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The shapes of two steadily rotating, equal circulation, two-dimensional hollow vortices are
determined and their properties examined. By means of a numerical scheme that accounts
for the doubly connected nature of the fluid domain, it is shown that a one-parameter
family of solutions exists that is a continuation of a corotating point-vortex pair. With
b = 2 set as the distance between the vortex centroids, we find that each vortex reaches a
maximum possible area of 0.796 corresponding to a/b = 0.260 where a is a measure
of the vortex core radius proposed by Meunier et al. (Phys. Fluids, vol. 14, 2002,
pp. 2757–2766). Results are compared to those of a previous study by Saffman & Szeto
(Phys. Fluids, vol. 23, 1980, pp. 2339–2342) in which two corotating patches of uniform
vorticity are considered in place of the hollow vortices studied here. The general behaviour
of the two systems is seen to be similar but some differences are highlighted, especially
when the vortices become close to touching due to the accumulation of vorticity in thin
extended fingers emanating from each of the vortices. The numerical scheme captures
the family of equilibria very close to a critical configuration where these fingers tend to
touch at the centre of rotation corresponding to a/b ≈ 0.283. By a simple adaptation of
the numerical scheme to compute 2-fold rotationally symmetric equilibria for a single
rotating hollow vortex we then show that its limiting configuration is one where a thin
waist forms leading to two separate parts of its single boundary drawing close together.
We give evidence that the limit of this single vortex configuration coincides with the
limit of the two-vortex configuration. The limiting configuration itself turns out not to be
physically admissible, leading to what we refer to as a topological singularity since no
physical quantities blow up, indeed they appear to be continuous as the limiting state is
approached from the two topologically distinct directions.

Key words: vortex dynamics, vortex interactions

1. Introduction

The study of two interacting like-signed two-dimensional vortices, or a ‘vortex pair’, is
an important basic problem in fluid mechanics and is the topic of a recent review (Leweke,
Dizés & Williamson 2016). When each vortex is modelled as a point vortex of circulation
Γ the configuration rotates with constant angular velocity Γ/(4πr2) about the origin if the

† Email address for correspondence: rnelson@ic.ac.uk
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vortices are fixed at (±r, 0) in a corotating frame of reference. In reality it is known that
vortices with a finite core size remain in steady rotation or coalesce (‘merge’) depending
on how large they are compared to the separation of their vortex centroids (Dritschel 1985;
Melander, Zabusky & McWilliams 1988; Meunier et al. 2002; Leweke et al. 2016). There
are many studies linking the question of dynamical vortex merger with the loss of existence
of steadily rotating equilibria (Meunier et al. 2002; Leweke et al. 2016) making the study
of corotating pairs of particular significance.

Finite-size vortices are most commonly modelled in the theoretical literature using the
vortex patch model where the vorticity is assumed to be non-zero and uniform in finite
bounded regions of fluid. Saffman & Szeto (1980) computed the shapes of two steadily
rotating vortex patches. They were interested in understanding the continual coalescence
of the organised or coherent structures of the turbulent mixing layer and the merging of
vortices in the wakes of lifting bodies. They looked for steady corotating equilibria and
found a one-parameter family of solutions that could be thought of as being grown from
the point-vortex solution; they showed there is a minimum centroid separation – discussed
quantitatively later in this paper – for steady rotation to be possible. They also computed
equilibria beyond this minimum where the centroid separation increases and the vortices
become elongated and close to touching. Saffman & Schatzman (1981) computed the
structure of steady staggered streets of vortex patches numerically. Many similar studies
of equilibrium vortex patch configurations are surveyed by Saffman (1992).

A much older model of distributed vorticity, dating back to the 19th century, is the
hollow vortex model where a vortex is modelled as a finite-area constant pressure region
having a non-zero circulation around it (Baker, Saffman & Sheffield 1976; Saffman 1992).
In one of the earliest studies Pocklington (1895) found an analytical solution for two
steadily translating hollow vortices of opposite circulation, a problem revisited recently
in Crowdy, Llewellyn Smith & Freilich (2013) where the authors used a so-called prime
function (Crowdy 2020) to rederive Pocklington’s original solution in a more convenient
form which, in particular, facilitated a linear stability calculation. There has been a recent
resurgence of interest in the hollow vortex model: other studies include Tanveer (1986),
Telib & Zannetti (2011) and Llewellyn Smith & Crowdy (2012) and a hollow vortex
analogue of von Kármán’s staggered point-vortex street (Crowdy & Green 2011); the
last two studies are given in the form of analytical solutions. In a natural extension of
the analytical solution for a steady hollow vortex in a linear strain found by Llewellyn
Smith & Crowdy (2012), Zannetti, Ferlauto & Llewellyn Smith (2016) recently calculated
equilibrium hollow vortices embedded in a shear flow (analytical solutions do not appear
to be available in this case). Other recent related work on steady vortex structures involves
vortices of Sadovskii type comprising a vortex patch with a vortex sheet on its boundary
rather than the usual vortex jump (Freilich & Llewellyn Smith 2017).

This proliferation of fundamental theoretical results based on the hollow vortex model
is missing one basic flow scenario: that of a corotating pair of hollow vortices. This case is
studied here; the shapes of two like-signed hollow vortices in steady rotation are calculated
and discussed. After introducing the problem in § 2, and elucidating how we define the
vortex centroid and some other relevant quantities, a convenient numerical formulation
is presented in §§ 3–4 that facilitates ready numerical calculation of the two corotating
hollow vortices. The scheme is similar in spirit to that used in Zannetti et al. (2016),
but since the flow domain is now doubly connected suitable adjustments are required.
A characterisation of the solutions is given in § 5. The scheme allows us to follow a
family of solutions very close to a limiting state where two thin fingers emanating from
each vortex tend towards the centre of rotation and touch. To get more insight into the
situation, in § 6 we examine the complementary limit of a single rotating hollow vortex
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with a 2-fold rotationally symmetric perturbation from a circular hollow vortex and give
evidence that it tends to the same limiting state. This result is interpreted as evidence of
a topological singularity since no physical quantities blow up and indeed are continuous
across the topological transition.

2. Formulation

Of interest is the identification of relative equilibria in which a pair of equal circulation
hollow vortices rotate with constant angular velocity Ω about the geometrical mid-point
between them. Since hollow vortices only appear to have been previously studied in steady
equilibrium (e.g. Llewellyn Smith & Crowdy 2012; Zannetti et al. 2016) or in steadily
translating configurations (Pocklington 1895; Crowdy & Green 2011) it is not immediately
clear how to define a steadily rotating hollow vortex. Here, we take the arrangement to
be two equal-sized finite-area regions, each with equal non-zero circulation Γ , and with
interiors that are in pure solid body rotation with some angular velocityΩ about the centre
point between them. In a frame of reference corotating with the vortices, the flow inside
the vortices therefore vanishes and can be considered a constant pressure region.

