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Abstract

The paper presents a knowledge representation language Alog which extends ASP with

aggregates. The goal is to have a language based on simple syntax and clear intuitive and

mathematical semantics. We give some properties of Alog, an algorithm for computing its

answer sets, and comparison with other approaches.
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1 Introduction

The development of answer set semantics for logic programs (Gelfond and Lifschitz

1988; Gelfond and Lifschitz 1991) led to the creation of powerful knowledge

representation language, Answer Set Prolog (ASP), capable of representing recursive

definitions, defaults, effects of actions and other important phenomena of natural

language. The design of algorithms for computing answer sets and their efficient

implementations in systems called ASP solvers (Niemela et al. 2002; Leone et al.

2006; Gebser et al. 2007) allowed the language to become a powerful tool for

building non-trivial knowledge intensive applications (Brewka et al. 2011; Erdem

et al. 2012). There are a number of extensions of the ASP which also contributed

to this success. This paper is about one such extension – logic programs with

aggregates. By aggregates we mean functions defined on sets of objects of the domain.

(For simplicity of exposition we limit our attention to aggregates defined on finite

sets.) Here is a typical example.

Example 1 (Classes That Need Teaching Assistants)

Suppose that we have a complete list of students enrolled in a class c that is

represented by the following collection of atoms:

enrolled(c,mike).

enrolled(c,john).

...
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Suppose also that we would like to define a new relation need ta(C) that holds iff

the class C needs a teaching assistant. In this particular school need ta(C) is true iff

the number of students enrolled in the class is greater than 20. The definition can

be given by a simple rule in the language of logic programs with aggregates:

need ta(C)← card{X : enrolled(C,X)} > 20

where card stands for the cardinality function. Let us call the resulting program P0.

The program is simple, has a clear intuitive meaning, and can be run on some

of the existing ASP solvers. However, the situation is more complex than that.

Unfortunately, currently there is no the language of logic programs with aggregates.

Instead there is a comparatively large collection of such languages with different

syntax and, even more importantly, different semantics (Pelov et al. 2007; Niemela

et al. 2002; Son and Pontelli 2007; Faber et al. 2011; Gelfond 2002; Kemp and

Stuckey 1991). As an illustration consider the following example:

Example 2

Let P1 consist of the following rule:

p(a)← card{X : p(X)} = 1.

Even for this seemingly simple program, there are different opinions about its

meaning. According to (Faber et al. 2011) the program has one answer set A = { };
according to (Gelfond 2002; Kemp and Stuckey 1991) it has two answer sets:

A1 = { } and A2 = {p(a)}.

In our judgment this and other similar “clashes of intuition” cause a serious

impediment to the use of aggregates for knowledge representation and reasoning.

In this paper we aim at addressing this problem by suggesting yet another logic

programming language with aggregates, calledAlog, which is based on the following

design principles:

• the language should have a simple syntax and intuitive semantics based on

understandable informal principles, and

• the informal semantics should have clear and elegant mathematics associated

with it.

In our opinion existing extensions of ASP by aggregates often do not have clear

intuitive principles underlying the semantics of the new constructs. Moreover, some

of these languages violate such original foundational principles of ASP as the

rationality principle. The problem is compounded by the fact that some of the

semantics of aggregates use rather non-trivial mathematical constructions which

makes it difficult to understand and explain their intuitive meaning.

The semantics of Alog is based on Vicious Circle Principle (VCP): no object

or property can be introduced by the definition referring to the totality of objects

satisfying this property. According to Feferman (Feferman 2002) the principle was

first formulated by Poincare (Poincare 1906) in his analysis of paradoxes of set theory.

Similar ideas were already successfully used in a collection of logic programming

definitions of stratification including that of stratified aggregates (see, for instance,
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(Faber et al. 2011). Unfortunately, limiting the language to stratified aggregates

eliminates some of the useful forms of circles (see Example 9 below). In this

paper we give a new form of VCP which goes beyond stratification: p(a) cannot

be introduced by the definition referring to a set of objects satisfying p if this set can

contain a. Technically, the principle is incorporated in our new definition of answer

set (which coincides with the original definition for programs without aggregates).

The definition is short and simple. We hope that, combined with a number of

informal examples, it will be sufficient for developing an intuition necessary for the

use of the language. The paper is organized as follows. In Section 2, we define

the syntax and semantics of Alog. We give some properties of Alog programs

in Section 3 and present an algorithm for computing an answer set of an Alog

program in Section 4. A comparison with the existing work is done in Section 5,

and we conclude the paper in Section 6.

