
SPECTRAL METHODS FOR THE CALCULATION OF RISK MEASURES
FOR VARIABLE ANNUITY GUARANTEED BENEFITS

BY

RUNHUAN FENG AND HANS W. VOLKMER

ABSTRACT

Spectral expansion techniques have been extensively exploited for the pricing of
exotic options. In this paper, we present novel applications of spectral methods
for the quantitative risk management of variable annuity guaranteed benefits
such as guaranteed minimummaturity benefits and guaranteed minimum death
benefits. The objective is to find efficient and accurate solution methods for the
computation of riskmeasures, which is the key to determining risk-based capital
according to regulatory requirements. Our example calculations show that two
spectral methods used in this paper are highly efficient and numerically more
stable than conventional known methods. Hence these approaches are more
suitable for intensive calculations involving death benefits.

KEYWORDS

Variable annuity guaranteed benefit, Asian option, risk measures, value at
risk, conditional tail expectation, geometric Brownian motion with affine drift,
Sturm-Liouville problem, spectral expansion, Green’s function.

1. INTRODUCTION

Variable annuities are among the most complex equity-based investment prod-
ucts available in the insurancemarket. Policyholders are offered a variety of sub-
accounts, each of which has a distinct investment objective. The financial returns
in subaccounts are linked to the performance of the funds in which they invest.
Without additional guarantee riders, insurers (variable annuity writers) merely
act as the steward of policyholders’ investment in much the same relation of
fund managers to mutual funds. In particular, the financial risks are effectively
transferred to policyholders. However, in the past decade, with the increasingly
fierce competitionwithmutual funds, nearly all annuity writers introduced com-
plex option-like guaranteed benefit riders to attract personal investors wary of
the downside risk of fund participation. The riders are developed with various
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types of minimal benefits to protect the policyholders’ investment under adverse
economic circumstances. As a result, insurers assume a certain portion of finan-
cial risks back from policyholders. Thus, the accurate and efficient assessment
of financial risks embedded in guaranteed benefits is crucial for themaintenance
and management of guarantee products.

The current market practice of pricing, reserving and setting risk capi-
tal for variable annuities relies primarily on Monte Carlo simulations. There
have been extensive studies on the applications of simulation techniques to
the valuation of various types of guaranteed benefits. See for example, Bauer
et al. (2008), Bacinello et al. (2011), Piscopo and Haberman (2011), etc. How-
ever, it is acknowledged in the insurance industry that the costs of simula-
tions can sometimes be prohibitive even with the aid of variance reduction
techniques. Insurers are often forced to find a balance between accuracy, ex-
penses and the timeliness of delivery on results. Such issues in the industrial
practice are well documented in Farr et al. (2008). There are non-statistical
procedures for modeling guaranteed benefits in the literature, such as numer-
ical schemes developed for pricing guaranteed minimum withdrawal benefits
in Milevsky and Salisbury (2006), Dai et al. (2008), Chen and Forsyth (2008).
However, the existing literature almost exclusively focuses on pricing and hedg-
ing. Relatively little is known about risk management using non-statistical
methods.

From the broader perspective of financial theory, variable annuities can be
viewed as path-dependent derivatives. Although the pricing techniques of ex-
otic options are not new, the complexity of modeling variable annuity guaran-
teed benefits presents rather unique challenges in many aspects. First, insurance
products are generally very long-term in comparison with short-lived financial
derivatives. Regulatory risk capital requirements are set up to ensure variable
annuity writers keep sufficient funds to cover unexpected losses. Due to their
long-term nature, the guarantee products require frequent valuations and de-
terminations of risk capital. Numerical procedures for the calculation of risk
measuresmay lead to the issue of error accumulation over long horizon. Second,
many intricate guarantee features are intertwined in the products. The combi-
nation of multiple exotic option types are often more difficult to model than the
stand-alone options. Third, the assessment of longevity risks embedded in vari-
able annuities multiplies the computational effort for valuations and setting risk
capital.

A close connection between the payoff of Asian options and insurers’ liabili-
ties for variable annuity guaranteed benefits was observed and exploited in Feng
and Volkmer (2012). The authors provided explicit solutions to a few key quan-
tities, which lead to analytical calculations of commonly used riskmeasures such
as value-at-risk and conditional tail expectation. The methodologies used in the
paperwere largely based on the joint distribution of geometric Brownianmotion
and its integral known from the seminar paper by Yor (1992). Tremendous im-
provements on accuracy and efficiency were observed in comparison with crude
Monte Carlo simulations. However, as pointed out in the remarks regarding
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(3.8) of Feng and Volkmer (2012), the methods are much less efficient with small
volatility parameters, which can be time-consuming for computations involving
death benefits.

In this paper, we present applications of two spectral methods both of which
are shown to be more efficient than those in Feng and Volkmer (2012). The
advantages of spectral methods in the context of quantitative risk management
are multifold.

1. Spectral methods are known to work for a variety of asset pricing models.
Their applications in the geometric Brownianmotionwith affine drift model
in this paper can be viewed as a first step that lends itself to more general
stochastic models.

2. They can be used in various ways to provide both exact evaluation and ap-
proximations of risk measures, as we shall demonstrate in this paper. That
offers great flexibility in addressing the issue of trade-off between accuracy
and efficiency, often faced by practitioners.

3. They can work for both pricing and computations of risk measures. These
two integral parts of product development are often treated separately in
practice and in the actuarial literature. The study of spectral methods may
offer some hints on the development of a more holistic approach to the
management of variable annuity products.

2. VARIABLE ANNUITY GUARANTEED BENEFITS

We consider two types of variable annuity riders, namely guaranteed minimum
maturity benefits (GMMB) and guaranteed minimum death benefits (GMDB).
For simplicity, we do not consider dynamic policyholder behavior relating to
fund performance, such as high lapses in periods of low fund values. Although
surrender charges are not included explicitly, they can be easily incorporated
with rider charges. We introduce the “alphabet soup” for the notation to be
used in the models.

• G, the initial guarantee level at policy issue. It is typically a fixed amount
under the GMMB rider. The guarantee may also accrue compound interest
at the rate of δ up to an advanced age. This is referred to as a roll-up option,
often seen with the GMDB rider.

• Ft, the market value of the investment account at t ≥ 0. F0 is referred to as
the initial purchase payment. For simplicity, we assume that no additional
purchase payment or withdrawal is allowed.

• St, themarket value of the underlying equity fund at t. The asset price process
of this fund is defined, on a probability space denoted by (�, P, {Ft}t≥0), by
a geometric Brownian motion (GBM)

St = S0eμt+σ Bt , t > 0, (2.1)
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where B is a standard Brownian motion. Simple as it is, this model in fact
encompasses more general setups, such as a portfolio of risk-free assets and
a risky asset, which is driven by aGBM, or a portfolio of multiple assets, each
of which is driven by a GBM and the proportion of the portfolio attributable
to each asset remains constant (known as an automatic rebalancing option).

• m, the annualized rate at which all fees and charges are deducted from the
investment account. Contract fees and expenses are typically calculated and
accrued on a daily basis. Thus it is reasonable for us to treat all charges as
being taken out continuously. The charges allocated to fund the guarantees
are also called margin offset and usually split by benefit.We denote the annu-
alized rate of charges allocated to the GMMB by me and that to the GMDB
by md . Note that the total fee m in general includes overheads and other
expenses and hence is larger than the sum of rider changes, i.e.m > me +md .

