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Abstract

Detailed balance of a chemical reaction network can be defined in several different
ways. Here we investigate the relationship among four types of detailed balance con-
ditions: deterministic, stochastic, local, and zero-order local detailed balance. We show
that the four types of detailed balance are equivalent when different reactions lead to
different species changes and are not equivalent when some different reactions lead
to the same species change. Under the condition of local detailed balance, we further
show that the system has a global potential defined over the whole space, which plays
a central role in the large deviation theory and the Freidlin–Wentzell-type metastability
theory of chemical reaction networks. Finally, we provide a new sufficient condition for
stochastic detailed balance, which is applied to construct a class of high-dimensional
chemical reaction networks that both satisfies stochastic detailed balance and displays
multistability.
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1. Introduction

The mathematical theory of chemical reaction networks has attracted massive attention
over the past two decades due to its wide-ranging applications in biology, chemistry, ecol-
ogy, and epidemics [8]. If a reaction system is well mixed and the numbers of molecules are
very large, random fluctuations can be ignored and the evolution of the concentrations of all
chemical species can be modeled deterministically as a set of ordinary differential equations
based on the law of mass action. If the chemical species are present in low numbers, however,
random fluctuations can no longer be ignored, and the evolution of the system is usually mod-
eled stochastically as a continuous-time Markov chain on a high-dimensional lattice, which is
widely known as a density-dependent Markov chain [14]. The Kolmogorov forward equation
for a density-dependent Markov chain is the well-known chemical master equation, which was
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Local detailed balance and global potential for stochastic reaction networks 887

first introduced by Delbrück [13]. At the center of the mathematical theory of chemical reac-
tion networks is a limit theorem proved by Kurtz [31–33], which states that when the system
size tends to infinity, the trajectories of the stochastic model of a reaction system will converge
to those of the deterministic model over any compact time interval, whenever the initial con-
dition converges. Thus far, stochastic reaction networks have served as a fundamental model
for the single-cell stochastic gene expression dynamics of gene regulatory networks [20, 22–
25, 30, 39, 42]. Recently, the limit theorem of Kurtz has been generalized to stochastic gene
regulatory networks with bursting dynamics [9, 26].

The limit theorem of Kurtz [32] can be viewed as the law of large numbers for stochastic
reaction networks. The corresponding large deviation theory and the Freidlin–Wentzell-type
metastability theory for stochastic reaction networks have also been studied by many authors
[1, 3, 5, 34, 36, 43] and were rigorously established by Agazzi et al. under the mass action
kinetics [2]. At the center of the metastability theory is a quantity called quasi-potential, which
plays a crucial role in the analysis of the exit time and exit distribution from a basin of attrac-
tion, as well as the most probable transition paths between multiple attractors when the system
size is large [38]. However, the quasi-potential is usually defined via an abstract variational
expression, and hence it is very difficult to obtain a general analytical expression for it.

There are two types of reaction networks that should be distinguished: those satisfy detailed
balance and those violate detailed balance. In terms of physical chemistry, detailed balance is a
fundamental thermodynamic constraint for closed systems. If there is no sustained energy sup-
ply, then a chemical system, when it reaches the steady state, must satisfy detailed balance [40].
In the modeling of many biochemical systems, such as enzymes [12] and ion channels [41],
detailed balance has become a basic requirement [4, 21]. However, in the literature, there are
two different definitions of detailed balance for a chemical reaction network. From the deter-
ministic perspective, detailed balance means that there is no net concentration flux between any
pair of reversible reactions, in which case there is no chemical potential difference and thus the
system is in chemical equilibrium. From the stochastic perspective, detailed balance means that
there is no net probability flux between any pair of microstates on the high-dimensional non-
negative integer lattice, where each microstate is defined as the ordered tuple of concentrations
of all chemical species. To distinguish between these, we refer to the former as deterministic
detailed balance and the latter as stochastic detailed balance. Some authors have believed the
two types of detailed balance to be equivalent [7]. However, Joshi [27] pointed out recently that
they are not equivalent; they are equivalent when different reactions lead to different species
changes, while they are in general not equivalent for systems having two reactions that lead to
the same species change—deterministic detailed balance implies stochastic detailed balance,
and the opposite is not true.

In this paper, in addition to deterministic and stochastic detailed balance, we propose a
third type of detailed balance, which is called local detailed balance. This new type of detailed
balance characterizes the local asymptotic behavior of a reaction network as the system size
tends to infinity. We prove that the three types of detailed balance (deterministic, stochastic,
and local) are equivalent when different reactions lead to different species changes, while local
detailed balance is even weaker than the other two when some different reactions lead to the
same species change—stochastic detailed balance implies local detailed balance, and the oppo-
site is not true. This is the first main result of the present paper. More importantly, under the
condition of local detailed balance, we prove that a stochastic reaction network has a global
potential that can be computed explicitly and concisely. The global potential reduces to the
quasi-potential within each basin of attraction. In general, the quasi-potential is only defined
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within each basin of attraction. However, local detailed balance guarantees that the system has
a global potential that can be defined over the whole space. This is the second main result of
the present paper.