2 Syntax and Semantics of Alog

We start with defining the syntax and intuitive semantics of the language.

2.1 Syntax

Let Σ be a (possibly sorted) signature with a finite collection of predicate, function,

and object constants andA be a finite collection of symbols used to denote functions

from finite sets of terms of Σ into integers. Terms and literals over signature Σ are

defined as usual and referred to as regular. Regular terms are called ground if

they contain no variables and no occurrences of symbols for arithmetic functions.

Similarly for literals. An aggregate term is an expression of the form

f{X̄ : cond} (1)

where f ∈ A, cond is a collection of regular literals, and X̄ is a list of variables

occurring in cond. We refer to an expression

{X̄ : cond} (2)

as a set name. An occurrence of a variable from X̄ in (2) is called bound within (2).

If the condition from (2) contains no variables except those in X̄ then it is read as

the set of all objects of the program satisfying cond. If cond contains other variables,

say Ȳ = 〈Y1, . . . , Yn〉, then {X̄ : cond} defines the function mapping possible values

c̄ = 〈c1, . . . , cn〉 of these variables into sets {X̄ : cond|Ȳc̄ } where cond|Ȳc̄ is the result of

replacing Y1, . . . , Yn by c1, . . . , cn.

By an aggregate atom we mean an expression of the form

〈aggregate term〉〈arithmetic relation〉〈arithmetic term〉 (3)

where arithmetic relation is >,�, <,�,= or !=, and arithmetic term is constructed

from variables and integers using arithmetic operations, +, −, ×, etc.

By e-literals we mean regular literals possibly preceded by default negation not. The

latter (former) are called negative (positive) e-literals.

https://doi.org/10.1017/S1471068414000222 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000222


590 M. Gelfond and Y. Zhang

A rule of Alog is an expression of the form

head← pos, neg, agg (4)

where head is a disjunction of regular literals, pos and neg are collections of regular

literals and regular literals preceded by not respectively, and agg is a collection of

aggregate atoms. All parts of the rule, including head, can be empty. An occurrence

of a variable in (4) not bound within any set name in this rule is called free in (4).

A rule of Alog is called ground if it contains no occurrences of free variables and

no occurrences of arithmetic functions.

A program of Alog is a finite collection of Alog’s rules. A program is ground if its

rules are ground.

As usual for ASP based languages, rules of Alog program with variables are

viewed as collections of their ground instantiations. A ground instantiation of a rule

r is the program obtained from r by replacing free occurrences of variables in r

by ground terms of Σ and evaluating all arithmetic functions. If the signature Σ is

sorted (as, for instance, in (Balai et al. 2013)) the substitutions should respect sort

requirements for predicates and functions.

Clearly the grounding of an Alog program is a ground program. The following

examples illustrate the definition:

Example 3 (Grounding: all occurrences of the set variable are bound )

Consider a program P2 with variables:

q(Y) :- card{X:p(X,Y)} = 1, r(Y).

r(a). r(b). p(a,b).

Here all occurrences of a set variable X are bound; all occurrences of a variable Y

are free. The program’s grounding, ground(P2), is

q(a) :- card{X:p(X,a)} = 1, r(a).

q(b) :- card{X:p(X,b)} = 1, r(b).

r(a). r(b). p(a,b).

The next example deal with the case when some occurrences of the set variable in a

rule are free and some are bound.

Example 4 (Grounding: some occurrences of a set variable are free)

Consider an Alog program P3

r :- card{X:p(X)} >= 2, q(X).

p(a). p(b). q(a).

Here the occurrence of X in q(X) is free. Hence the ground program ground(P3) is:

r :- card{X:p(X)} >= 2, q(a).

r :- card{X:p(X)} >= 2, q(b).

p(a). p(b). q(a).
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Note that despite its apparent simplicity the syntax of Alog differs substantially

from syntax of most other logic programming languages allowing aggregates (with

the exception of that in (Gelfond 2002)). We illustrate the differences using the

language presented in (Faber et al. 2011). (In what follows we refer to this language

as Flog.) While syntactically programs of Alog can also be viewed as programs

of Flog the opposite is not true. Among other things Flog allows parameters of

aggregates to be substantially more complex than those of Alog. For instance, an

expression f{a : p(a, a), b : p(b, a)} = 1 where f is an aggregate atom of Flog but

not ofAlog. This construction which is different from a usual set-theoretic notation

used in Alog is important for the Flog definition of grounding. For instance the

grounding of the first rule of program P2 from Example 3 understood as a program

of Flog consists of Flog rules

q(a) :- card{a:p(a,a),b:p(b,a)} = 1, r(a).