• T, the target value date (or called maturity date), typically a policy
anniversary.

• L0, the present value of future liabilities, discounted at a constant risk-free
force of interest of r per year. The rate reflects the overall yield on assets
backing up the liabilities.

• τx, the future lifetime of a policyholder of age x at issue. The mortality is
assumed to be independent of the performance of investment accounts. We
denote by T px the probability that a life aged x survives T years and Tqx the
probability that a life aged x dies within T years.

At the end of each trading day, the account value ismarked-to-market according
to the performance of funds in which it invests, and mortality and expenses
(M&E) fees and rider charges are deducted from the account. Hence, without
the effect of investment guarantees, the account value at time t is given by

Ft = F0
St
S0
e−mt, 0 ≤ t ≤ T, (2.2)

and the margin offset income at time t is given by

Mt = mxFt, 0 ≤ t ≤ T,

where mx is replaced with me for the GMMB or md for the GMDB.
TheGMMB rider offers the investor at maturity T the greater of a minimum

guaranteed amount G and the account value at maturity FT. The VA writer
is liable for the difference, called gross liability, should the former exceeds the
latter. In consideration of income generated by the collection of margin offsets
{Ms, 0 ≤ s ≤ T}, we can formulate for each contract the present value of the
net liability, which is the gross liability net of rider charges, as follows.

L0 := e−rT(G − FT)+ I(τx > T) −
∫ T∧τx

0
e−rsMs ds. (2.3)
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The GMDB rider offers the investor at the time of death the greater of a
minimum guaranteed amount and the account value at the time of death. How-
ever, in practice, death benefits are not paid immediately due to investigation and
administrative handling.We use the curtate future lifetime κ(n)

x in years rounded
to an accounting period end, say, the upper one n-th of a year.

κ(n)
x := 1

n
�nτx�,

where �x� is the integer ceiling of x. Suppose the investment account is accumu-
lated and rider charges are deducted up until the end of the one n-th year of the
policyholder’s death and the death benefit is payable at the end of the one n-th
year. Then the net liability under the GMDB rider is given by

L(n)
0 = e−rκ(n)

x (eδκ
(n)
x G − F

κ
(n)
x

)+ I(κ(n)
x ≤ T) −

∫ T∧κ
(n)
x

0
e−rsMs ds. (2.4)

It is worthwhile noting that both net liability models, (2.3) for the GMMB
and (2.4) for the GMDB, are based on individual contracts. Both models de-
scribe interactions between two sources of uncertainty – (1) Financial risks, em-
bedded in the put-option-like guaranteed benefits and asset-based fee income.
The origin of financial risks goes back to the random subaccount performance
described by {Ft, t ≥ 0}. (2) Mortality/longevity risk due to the uncertainty of
the timing of payments. The mortality/longevity risk is modeled by a random
variable, the policyholder’s future lifetime τx. In these models, both financial
and mortality/longevity risks can interact to cause severe positive net liabilities.
In contrast, there are othermodels in the literature and industrial practice where
the mortality risk is diversified and the only source of uncertainty is financial
risk. Interested readers are referred to Feng (2014) for a comparison of individ-
ual and average models.

Two risk measures are of particular importance for determining risk-based
capital for variable annuity as required by the National Association of Insur-
ance Commissioners (NAIC). Specific procedures for implementation can be
found in the NAIC’s annual publication of forecasting and instructions. The
first risk measure is the quantile risk measure, also known as the value-at-risk
in the banking industry, for 0 < α < 1:

Vα := inf{y : P[L0 ≤ y] ≥ α}.
The other is the conditional tail expectation, defined for 0 < α < 1 by

CTEα := E[L0|L0 > Vα].

In most cases the net liability L0 is expected to be negative so that profits are
generated for the healthy operation of the business. However, for the purpose of
risk management, we are interested only in the severe cases under which the net
liabilities turn out to be positive.Readers should be reminded that these cases are
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considered rare events that incur unexpected large losses. Throughout the paper,
we shall denote the probability of non-positive liabilities as ξx := P[L0 ≤ 0]
where x is replaced with e for the GMMB and d for the GMDB.

Using the independence assumption of mortality and equity dynamics and
re-arranging terms, we can easily show (cf. Propositions 3.3 and 3.4 in Feng and
Volkmer (2012)) that the quantile risk measure for the GMMB rider is deter-
mined implicitly for α > ξe by

1 − α = T pxP(L0 > Vα|τx > T) = T pxP
(
T,

e−rTG − Vα

F0

)
, (2.5)

where

P(T, w) := P

[
e−rT FT

F0
+
∫ T

0
e−rs Ms

F0
ds < w

]
.

It is clear from its definition that P(T, w) is an increasing function ofw for fixed
T. Thus, we can easily determine Vα from (2.5) using a root search algorithm.
Similarly, the conditional tail expectation is given by

CTEα = e−rTG − T px
1 − α

F0Z
(
T,

e−rTG − Vα

F0

)
,

where

Z(T, w) := E

[{
e−rT FT

F0
+
∫ T

0
e−rs Ms

F0
ds
}
I{e−rT FT

F0
+∫ T0 e−rs Ms

F0
ds<w}

]
.

Using the same procedure, we can show that the quantile risk measure Vα

with α > ξd for the net liability of the GMDB rider is determined implicitly by

1 − α =
�nT�∑
k=1

(k−1)/n px 1/nqx+(k−1)/n P
(
k
n
,
e−(r−δ)k/nG − Vα

F0

)
, (2.6)

and the conditional tail expectation CTEα with α > ξd is given by

CTEα = 1
1 − α

�nT�∑
k=1

(k−1)/n px 1/nqx+(k−1)/n

×
[
e−(r−δ)k/n P

(
k
n
,
e−(r−δ)k/nG − Vα

F0

)
G

− F0Z
(
k
n
,
e−(r−δ)k/nG − Vα

F0

)]
. (2.7)

It is evident that the computation of risk measures hinges on the solutions
to P and Z. The first solution method proposed by Feng and Volkmer (2012)
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utilizes the joint distribution of geometric Brownian motion and its integral.
With simplification the expressions for P and Z are given by

P(T, w)

=
√

2
π3σ 2T

exp
(
2π2

σ 2T
− ν2σ 2T

8

)∫ ∞

0
exp

(
− 2w2

σ 2T

)
sinh y sin

(
4πy
σ 2T

)

×
∫ √

w

0

2ρν

1 + ρ2 + 2ρ cosh y
exp

(
−A(1 + ρ2 + 2ρ cosh y)

2(w − ρ2)

)
dρ dy,

(2.8)

Z(T, w)

=
√

2
π3σ 2T

exp
(
2π2

σ 2T
− ν2σ 2T

8

)∫ ∞

0
exp

(
− 2y2

σ 2T

)
sinh y sin

(
4πy
σ 2T

)

×
∫ √

w

0

[ 2ρν+2

1 + ρ2 + 2ρ cosh y
exp

(
−A(1 + ρ2 + 2ρ cosh y)

2(w − ρ2)

)

+ AρνE1

(
A(1 + ρ2 + 2ρ cosh y)

2(w − ρ2)

)]
dρ dy (2.9)

where ν = 2(μ − m − r)/σ 2, A = 4mx/σ
2 (mx should be replaced with me

in the case of GMMB and md in the case of GMDB), and E1(z) is the expo-
nential integral defined by E1(z) = ∫∞

z e−t/t dt. This method works well for
the GMMB rider with modestly small σ (for example, σ = 0.30). However,
the scheme is time-consuming for the GMDB rider as numerical integration of
oscillating function is repeated at multiple time points in (2.6) and (2.7). The
second method is to use numerical inversion of Laplace transforms such as the
Gaver-Stehfest algorithm to find P and Z and their Laplace transforms have
the following representations.