In [27], Joshi gave the sufficient and necessary condition for deterministic detailed balance.
While [27] also provided a weaker sufficient condition for stochastic detailed balance, it is
difficult to apply this condition in practice, because an infinite number of restrictions need
to be verified. In this paper, we provide a simpler sufficient condition for stochastic detailed
balance that is more applicable in practice. This new sufficient condition is imposed directly
on rate constants, and only a finite number of restrictions need to be verified. This is the third
main result of the present paper.

This paper is organized as follows. In Section 2, we recall the basic concepts of chemical
reaction networks and state some preliminary results. In Section 3, we reveal the relationship
among the four types of detailed balance and give some counterexamples. In Section 4, we
show that a global potential exists for stochastic reaction networks satisfying local detailed
balance and obtain an explicit expression for the global potential. The remaining sections are
devoted to detailed proofs of the main theorems.

2. Model and preliminary results

Let Z≥0,R≥0, and R>0 denote the sets of nonnegative integers, nonnegative real numbers,
and positive real numbers, respectively. Recall that a chemical reaction system is composed of
a collection of chemical species {S1, . . . , Sd} and a family of reactions

Ri:
d∑

j=1

ν
j
i Sj

ki−→
d∑

j=1

ν′j
iSj, 1 ≤ i ≤ N,

where νj
i , ν

′j
i ∈ Z≥0 are the molecule numbers of Si consumed and created, respectively, in one

instance of that reaction. For simplicity, we write νi = (ν1
i , . . . , ν

d
i ) and ν′

i = (ν′1
i , . . . , ν

′d
i ),

which are called complexes. Then the reaction Ri can be written more concisely as νi → ν′
i.

Moreover, ν′
i − νi is called the reaction vector of Ri. Let

S = {S1, . . . , Sd}, C = {νi, ν
′
i | i = 1, . . . ,N}, R= {Ri| i = 1, . . . ,N}

denote the collections of chemical species, complexes, and reactions, respectively. Then the
ordered triple {S, C,R} is called a chemical reaction network.

A chemical reaction network is called reversible if for any reaction Ri:νi → ν′
i ∈R, there

exists a reverse reaction R−
i :ν′

i → νi ∈R [27]. For any pair of reversible reactions Ri and R−
i ,

we say that Ri is a forward reaction if νi < ν
′
i, where the symbol < is understood in the lex-

icographic order (i.e. νi < ν
′
i if and only if νj

i < ν
′j
i for the first j at which νj

i and ν′j
i differ);

otherwise, Ri is called a backward reaction. Throughout the paper, we assume that all reaction
networks under consideration are reversible.

Most previous papers have assumed that different reactions have different reaction vectors.
However, in many reaction networks, different reactions may have the same reaction vector.
For example, the reaction S1 → S2 and the enzyme-catalyzed reaction S1 + E → S2 + E, where
E denotes an enzyme, may coexist in a biochemical reaction system, with the latter having a
larger reaction rate. To cover such systems, here we consider the more general case where
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each reaction vector may correspond to multiple reactions. For convenience, we introduce the
following definition, which plays an important role in the present paper.

Definition 1. Two reactions are called equivalent if they have the same reaction vector.

From this definition, two equivalent reactions are either both forward or both backward.
Following the notation in [27], let V(R) = {ν′

i − νi|Ri is a forward reaction} denote the collec-
tion of reaction vectors for forward reactions. Throughout the paper, the elements in V(R) will
be listed as ω1, · · · , ωr , where 1 ≤ r ≤ N. For any ωp = (ω1

p, · · · , ωd
p) ∈ V(R), we set

R+
p = {Ri|Ri is a forward reaction, ν′

i − νi =ωp},
R−

p = {R−
i |Ri is a forward reaction, ν′

i − νi =ωp}.

Then we can relabel the elements in R+
p and R−

p as

R+
pl:

d∑
j=1

ν
j
plSj

k+
pl−→

d∑
j=1

ν′j
plSj, 1 ≤ l ≤ rp,

R−
pl:

d∑
j=1

ν′j
plSj

k−
pl−→

d∑
j=1

ν
j
plSj, 1 ≤ l ≤ rp,

where rp represents the number of forward reactions with the same reaction vector ωp; we call
rp the multiplicity of ωp. Here we mainly focus on the case of rp > 1 for some 1 ≤ p ≤ r. For

any 1 ≤ p ≤ r and 1 ≤ l ≤ rp, we set νpl = (ν1
pl, . . . , ν

d
pl) and ν′

pl = (ν′1
pl , . . . , ν

′d
pl).