q(b) :- card{a:p(a,b),b:p(b,b)} = 1, r(b).

which is not even a program of Alog. Another important difference between the

grounding methods of these languages can be illustrated by the Flog grounding

groundf(P3) of program P3 from Example 4 that looks as follows:

r :- card{a:p(a)} >= 2, q(a).

r :- card{b:p(b)} >= 2, q(b).

p(a). p(b). q(a).

Clearly this is substantially different from the Alog grounding of P3 from Example

4. In Section 5 we show that this difference in grounding reflects substantial semantic

differences between the two languages.

2.2 Semantics

To define the semantics of Alog programs we expand the standard definition of

answer set from (Gelfond and Lifschitz 1988). The resulting definition captures the

rationality principle - believe nothing you are not forced to believe (Gelfond and Kahl

2014) - and avoids vicious circles. As usual the definition of answer set is given for

ground programs. Some terminology: a ground aggregate atom f{X : p(X)} � n

(where � is one of the arithmetic relations allowed in the language) is true in a set

of ground regular literals S if f{X : p(X) ∈ S} � n; otherwise the atom is false in I .

Definition 1 (Aggregate Reduct)

The aggregate reduct of a ground program Π of Alog with respect to a set of

ground regular literals S is obtained from Π by

1. removing from Π all rules containing aggregate atoms false in S .

2. replacing every remaining aggregate atom f{X : p(X)} � n by the set {p(t) :

p(t) ∈ S} (which is called the reduct of the aggregate with respect to S).

(Here p(t) is the result of replacing variable X by ground term t). The second

clause of the definition reflects the principle of avoiding vicious circles – a rule with

aggregate atom f{X : p(X)} � n in the body can only be used if “the totality” of all

https://doi.org/10.1017/S1471068414000222 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000222


592 M. Gelfond and Y. Zhang

objects satisfying p has already being constructed. Attempting to apply this rule to

define p(t) will either lead to contradiction or to turning the rule into tautology (see

Examples 7 and 9).

Definition 2 (Answer Set)

A set S of ground regular literals over the signature of a ground program Π of

Alog is an answer set of Π if it is an answer set of an aggregate reduct of Π with

respect to S .

We will illustrate this definition by a number of examples.

Example 5 (Example 3 Revisited )

Consider a program P2 and its grounding from Example 3. It is easy to see that

the aggregate reduct of the program with respect to any set S not containing p(a, b)

consists of the program facts, and hence S is not an answer set of P2. However the

program’s aggregate reduct with respect to A = {q(b), r(a), r(b), p(a, b)} consists of

the program’s facts and the rule

q(b) :- p(a,b),r(b).

Hence A is an answer set of P2.

Example 6 (Example 4 Revisited )

Consider now the grounding

r :- card{X:p(X)} >= 2, q(a).

r :- card{X:p(X)} >= 2, q(b).

p(a). p(b). q(a).

of program P3 from Example 4. Any answer set S of this program must contain

its facts. Hence {X : p(X) ∈ S} = {a, b}. S satisfies the body of the first rule

and must also contain r. Indeed, the aggregate reduct of P3 with respect to S =

{p(a), p(b), q(a), r} consists of the facts of P3 and the rules

r :- p(a),p(b),q(a).

r :- p(a),p(b),q(b).

Hence S is the answer set of P3.

Neither of the two examples above required the application of VCP. The next

example shows how this principle influences our definition of answer sets and hence

our reasoning.

Example 7 (Example 2 Revisited )

Consider a program P1 from Example 2. The program, consisting of a rule

p(a) :- card{X : p(X)}=1

is grounded. It has two candidate answer sets, S1 = { } and S2 = {p(a)}. The

aggregate reduct of the program with respect to S1 is the empty program. Hence, S1

is an answer set of P1. The program’s aggregate reduct with respect to S2 however is

p(a) :- p(a).
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The answer set of this reduct is empty and hence S1 is the only answer of P1.

Example 7 shows how the attempt to define p(a) in terms of totality of p turns

the defining rule into a tautology. The next example shows how it can lead to

inconsistency of a program.