P̃(s, w)

:=
∫ ∞

0
e−sT P(T, w) dT

= 4
σ 2

∫ √
w

0

∫ (w−ρ2)/A

0

ρν−1

u
exp

{
− 1
2u

(1 + ρ2)

}
I2η
(ρ

u

)
du dρ, (2.10)

Z̃(s, w)

:=
∫ ∞

0
e−sTZ(T, w) dT

= 4
σ 2

∫ √
w

0

∫ (w−ρ2)/A

0

(
ρν+1

u
+ Aρν−1

)
exp

{
− 1
2u

(1 + ρ2)

}
I2η
(ρ

u

)
du dρ

(2.11)
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where 2η =
√
8s/σ 2 + ν2, A= 4mx/σ

2, and I2η(·) is the modified Bessel func-
tion of the first kind. Although the second method appears to be much more
robust with small time parameter k/n and volatility coefficient σ , it still takes
more than half-an-hour for the calculation of each quantile risk measure for the
GMDB rider in numerical examples shown in Feng and Volkmer (2012).

In Section 3, we shall propose alternative numerical schemes based on en-
tirely different approaches. The goal is to find more efficient methods that work
for as small volatility coefficient as σ = 0.10, which is about the lower end of the
range of values used in practice. Specific parameters for the geometric Brownian
motion asset models (also called independent lognormal model) that meet the
calibration criteria recommended by the American Academy of Actuaries can
be found in Appendix 2 of Gorski and Brown (2005).

3. SPECTRAL METHODS

Spectral expansion methods were widely used for option pricing in a series of
works by Davydov and Linetsky (2003), Linetsky (2004a), Boyarchenko and
Levendorskiı̆ (2007), Fouque et al. (2011), etc., and their applications to Asian
options can be found in Linetsky (2004b). In a separate but related line of devel-
opment, Donati-Martin et al. (2001) derived an explicit solution to the Laplace
transform of the price of Asian option with respect to time parameter using
Green’s function. Another development of Green’s function and spectral ex-
pansion for option pricing under the geometric Brownian motion with affine
drift appeared in Lewis (1998). In the context of variable annuities, we shall
demonstrate that these two methods previously developed by various authors
for pricing are well suited for the computation of risk measures. In doing so, we
hope to show the intricate connections of the two spectral methods.

3.1. Spectral expansion

We shall make use of the following processes B(ν) = {B(ν)
t , t ≥ 0} and A(ν) =

{A(ν)
t , t ≥ 0} where

B(ν)
t := νt + Bt, A(ν)

t :=
∫ t

0
exp{2B(ν)

u } du.

The following identity in distribution is obtained in Donati-Martin et al. (2001)
with reference to the invariance property of the time reversal of Lévy processes.
Interested readers are referred to the duality lemma of Lévy process in (Kypri-
anou, 2006, Lemma 3.4) for time reversal arguments.

Proposition 3.1. Let ξ and η be two independent Lévy processes, then for fixed t,(
exp(ξt), exp(ξt)

∫ t

0
exp(−ξs−) dηs

)
∼

(
exp(ξt),

∫ t

0
exp(ξs−) dηs

)
,

where ∼ means equality in distribution.
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This identity in distribution plays a key role in providing an alternative ap-
proach to represent the functions P and Z. Letting ξs = 2B(ν)

s and ηs = s, we
obtain for any fixed t ≥ 0 and x0 ∈ R,

exp{2B(ν)
t }x0 + A(ν)

t ∼ exp
{
2B(ν)

t

}
x0 + exp

{
2B(ν)

t

} ∫ t

0
exp

{−2B(ν)
s

}
ds.

Define the process X = {Xt, t ≥ 0} by

Xt := exp
{
2B(ν)

t

}{
x0 +

∫ t

0
exp

{−2B(ν)
s

}
ds
}

.

This process is known as the geometric Brownian motion with affine drift (cf.
Linetsky (2004a)). It is easy to show by the Ito formula that the process X is a
diffusion process satisfying the SDE

dXt = [2(ν + 1)Xt + 1] dt + 2Xt dBt, X0 = x0. (3.1)

Therefore, it has an infinitesimal generator with diffusion parameter a(x) = 2x
and drift parameter b(x) = 2(ν + 1)x+ 1 given by

G f (x) := 1
2
a2(x) f ′′(x) + b(x) f ′(x) = 2x2 f ′′(x) + [2(ν + 1)x+ 1] f ′(x).

The diffusion has scale and speed densities:

s(x) := exp
{
−
∫

2b(x)
a(x)

dx
}

= x−ν−1 exp
{

1
2x

}
,

m(x) := 2
a2(x)s(x)

= 1
2
xν−1 exp

{
− 1
2x

}
. (3.2)

It is well-known (cf. (Øksendal, 2003, p 139, Theorem 8.1)) that for any F ∈ C2
0 ,

v(t, x) = E
x[F(Xt)] is a solution to the Kolmogorov backward equation

∂v

∂t
= 1

2
a2(x)

∂2v

∂x2
+ b(x)

∂v

∂x
, t, x > 0, (3.3)

subject to the initial condition v(0, x) = F(x). We note that

E
x[F(Xt)] =

∫
R

F(y)p(t, x, y) dy, (3.4)

where p, known as the transition density function (w.r.t. the Lebesgue mea-
sure), satisfies the Kolmogorov forward equation (cf. (Øksendal, 2003, p 168,
Exercise 8.3))

∂

∂t
p(t, x, y) = ∂2

∂y2
(a(y)p(t, x, y)) − ∂

∂y
(b(y)p(t, x, y)), for all x, y > 0.
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Let p(t, x, y) be the transition density function w.r.t. the speed measure, i.e.

p(t, x, y) = p(t, x, y)m(y).

Then it is easy to show that p satisfies theKolmogorov backward equation (3.3).
It is known from (Linetsky, 2004b, (23)) that

p(t, x, y) =
∫ ∞

ν2/2
e−�tψ(x, �)ψ(y, �)ρ ′(�) d�, (3.5)

where

ψ(x, �) = xκ exp
(

1
4x

)
Wκ,iq

(
1
2x

)
, q := 1

2

√
2� − ν2,

W is the Whittaker-W function and the spectral function is given by

ρ ′(�) = 1
π2

∣∣∣� (ν

2
+ iq

)∣∣∣2 sinh(2πq). (3.6)

Using the scaling property σ BT ∼ 2Bσ 2T/4, we obtain

P(T, w) = P

[
exp{2B(ν)

σ 2T/4} + 4mx

σ 2
A(ν)

σ 2T/4 < w

]
= P

x0 [Xt < K ], (3.7)

where P
x0 is the probability measure under which P

x0(X0 = x0) = 1, and

t := σ 2T
4

> 0, ν := 2(μ −m− r)
σ 2

, x0 := σ 2

4mx
> 0, K := x0w > 0.

