, ϕ, ζnkz)+

ÊM
kzn

M
kρ − ÊM

kρnkz

nM
kρnM

k
nm(ρnM

kρ, ϕ, ζnkz)

− i
ÊM

kρnM
kρ + ÊM

kznkz

(nM
k )

2
lm(ρnM

kρ, ϕ, ζnkz)

}
. (F 5)

For the incident wave, one obtains,

e0(ρ) =

m=∞∑
m=−∞

ime−imϕ0

{
i
Ê0ϕ0

n0ρ
mm(ρn0ρ, ϕ, ζn0z)+

Ê0zn0ρ − Ê0ρn0z

n0ρn0
nm(ρn0ρ, ϕ, ζn0z)

− i
Ê0ρn0ρ + Ê0zn0z

n2
0

lm(ρn0ρ, ϕ, ζn0z)

}
. (F 6)

Notice that for the aligned cylinder the mode selection does not depend on the
azimuthal angle and therefore the integration over that angle will facilitate the
application of the orthogonality condition for the azimuthal dependence.

The magnetic field can also be easily evaluated from Faraday’s law:

h≡
H
H0
=

E0

H0

√
ε0

µ0

1
i
∇× e, h0 ≡

H0

H0
=

E0

H0

√
ε0

µ0

1
i
∇× e0, (F 7a,b)

where H0 is the amplitude of the magnetic field intensity. Therefore:

h(ρ) =
E0

H0

√
ε0

µ0

m=∞∑
m=−∞

im
∫ 2π

0
dϕk

∫
∞

−∞

dnkz

n=∞∑
n=−∞

∑
M=O,X

εM
n (nkz)ei(n−m)ϕk

×

{
ÊM

kϕk

nM
kρ

nM
k nm(ρnM

kρ, ϕ, ζnkz)− i
ÊM

kzn
M
kρ − ÊM

kρnkz

nM
kρ

mm(ρnM
kρ, ϕ, ζnkz)

}
(F 8)

and for the incident magnetic field:

h0(ρ) =
E0

H0

√
ε0

µ0

m=∞∑
m=−∞

ime−imϕ0

×

{
Ê0ϕ0

n0ρ
n0nm(ρn0ρ, ϕ, ζn0z)− i

Ê0zn0ρ − Ê0ρn0z

n0ρ
mm(ρn0ρ, ϕ, ζn0z)

}
. (F 9)
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