Example 8 (Vicious Circles through Aggregates and Inconsistency)

Consider a program P4:

p(a).

p(b) :- card{X:p(X)} > 0.

Since every answer set of the program must contain p(a), the program has two

candidate answer sets: S1 = {p(a)} and S2 = {p(a), p(b)}. The aggregate reduct of P4

with respect to S1 is

p(a).

p(b) :- p(a).

The answer set of the reduct is {p(a), p(b)} and hence S1 is not an answer set of P4.

The reduct of P4 with respect to S2 is

p(a).

p(b) :- p(a),p(b).

Again its answer set is not equal to S2 and hence P4 is inconsistent (i.e., has no

answer sets). The inconsistency is the direct result of an attempt to violate the

underlying principle of the semantics. Indeed, the definition of p(b) refers to the set

of objects satisfying p that can contain b which is prohibited by our version of VCP.

One can, of course, argue that S2 can be viewed as a reasonable collection of beliefs

which can be formed by a rational reasoner associated with P4. After all, we do not

need the totality of p to satisfy the body of the rule defining p(b). It is sufficient

to know that p contains a. This is indeed true but this reasoning depends on the

knowledge which is not directly incorporated in the definition of p(b). If one were

to replace P4 by

p(a).

p(b) :- card{X:p(X), X != b} > 0.

then, as expected, the vicious circle principle will not be violated and the program

will have unique answer set {p(a), p(b)}.

We end this section by a simple but practical example of a program which allows

recursion through aggregates but avoids vicious circles.

Example 9 (Defining Digital Circuits)

Consider part of a logic program formalizing propagation of binary signals through

simple digital circuits. We assume that the circuit does not have a feedback, i.e., a

wire receiving a signal from a gate cannot be an input wire to this gate. The program

may contain a simple rule
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val(W,0) :-

gate(G, and),

output(W, G),

card{W: val(W,0), input(W, G)} > 0.

(partially) describing propagation of symbols through an and gate. Here val(W, S )

holds iff the digital signal on a wire W has value S . Despite its recursive nature the

definition of val avoids vicious circle. To define the signal on an output wire W of

an and gate G one needs to only construct a particular subset of input wires of G.

Since, due to absence of feedback in our circuit, W can not belong to the latter set

our definition is reasonable. To illustrate that our definition of answer set produces

the intended result let us consider program P5 consisting of the above rule and a

collection of facts:

gate(g, and).

output(w0, g).

input(w1, g).

input(w2, g).

val(w1,0).

The grounding, ground(P5), of P5 consists of the above facts and the three rules of

the form

val(w,0) :-

gate(g, and),

output(w, g),

card{W: val(W,0), input(W, g)} > 0.

where w is w0, w1 ,and w2.

Let S = {gate(g, and), val(w1, 0), val(w0, 0), output(w0, g), input(w1, g), input(w2, g)}.
The aggregate reduct of ground(P5) with respect to S is the collection of facts

and the rules

val(w,0) :-

gate(g, and),

output(w, g),

input(w1, g),

val(w1, 0).

where w is w0, w1, and w2.

The answer set of the reduct is S and hence S is an answer set of P5. As expected it

is the only answer set. (Indeed it is easy to see that other candidates do not satisfy

our definition.)

3 Properties of Alog programs

In this section we give some basic properties of Alog programs. Propositions 1 and

2 ensure that, as in regular ASP, answer sets of Alog program are formed using
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the program rules together with the rationality principle. Proposition 3 is the Alog

version of the basic technical tool used in theoretical investigations of ASP and its

extensions. Proposition 4 shows that complexity of entailment in Alog is the same

as that in regular ASP.

We will use the following terminology: e-literals p and not p are called contrary;

not l denotes a literal contrary to e-literal l; a partial interpretation I over signature

Σ is a consistent set of e-literals of this signature; an e-literal l is true in I if l ∈ I; it

is false if not l ∈ I; otherwise l is undefined in I . An aggregate atom f{X : q(X)} � n

is true in I if f{t : q(t) ∈ I} � n is true, i.e., the value of f on the set {t : q(t) ∈ I}
and the number n satisfy property �. Otherwise, the atom is false in I . The head of

a rule is satisfied by I if at least one of its literals is true in I; the body of a rule

is satisfied by I if all of its aggregate atoms and e-literals are true in I . A rule is

satisfied by I if its head is satisfied by I or its body is not satisfied by I .