We first recall the stochastic model of reaction networks. For each 1 ≤ j ≤ d, let Nj(t) denote
the number of molecules of the chemical species Sj at time t. Then the concentration of Sj at
time t is given by XV

j (t) = Nj(t)/V , where V is the system size. Let XV (t) = (XV
1 (t), . . . , XV

d (t))
denote the concentration process of all chemical species. At the mesoscopic level, the pro-
cess {XV(t):t ≥ 0} can be modeled by a continuous-time Markov chain on the d-dimensional
nonnegative integer lattice

EV =
{ n

V
: n = (n1, . . . , nd) ∈Zd

≥0

}

with transition rate matrix QV = (qV
x,y) whose elements are defined as follows: for any 1 ≤ p ≤ r

and any x ∈ EV ,

qV
x,x+ωp

V
=

rp∑
l=1

k+
pl

V |νpl|−1

(Vx)!
(Vx − νpl)! ,

qV
x,x−ωp

V
=

rp∑
l=1

k−
pl

V |ν′pl|−1

(Vx)!
(Vx − ν′

pl)! ,

qV
x,x = −

r∑
p=1

(
qV

x,x+ωp
V

+ qV
x,x−ωp

V

)
,

where |ν| =∑d
j=1 νj is called the order of the complex ν = (ν1, · · · , νd), and we write x! =∏d

j=1 xj! for each vector x = (x1, · · · , xd) ∈Zd
≥0. Let PV

x (t) denote the probability of observing
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state x ∈ EV at time t. Then the evolution of the stochastic model is governed by the following
chemical master equation:

dPV
x (t)

dt
=

r∑
p=1

qV
x−ωp

V ,x
PV

x−ωp
V

(t) +
r∑

p=1

qV
x+ ωp

V ,x
PV

x+ωp
V

(t)

−
r∑

p=1

(
qV

x,x+ωp
V

+ qV
x,x−ωp

V

)
PV

x (t), x ∈ EV .

We next recall the deterministic model of reaction networks. For each 1 ≤ j ≤ d, let xj(t)
denote the concentration of the chemical species Sj at time t. At the macroscopic level, the
concentration process x(t) = (x1(t), . . . , xd(t)) of all chemical species can be modeled by the
following ordinary differential equation with mass action kinetics:⎧⎪⎪⎨

⎪⎪⎩
dx(t)

dt
=

r∑
p=1

[f +
p (x(t)) − f −

p (x(t))]ωp,

x(0) = x0,

(1)

with x0 denoting the initial concentration vector and

f +
p (x) =

rp∑
l=1

k+
plx

νpl, f −
p (x) =

rp∑
l=1

k−
plx

ν
′
pl, x ∈Rd

≥0, (2)

where we write xy =∏d
j=1 x

yj
j for any vectors x, y ∈Rd

≥0. The relationship between the meso-
scopic stochastic model and the macroscopic deterministic model is revealed by the following
celebrated Kurtz theorem [31, 32]: for any δ, T > 0, whenever xV

0 ∈ EV and xV
0 → x0 ∈Rd

≥0,

lim
V→∞ PxV

0
( sup

t∈[0,T]
‖XV (t) − x(t)‖ ≤ δ) = 1, (3)

where PxV
0

(·) = P(· |XV (0) = xV
0 ) and ‖x‖ denotes the Euclidean norm of x ∈Rd . This implies

that as the system size tends to infinity, the trajectories of the stochastic model will converge
to those of the deterministic model on any compact time interval, whenever the initial value
converges.

The limit theorem in (3) can be viewed as the law of large numbers for the stochastic model.
The corresponding large deviation principle was proved recently by Agazzi et al. [2, Theorem
1.6] and is stated as follows. The Hamiltonian of a stochastic reaction network is defined as

H(x, θ ) =
r∑

p=1

[
f +
p (x)

(
eωp·θ − 1

)+ f −
p (x)

(
e−ωp·θ − 1

)]
, x ∈Rd

≥0, θ ∈Rd, (4)

where x · y =∑d
j=1 xjyj denotes the usual scalar product on Rd. The Lagrangian of a stochastic

reaction network is then defined as the Legendre–Fenchel transform of the Hamiltonian with
respect to the variable θ , namely

L(x, y) = sup
θ∈Rd

(θ · y − H(x, θ )), x ∈Rd
≥0, y ∈Rd . (5)
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The Lagrangian is nonnegative because L(x, y) ≥ 0 · y − H(x, 0) = 0. Moreover, it is not hard
to prove that L(x, y) = ∞ for any y /∈ span(V(R)). This is because any y /∈ span(V(R)) can
be decomposed uniquely as y = y1 + y2, where y1 ∈ span(V(R)) and 0 
= y2 ∈ span(V(R))⊥.
Thus for any K > 0, we have L(x, y) ≥ Ky2 · y − H(x,Ky2) = K‖y2‖2, where we have used the
fact that H(x, θ ) = 0 for any θ ∈ span(V(R))⊥. Since K is arbitrarily chosen, we conclude that
L(x, y) = ∞.

To proceed, let D[0,T](Rd
≥0) denote the space of càdlàg functions φ:[0, T] →Rd

≥0, equipped

with the topology of uniform convergence. For any x0 ∈Rd≥0, let Ix0,T :D[0,T](Rd≥0) → [0,∞]
be the function defined as

Ix0,T (φ) =
{∫ T

0 L(φ(t), φ̇(t))dt if φ is absolutely continuous and φ(0) = x0,

∞ otherwise.