The flow u = (u, v) is incompressible so we can introduce a streamfunction ψ(x, y)
such that

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (2.1a,b)

Exterior to the vortices the streamfunction ψ in the corotating frame satisfies

∇2ψ = −ω = 2Ω, (2.2)

where ω(x, y) denotes the vorticity field. The irrotational flow exterior to the vortices in
the fixed frame becomes a uniform vorticity −2Ω in the corotating frame. The kinematic
condition that each vortex boundary is a streamline in the corotating frame, together with
Bernoulli’s theorem (Saffman 1992; Batchelor 2000) and the condition that the pressure
is constant on the boundary of each vortex imply that

u · n = 0, u · t = q, (2.3a,b)

on each vortex boundary where n is the outward normal to the boundary and t is its tangent
vector as the boundary is traversed in an anticlockwise direction. The constant q is the fluid
speed on the vortex boundary. This is a free boundary problem in which both the shape of
the two hollow vortices and the flow exterior to them must be determined simultaneously,
along with the parameters Ω and q.

In the corotating frame it is convenient to introduce the complex variable z = x + iy
and its complex conjugate z̄ = x − iy and to write (2.2) as

∂2ψ

∂z∂ z̄
= Ω

2
, (2.4)

which allows integration with respect to z and z̄

ψ = Ω

2
zz̄ + Im[w(z)], (2.5)

where w(z) is the complex potential for an irrotational flow exterior to the vortices. It is
convenient to decompose w(z) as

w(z) = wΓ (z)+ h(z), (2.6)
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where wΓ (z) adds in the circulation Γ around the vortices and satisfies the streamline
condition on their boundaries; the contribution h(z), on the other hand, will have zero
circulation around the two vortices.

The boundary conditions (2.3a,b) on each vortex boundary can be written in complex
form as

u + iv = q
dz
ds
, (2.7)

where dz/ds is the complex tangent and ds is the arclength element that increases as each
vortex boundary is traversed in an anticlockwise direction. Using (2.5), we deduce that

u − iv = 2i
∂ψ

∂z
= iΩ z̄ + dw

dz
(2.8)

and hence, using (2.7), it follows that

iΩ z̄ + dw
dz

= q
dz̄
ds

(2.9)

on the boundary of each vortex.
The total circulation Γ of each vortex is given by

Γ = qP + 2ΩA, (2.10)

where we have added the contribution from the constant tangential speed q around
the vortex perimeter P to the uniform vorticity 2Ω over the vortex area A. Since the
circulation is defined to be

Γ =
∫ ∫

D0

ω̃(z, z̄) dA, (2.11)

where D0 denotes, say, the vortex centred on the positive y axis and ω̃(z, z̄) is the vorticity
distribution inside the vortex. The vorticity ω̃(z, z̄) can then be expressed as

ω̃(z, z̄) = qδ(n)+ 2Ω, (2.12)

where we think of an orthogonal coordinate system (s, n) for which the boundary ∂D0
corresponds to n = 0 on which s corresponds to arclength around the n = 0 contour. The
vortex centroid z(v)c and the geometrical centroid zc can be defined (Saffman 1992) by

Γ z(v)c =
∫ ∫

D0

zω̃(z, z̄) dA, Azc =
∫ ∫

D0

z dA. (2.13a,b)

It is easy to show that, for the rotating hollow vortex, z(v)c and zc are related by

Γ z(v)c = q
∮
∂D0

z ds + 2ΩAzc, (2.14)

from which we see, using (2.10), that when q = 0 the vortex centroid coincides with the
geometrical centroid but not otherwise.
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For use later we will also define the quantity

J0 ≡
∫ ∫

D0

|z|2ω̃(z, z̄) dA =
∮
∂D0

q|z|2 ds + 2Ω
∫ ∫

D0

|z|2 dA. (2.15)

By Stokes’ theorem we can write∫ ∫
D0

|z|2 dA = 1
2i

∮
∂D0

zz̄2

2
dz, (2.16)

which means that J0 can be determined by evaluating a contour integral

J0 =
∮
∂D0

q|z|2 ds − iΩ
2

∮
∂D0

zz̄2dz. (2.17)

Meunier et al. (2002) introduced a measure of the size of a vortex, to be considered later,
based on the quantity J defined to be

J =
∫ ∫

D0

|z − z(v)c |2ω̃(z, z̄) dA. (2.18)

After some algebra, and on use of (2.11) and (2.13a,b), we can establish that

J = J0 − |z(v)c |2Γ. (2.19)

3. Conformal mapping

Given the doubly connected nature of the fluid region we will deploy a conformal
mapping method from a parametric annulus, ρ < |ζ | < 1; see figure 1 where we see
that the unit circle |ζ | = 1 is denoted by C0 and the circle |ζ | = ρ by C1. Points in
the z and ζ -planes are related via the conformal mapping z = Z(ζ ) which must be
determined; it will give the shape of the vortices. We take one of the vortices to lie in the
upper-half z-plane, the other being a reflection of it in the real axis. For such a
configuration the conformal mapping can be written as

Z(ζ ) = id

[(
ζ − √

ρ

ζ + √
ρ

)
+

∞∑
n=1

anζ
n − an

(
ρ

ζ

)n
]
, (3.1)

where d ∈ R is a scaling parameter and the coefficients {an ∈ R} are to be found. Under
(3.1) the pre-image of the point at infinity in the co-rotating plane is ζ = −√

ρ and the
pre-image of the origin is ζ = √

ρ. It is also easily checked that

Z(ρ/ζ ) = −Z(ζ ), (3.2)

which guarantees that the vortices are rotations of each other through 180◦. It follows from
(3.1) that

ζZ′(ζ ) = id

[
2
√
ρζ

(ζ + √
ρ)2

+
∞∑

n=1

nanζ
n + nan

(
ρ

ζ

)n
]
, (3.3)

where primes are used to denote differentiation with respect to the argument of the
function. An integral expression for an in terms of ζZ′(ζ ) follows by equating residues,
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Γ

Γ

∂D0

C0

C1

1ρ √ρ

z = Z (ζ)

ζ plane z-plane

0

∂D1

FIGURE 1. Conformal mapping from a concentric annulus ρ < |ζ | < 1 to the fluid region
exterior to two hollow vortices in the corotating z-plane where the vortices are stationary.