Proposition 1 (Rule Satisfaction and Supportedness)

Let A be an answer set of a ground Alog program Π. Then

1. A satisfies every rule r of Π.

2. If p ∈ A then there is a rule r from Π such that the body of r is satisfied by A

and p is the only atom in the head of r which is true in A. (It is often said that

rule r supports atom p.)

Proposition 2 (Anti-chain Property)

Let A1 be an answer set of an Alog program Π. Then there is no answer set A2 of

Π such that A1 is a proper subset of A2.

Proposition 3 (Splitting Set Theorem)

Let Π1 and Π2 be programs of Alog such that no atom occurring in Π1 is a head

atom of Π2. Let S be a set of atoms containing all head atoms of Π1 but no head

atoms of Π2. A set A of atoms is an answer set of Π1 ∪Π2 iff A ∩ S is an answer

set of Π1 and A is an answer set of (A ∩ S) ∪Π2.

Proposition 4 (Complexity)

The problem of checking if a ground atom a belongs to all answer sets of an Alog

program is ΠP
2 complete.

4 An Algorithm for Computing Answer Sets

In this section we briefly outline an algorithm, calledAsolver, for computing answer

sets of Alog programs. We follow the tradition and limit our attention to programs

without classical negation. Hence, in this section we consider only programs of this

type. By an atom we mean an e-atom or an aggregate atom.

Definition 3 (Strong Satisfiability and Refutability)

• An atom is strongly satisfied (strongly refuted ) by a partial interpretation I if

it is true (false) in every partial interpretation containing I; an atom which is

neither strongly satisfied nor strongly refuted by I is undecided by I .

https://doi.org/10.1017/S1471068414000222 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000222


596 M. Gelfond and Y. Zhang

• A set S of atoms is strongly satisfied by I if all atoms in S are strongly satisfied

by I;

• S is strongly refuted by I if for every partial interpretation I ′ containing I ,

some atom of S is false in I ′.

For instance, an e-atom is strongly satisfied (refuted) by I iff it is true (false) in

I; an atom card{X : p(X)} > n which is true in I is strongly satisfied by I; an

atom card{X : p(X)} < n which is false in I is strongly refuted by I; and a set

{f{X : p(X)} > 5, f{X : p(X)} < 3} is strongly refuted by any partial interpretation.

Asolver consists of three functions: Solver, Cons, and IsAnswerSet. The main

function, Solver, is similar to that used in standard ASP algorithms (See, for

instance, Solver1 from (Gelfond and Kahl 2014)). But unlike these functions which

normally have two parameters - partial interpretation I and program Π - Solver

has two additional parameters, TA and FA containing aggregate atoms that must

be true and false respectively in the answer set under construction. Solver returns

〈I, true〉 where I is an answer set of Π compatible with its parameters and false

if no such answer set exists. The Solver’s description will be omitted due to space

limitations. The second function, Cons, computes the consequences of its parameters

- a program Π, a partial interpretation I , and two above described sets TA and FA

of aggregates atoms. Due to the presence of aggregates the function is sufficiently

different from a typical Cons function of ASP solvers so we describe it in some

detail. The new value of I , containing the desired consequences is computed by

application of the following inference rules:

1. If the body of a rule r is strongly satisfied by I and all atoms in the head of r

except p are false in I then p must be in I .

2. If an atom p ∈ I belongs to the head of exactly one rule r of Π then every other

atom from the head of r must have its complement in I , the e-atoms from the

body of r must be in I and its aggregate atoms must be in TA.

3. If every atom of the head of a rule r is false in I , and l is the only premise of

r which is either an undefined e-atom or an aggregate atom not in FA, and the

rest of the body is strongly satisfied by I , then

(a) if l is an e-atom, then the complement of l must be in I ,

(b) if l is an aggregate atom, then it must be in FA.

4. If the body of every rule with p in the head is strongly refuted by I , then (not p)

must be in I .