Using the properties of the Lagrangian, it is easy to see that Ix0,T (φ) = ∞ if there exists 0 ≤
t ≤ T such that φ(t) /∈ x0 + span(V(R)). With this notation, Agazzi et al. proved the following
result [2, Theorem 1.6]: provided that the network is asiphonic and strongly endotactic (see
[2, Definitions 1.8 and 1.9] for detailed definitions), for any xV

0 ∈ EV and xV
0 → x0, the law of

the process {XV(t):t ∈ [0, T]} with XV (0) = xV
0 satisfies a large deviation principle with rate V

and good rate function Ix0,T . The large deviation principle means that for any measurable set
� ⊂ D[0,T](Rd

≥0), we have

lim inf
V→∞

1

V
log PxV

0
(XV ( · ) ∈ �o) ≥ − inf

φ∈�o
Ix0,T (φ),

lim sup
V→∞

1

V
log PxV

0
(XV( · ) ∈ �̄) ≤ − inf

φ∈�̄
Ix0,T (φ),

(6)

where �o and �̄ denote the interior and closure of �, respectively. Combining (3) and (6), it is
easy to see that Ix0,T (x) = 0, where x = x(t) is the solution of the deterministic model (1). The
rate function can be used to define the following quasi-potential:

W(x0, y) = inf {Ix0,T (φ):φ(0) = x0, φ(T) = y, T ≥ 0}, x0, y ∈Rd
≥0. (7)

Intuitively, W(x0, y) represents the ‘cost’ for the stochastic reaction network to move from
x0 to y. It is easy to see that the quasi-potential is nonnegative and jointly continuous in x0
and y [38]. Using the properties of the Lagrangian, it is easy to see that W(x0, y) = ∞ if y /∈
x0 + span(V(R)).

Agazzi et al. [2, Theorem 1.15] also deal with the Freidlin–Wentzell-type metastability
theory for chemical reaction networks, where the quasi-potential plays a central role. For sim-
plicity, we consider the case where the domain under consideration contains only one stable
equilibrium point. Specifically, we assume that the following four conditions are satisfied:

(a) D is a bounded open domain in Rd
≥0 with a piecewise C2 boundary ∂D.

(b) The point c ∈ D is an asymptotically stable equilibrium point of the deterministic
model (1).

(c) The set D̄ = D ∪ ∂D is attracted to c, which means that whenever x0 ∈ D̄, the solution of
the deterministic model (1) starting from x0 satisfies x(t) ∈ D for each t> 0 and x(t) → c
as t → ∞.
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(d) There exists a ball B ⊂ D̄ such that for any x ∈ B and y ∈ D̄, the set D̄ contains the line
segment between x and y.

It is easy to check that Assumptions A.3 and A.4 in [2] are satisfied under these conditions.
Then the Kurtz theorem implies that when V is sufficiently large, the trajectory of the stochastic
model will stay in the domain D over any compact time interval with overwhelming probability.
However, it is still possible for the system to escape from D. The mean exit time from D has
the following asymptotic behavior:

lim
V→∞

1

V
logExV

0
τV = inf

y∈∂D
W(c, y),

where τV = inf{t ≥ 0:XV (t) /∈ D} denotes the exit time of XV from D. Moreover, if there is a
unique y0 ∈ ∂D such that

W(c, y0) = inf
y∈∂D

W(c, y),

then for any δ > 0, the exit position from D has the asymptotic behavior

lim
V→∞ PxV

0
(‖XV (τV ) − y0‖< δ) = 1,

and for any δ > 0 and z0 ∈ ∂D, the exit distribution from D has the asymptotic behavior

lim
δ→0

lim
V→∞

1

V
log PxV

0

(‖XV (τV ) − z0‖< δ
)= W(c, y0) − W(c, z0).

Intuitively, when V is sufficiently large, the stochastic model will escape from D around a
particular point y0 ∈ ∂D at which the quasi-potential restricted to ∂D attains its minimum.

3. Detailed balance for chemical reaction networks

In this section, we investigate the relationship among different types of detailed balance con-
ditions for chemical reaction networks. Before stating our results, we first recall the definitions
of deterministic and stochastic detailed balance for chemical reaction networks [27].

Definition 2. We say that a reaction network satisfies deterministic detailed balance (or
reaction network detailed balance [27]) if there exists c ∈Rd

>0 such that

k+
plc

νpl = k−
plc

ν
′
pl, for any 1 ≤ p ≤ r, 1 ≤ l ≤ rp. (8)

Here c is called a chemical equilibrium state of the reaction network.

Clearly, any chemical equilibrium state c is also an equilibrium point of the deterministic
model (1), and thus it is also called a detailed balanced equilibrium point. It has been shown
that for mass action kinetics, if one positive equilibrium point of the deterministic model is
detailed balanced, then every positive equilibrium point is detailed balanced [15, 27].

Definition 3. We say that a reaction network satisfies stochastic detailed balance (or Markov
chain detailed balance [27]) if for any V > 0, there exists a probability measure πV = (πV

x ) on
EV such that

πV
x qV

x,y = πV
y qV

y,x, for any x, y ∈ EV .