In practice, the expected rate of return on the risky asset should be greater than
risk-free rate plus rate of fees and charges. Otherwise, there is little incentive for
the policyholders to invest in variable annuities. Hence, we only consider ν ≥ 0
throughout the paper. Similarly, we have

Z(T, w) = E

[{
exp{2B(ν)

σ 2T/4} + 4mx

σ 2
A(ν)

σ 2T/4

}

× I
(
exp{2B(ν)

σ 2T/4} + 4mx

σ 2
A(ν)

σ 2T/4 < w

)]

= 1
x0

E
x0 [Xt I(Xt < K)]. (3.8)

Recall that C2
0 is a determining class (cf. Problem 4.25 in Karatzas and Shreve

(1991)) and hence (3.4) holds true for all measurable functions F . After

https://doi.org/10.1017/asb.2014.14 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2014.14


SPECTRALMETHODS FOR RISKMEASURES 663

obtaining the expression for p, we can find explicit solutions to the quantities
of interests,

P(T, w) =
∫ K

0
p(t, x0, y)m(y) dy, (3.9)

Z(T, w) = 1
x0

∫ K

0
yp(t, x0, y)m(y) dy. (3.10)

Using the properties of special functions, we can further simplify the dou-
ble integrals in (3.9) and (3.10) to single integrals. We shall leave the technical
proofs in Appendix 5. TheWhittaker functions used in these representations are
available in most computational software packages, such as Maple and Math-
ematica, etc. Interested readers are referred to (Olver et al., 2010, Chapter 13)
for properties of Whittaker functions. The evaluation of these risk measure can
be easily implemented with numerical integration.

Proposition 3.2. For ν > 0,T > 0, w > 0,

P(T, w) = x0
2π2

exp
(
− 1

4wx0

)
w(ν+1)/2 exp

(
1
4x0

)

×
∫ ∞

0
e−(ν2+p2)t/2W− ν+1

2 ,
i p
2

(
1

2wx0

)
W1−ν

2 ,
i p
2

(
1
2x0

) ∣∣∣� ( ν+i p
2

)∣∣∣2 sinh(πp)p dp,

(3.11)

Z(T, w) = x0
2π2

exp
(
− 1

4wx0

)
w(ν+3)/2 exp

(
1
4x0

)

×
∫ ∞

0
e−(ν2+p2)t/2

[
W− ν+1

2 ,
i p
2

(
1

2wx0

)
− W− ν+3

2 ,
i p
2

(
1

2wx0

)]

×W1−ν
2 ,

i p
2

(
1
2x0

) ∣∣∣� ( ν+i p
2

)∣∣∣2 sinh(πp)p dp, (3.12)

where W is the Whittaker-W function and � is the gamma function.

As we shall demonstrate in Section 4, it is not surprising that the evalua-
tion of risk measures by (3.11) and (3.12) can be more efficient that by (2.8),
(2.9), (2.10) and (2.11), since we only need to compute single integrals. More-
over, we can further reduce the amount of computation by an approximation.
The essence of this approximation is to restrict the underlying process X to a fi-
nite range [0, b], in which case the corresponding Sturm-Liouville problem (3.3)
with irregular singularity at ∞ is reduced to one with an ordinary point at the
boundary b. In the evaluation of (3.9) and (3.10), the transition density in the
restricted case simplifies to a sum (A.6) as opposed to an integral (3.5) in the
unrestricted case. Further details can be found in Appendix 5.
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Proposition 3.3. For ν > 0,T > 0, w > 0 and b  x0, b  wx0, P(T, w) can
be approximated by

Pb(T, w) = x0
∞∑
n=1

exp
(

− (ν2 + p2n)t
2

)
exp

(
− 1
4wx0

)
w(ν+1)/2 exp

(
1
4x0

)

×W− ν+1
2 ,

i pn
2

(
1

2wx0

)
pn�(

ν+i pn
2 )

�(1 + i pn)ξn
M1−ν

2 ,
i pn
2

(
1
2b

)
W1−ν

2 ,
i pn
2

(
1
2x0

)
, (3.13)

and similarly, Z(T, w) can be approximated by

Zb(T, w) = x0
∞∑
n=1

exp
(

− (ν2 + p2n)t
2

)
exp

(
− 1
4wx0

)
w(ν+3)/2 exp

(
1
4x0

)

×
[
W− ν+1

2 ,
i pn
2

(
1

2wx0

)
− W− ν+3

2 ,
i pn
2

(
1

2wx0

)]

× pn�(
ν+i pn

2 )

�(1 + i pn)ξn
M1−ν

2 ,
i pn
2

(
1
2b

)
W1−ν

2 ,
i pn
2

(
1
2x0

)
, (3.14)

where W and M are the Whittaker-W function and the Whittaker-M function
respectively, 0 < p1 < p2 < · · · < pn < · · · are the positive solutions to

W(1−ν)/2,i p/2

(
1
2b

)
= 0, (3.15)

and

ξn := ∂

∂p
W(1−ν)/2,i p/2

(
1
2b

)∣∣∣∣
p=pn

. (3.16)

Remark 3.1. The values of pn can be determined numerically from (3.15). This
can be accomplished easily in computational software packages such as Maple.
For example, we can use Maple’s fsolve function to determine pn one by one
with initial values p∗

n determined by

p∗
n [ln(4bp∗

n) − 1] = 2π
(
n + ν

4
− 1

2

)
, n = 1, 2, 3, · · · .

This approximation equation is obtained in (Linetsky, 2004b, (30)).
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Remark 3.2. Here we provide some upper bounds of the approximation errors of
Pb and Zb.

P(T, w) − Pb(T, w) ≤ x0
b
e2(ν+1)t + 1

2(ν + 1)b
(e2(ν+1)t − 1);

Z(T, w) − Zb(T, w) ≤ K
b
e2(ν+1)t + K

2(ν + 1)bx0
(e2(ν+1)t − 1).

3.2. Green’s function

Alternatively, we can also find solutions to the PDE (3.3) by working out the
Laplace transform

ṽ(�, x) :=
∫ ∞

0
e�tv(t, x) dt, � < 0, x > 0.

Applying Laplace transforms on both sides of (3.3) yields

−Gṽ(�, x) − �ṽ(�, x) = F(x), (3.17)

where the operator G applies to the function x �→ ṽ(�, x). It is known that if
F ∈ L2(m, (0, ∞)) then the solution can be represented in terms of the Green’s
function, denoted by G.

ṽ(�, x) =
∫ ∞

0
G(x, y, �)F(y)m(y) dy. (3.18)

Note that the corresponding Sturm-Liouville problem (A.1) has the solutions

ψ1(x, �) = xκ exp
( 1
4x

)
Wκ,η

( 1
2x

)
,

ψ2(x, �) = xκ exp
( 1
4x

)
Mκ,η

( 1
2x

)
,

where η = √
ν2 − 2�/2. The function ψ1(·, �) lies in L2(m, (0, 1)) and ψ2(·, �)

lies in L2(m, (1, ∞)). Their Wronskian is

1
s(x)

(ψ1(x, �)ψ ′
2(x, �) − ψ ′

1(x, �)ψ2(x, �)) = −1
2

�(1 + 2η)

�(η − κ + 1
2 )

.