namely,

an = − 1
2πin

∮
C0

[
iζZ′(ζ )

d
+ 2

√
ρζ

(ζ + √
ρ)2

]
dζ
ζ n+1

, n ≥ 1, (3.4)

which will be useful later.
Armed with the conformal mapping function the following composed functions can be

introduced:

WΓ (ζ ) ≡ wΓ (Z(ζ )), H(ζ ) ≡ h(Z(ζ )). (3.5a,b)

The form of WΓ (ζ ) follows from a general calculus for finding complex potentials
associated with ideal flows in multiply connected domains described in Crowdy (2010,
2020) and is

WΓ (ζ ) = − iΓ
2π

log ζ + iΓ
π

log
(

P(−ζ/√ρ, ρ)
|√ρ|P(−ζ√ρ, ρ)

)
, (3.6)

where

P(ζ, ρ) =
∞∑

n=−∞
(−1)nρn(n−1)ζ n. (3.7)

The function P(ζ, ρ) defined by this rapidly convergent sum is essentially the so-called
prime function for the annulus (Crowdy 2020). It is the same function used by Crowdy
et al. (2013) in their rederivation of Pocklington’s cotravelling hollow vortex pair. Actually,
only the quantity ζW ′

Γ (ζ ) will be needed in what follows and this can be written as

ζW ′
Γ (ζ ) = iΓ

2π
[2K(−ζ/√ρ, ρ)− 2K(−ζ√ρ, ρ)− 1], (3.8)

where

K(ζ, ρ) ≡ ζ

P(ζ, ρ)
∂

∂ζ
P(ζ, ρ). (3.9)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

80
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.803


The corotating hollow vortex pair 907 A10-7

4. Solving for H(ζ ) and Z(ζ )

While WΓ (ζ ) is known, the function H(ζ ) and the mapping Z(ζ ) remain to be
determined from the boundary conditions (2.8). Multiplication of (2.8) by dz/ds, and use
of (2.6), yields

dz
ds

dh
dz

= q − iΩ z̄
dz
ds

− dz
ds

dwΓ

dz
(4.1)

on each vortex boundary. Noting, from the chain rule and (3.5a,b), that

dh
dz

= H′(ζ )
Z′(ζ )

,
dwΓ

dz
= W ′

Γ (ζ )

Z′(ζ )
, (4.2a,b)

and the fact that

dz
ds

=

⎧⎪⎪⎨
⎪⎪⎩

− iζZ′(ζ )
|Z′(ζ )| , ζ ∈ C0,

+ iζZ′(ζ )
ρ|Z′(ζ )| , ζ ∈ C1,

(4.3)

where the choice of sign in these expressions ensures that ds increases as the boundary
curve is traversed in the anticlockwise direction, (4.1) can be written as

iζH′(ζ ) =
{−q|Z′(ζ )| +ΩZ(ζ )ζZ′(ζ )− iζW ′

Γ (ζ ), ζ ∈ C0,

qρ|Z′(ζ )| +ΩZ(ζ )ζZ′(ζ )− iζW ′
Γ (ζ ), ζ ∈ C1.

(4.4)

The real and imaginary parts of these conditions will be needed in formulating the solution
procedure.

First, on taking the imaginary part of (4.4) it is found that

Im[iζH′(ζ )] = Im[ΩZ(ζ )ζZ′(ζ )] − Im[iζW ′
Γ (ζ )], ζ ∈ C0,C1, (4.5)

or, equivalently,
Re[ζH′(ζ )] = R0(ζ ), ζ ∈ C0,C1, (4.6)

where
R0(ζ ) = Im[ΩZ(ζ )ζZ′(ζ )] − Re[ζW ′

Γ (ζ )]. (4.7)

Therefore, (4.6) is a specification, on the two boundaries of the annulus, of the real part of
a function ζH′(ζ ) known to be analytic and single valued in the annulus. If those real parts
are known this is a well-known problem in complex analysis: it is the modified Schwarz
problem in the annulus (Crowdy 2008, 2020). The solution is furnished, up to a purely
imaginary constant, by the integral formula

ζH′(ζ ) = I1(ζ )+ ic1, (4.8)

where c1 ∈ R is a constant and

I1(ζ ) ≡ 1
2πi

∮
C0

R0(ζ
′)[2K(ζ ′/ζ, ρ)− 1]

dζ ′

ζ ′ − 1
2πi

∮
C1

R0(ζ
′)[2K(ζ ′/ζ, ρ)]

dζ ′

ζ ′ , (4.9)

where K is the function introduced in (3.9) (Crowdy 2008, 2020). It must be true that c1 =
0 in order to avoid a term ic1 log ζ in H(ζ )which would alter the circulation of the vortices
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which has already been fixed by the choice of the contribution WΓ (ζ ) to the complex
potential. While the integral formula (4.9) is explicit, it is often more convenient to use
another method based on equating coefficients in a Laurent series representation of the
unknown function; this method is described in appendix D of Crowdy & Krishnamurthy
(2018); see also Crowdy (2020). Either way, in order for a solution for ζH′(ζ ) to exist, a
solvability condition must be satisfied and this takes the form (Crowdy 2008, 2020)∮

C0

R0(ζ )
dζ
ζ

−
∮

C1

R0(ζ )
dζ
ζ

= 0. (4.10)

Since Im[WΓ (ζ )] = 0 on both C0 and C1 then, for example, on C0,

WΓ (ζ ) = WΓ (1/ζ ) (4.11)

and hence, on differentiation with respect to ζ ,

W ′
Γ (ζ ) = − 1

ζ 2
WΓ

′
(1/ζ ) or Re[ζW ′

Γ (ζ )] = 0, ζ ∈ C0, (4.12)

with the same deduction holding for ζ ∈ C1. Thus, by virtue of our special choice of
WΓ (ζ ), the solvability condition (4.10) reduces, using (4.7), to∮

C0

Im
[
Z(ζ )ζZ′(ζ )

] dζ
ζ

−
∮

C1

Im
[
Z(ζ )ζZ′(ζ )

] dζ
ζ

= 0. (4.13)

However, the first term on the left-hand side is∮
C0

Im
[
Z(ζ )ζZ′(ζ )

] dζ
ζ

= 1
2i

∮
C0

dζ
ζ
(Z̄(ζ−1)ζZ′(ζ )− Z(ζ )ζ−1Z̄′(ζ−1))

= 1
2i

∮
C0

Z̄ dZ + Z dZ̄ = 1
2i

∮
C0

d(ZZ̄) = 0, (4.14)

provided Z(ζ ) is a single-valued function around C0, as must be the case if it is to represent
the required conformal mapping; this single-valuedness requirement on the mapping
function will be enforced explicitly later. A similar result holds for the second term on
the left hand side of (4.13). Thus the solvability condition (4.10) is satisfied if Z(ζ ) is
single valued in the annulus. If the solvability condition is satisfied the solution (4.8) of
the modified Schwarz problem for ζH′(ζ ) exists.