Note that here we do not require πV to be a probability distribution.
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A simple method of verifying stochastic detailed balance is to use the Kolmogorov criterion
[29], which states that a reaction network satisfies stochastic detailed balance if and only if for
any V > 0, the transition rates satisfy the following Kolmogorov cycle condition:

qV
x1,x2

qV
x2,x3

· · · qV
xn,x1

= qV
x2,x1

qV
x3,x2

· · · qV
x1,xn

for any finite number of states x1, . . . , xn ∈ EV . In other words, the Kolmogorov criterion states
that a reaction network satisfies stochastic detailed balance if and only if for any V > 0, the
product of the transition rates of the stochastic model along any cycle is equal to that along the
reversed cycle.

Besides deterministic and stochastic detailed balance, we introduce another type of detailed
balance which is defined as follows. This new type of detailed balance will play an important
role in constructing the global potential of a chemical reaction network.

Definition 4.

(i) We say that a reaction network satisfies zero-order local detailed balance if for any
integers ξ1, . . . , ξr satisfying

∑r
p=1 ξpωp = 0, we have

r∑
p=1

ξp log
f +
p (x)

f −
p (x)

= 0, for any x ∈Rd
>0, (9)

where f +
p (x) and f −

p (x) are the functions defined in (2).

(ii) We say that a reaction network satisfies first-order local detailed balance if for any
1 ≤ p, q ≤ r with p 
= q, we have

ωq · ∇
(

log
f +
p (x)

f −
p (x)

)
=ωp · ∇

(
log

f +
q (x)

f −
q (x)

)
, for any x ∈Rd

>0. (10)

(iii) We say that a reaction network satisfies local detailed balance if it satisfies both zero-
order and first-order local detailed balance.

Remark 1. The ideas behind the above definition are explained as follows. For any integers
ξ1, . . . , ξr satisfying

∑r
p=1 ξpωp = 0, we can construct a cycle C in the integer lattice Zd ,

which is given by

C:0 → sgn(ξ1)ω1 → · · · → ξ1ω1

→ ξ1ω1 + sgn(ξ2)ω2 → · · · → ξ1ω1 + ξ2ω2 → · · ·
→ ξ1ω1 + ξ2ω2 + · · · + sgn(ξr)ωr → · · · → ξ1ω1 + ξ2ω2 + · · · + ξrωr = 0.

Here sgn(x) is the sign function, which takes the value of 1 if x> 0, takes the value of
0 if x = 0, and takes the value of −1 if x< 0. Obviously, for any xV ∈ EV and xV → x ∈
Rd
>0, the cycle C can induce a cycle xV + C/V in EV around x, which becomes smaller

as V increases. For convenience, let η1 → η2 → · · · → ηL → η1 denote the induced cycle
in EV , where L =∑r

p=1 |ξp| is the number of transitions in the cycle. If a reaction network
satisfies stochastic detailed balance, then it follows from Kolmogorov’s cycle condition that

f

(
1

V

)
: = log

qV
η1,η2

qV
η2,η3

· · · qV
ηL,η1

qV
η2,η1

qV
η3,η2

· · · qV
η1,ηL

= 0. (11)
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Note that the left-hand side of this equality is a function of 1/V . Since f (1/V) = 0 for all V > 0,
we have

f (0): = lim
V→∞ f

(
1

V

)
= 0 (zero-order information)

and

f ′(0): = lim
V→∞

f
(

1
V

)
− f (0)

1
V

= 0 (first-order information).

Roughly speaking, the condition (9) extracts the zero-order information of the equality (11)
as V → ∞, and the condition (10) extracts the first-order information of the equality (11) as
V → ∞. Since the induced cycle becomes smaller as V increases, (9) and (10) actually contain,
respectively, the zero-order and the first-order local information of detailed balance around
x ∈Rd

>0.

It is a well-known result that deterministic detailed balance implies stochastic detailed bal-
ance for a chemical reaction network [27, Theorem 5.9]. The following theorem reveals the
relationship between stochastic and local detailed balance.

Theorem 1. If a reaction network satisfies stochastic detailed balance, then it also satisfies
local detailed balance. In other words, stochastic detailed balance implies local detailed
balance.

Proof. The proof of the theorem will be given in Section 5. �

The next corollary follows immediately from Theorem 1 and [27, Theorem 5.9].

Corollary 1. For a chemical reaction network, the following statements hold:

(a) Deterministic detailed balance implies stochastic detailed balance.

(b) Stochastic detailed balance implies local detailed balance.

(c) Local detailed balance implies zero-order local detailed balance.

The above corollary reveals the inclusion relationship among the four types of detailed
balance—deterministic, stochastic, local, and zero-order local detailed balance—as illustrated
in Figure 1. Deterministic detailed balance is the strongest and zero-order local detailed balance
is the weakest. The following proposition reveals when the four types of detailed balance are
equivalent.

Proposition 1. If a chemical network has no equivalent reactions, then the following state-
ments are equivalent:

(a) The network satisfies deterministic detailed balance.