Therefore, Green’s function (Jeanblanc et al., 2009, page 278) corresponding to
(3.3) is

G(x, y, �) = 2
�(η − κ + 1

2 )

�(1 + 2η)

{
ψ1(x, �)ψ2(y, �) if x < y;
ψ1(y, �)ψ2(x, �) if x ≥ y.

(3.19)

It can be shown that the Green’s function exists for � < ν2

2 , as ν ≥ 0 by
assumption.
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In view of (3.7) and (3.18), we obtain

P̃(s, w) :=
∫ ∞

0
e−sT P(T, w) dT = 4

σ 2

∫ ∞

0
e−4st/σ 2

P
x0 [Xt < K ] dt

= 4
σ 2

∫ ∞

0
G
(
x0, y, − 4s

σ 2

)
I(y < K)m(y) dy. (3.20)

Similarly, it follows from (3.8) and (3.18) that

Z̃(s, w) :=
∫ ∞

0
e−sTZ(T, w) dT = 4

x0σ 2

∫ ∞

0
e−4st/σ 2

E
x0 [Xt I(Xt < K)] dt

= 4
x0σ 2

∫ ∞

0
G
(
x0, y, − 4s

σ 2

)
yI(y < K)m(y) dy. (3.21)

A great advantage of this approach is that the two expressions (3.20) and
(3.21) can be further simplified to closed-form solutions, which are clearly su-
perior than (2.10) and (2.11) in terms of numerical implementation.

Proposition 3.4. Let κ = (1 − ν)/2, 2η =
√
8s/σ 2 + ν2 and � = −4s/σ 2. For

w ≤ 1,

P̃(s, w) = 4x0
σ 2

�(η − κ + 1
2 )

�(1 + 2η)
w1−κ

× exp
{

1
4x0

(
1 − 1

w

)}
Mκ,η

(
1
2x0

)
Wκ−1,η

(
1

2x0w

)
, (3.22)

Z̃(s, w) = 4x0
σ 2

�(η − κ + 1
2 )

�(1 + 2η)
w2−κ exp

{
1
4x0

(
1 − 1

w

)}
Mκ,η

(
1
2x0

)

×
[
Wκ−1,η

(
1

2x0w

)
− Wκ−2,η

(
1

2x0w

)]
, (3.23)

and, for w > 1,

P̃(s, w) = 1
s

− 4x0
σ 2

�(η − κ + 1
2 )

�(1 + 2η)

w1−κ

η + κ − 1
2

exp
{

1
4x0

(
1 − 1

w

)}

×Wκ,η

(
1
2x0

)
Mκ−1,η

(
1

2x0w

)
, (3.24)
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σ 2x0
4

Z̃(s, w) = 1 − �x0
�(� + 2(ν + 1))

− x20
�(η − κ + 1

2 )

�(1 + 2η)

w2−κ

η + κ − 1
2

exp
{

1
4x0

(
1 − 1

w

)}

×Wκ,η

(
1
2x0

)⎛⎝Mκ−2,η

(
1

2x0w

)
η + κ − 3

2

+ Mκ−1,η

(
1

2x0w

)⎞⎠ .

(3.25)

Remark 3.3. We can actually prove analytically that (3.22) and (3.23) are equiv-
alent to (2.10) and (2.11). The detailed proof can be found in the Appendix.

4. NUMERICAL EXAMPLES

For variable annuity net liability models (2.3) and (2.4), two computational
methods for risk measures were proposed in Feng and Volkmer (2012). Solu-
tions to risk measures were represented in terms of double integrals as shown in
(2.8)-(2.11). Although there were tremendous improvements on both accuracy
and efficiency over Monte Carlo simulations for modestly small volatility co-
efficient σ , the computational algorithms appeared to be very slow for smaller
values such as σ = 0.1, which is at the lower end of the range of volatility pa-
rameters used by practitioners. In this section, we test the two methods used in
this paper, namely the spectral expansion and the Green’s function.

We first checked the accuracy of results from the two spectral methods un-
der the same valuation basis as used in Feng and Volkmer (2012). Consider
a variable annuity contract issued to a policyholder of age 65 with GMMB
and GMDB riders. The term of the variable annuity contract is 10 years, i.e.
T = 10. The valuation is based on the geometric Brownian motion model
(2.1) with μ = 0.09 and σ = 0.3 per annum. The discount rate, annualized
fees/charges, GMMB/GMDB rider charges are given by r = 0.04,m = 0.01,
and me = md = 0.0035 per annum respectively. The initial guarantee for both
GMMB and GMDB is set at the full refund of initial purchase payment, i.e.
G = F0. In addition, under the GMDB rider, the guaranteed level accrues com-
pound interest at a roll-up rate of δ = 0.06 per annum, payable in arrears. The
probability model of survivorship is extracted from the period life table for male
and calendar year 2010 published by the U.S. Social Security Administration
(Bell and Miller, 2005, page 68), which we reiterate in Table 1.

We report the results for quantile risk measures and conditional tail expec-
tations at the 90% level in Table 2. The results are reported in the order of (1)
double integrals based on Hartman-Watson density, (2) numerical inversion of
double integrals based on Laplace transform of Hartman-Watson density, (3)
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TABLE 1

PREDICTED MORTALITY RATES OF A MALE AT THE AGE OF 65.

x 1qx k k p65 x 1qx k k p65

65 0.01753 0 1.00000 71 0.03059 6 0.87275
66 0.01932 1 0.98246 72 0.03343 7 0.84606
67 0.02122 2 0.96348 73 0.03633 8 0.81778
68 0.02323 3 0.94304 74 0.03942 9 0.78807
69 0.02538 4 0.92113 75 0.04299 10 0.75700
70 0.02785 5 0.89775 - - - -

TABLE 2

A COMPARISON OF FOUR COMPUTATIONAL METHODS FOR THE GMMB RIDER.

Methods (1) (2) (3) (4)

V90%/F0 12.550359% 12.550365% 12.550350% 12.550365%
Initial values 10% (12%, 14%) (12%, 14%) (12%, 14%)

Time (secs) 220.445 301.923 51.579 0.172
CTE90%/F0 30.296433% 30.296482% 30.296430% 30.296484%
Time (secs) 112.028 17.109 2.953 0

spectral expansion, and (4) Green’s function. The computations using spectral
expansion are based on the approximation formulas in Proposition 3.3 with the
first 30 terms and b = 100, 000. The calculations using Green’s function are
based on formulas of P̃ and Z̃ in Proposition 3.4 and the functions P and Z
are then obtained by the well-known Gaver-Stehfest numerical inversion algo-
rithm. As the computational performance depends on software package and
computer set-up, the data on running times are only intended to provide ball-
park estimates. TheNewton-Raphson algorithmwas applied to find the quantile
risk measure with the first method whereas bisection algorithms were used with
other three methods. All iterations terminate once the results converge up to
seven digits. The running times for the second method are slightly longer than
those reported in Feng and Volkmer (2012) due to the requirement of a higher
level of accuracy. All fifteen digits of the quantile estimates were fed into the
computation of conditional tail expectation. The results in Table 2 indicate that
both spectral methods (3), (4) perform significantly better than the numerical
integration methods (1), (2).