Given an interpretation I , a program Π, inference rule i ∈ [1..4] and r ∈ Π, let

function iCons(i, I,Π, r) return < δI, δTA, δFA > where δI , δTA and δFA are the

results of applying inference rule i to r. (Note, that inference rule 4 does not really

use r). We also need the following terminology. We say that I is compatible with TA

if TA is not strongly refuted by I; I is compatible with FA if no atom from FA is

strongly satisfied by I . A set A of regular atoms is compatible with TA and FA if

the set compl(A) = {p : p ∈ A} ∪ {not a : a /∈ A} is compatible with TA and FA; A is

compatible with I if I ⊆ compl(A). The algorithm Cons is listed below.
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function Cons

input: partial interpretation I0, sets TA0 and FA0 of aggregate atoms

compatible with I0, and program Π0 with signature Σ0;

output:

〈Π, I, TA, FA, true〉 where I is a partial interpretation such that I0 ⊆ I ,

TA and FA are sets of aggregate atoms such that TA0 ⊆ TA and

FA0 ⊆ FA,

I is compatible with TA and FA, and Π is a program with signature

Σ0 such that for every A,

A is an answer set of Π0 that is compatible with I0 iff A is an

answer set of Π that is compatible with I .

〈Π0, I0, TA0, FA0, false〉 if there is no answer set of Π0 compatible with I0;

var I, T : set of e-atoms; TA, FA: set of aggregate atoms; Π: program;

1. Initialize I , Π, TA and FA to be I0, Π0, TA0 and FA0 respectively;

2. repeat

3. T := I;

4. Remove from Π all the rules whose bodies are strongly falsified by I;

5. Remove from the bodies of rules of Π

all negative e-atoms true in I and aggregate atoms strongly satisfied

by I;

6. Non-deterministically select an inference rule i from (1)–(4);

8. for every r ∈ Π

9. < δI, δTA, δFA > := iCons(I,Π, i, r);

10. I := I ∪ δI , TA := TA ∪ δTA, FA := FA ∪ δFA;

11. until I = T ;

12. if I is consistent, TA and FA are compatible with I then

13. return < Π, I, TA, FA, true >;

14. else return < Π0, I0, TA0, FA0, false >;

The third function, IsAnswerSet of our solver Asolver checks if interpretation I is

an answer set of a program Π. It computes the aggregate reduct of Π with respect

to I and applies usual checking algorithm (see, for instance, (Koch et al. 2003)).

Proposition 5 (Correctness of the Solver)

If, given a program Π0, a partial interpretation I0, and sets TA0 and FA0 of

aggregate atoms Solver(I0, TA0, FA0,Π0) returns 〈I, true〉 then I is an answer set of

Π0 compatible with I0, TA0 and FA0. If there is no such answer set, the solver

returns false.

To illustrate the algorithm consider a program Π

:- p(a).

p(a) :- card{X:q(X)} > 0.

q(a) or p(b).

and trace Solver(Π, I, TA, FA) where I , TA, and FA are empty. Solver starts

by calling Cons which computes the consequence not p(a) (from the first rule
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of the program), FA = {card{X : q(X)} > 0} (from the second rule of the

program) and not q(b) (from the fourth inference rule), and returns true, I =

{not q(b), not p(a)} and new FA; TA is unchanged. Solver then guesses q(a) to

be true, i.e., I = {not q(b), not p(a), q(a)}, and calls Cons again. Cons does not

produce any new consequences but finds that FA is not compatible with I (line

12 of the algorithm). So, it returns false, which causes Solver to set q(a) to be

false, i.e., I = {not q(b), not p(a), not q(a)}. Solver then calls Cons again which

returns I = {not q(b), not p(a), not q(a), p(b)}. Solver finds that I is complete and

calls IsAnswerSet which returns true. Finally, Solver returns I as an answer set of

the program.

5 Comparison with Other Approaches

There are a large number of approaches to the syntax and semantics of extensions

of ASP by aggregates. In this section we concentrate on languages from (Son

and Pontelli 2007) and (Faber et al. 2011) which we refer to as Slog and Flog

respectively. Due to multiple equivalence results discussed in these papers this is

sufficient to cover most of the approaches. The main difference between the syntax

of aggregates in Alog and Flog is in treatment of variables occurring in aggregate

terms. Alog uses usual logical concept of bound and free occurrence of a variable

(the occurrence of X within S = {X : p(X,Y )} is bound while the occurrence of

Y is free). Flog uses very different concepts of global and local variable of a rule.

A variable is local in rule r if it occurs solely in an aggregate term of r; otherwise,

the variable is global. As the result, in Alog, every aggregate term {X : p(X)} can

be replaced by a term {Y : p(Y )} while it is not the case in Flog. In our opinion

the approach of Flog (and many other languages and systems which adopted this

syntax) makes declarative reading of aggregate terms substantially more difficult1.