(b) The network satisfies stochastic detailed balance.

(c) The network satisfies local detailed balance.

(d) The network satisfies zero-order local detailed balance.
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deterministic
detailed balance 

stochastic
detailed balance 

local
detailed balance 

zero-order local
detailed balance

FIGURE 1. Inclusion relationship among four types of detailed balance conditions for chemical reac-
tion networks: deterministic, stochastic, local, and zero-order local detailed balance. The four conditions
are equivalent for chemical networks without equivalent reactions and are not equivalent for chemical
networks with equivalent reactions.

Proof. By Corollary 1, we only need to prove that (d) implies (a). If the network satisfies
zero-order local detailed balance, for any integers ξ1, · · · , ξr satisfying

∑r
p=1 ξpωp = 0, we

have
r∑

p=1

ξp log
f +
p (x)

f −
p (x)

= 0, x ∈Rd
>0.

Since the network has no equivalent reactions, we have rp = 1 for any 1 ≤ p ≤ r. This shows
that

log
f +
p (x)

f −
p (x)

= log

(
k+

p1

k−
p1

x−ωp

)
= log

k+
p1

k−
p1

−ωp · log x, (12)

where log x = ( log x1, · · · , log xd). Combining the above two equations shows that

0 =
r∑

p=1

ξp log
f +
p (x)

f −
p (x)

=
r∑

p=1

ξp log
k+

p1

k−
p1

−
r∑

p=1

ξpωp · log x =
r∑

p=1

ξp log
k+

p1

k−
p1

= 0.

Thus we conclude that for any integers ξ1, · · · , ξr satisfying
∑r

p=1 ξp(ν′
p1 − νp1) = 0, we have

r∑
p=1

ξp log
k+

p1

k−
p1

= 0.

This is exactly the so-called Wegscheider cycle condition, which is widely known as the suffi-
cient and necessary condition for deterministic detailed balance [17, Proposition 1]. Therefore,
we have proved that (d) implies (a). �

We have seen that if a chemical network has no equivalent reactions, then the four types of
detailed balance are equivalent. For chemical networks having equivalent reactions, however,
the four types of detailed balance are no longer equivalent, as can be seen from the following
three counterexamples.

The first example [27, 44] gives a reaction network that satisfies stochastic detailed balance
but violates deterministic detailed balance.

Example 1. Consider the following well-known Schlögl model [44]:

∅
k+

11
GGGGGGBF GGGGGG

k−
11

S1, 2S1

k+
12

GGGGGGBF GGGGGG

k−
12

3S1.
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The stochastic model of this reaction network is a one-dimensional birth–death process and
thus must satisfy stochastic detailed balance. Moreover, it is easy to check that deterministic
detailed balance is satisfied if and only if k+

11/k
−
11 = k+

12/k
−
12 [44]. In other words, if k+

11/k
−
11 
=

k+
12/k

−
12, then deterministic detailed balance is violated.

The next example gives a reaction network that satisfies local detailed balance but violates
stochastic detailed balance.

Example 2. Consider the following chemical reaction system:

∅
k+

1
GGGGGGBF GGGGGG

k−
1

S1, S1

k+
2

GGGGGGBF GGGGGG

k−
2

2S1,

∅
(k+

1 )2

GGGGGGGGGBF GGGGGGGGG

(k−
1 )2

2S1, S1

2k+
1 k+

2
GGGGGGGGGGBF GGGGGGGGGG

2k−
1 k−

2

3S1, 2S1

(k+
2 )2

GGGGGGGGGBF GGGGGGGGG

(k−
2 )2

4S1.

By definition, the forward reactions are given by

∅
k+

1−→ S1, S1
k+

2−→ 2S1, ∅
(k+

1 )2

−−−→ 2S1, S1
2k+

1 k+
2−−−→ 3S1, 2S1

(k+
2 )2

−−−→ 4S1,

and the backward reactions are given by

S1
k−

1−→∅, 2S1
k−

2−→ S1, 2S1
(k−

1 )2

−−−→∅, 3S1
2k−

1 k−
2−−−→ S1, 4S1

(k−
2 )2

−−−→ 2S1.

It is easy to see that the first two forward reactions have the same reaction vector ω1 = 1, and
the last three forward reactions also have the same reaction vector ω2 = 2. The multiplicities
of the two reaction vectors are given by r1 = 2 and r2 = 3, respectively. We first prove that the
system satisfies local detailed balance. Clearly, the two reaction vectors are linearly related by
ξ1ω1 + ξ2ω2 = 0 with ξ1 = 2 and ξ2 = −1. It is easy to check that

log
f +
2 (x)

f −
2 (x)

= log
(k+

1 )2 + 2k+
1 k+

2 x + (k+
2 )2x2

(k−
1 )2x2 + 2k−

1 k−
2 x3 + (k−

2 )2x4
= log

(k+
1 + k+

2 x)2

(k−
1 x + k−

2 x2)2

= 2 log
k+

1 + k+
2 x

k−
1 x + k−

2 x2
= 2 log

f +
1 (x)

f −
1 (x)

.