The improvement on efficiency is even more pronounced in the evaluation
of risk measures for the GMDB rider. As the functions P and Z are required to
be evaluated at multiple points, approximation errors from the spectral method
appear to accumulate drastically. In order to increase the level of accuracy, we
include the first 100 terms in the expressions for Pb(t, w) and Zb(t, w). In this
case, the calculations based on (1) is omitted as the method is too slow to deliver

https://doi.org/10.1017/asb.2014.14 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2014.14


SPECTRALMETHODS FOR RISKMEASURES 669

TABLE 3

A COMPARISON OF THREE COMPUTATIONAL METHODS FOR THE GMDB RIDER.

Methods (2) (3) (4)

V90%/F0 2.135314% 2.135314% 2.135314%
Initial values (0%, 10%) (0%, 10%) (0%, 10%)

Time (secs) 4667.041 1622.044 4.953
CTE90%/F0 33.706290% 33.706287% 33.706292%
Time (secs) 717.843 226.875 0.828

TABLE 4

COMPUTATION OF RISK MEASURES WITH σ = 0.1.

GMMB GMDB

V90%/F0 5.246319% V95%/F0 7.860722%
Initial values (0%, 10%) Initial values (0%, 10%)

Time (secs) 0.015 Time 6.594
CTE90%/F0 16.856324% CTE95%/F0 8.399616%
Time (secs) 0.094 Time 0.797

results for multiple point evaluation. We report on results of risk measures up
to eight significant digits with no rounding in Table 3.

In a second example, we provide numerical tests on the performance of spec-
tral methods with considerably smaller volatility coefficient, σ = 0.1. The rest of
the valuation basis is given as follows: μ = 0.045, r = 0.02,m = 0.01,T = 10,
and me = md = 0.0035. The initial guaranteed benefits for both GMMB and
GMDB are 110% of initial purchase payment, i.e. G/F0 = 1.1. The roll-up rate
is set at δ = 0 for the GMDB rider. In Table 4, we present the 90% risk measures
for the GMMB and 95% risk measures for the GMDB. (As one can extrapo-
late from the red solid line in Figure 1 which represents the survival probability
of the GMDB net liability, the point corresponding to the 90% quantile risk
measure has to be to the left of the vertical axis. Since negative net liabilities
are not of interest from the viewpoint of risk management, we compute 95%
risk measures instead.) In contrast with the two methods based on numerical
integration, the method based on Green’s function appears to be numerically
stable as there is no significant increase in computation time when comparing
Tables 2, 3, 4. Hence, we conclude that the numerical method based on Green’s
function is the best approach among the four methods in consideration of their
accuracy and efficiency.

Owing to the efficiency of the Green’s function approach, we can even af-
ford the plots of the survival function (tail probability) of the net liabilities. The
parameters are set as in the previous example. The red solid line in Figure 1 rep-
resents the survival function of the GMDB net liability P(L(1)

0 > y) for y ≥ 0
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FIGURE 1: Survival functions of GMMB and GMDB net liabilities with δ = 0.

whereas the black dashed line corresponds to that of the GMMB net liability
P(L0 > y) for y ≥ 0. We remark that the GMDB benefits are only payable
to the deceased policyholders whereas the GMMB benefits are only payable
to the survivors after the contract matures in 10 years. Given the survivorship
prediction in Table 1, the quantiles for the GMMB rider tend to be higher than
those for the GMDB as the majority are expected to receive GMMB benefits
and only the minority are expected for the GMDB benefits. However, as the
roll-up option takes effect, the guaranteed benefits for the GMDB rider will
rise significantly at later years. In Figure 2, we plot the corresponding survival
functions of the GMMB and GMDB riders, represented by the red solid line
and the black dashed line respectively, where the GMDB includes the roll-up at
the rate δ = 0.02. In this case, the survival function of the GMDB rider tends
to have a heavier tail than that of the GMMB rider.

5. SUMMARY AND FUTURE WORK

The computation of risk measures for variable annuity guaranteed benefits
presents interesting theoretical challenges. Feng and Volkmer (2012) proposed
two analytical methods for net liability models of a stand-alone contract, which
are essentially based on Yor and coauthors’ work on the joint distribution of
geometric Brownian motion and its time-integral. While there were tremen-
dous improvements on accuracy and efficiency in comparisonwithMonteCarlo
simulations, computational difficulties were observed for the computation of
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FIGURE 2: Survival functions of GMMB and GMDB net liabilities with δ = 0.02.

death benefits with small volatility. In this paper, we managed to address this
issue by proposing two spectral methods. While we have proven analytically the
equivalence of all four methods, the examples suggest that the Green’s function
approach is the most efficient for numerical implementation.

Spectral methods are widely studied in the pricing of exotic options. The risk
management of equity-linked insurance products appears to be a new territory
for theoretical advancement and applications. Although the model considered
in this paper has not quite reached the complexity of manyGMMBandGMDB
products with advanced features, we believe the geometric Brownian motion
model offers a good start with valuable insights on the intricate connections
among various analytical techniques. Future research is necessary to build the
model on more general processes, such as jump-diffusion or stochastic volatil-
ity models, in order to incorporate stylized features of equity prices as well as
dynamic policyholder behavior. It is promising that the spectral methods can
be further extended for the pricing and risk management of many more ad-
vanced variable annuity guaranteed benefits as well. Such an example can be
seen in Feng and Volkmer (2013) for the guaranteed minimum withdrawal ben-
efit (GMWB).
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APPENDIX

A APPENDIX: PROOFS

Proof of Proposition 3.2:Note that P(T, w) = v(t, x0) which satisfies (3.3) with
the initial condition F(x) = I(x < K). Since ψ is a solution to the ODE

−2y2u′′(y) − [2(ν + 1)y+ 1]u′(y) = �u(y), y > 0, (A.1)

which can be rewritten as

− 1
�

(
ψ ′(y, �)

s(y)

)′
= ψ(y, �)m(y). (A.2)

It immediately follows from (A.2) that

c(�) :=
∫ K

0
ψ(y, �)m(y) dy = − ψ ′(y, �)

�s(y)

∣∣∣∣
K

0
.

We can show that

−ψ ′(y, �)

�s(y)
= 1

2
exp

(
− 1
4y

)
y(ν+1)/2W−(1+ν)/2,i p/2

(
1
2y

)
.

It follows from the asymptotics of theWhittaker function (cf. (Olver et al., 2010,
(13.19.3)))

−ψ ′(y, �)

�s(y)
∼ 21−κ exp

(
− 1
2y

)
, as y → 0.

Therefore,

c(�) = 1
2
exp

(
− 1
4K

)
K (ν+1)/2W−(1+ν)/2,i p/2

(
1
2K

)
. (A.3)

We substitute q = p/2 and � = (ν2 + p2)/2 in (3.9) and hence obtain (3.11).
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Similarly, we have Z(T, w) = v(t, x0) with the initial condition F(x) =
xI(x < K). In this case, we use

d(�) :=
∫ K

0
yψ(y, �)m(y) dy.

It is known from Linetsky (Linetsky, 2004b, (43)) that∫ K

0
(K − y)ψ(y, �)m(y) dy = 1

2
K (ν+3)/2 exp

(
− 1
4K

)
W− ν+3

2 ,
i p
2

(
1
2K

)
.