Next, the real part of (4.4) leads to

|ζZ′(ζ )| =
{

S0(ζ ), ζ ∈ C0,

−S0(ζ ), ζ ∈ C1,
(4.15)

where

S0(ζ ) = 1
q

[
Re[ΩZ(ζ )ζZ′(ζ )] + Im[ζW ′

Γ (ζ )+ ζH′(ζ )]
]
. (4.16)

Since ζZ′(ζ ) must not vanish in the annulus if Z(ζ ) is a univalent conformal mapping
from the annulus to the fluid region then, from (3.3), the function defined by

F(ζ ) ≡ log(ζZ′(ζ ))+ log
[
(ζ + √

ρ)2

ζ

]
(4.17)

is analytic and single valued in the annulus because, on inspection of (3.3), the logarithmic
singularities of the two functions on the right-hand side at ζ = 0,−√

ρ cancel out.
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The corotating hollow vortex pair 907 A10-9

Moreover, on use of (4.15),

Re[F(ζ )] =
{

T0(ζ ), ζ ∈ C0,

T1(ζ ), ζ ∈ C1,
(4.18)

where

T0(ζ ) ≡ log(S0(ζ ))+ log
∣∣∣∣(ζ + √

ρ)2

ζ

∣∣∣∣ , T1(ζ ) ≡ log(−S0(ζ ))+ log
∣∣∣∣ (ζ + √

ρ)2

ζ

∣∣∣∣ .
(4.19a,b)

Consequently, (4.18) is a second modified Schwarz problem in the annulus, this time for
the single-valued analytic function F(ζ ). The solvability condition associated with this
second modified Schwarz problem is

∫
C0

dζ
ζ

T0(ζ ) =
∫

C1

dζ
ζ

T1(ζ ). (4.20)

It can be demonstrated, using arguments akin to those used for the first modified Schwarz
problem, that this solvability condition is satisfied if the mapping function is single valued
and satisfies the symmetry condition (3.2). Thus it has a representation

F(ζ ) = I2(ζ )+ ic2, (4.21)

where

I2(ζ ) = 1
2πi

∮
C0

T0(ζ
′)[2K(ζ ′/ζ, ρ)− 1]

dζ ′

ζ ′ − 1
2πi

∮
C1

T0(ζ
′)[2K(ζ ′/ζ, ρ)]

dζ ′

ζ ′ . (4.22)

From (3.3) it is necessary that

eF(ζ ) = (ζ + √
ρ)2Z′(ζ ) → 2

√
ρdi (4.23)

as ζ → −√
ρ which determines c2 according to

eF(−√
ρ) = exp(I2(−√

ρ)+ ic2) = 2
√
ρdi, or eic2 = 2

√
ρdi e−I2(−√

ρ). (4.24)

This means that

Z′(ζ ) = 2
√
ρdi

exp(I2(ζ )− I2(−√
ρ))

(ζ + √
ρ)2

. (4.25)

In order that Z(ζ ) has no logarithmic term at ζ = −√
ρ it must be true that

I′
2(−

√
ρ) = 0. (4.26)

It should be emphasised that the two modified Schwarz problems just described are
coupled and need to be solved simultaneously.
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4.1. Solution procedure
The time scale of the flow is fixed by setting Γ = 1. Since the problem is nonlinear
an iterative scheme (Newton’s method) is appropriate. The Laurent series in (3.1) is
truncated to include N non-zero real coefficients {an|n = 1, . . . ,N} which are N quantities
to be found. All the results to follow, including the near-critical configurations, have been
obtained with N = 64. Three other unknowns are d,Ω and q giving a total of N + 3 real
unknowns. The equations to determine these are as follows.

The length scale for the problem is set by specifying the vortex centroids to be

z(v)c = ±i, (4.27)

which, by the symmetry encoded in the formulation, constitutes a single real equation for
the location on the y axis of the vortex centroid of the upper vortex. Condition (2.10)
relating Γ, q and Ω must be enforced, as must the condition for the single valuedness of
the mapping function, ∮

C0

dZ = 0, (4.28)

which, again by symmetry, is a single real equation and guarantees that the conformal
mapping is single valued around both vortices. To these three equations N additional
equations are added as follows: given an initial guess for d,Ω, q and {an|n = 1, . . . ,N}
we have an initial guess for the mapping Z(ζ ) and the modified Schwarz problem for
ζH′(ζ ) can be solved (we established earlier that (4.28) is the solvability condition for
that problem) and that function is needed as data in the second modified Schwarz problem
for F(ζ ), which can then also be solved. Given F(ζ ), and hence I2(ζ ) from (4.21), (4.25)
provides an expression for Z′(ζ ). This can be substituted into (3.4) for n = 1, . . . ,N to
provide N consistency conditions that must be satisfied by the coefficients in the solution
representation. Together these are N + 3 nonlinear equations for the N + 3 unknowns.

The parameter ρ is used to parametrise the solution class and to serve as a continuation
parameter. For small near-circular vortices with vortex centroids at ±i and radius ε � 1 it
is expected that

an = 0 (n ≥ 1), 1 = Γ ≈ 2πεq + 2Ωπε2, Ω ≈ Ω0 ≡ Γ

4π
= 1

4π
, (4.29a–c)

where Ω0 is the rotation rate of a pair of corotating point vortices at this separation. By
analysis of the mapping (3.1), when all the coefficients {an|n = 1, . . . ,N} vanish, it can
be shown that the solution for two near-circular vortices corresponds to

ρ =
(

1 − √
1 − ε2

ε

)2

≈ ε2

4
, (4.30)

which will be close to zero. In the continuation procedure ρ is gradually increased and the
values of {an}, d,Ω and q from the previous solution used as initial guesses for the next
iteration. Provided steps in ρ are sufficiently small, except near critical configurations,
good convergence can be expected. The algorithm is summarised as follows:

(i) Pick a small value of ε and find the corresponding ρ from (4.30). Then initialise the
N + 3 parameters d,Ω, q and the coefficients {an|n ≥ 1} according to (4.29a–c).