Therefore, we have

ξ1 log
f +
1 (x)

f −
1 (x)

+ ξ2 log
f +
2 (x)

f −
2 (x)

= 2 log
f +
1 (x)

f −
1 (x)

− log
f +
2 (x)

f −
2 (x)

= 0,

which shows that zero-order local detailed balance is satisfied. Moreover, we have

ω2 · ∇
(

log
f +
1 (x)

f −
1 (x)

)
−ω1 · ∇

(
log

f +
2 (x)

f −
2 (x)

)
= 2

d

dx

(
log

f +
1 (x)

f −
1 (x)

)
− d

dx

(
log

f +
2 (x)

f −
2 (x)

)
= 0,

which shows that first-order local detailed balance is also satisfied. We next prove that the
system violates stochastic detailed balance. For each V > 0, consider the following cycle
in EV :

n

V
→ n + 1

V
→ n + 2

V
→ n

V
.
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The transition rates along this cycle and its reversed cycle are given by

qV
n
V ,

n+1
V

= k+
1 V + k+

2 n, qV
n+1

V , n
V

= k−
1 (n + 1) + k−

2

V
(n + 1)n,

qV
n+1

V , n+2
V

= k+
1 V + k+

2 (n + 1), qV
n+2

V , n+1
V

= k−
1 (n + 2) + k−

2

V
(n + 2)(n + 1),

qV
n+2

V , n
V

= (k−
1 )2(n + 2)(n + 1)

V
+ 2k−

1 k−
2 (n + 2)(n + 1)n

V2
+ (k−

2 )2(n + 2)(n + 1)n(n − 1)

V3
,

qV
n
V ,

n+2
V

= (k+
1 )2V + 2k+

1 k+
2 n + (k+

2 )2

V
n(n − 1).

Direct computation shows that

qV
n
V ,

n+1
V

qV
n+1

V , n+2
V

qV
n+2

V , n
V

qV
n+1

V , n
V

qV
n+2

V , n+1
V

qV
n
V ,

n+2
V

= (k+
1 V + k+

2 n)[k+
1 V + k+

2 (n + 1)][(k−
1 )2V2 + 2k−

1 k−
2 nV + (k−

2 )2n(n − 1)]

(k−
1 V + k−

2 n)[k−
1 V + k−

2 (n + 1)][(k+
1 )2V2 + 2k+

1 k+
2 nV + (k+

2 )2n(n − 1)]
.

It is easy to check that the left-hand side of this equation is equal to 1 if and only if k+
1 /k

−
1 =

k+
2 /k

−
2 , which means that stochastic detailed balance is violated if k+

1 /k
−
1 
= k+

2 /k
−
2 .

The third example gives a reaction network that satisfies zero-order local detailed balance
but violates local detailed balance.

Example 3. Consider the following chemical reaction system:

∅
k+

1
GGGGGGBF GGGGGG

k−
1

S1, S2

k+
2

GGGGGGBF GGGGGG

k−
2

S1 + S2, ∅
k−

1
GGGGGGBF GGGGGG

k+
1

S2, S2

k−
2

GGGGGGBF GGGGGG

k+
2

2S2, ∅
1

GGGGBF GGGG

1
S1 + S2.

By definition, the forward reactions are given by

∅
k+

1−→ S1, S2
k+

2−→ S1 + S2, ∅
k−

1−→ S2, S2
k−

2−→ 2S2, ∅
1−→ S1 + S2,

and the backward reactions are given by

S1
k−

1−→∅, S1 + S2
k−

2−→ S2, S2
k+

1−→∅, 2S2
k+

2−→ S2, S1 + S2
1−→∅.

The first two forward reactions have the same reaction vectorω1 = (1, 0), the next two forward
reactions have the same reaction vector ω2 = (0, 1), and the last forward reaction has the reac-
tion vector ω3 = (1, 1). The multiplicities of the three reaction vectors are given by r1 = r2 = 2
and r3 = 1, respectively. We first prove that the system satisfies zero-order local detailed bal-
ance. Clearly, the three reaction vectors are linearly related by ξ1ω1 + ξ2ω2 + ξ3ω3 = 0 with
ξ1 = ξ2 = 1 and ξ3 = −1. It is easy to check that

f +
1 (x)

f −
1 (x)

= k+
1 + k+

2 x2

k−
1 x1 + k−

2 x1x2
,

f +
2 (x)

f −
2 (x)

= k−
1 + k−

2 x2

k+
1 x2 + k+

2 x2
2

,
f +
3 (x)

f −
3 (x)

= 1

x1x2
.
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Therefore, we have

ξ1 log
f +
1 (x)

f −
1 (x)

+ ξ2 log
f +
2 (x)

f −
2 (x)

+ ξ3 log
f +
3 (x)

f −
3 (x)

= log
f +
1 (x)

f −
1 (x)

+ log
f +
2 (x)

f −
2 (x)

− log
f +
3 (x)

f −
3 (x)

= 0,

which shows that zero-order local detailed balance is satisfied. On the other hand, it is easy to
check that

ω2 · ∇
(

log
f +
1 (x)

f −
1 (x)

)
= ∂

∂x2

(
log

k+
1 + k+

2 x2

k−
1 x1 + k−

2 x1x2

)
= k−

1 k+
2 − k+

1 k−
2

(k+
1 + k+

2 x2)(k−
1 + k−

2 x2)
,

ω1 · ∇
(

log
f +
2 (x)

f −
2 (x)

)
= ∂

∂x1

(
log

k−
1 + k−

2 x2

k+
1 x2 + k+

2 x2
2

)
= 0.