(A.4)

In view of (A.3) and (A.4) we obtain

d(�) = 1
2
K (ν+3)/2 exp

(
− 1
4K

)[
W− ν+1

2 ,
i p
2

(
1
2K

)
− W− ν+3

2 ,
i p
2

(
1
2K

)]
.

(A.5)

Thus we arrive at (3.12) using � = (ν2 + p2)/2 and (A.5) in (3.10). �

Proof of Proposition 3.3:We approximate P(T, w) by

Pb(T, w) := P
x0 [Xt < K, t < Tb] ,

where Tb := inf{t ≥ 0 : Xt = b} and b  K . We denote by pb(t; x, y) the
transition probability density with respect to the speed measure of the diffusion
process (3.1) started at x ∈ [0, b) and killed at b. According to Linetsky (2004b),
the transition probability density pb(t; x, y) is given by

pb(t; x, y) =
∞∑
n=1

e−�ntψ(x, �n)ψ(y, �n)

‖ ψ(·, �n) ‖2 , (A.6)

where {�n, ψn}∞n=1 are eigenvalues and eigenfunctions of the Sturm-Liouville
problem

−Gu(x) − �u(x) = 0, x ∈ (0, b), (A.7)

with the boundary conditions at 0 and b given by

lim
x↓0

u′(x)
s(x)

= 0 (entrance boundary), (A.8)

u(b) = 0 (absorption boundary). (A.9)

Equation (A.7) can also be written as

− 1
m(x)

(
u′(x)
s(x)

)′
= �u(x), x ∈ (0, b). (A.10)
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The eigenfunctionsψn form an orthonormal basis in L2(m, [0, b])with the inner
product ( f, g) = ∫ b

0 f (x)g(x)m(x)dx and the norm ‖ f ‖2= ( f, f ). For t > 0,
the spectral representation (A.6) converges uniformly in x, y on [0, b] × [0, b].

One can show that the solution to (A.7) satisfying the boundary condition
(A.8) is given by

ψ(x, �) = x(1−ν)/2 exp{ 1
4x

}Wκ,μ

(
1
2x

)
.

Since the eigenfunction ψ must also satisfy the boundary condition (A.9), we
can determine the eigenvalues by finding the zeros of ψ(b, �). Let 0 < p1 <

p2 < · · · < pn < · · · be the positive solutions to (3.15). The eigenvalues are
{�n = (ν2 + p2n)/2, n = 1, 2, · · · }. The eigenfunctions are given by

ψ(x, �n) = x(1−ν)/2 exp
{

1
4x

}
W(1−ν)/2,(i pn)/2

(
1
2x

)
, n = 1, 2, · · · .(A.11)

The norms of these eigenfunctions are given in (Linetsky, 2004b, (33)) by

1
‖ ψ(·, �n) ‖2 = 2pn�((ν + i pn)/2)

�(1 + i pn)ξn
M(1−ν)/2,(i pn)/2

(
1
2b

)
, n = 1, 2, · · · .

(A.12)
Therefore, the approximation of P(T, w) is given by

Pb(T, w) =
∫ K

0
pb(t; x0, y)m(y) d

y =
∞∑
n=1

e−�nt ψ(x0, �n)

‖ ψ(·, �n) ‖2
∫ K

0
ψ(y, �n)m(y) dy. (A.13)

Hence,

Pb(T,Vα) =
∞∑
n=1

2cne−(ν2+p2n)t/2x
1−ν
2

0 e
1

4x0
pn�(

ν+i pn
2 )

�(1 + i pn)ξn
M(1−ν)/2,i pn/2

×
(

1
2b

)
W(1−ν)/2,i pn/2

(
1
2x0

)
,

where

cn :=
∫ K

0
ψ(y, �n)m(y) dy = 1

2
e−1/(4K)K (ν+1)/2W−(1+ν)/2,i pn/2

(
1
2K

)
,

using the same arguments as for (A.3). Thus we arrive at the solution (3.13).
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Similarly, we can approximate Z(T, w) by

Zb(T, w) := 1
x0

E
x0
[
Xt I{Xt<K,t<Tb}

] = 1
x0

∫ K

0
ypb(t; x0, y)m(y) dy.

Hence,

Zb(T,Vα) = 1
x0

∞∑
n=1

e−�nt ψ(x0, �n)

‖ ψ(·, �n) ‖2 dn,

where as proven in (A.5)

dn = 1
2
K (ν+3)/2e−1/(4K)

[
W−(ν+1)/2,i pn/2

(
1
2K

)
− W−(ν+3)/2,i pn/2

(
1
2K

)]
.

Therefore, we obtain (3.14) after inserting the expression for dn. �

Proof of Proposition 3.4: Let

fκ(y) = y−κ exp
{
− 1
4y

}
Mκ,η

(
1
2y

)
, gκ(y) = y−κ exp

{
− 1
4y

}
Wκ,η

(
1
2y

)
.

It is easy to show that

f ′
κ(y) = −( 12 + η + κ) fκ+1(y), g′

κ(y) = gκ+1(y),

lim
y→0+

fκ(y) = 2κ �(1 + 2η)

�(η − κ + 1
2 )

, lim
y→0+

gκ(y) = 0.

Suppose w ≤ 1 so that K = wx0 ≤ x0. In light of (3.19), (3.20), we obtain

P̃(s, w) = 8
σ 2

�(η − κ + 1
2 )

�(1 + 2η)
ψ2

(
x0, − 4s

σ 2

)∫ K

0
ψ1

(
y, − 4s

σ 2

)
m(y) dy

= 4
σ 2

�(η − κ + 1
2 )

�(1 + 2η)
ψ2

(
x0, − 4s

σ 2

)∫ K

0
gκ(y) dy (A.14)

= 4
σ 2

�(η − κ + 1
2 )

�(1 + 2η)
ψ2

(
x0, − 4s

σ 2

)
gκ−1(K).

Inserting the expressions for ψ2 and g we obtain (3.22).
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Similarly, we have

Z̃(s, w) = 8
x0σ 2

�(η − κ + 1
2 )

�(1 + 2η)
ψ2

(
x0, − 4s

σ 2

)∫ K

0
yψ1

(
y, − 4s

σ 2

)
m(y) dy

= 4
x0σ 2

�(η − κ + 1
2 )

�(1 + 2η)
ψ2

(
x0, − 4s

σ 2

)∫ K

0
ygκ(y) dy (A.15)

= 4
x0σ 2

�(η − κ + 1
2 )

�(1 + 2η)
ψ2

(
x0, − 4s

σ 2

)
[Kgκ−1(K) − gκ−2(K)]

which leads to (3.23).
Now suppose w > 1 so that K > x0. Splitting the expression for P̃ into two

parts, we obtain

σ 2

4
P̃(s, w)

=
∫ x0

0
G
(
x, y, − 4s

σ 2

)
m(y) dy+

∫ K

x0
G
(
x, y, − 4s

σ 2

)
m(y) dy

= �(η − κ + 1
2 )

�(1 + 2η)
x0

[
Mκ,η

(
1
2x0

)
Wκ−1,η

(
1
2x0

)

+ 1

η + κ − 1
2

Wκ,η

(
1
2x0

)
Mκ−1,η

(
1
2x0

)

− 1

η + κ − 1
2

w1−κ exp
{

1
4x0

(
1 − 1

w

)}
Wκ,η

(
1
2x0

)
Mκ−1,η

(
1

2x0w

)]
.