(ii) Use Newton’s method to solve the N + 3 nonlinear equations described above.
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FIGURE 2. (a) Graph of Ω/Ω0 = 4πΩ against A with the area of the critical configuration
indicated. (b) Graph of 4πΩ∗ against the (two possible) centroid locations for the hollow
vortices with normalisation Γ ∗ = 1,A∗ = 1. The solid and dashed lines represent the vortex
and geometrical centroids, respectively; asterisks are for the vortex patch case (where vortex and
geometrical centroids are equivalent). Vortex patch results are from table 1 of Saffman & Szeto
(1980).

ρ A 4πΩ q a/b ρ A 4πΩ q a/b

0.010 0.123 1.000 0.788 0.098 0.250 0.420 1.301 0.233 0.282
0.050 0.541 1.018 0.346 0.205 0.300 0.355 1.330 0.235 0.282
0.106∗ 0.795∗ 1.090∗ 0.249∗ 0.260∗ 0.350 0.326 1.343 0.236 0.283
0.150 0.712 1.168 0.232 0.274 0.400 0.315 1.349 0.236 0.283
0.200 0.542 1.248 0.231 0.280 0.415† 0.313† 1.350† 0.236† 0.283†

TABLE 1. Numerical values of A, 4πΩ, q and a/b for different values of ρ. Values annotated
with an asterisk correspond to the maximum area solution shown in figure 4, whereas those
annotated with a dagger are for the near-critical configuration shown in figure 5.

(iii) Once the Newton iteration has converged, record all parameter values and compute
A,P, a/b for the associated vortex equilibrium (the quantity a/b is defined in § 5).

(iv) Increase ρ by a small amount and go to step (ii).

The values of A and P are calculated a posteriori from knowledge of the conformal
mapping function. Condition (4.26) is not explicitly enforced by our solution procedure
but it is verified to hold, also a posteriori, providing an additional consistency check on
the solution.

5. Characterisation of the corotating hollow vortices

Figure 2 shows graphs of vortex area A against the normalised angular velocity
Ω/Ω0 = 4πΩ . As ρ increases the vortex area initially increases, as does the angular
velocity, until a maximum vortex area of 0.795 is reached. This occurs at ρ ≈ 0.106 and
the corresponding values of other diagnostics on this vortex configuration are recorded
in table 1. For readers interested in reproducing our results this table also records this
diagnostic information for a range of other ρ values. Also shown in figure 2(b) is a graph
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of the distance |z(v)c | of the vortex centroid from the centre of rotation, as well as the
geometrical centroid distance |zc|, as functions of the angular velocity; note that the data
in this graph have been renormalised to be consistent with the different normalisation
Γ ∗ = 1,A∗ = 1 used by Saffman & Szeto (1980) for corotating vortex patches (asterisks
are used to reflect any quantities rewritten using this scaling). This is done to facilitate
a comparison of the hollow vortex results with the vortex patch results of Saffman &
Szeto (1980) whose data points are shown by asterisks in figure 2. For large separations,
as expected, the systems behave in a similar manner. Marked differences occur, however,
as the vortices get closer together and their shapes become more distorted from circular.
In all cases these graphs exhibit a ‘turnaround’, where the centroids reach a minimum
separation; initial signs of this turnaround were seen by Saffman & Szeto (1980) but their
computations were not pushed to the same extent as here where this turnaround of the
curve is seen quite distinctly. The minimum centroid separation is smaller for the vortex
patch case and the corresponding angular velocity higher. For the hollow vortices the
vorticity centroid and geometrical centroid remain close up until the minimum centroid
separation is approached. Beyond this turnaround in the curves the hollow vortices become
more elongated and the vortex centroids draw distinctly closer together compared to the
geometrical centroids owing to an accumulation of circulation in the elongated tips of the
vortices.

For corotating vortex patches Saffman & Szeto (1980) report the critical value of
h/R = 1.58 where 2h is the centroid separation distance and πR2 is the vortex area; the
corresponding value of this quantity for the critical hollow vortex pair is (

√
0.795/π)−1 ≈

1.99, which is clearly somewhat higher. Saffman & Szeto (1980) also mention earlier
studies which had found critical values of 1.7 or 1.9 ‘depending on how the vortex radius
was defined’. This question of how to quantify vortex size has been investigated in more
detail since their work and it is perhaps more interesting to compute the value of a/b
where, in this case, b = 2 is the distance between the vortex centroids and

a =
√

J
Γ
, (5.1)

is a measure of the vortex core size proposed by Meunier et al. (2002) where J is defined
in (2.18). A graph of a/b against A is shown in figure 3. At the maximum value of the
vortex area A above which equilibria no longer exist we find a/b ≈ 0.260. The value
of a/b does not itself reach a maximum at this point of maximal area, however, and it
continues to increase even as the vortex area starts to decrease. The quantity a/b reaches
its maximum value of a/b ≈ 0.283 at the critical configuration where the two vortices
almost touch. The values 0.260 and 0.283 are not hugely different but both values are
larger than the theoretical value of 0.218 ± 0.010 proposed by Meunier et al. (2002) (see
also the discussion in Leweke et al. 2016). All these discrepancies with other vortex models
are likely to be attributable to the concentration of vorticity in the vortex boundaries, i.e.
the contribution qP to the total vortex circulation, which is a feature peculiar to the hollow
vortex model. Figure 3 also shows the split of the unit circulation Γ = 1 of each vortex
between the two contributions qP and 2ΩA and reveals that even past the maximum area
configuration most of the circulation of the vortices is held in the vorticity concentrated
on their boundaries.

Figure 4 shows typical vortex shapes for ρ = 0.05, 0.106 and ρ = 0.3; the vortices for
ρ = 0.106 correspond to the maximum area configuration. As the critical configuration
is approached the two vortices extend thin ‘fingers’ towards the centre of rotation.
The calculations suggest that the tips of these fingers draw arbitrarily close together
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FIGURE 3. Graphs of a/b, with a defined in (5.1), qP and 2ΩA, as functions of A.
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FIGURE 4. Typical equilibrium shapes of the hollow vortices in the corotating frame for ρ =
0.05, 0.106 and ρ = 0.3. The vortex centroids are fixed at ±i. The case with ρ = 0.106 is the
maximum area solution. (a) ρ = 0.05; (b) ρ = 0.106; (c) ρ = 0.3.