To see the semantic ramifications of the Flog treatment of variables consider the

following example:

Example 10 (Variables in Aggregate Terms: Global versus Bound )

Consider program P3 from Example 4. According to Flog the meaning of an

occurrence of an expression {X : p(X)} in the body of the program’s first rule

changes if X is replaced by a different variable. In Alog, where X is understood

as bound this is not the case. This leads to substantial difference in grounding and

in the semantics of the program. In Alog P3 has one answer set, {p(a), p(b), q(a), r}.
In Flog answer sets of P3 are those of groundf(P3). The answer set of the latter is

{p(a), p(b), q(a)}.

Other semantic differences are due to the multiplicity of informal (and not

necessarily clearly spelled out) principles underlying various semantics.

1 The other difference in reading of S is related to the treatment of variable Y . In Flog the variable is
bound by an unseen existential quantifier. If all the variables are local then S = {X : p(X,Y )} is really
S1 = {X : ∃Y p(X,Y )}. In Alog Y is free. Both approaches are reasonable but we prefer to deal with
the different possible readings by introducing an explicit existential quantifier as in Prolog. It is easy
semantically and we do not discuss it in the paper.
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Example 11 (Vicious Circles in Flog)

Consider the following program, P6, adopted from (Son and Pontelli 2007):

p(1) :- p(0).

p(0) :- p(1).

p(1) :- count{X: p(X)} != 1.

which, if viewed as Flog program, has one answer set A = {p(0), p(1)}. Informal

argument justifying this result goes something like this: Clearly, A satisfies the rules

of the program. To satisfy the minimality principle no proper subset of A should be

able to do that, which is easily checked to be true. Faber et al use so called black

box principle: “when checking stability they [aggregate literals] are either present in

their entirety or missing altogether”, i.e., the semantics of Flog does not consider

the process of derivation of elements of the aggregate parameter. Note however, that

the program’s definition of p(1) is given in terms of fully defined term {X : p(X)},
i.e., the definition contains a vicious circle. This explains why A is not an answer

set of P6 in Alog. In this particular example we are in agreement with Slog which

requires that the value of an aggregate atom can be computed before the rule with

this atom in the body can be used in the construction of an answer set.

The absence of answer set of P6 in Slog may suggest that it adheres to our

formalization of the VCP. The next example shows that it is not the case.

Example 12 (VCP and Constructive Semantics of aggregates)

Let us consider a program P7.

p(a) :- count{X:p(X)} > 0.

p(b) :- not q.

q :- not p(b).

As shown in (Son and Pontelli 2007) the program has twoSlog answer sets, A = {q}
and B = {p(a), p(b)}. If viewed as a program ofAlog, P7 will have one answer set, A.

This happens because the Slog construction of B uses knowledge about properties

of the aggregate atom of the first rule; the semantics of Alog only takes into

account the meaning of the parameter of the aggregate term. Both approaches can,

probably, be successfully defended but, in our opinion, the constructive semantics

has a disadvantage of being less general (it is only applicable to non-disjunctive

programs), and more complex mathematically.

A key difference between our algorithm and those in the existing work (Faber et al.

2008; Gebser et al. 2009) is that the other work needs rather involved methods to

ground the aggregates while our algorithm does not need to ground the aggregate

atoms. As a result, the ground program used by our algorithm may be smaller, and

our algorithm is simpler.

There is also a close connection between the above semantics of aggregates all

of which are based on some notion of a reduct or a fixpoint computation and

approaches in which aggregates are represented as special cases of more general

constructs, such as propositional formulas (Ferraris 2005; Harrison et al. 2013) and

abstract constraint atoms (Marek et al. 2004; Liu et al. 2010; Wang et al. 2012) (Our
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semantics can be easily extended to the latter). Some of the existing equivalence

results allow us to establish the relationship between these approaches and Alog.

Others require further investigation.

6 Conclusion and Future Work

We presented an extension, Alog, of ASP which allows for the representation of

and reasoning with aggregates. We believe that the language satisfies design criteria

of simplicity of syntax and formal and informal semantics. There are many ways

in which this work can be continued. The first, and simplest, step is to expand

Alog by allowing choice rules similar to those of (Niemela et al. 2002). This can

be done in a natural way by combining ideas from this paper and that from

(Gelfond 2002). We also plan to investigate mapping of Alog into logic programs

with arbitrary propositional formulas. There are many interesting and, we believe,

important questions related to optimization of theAlog solver from Section 4. After

clarity is reached in this area one will, of course, try to address the questions of

implementation.
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