(A.16)

We simplify this formula using the following observation. If κ > 1
2 then F(x) =

1 is in L2(m, (0, ∞)). Obviously, ṽ(�, x) = − 1
�

is the solution of (3.17) in
L2(m, (0, ∞)). Therefore,

− 1
�

=
∫ ∞

0
G(x, y, �)m(y) dy for x > 0. (A.17)

Comparing with (A.16) as w → ∞, we find (setting z = 1
2x0

and using −�
2 =

(η − κ + 1
2 )(η + κ − 1

2 ))

Mκ,η(z)Wκ−1,η(z) + 1

η + κ − 1
2

Mκ−1,η(z)Wκ,η(z) = z�(1 + 2η)

(η + κ − 1
2 )�(η − κ + 3

2 )
.

(A.18)
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Identity (A.18) holds for all values of κ, η (dropping the assumption κ > 1
2 ) as

we see by inserting the differentiation formulas

M′
κ,η(z) =

(
1
2

− κ

z

)
Mκ,η(z) + 1

z
(η + κ + 1

2 )Mκ+1,η(z),

W′
κ,η(z) =

(
1
2

− κ

z

)
Wκ,η(z) − 1

z
Wκ+1,η(z).

into the Wronskian of Whittaker function,

M′
κ,μ(z)Wκ,μ(z) − Mκ,μ(z)W′

κ,μ(z) = �(1 + 2μ)

�(1/2 + μ − κ)
.

Therefore, (A.16) leads to (3.24).
Similarly, we obtain

σ 2

4x0
Z̃(s, w)

= �(η − κ + 1
2 )

�(1 + 2η)

[
Mκ,η

(
1
2x0

)(
Wκ−1,η

(
1
2x0

)
− Wκ−2,η

(
1
2x0

))

+ 1

η + κ − 1
2

Wκ,η

(
1
2x0

)(
Mκ−1,η

(
1
2x0

)
+ 1

η + κ − 3
2

Mκ−2,η

(
1
2x0

))

− w2−κ

η + κ − 1
2

exp
{

1
4x0

(
1 − 1

w

)}
Wκ,η

(
1
2x0

)

×
⎛
⎝Mκ−2,η

(
1

2x0w

)
η + κ − 3

2

+ Mκ−1,η

(
1

2x0w

)⎞⎠]. (A.19)

We may simplify this formula using the following observation. If κ > 3/2 then
F(x) = x is in L2(m, (0, ∞)). Then the corresponding solution of (3.17) is

ṽ(�, x) = 1 − �x
�(� + 2(ν + 1))

.

Therefore, we have

1 − �x
�(� + 2(ν + 1))

=
∫ ∞

0
G(x, y, �)ym(y) dy for x > 0. (A.20)
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By comparing with (A.19) as w → ∞, we obtain (with z = 1
2x0

)

Mκ,η(z)
(
Wκ−1,η(z) − Wκ−2,η(z)

)+ Wκ,η(z)

η + κ − 1
2

(
Mκ−1,η(z) + Mκ−2,η(z)

η + κ − 3
2

)

= �(1 + 2η)

�(η − κ + 3
2 )

z

η + κ − 1
2

(
1 − 2κ − 2 − z

(η − κ + 3
2 )(η + κ − 3

2 )

)
. (A.21)

This identity holds for all κ, η (dropping the assumption κ > 3/2) as we can
see from recursion formulas (Olver et al., 2010, 13.15.1, 13.15.11) for Whittaker
functions in combination with (A.18). Now (A.19) and (A.21) lead to (3.25). �

Proof of Remark 3.2:We note that

P(T, w) − Pb(T, w) = P
x0(Xt < K) − P

x0(Xt < K, t < Tb)

= P
x0(Xt < K,Tb ≤ t)

≤ P
x0(Tb ≤ t) = P

x0
(
max
0≤s≤t

Xt ≥ b
)
.

Since ν > 0 by assumption and X is a submartingale, it follows by Doob’s
maximal inequality that

P(T, w) − Pb(T, w) ≤ 1
b

E
x0 [Xt] = x0

b
e2(ν+1)t + 1

2(ν + 1)b
(e2(ν+1)t − 1).

Similarly, we note that

Z(T, w) − Zb(T, w) = 1
x0

E
x0 [Xt I(Xt < K)] − 1

x0
E
x0 [Xt I(Xt < K, t < Tb)]

≤ 1
x0

E
x0 [Xt I(Tb ≤ t, Xt < K)] ≤ 1

x0
KP

x0
(
max
0≤s≤t

Xt ≥ b
)
.

�

Proof of Remark 3.3: Here we reiterate the first formula for P̃

P̃1(s, w) = 4
σ 2

∫ √
w

0

∫ (w−ρ2)x0

0

ρν−1

u
exp

{
− 1
2u

(1 + ρ2)

}
I2η
(ρ

u

)
du dρ.

(A.22)
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According to (A.14), the second formula for P̃ is equivalent to

P̃2(s, w) = 4
σ 2

�(η − κ + 1
2 )

�(1 + 2η)
xκ
0 exp

{
1
4x0

}
Mκ,η

(
1
2x0

)∫ x0w

0
y−κ

× exp
{
− 1
4y

}
Wκ,η

(
1
2y

)
dy.

In (A.22) we make the substitution

u = 2y
cosh v + 1

, ρ =
√
y
x0

cosh v − 1
sinh v

=
√
y
x0

tanh
v

2
. (A.23)

The new variables of integration are v and y. The corresponding limits for these
variables are 0 < v < ∞ and 0 < y < wx0. The Jacobian is√

y
x0

1
cosh v + 1

.

Note that

1
2u

(1 + ρ2) = 1
4x0

(cosh v − 1) + 1
4y

(cosh v + 1),
ρ

u
= sinh v

2
√
x0y

.

After performing the substitution and simplifying we obtain

σ 2

4
P̃1(s, w) = 1

2

∫ x0w

0
x

κ− 1
2

0 e
1

4x0 y−κ− 1
2 e− 1

4y

×
∫ ∞

0
exp

(
−
(

1
4x0

+ 1
4y

)
cosh v

)
coth2κ v

2 I2η(
sinh v
2
√
x0y

) dv dy.

(A.24)

We now use formula (56) in (Buchholz, 1953, page 86):

Mκ,η(a1)Wκ,η(a2) = √
a1a2

�(1 + 2η)

�(η − κ + 1
2 )

∫ ∞

0
exp(− a1+a2

2 cosh v)

× coth2κ v
2 I2η(

√
a1a2 sinh v) dv

(A.25)

provided that 0 < a1 < a2. We apply (A.25) with a1 = 1/(2x0) , a2 = 1/(2y) in
(A.24), and we obtain P̃1 = P̃2.

Using the transformation (A.23), we also verify that (3.23) and (2.11) agree.
We note that the identity

tanh2
v

2
= 1 − 2

cosh v + 1
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implies ρ2x0 = y− u and thus

ρν+1

u
+ ρν−1

x0
= ρν−1

u
y
x0

.

Then we argue as above to show that (2.11) transforms to (A.15). �
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