without blow-up of any physical quantities. The near-critical configuration, with ρ =
0.415, is shown in figure 5 with an inset showing the near-touching tips of the fingers
protruding from each vortex towards the centre of rotation. Numerically the radius of
curvature of the tip becomes so small that eventually the numerical method loses accuracy
by the growth in contributions from the high-order modes and small oscillations of the
vortex boundary in the vicinity of the fingers tips; with N = 64 modes this is found to
occur, however, only after the tips of the two vortices are approximately distance 10−4

apart (recall that we have normalised the length scale via (4.27)).
This evidence suggests that, with higher numerical resolution, the vortices will

come arbitrarily close to touching at the origin as ρ increases further. Instead of a
higher-resolution numerical investigation, we adopt a different strategy to explore this
possibility and ask instead about a single isolated rotating hollow vortex. No solutions for
such an object have yet been reported in the literature, so we will adapt our methods and
investigate this in the next section. What is known is that the only solution for an isolated
non-rotating hollow vortex is a circular one (Llewellyn Smith & Crowdy 2012). But what
happens if a single hollow vortex is allowed to rotate steadily? Answering this question
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FIGURE 5. Near-critical shape of two corotating hollow vortices for ρ = 0.415. The inset shows
a magnified view of the two near-touching ‘fingers’ from each vortex near the centre of rotation.

turns out to give significant insight into the limiting two-vortex configuration depicted in
figure 5.

6. A single rotating hollow vortex

An advantage of conformal mapping method is that the case of a single rotating hollow
vortex can be formulated immediately with only minor changes as the ρ → 0 limit of the
problem already formulated in the annulus. A single rotating hollow vortex is defined as
a vortex of total circulation Γ rotating steadily with angular velocity Ω containing fluid
in solid body rotation with this same angular velocity and with fluid of speed q on its
boundary. Now the conformal mapping to the fluid region exterior to the single vortex is
from the unit disc |ζ | < 1. Specifically, the conformal mapping with ζ = 0 mapping to
infinity now takes the form

z = Z(ζ ) = id

[
1
ζ

+
∑
n≥1

anζ
n

]
, (6.1)

where {an|n ≥ 1} are a set of real coefficients to be found. To highlight the similarities
with the two-vortex problem we will use the same notation already used in that problem
with the understanding that the context is now different. It is clear that

ζZ′(ζ ) = id

[
−1
ζ

+
∑
n≥1

nanζ
n

]
, (6.2)
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so that the requisite integral expression for an in terms of ζZ′(ζ ) in this case is

an = − 1
2πdn

∮
C0

Z′(ζ )
dζ
ζ n
, n ≥ 1. (6.3)

Furthermore, WΓ (ζ ) now simplifies to

WΓ (ζ ) = iΓ
2π

log ζ, ζW ′
Γ (ζ ) = iΓ

2π
. (6.4a,b)

The time scale of the flow is fixed by setting Γ = 2 since we proceed on the assumption
that this single-vortex configuration will connect in some way to the two-vortex
configuration, each having circulation Γ = 1, studied previously. The condition on the
vortex boundary is again given by (4.4)

iζH′(ζ ) = −q|Z′(ζ )| +ΩZ(ζ )ζZ′(ζ )− iζW ′
Γ (ζ ), ζ ∈ C0. (6.5)

The formulation again leads to two Schwarz problems for analytic functions in the unit
disc, and since the unit disc is simply connected there are no longer any solvability
conditions. We have

Re[ζH′(ζ )] = R0(ζ ), ζ ∈ C0, (6.6)

with R0(ζ ) still given by formula (4.7) and this is a Schwarz problem in the disc for the
analytic function ζH′(ζ ). Its solution is furnished by the Poisson integral formula

ζH′(ζ ) = 1
2πi

∮
C0

dζ ′

ζ ′

(
ζ ′ + ζ

ζ ′ − ζ

)
R0(ζ

′)+ ic1, (6.7)

where the real constant c1 = 0 in order to avoid H(ζ ) having a logarithmic singularity at
ζ = 0. If we now define a modified function

F(ζ ) ≡ log(ζZ′(ζ ))+ log ζ (6.8)

then the logarithmic singularities of both functions at ζ = 0 cancel out. Then

Re[F(ζ )] = T̃0(ζ ), ζ ∈ C0, (6.9)

where
T̃0(ζ ) ≡ log(S0(ζ ))+ log |ζ |. (6.10)

This is the second Schwarz problem for the analytic function F(ζ ) in the unit disc and the
Poisson integral formula again provides the required solution.

The same iterative scheme as described in § 4.1 can now be deployed. In all results to
follow the Laurent series (6.1) is truncated at N = 32 terms. Since the vortex centroid
is expected to remain at the origin the length scale is now set by fixing the vortex area
A = π with the vortex perimeter P now used as the continuation parameter starting from
a circular vortex configuration of unit radius where

A = π, P = 2π, d = 1, an = 0, n = 1, . . . ,N. (6.11a–d)

Since this circular configuration is degenerate – a circular vortex is an equilibrium for any
values of q and Ω satisfying (2.10) – to bifurcate from this trivial branch it is necessary to
seed the iteration with a non-zero initial value of a1 which encodes elliptical distortions to
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the circular vortex, that is, distortions with a 2-fold rotational symmetry about the origin.
Indeed, a local analysis can be used to determine analytically the values of q and Ω at
which steady solution branches with non-zero a1 bifurcate from the circular solution. It
can be posed that

Z(ζ ) = id
[

1
ζ

+ εa1ζ + . . .

]
, H(ζ ) = εh2ζ

2 + . . . , ε � 1, (6.12a,b)

where h2 is the leading coefficient of H(ζ ). These are the forms for an elliptical
perturbation expected theoretically. These can be substituted into the boundary condition
(6.5) which can then be linearised in ε. Both sides of this boundary condition can be
expanded as a Laurent series convergent for ζ ∈ C0 and, on equating powers of ζ in these
Laurent series, the conditions

Γ

π
= dq +Ωd2,

q
2

= dΩ (6.13a,b)

are deduced on equating the coefficients of ζ 0 and ζ−2 respectively. The first of these is just
a restatement of condition (2.10). With Γ = 2 and d = 1 we can solve these two equations
for q and Ω:

q = 2
3π
, Ω = 1

3π
. (6.14a,b)

More generally, although we do not explore them here because they are tangential to our
present goals, it is expected that there exist bifurcations, from a circular vortex, of steadily
rotating hollow vortices with m-fold rotational symmetry about the origin of which the
case of particular interest here is m = 2.

Figure 6 shows a graph of q and Ω against the rescaled perimeter P/2π for the family
of single rotating hollow vortex solutions found using the numerical scheme. The two
crosses shown on the graphs confirm that the numerical method retrieves the theoretical
values (6.14a,b) just predicted and this provides a check on the numerical method.

The shapes of the hollow vortex for P/2π = 1.05, 1.5 and 2.5 are shown in figure 7.
As the perimeter increases the vortex is found to become elongated along the direction of
the y-axis and eventually develop a ‘waist’ where the two sides of the vortex draw closer
together. Eventually a limiting configuration at P/2π ≈ 2.826 is found where two distinct
parts of the vortex boundary appear to almost touch; the calculations are terminated
just before this occurs since such a touching configuration is not physically admissible.
Figure 8 shows the (rescaled) near-critical configuration: two distinct parts of the vortex
boundary are drawing close together and, as shown in the inset close-up, are separated by
a distance of the order of 10−4.

All the calculations point to the formation of what we refer to as a topological
singularity: it is clear visually that the shape of the limiting configuration of the single
rotating hollow vortex as its waist thins and the two sides of the vortex draw close together
is very similar to the limiting configuration of the two rotating hollow vortices as the two
‘fingers’ protruding from each vortex nearly touch. Indeed, the calculations point to the
two scenarios producing the same limiting shape, albeit via topologically distinct limits:
compare figures 5 and 8 where the latter figure has been rescaled so that the vortex has
the same area as the sum of the two vortices in figure 5. Quantitatively, if we introduce the
length scale factor L based on the critical area Acrit = 0.311 of each of the two corotating
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FIGURE 6. Graphs of q and Ω against P/2π for a single rotating hollow vortex. Values for the
critical configuration are indicated by small circles. The q-curve intersects the axis at the cross
at 1/(3π), the Ω-curve at the red cross at 2/(3π) as predicted in (6.14a,b).
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FIGURE 7. Typical equilibrium shapes of a single hollow vortex in the corotating frame for
P/2π = 1.05, 1.5 and 2.5. The vortices all have area A = π. (a) P/2π = 1.05; (b) P/2π =
1.5; (c) P/2π = 2.5.
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FIGURE 8. Near-critical shape of single rotating hollow vortex for P/2π = 2.826 rescaled so
that it has the same area as the two near-critical rotating hollow vortices of figure 5.

vortices shown in figure 2, namely,

L =
(

2 × 0.311
π

)1/2

(6.15)

and use this to rescale the critical values of q = 0.1050 and Ω = 0.0212 for the single
vortex indicated in figure 6 we find

q∗ = q
L

= 0.1050
L

= 0.236, 4πΩ∗ = 4π

(
Ω

L2

)
= 4π

(
0.0212

L2

)
= 1.346, (6.16a,b)

which are very close to the values indexed by daggers in table 1 and corresponding to
the near-critical configuration of two hollow vortices shown in figure 5. We offer this as
evidence that the single-vortex and two-vortex scenarios are tending to the same limiting
configuration. The limiting ‘touching’ configuration itself is not physically admissible
since, by the symmetry of the arrangement, the origin at which the vortices touch would
need to be a stagnation point meaning that, for a continuous limit, we would need q → 0.
Figure 9 superposes a close-up of this topological transition based on the numerical
calculations closest to transition calculated using both the single-vortex and two-vortex
numerical codes.

7. Discussion

This paper, which is the first to study the notion of a ‘rotating hollow vortex’, has
presented a study of a like-signed corotating vortex pair using the hollow vortex model.
The nonlinear free boundary problem has been solved using a numerical method, suited to
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FIGURE 9. Illustration of the topological singularity: the topology of the vortex boundary
changes but all physical quantities (q and Ω) are continuous across the singularity.

the doubly connected nature of the fluid domain, that captures almost the entire branch of
solutions up to what we call a topological singularity where the two vortices are observed
to form from the break-up of a single rotating hollow vortex and where all physical
quantities are continuous across the transition. A family of corotating single-vortex
structures has also been computed using a simple adaptation of the numerical scheme.

The results provide evidence of steady vortex merger: two rotating hollow vortices,
starting as two distinct near-circular hollow vortices, are shown to deform through a
continuous family of corotating equilibria to merge at a critical configuration to form
a single rotating vortex structure; that single vortex is itself a continuous deformation
from a single circular rotating hollow vortex. This is reminiscent of a similar result
involving vortex patches found by Crowdy & Marshall (2004). Those authors also start
with a corotating point-vortex pair and show, by growing two small vortex patches
at the two stagnation points of the associated flow field in the corotating frame, that
this 2-point-vortex equilibrium is connected to the circular Rankine vortex through the
continuous family of non-trivial rotating equilibria involving the steady merger of the two
vortex patches which eventually touch. This continuous sequence of equilibria is shown in
figure 2 of Crowdy & Marshall (2004).

Conversely, the calculations show steady vortex break-up: a single rotating vortex forms
a thin waist which touch at a critical angular velocity causing the vortex to break up into
two distinct vortices. Based on the evidence here we conjecture that the recently computed
single hollow vortex in shear (Zannetti et al. 2016), which also exhibits a limiting state with
a thin waist, will similarly break up into two distinct vortex structures via a topological
singularity of the kind exemplified here. The numerical algorithm presented here for the
two-vortex case can be easily adapted to that scenario. Such steady pinch-off phenomena
are characteristic of a single hollow vortex equilibrium in an irrotational straining flow
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(Llewellyn Smith & Crowdy 2012) and we anticipate that similar topological singularities
will be observed there too. It is also worth mentioning that a steady pinch-off akin to that
observed here and in other hollow vortex problems is also observed in the different, but
related, problem of a single non-rotating hollow vortex equilibrium with surface tension
active on its boundary (Crowdy 1999; Wegmann & Crowdy 2000).

Steady vortex merger is, of course, quite different to dynamical merger and the related
question of the stability of the equilibria found in this paper remains to be investigated.
Stability studies on hollow vortex equilibria are still rare, with the linear stability of
Pocklington’s (1895) cotravelling vortex pair only studied recently by Crowdy et al. (2013).
The stability of an isolated hollow vortex in strain was studied by Llewellyn Smith &
Crowdy (2012) around the same time. As mentioned in the Introduction, the idea of using
the non-existence of steady equilibria as a signature of dynamical vortex merger is well
known (Meunier et al. 2002; Leweke et al. 2016) and, for this, the maximum area solution
found here might have some relevance. For the rotating hollow vortex pair, however, it
is interesting to note that it is not true that the diagnostic a/b put forward by Meunier
et al. (2002) reaches a maximum value before the critical state is reached. Indeed, we
have found that a/b = 0.260 at the maximum area configuration but continues to increase
to a/b = 0.283 close to the topological singularity. This is believed to be due to the
peculiarity of the hollow vortex model in having a good portion of its total net circulation
carried in its boundary.

The formulation here should be straightforward to extend to N > 2 rotating hollow
vortices in a polygonal ring thereby extending the classic study of Thomson (Saffman
1992) to rotating polygonal rings of hollow vortices. A direct extension of the approach
herein would use prime functions associated with higher connected domains (Crowdy
2020); in terms of those functions there exist convenient integral formulas for solutions
to the modified Schwarz problems that would generalise those arising here. Moreover,
the same calculus given by Crowdy (2010) would provide the relevant WΓ (ζ ) function
generalising that used in (3.6). It would be interesting to see if similar topological
singularities exist between limits of those N-vortex solutions and limiting states of
higher-order N-fold symmetric bifurcations from a single circular hollow vortex.

The solutions here sit within a broader class of vortex structures of ‘Sadovskii type’
(Sadovskii 1971; Saffman 1992); these are vortex patches with vortex sheets on their
boundaries (rather than just vortex jumps). A recent study of such structures in ambient
flow fields has been carried out by Freilich & Llewellyn Smith (2017) where a parameter
is introduced that governs the amount of the total vorticity of the structure that is held in
the patch compared to the boundary sheet. In the solutions considered here this parameter
has been set implicitly by insisting that the fluid inside the hollow vortices is in pure solid
body rotation which slaves the choice of this patch vorticity to the angular velocity of
the combined structure. However, this condition can presumably be relaxed and broader
classes of ‘steadily rotating Sadovskii vortex pairs’ are expected to be available.

Acknowledgements

R.B.N. and D.G.C. received support from the Engineering and Physical Sciences
Research Council (EP/K019430/10). D.G.C. acknowledges a Royal Society Wolfson
Research Merit Award. V.S.K. acknowledges financial support from CAPES/Brazil
through a Science Without Borders postdoctoral program during his stay at the Federal
University of Pernambuco, Recife. All authors acknowledge support from EPSRC grant
EP/R014604/1 during the ‘Complex analysis: techniques, applications and computations’
program at the Newton Institute in Cambridge (Sep-Dec 2019).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

80
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.803


The corotating hollow vortex pair 907 A10-21

Declaration of interests

The authors report no conflict of interest.

REFERENCES

BAKER, G. R., SAFFMAN, P. G. & SHEFFIELD, J. S. 1976 Structure of a linear array of hollow vortices
of finite cross-section. J. Fluid Mech. 74, 469–476.

BATCHELOR, G. K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.
CROWDY, D. G. 1999 Circulation-induced shape deformations of drops and bubbles: exact

two-dimensional models. Phys. Fluids 11 (10), 2836–2845.
CROWDY, D. G. 2008 The Schwarz problem in multiply connected domains and the Schottky-Klein prime

function. Complex Var. Elliptic 53, 221–236.
CROWDY, D. G. 2010 A new calculus for two-dimensional vortex dynamics. Theor. Comput. Fluid Dyn.

24, 9–24.
CROWDY, D. G. 2020 Solving Problems in Multiply Connected Domains. Society for Industrial and

Applied Mathematics.
CROWDY, D. G. & GREEN, C. C. 2011 Analytical solutions for von Kármán streets of hollow vortices.

Phys. Fluids 23, 126602.
CROWDY, D. G. & KRISHNAMURTHY, V. S. 2018 The effect of core size on the speed of compressible

hollow vortex streets. J. Fluid Mech. 836, 797–827.
CROWDY, D. G. & MARSHALL, J. S. 2004 Growing vortex patches. Phys. Fluids 16, 3122–3129.
CROWDY, D. G., LLEWELLYN SMITH, S. G. & FREILICH, D. V. 2013 Translating hollow vortex pairs.

Eur. J. Mech. B/Fluids 37, 180–186.
DRITSCHEL, D. G. 1985 The stability and energetics of corotating uniform vortices. J. Fluid Mech.

157, 95–134.
FREILICH, D. V. & LLEWELLYN SMITH, S. G. 2017 The Sadovskii vortex in strain. J. Fluid Mech. 825,

479–501.
LEWEKE, T., DIZÉS, S. L. & WILLIAMSON, C. H. K. 2016 Dynamics and instabilities of vortex pairs.

Annu. Rev. Fluid Mech. 48, 507–541.
LLEWELLYN SMITH, S. G. & CROWDY, D. G. 2012 Structure and stability of hollow vortex equilibria.

J. Fluid Mech. 691, 178–200.
MELANDER, M. V., ZABUSKY, N. J. & MCWILLIAMS, J. C. 1988 Symmetric vortex merger in two

dimensions: causes and conditions. J. Fluid Mech. 195, 303–340.
MEUNIER, P., EHRENSTEIN, U., LEWEKE, T. & ROSSI, M. 2002 A merging criterion for

two-dimensional co-rotating vortices. Phys. Fluids 14, 2757–2766.
POCKLINGTON, H. C. 1895 The configuration of a pair of equal and opposite hollow straight vortices of

finite cross-section, moving steadily through fluid. Proc. Camb. Phil. Soc. 8, 178–187.
SADOVSKII, V. S. 1971 Vortex regions in a potential stream with a jump of Bernoulli’s constant at the

boundary. Z. Angew. Math. Mech. 809, 729–735.
SAFFMAN, P. G. 1992 Vortex Dynamics. Cambridge University Press.
SAFFMAN, P. G. & SCHATZMAN, J. C. 1981 Properties of a vortex street of finite vortices. SIAM J. Sci.

Stat. Comput. 2 (3), 285–295.
SAFFMAN, P. G. & SZETO, R. 1980 Equilibrium shapes of a pair of equal uniform vortices. Phys. Fluids

23, 2339–2342.
TANVEER, S. 1986 A steadily translating pair of equal and opposite vortices with vortex sheets on their

boundaries. Stud. Appl. Maths 74, 139–154.
TELIB, H. & ZANNETTI, L. 2011 Hollow wakes past arbitrarily shaped obstacles. J. Fluid Mech.

669, 214–224.
WEGMANN, R. & CROWDY, D. G. 2000 Shapes of two-dimensional bubbles deformed by circulation.

Nonlinearity 13, 2131–2141.
ZANNETTI, L., FERLAUTO, M. & LLEWELLYN SMITH, S. G. 2016 Hollow vortices in shear. J. Fluid

Mech. 809, 705–715.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

80
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.803

	1 Introduction
	2 Formulation
	3 Conformal mapping
	4 Solving for H(ζ) and Z(ζ)
	4.1. Solution procedure

	5 Characterisation of the corotating hollow vortices
	6 A single rotating hollow vortex
	7 Discussion
	References