Clearly, the left-hand sides of the above two equations are equal if and only if k+
1 /k

−
1 = k+

2 /k
−
2 .

In other words, if k+
1 /k

−
1 
= k+

2 /k
−
2 , then first-order local detailed balance is violated and thus

the system does not satisfy local detailed balance.

In [27, Theorem 4.2], Joshi gave the following sufficient and necessary condition for
deterministic detailed balance.

Theorem 2. ([27, Theorem 4.2]) A reaction network satisfies deterministic detailed balance if
and only if the following two conditions are satisfied:

(a) For any 1 ≤ p ≤ r, the rate constants of the reactions in R+
p and R−

p satisfy

k+
p1

k−
p1

= k+
p2

k−
p2

= · · · = k+
prp

k−
prp

.

(b) For any integers ξ1, · · · , ξr satisfying
∑r

p=1 ξpωp = 0, we have

r∑
p=1

ξp log
k+

p1

k−
p1

= 0. (13)

While Joshi [27, Theorem 5.14] also gave a sufficient condition for stochastic detailed bal-
ance, it is difficult to apply this condition in practice, because an infinite number of restrictions
need to be verified. Here we give a simpler sufficient condition for stochastic detailed balance
that is more applicable in practice. To state our sufficient condition, we need the following
definition.

Definition 5. For each 1 ≤ p ≤ r, we say that the reaction vector ωp satisfies the orthogonality
condition if

(νj
pl1

− ν
j
pl2

)ωj
q = 0, for any 1 ≤ l1, l2 ≤ rp, q 
= p, 1 ≤ j ≤ d.

It is easy to see that if rp = 1, then the orthogonality condition is automatically satisfied for
ωp. The following theorem provides a new sufficient condition for stochastic detailed balance.
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This sufficient condition is imposed directly on rate constants and only a finite number of
restrictions need to be verified.

Theorem 3. Suppose that the reaction vectors ω1, · · · , ωr are linearly independent. Suppose
that for each 1 ≤ p ≤ r, either one of the following two conditions is satisfied: The reaction
vector ωp satisfies the orthogonality condition.

(a) The reaction vector ωp satisfies the orthogonality condition.

(b) The rate constants of the reactions in R+
p and R−

p satisfy

k+
p1

k−
p1

= k+
p2

k−
p2

= · · · = k+
prp

k−
prp

. (14)

Then the reaction network satisfies stochastic detailed balance.

Proof. The proof of this theorem will be given in Section 6. �

From Theorem 2, if the reaction vectors ω1, · · · , ωr are linearly independent, then (13)
holds trivially and hence the reaction network satisfies deterministic detailed balance if and
only if (14) is satisfied for all 1 ≤ p ≤ r.

We next use Theorem 3 to construct more examples of chemical reaction networks that
satisfy stochastic detailed balance but violate deterministic detailed balance.

Example 4. Consider the following chemical reaction system:

∅
k+

11
GGGGGGBF GGGGGG

k−
11

S1, S1

k+
12

GGGGGGBF GGGGGG

k−
12

2S1, S2

k−
21

GGGGGGBF GGGGGG

k+
21

S1, 3S2

k−
22

GGGGGGBF GGGGGG

k+
22

S1 + 2S2.

By definition, the forward reactions are given by

∅
k+

11−→ S1, S1
k+

12−→ 2S1, S2
k−

21−→ S1, 3S2
k−

22−→ S1 + 2S2,

and the backward reactions are given by

S1
k−

11−→∅, 2S1
k−

12−→ S1, S1
k+

21−→ S2, S1 + 2S2
k+

22−→ 3S2.

The first two forward reactions have the same reaction vector ω1 = (1, 0), and the last two
forward reactions have the same reaction vector ω2 = (1,−1). The multiplicities of the two
reaction vectors are given by r1 = r2 = 2, and the two reaction vectors are linearly independent.
Moreover, we have

ν11 = (0, 0), ν′
11 = (1, 0), ν12 = (1, 0), ν′

12 = (2, 0),

ν21 = (0, 1), ν′
21 = (1, 0), ν22 = (0, 3), ν′

22 = (1, 2).

It is easy to check that (νj
22 − ν

j
21)ωj

1 = 0 for j = 1, 2. This shows that the orthogonality con-
dition is satisfied for the reaction vector ω2. By Theorem 3, the reaction network satisfies
stochastic detailed balance if the condition (b) holds for p = 1; that is, k+

11/k
−
11 = k+

12/k
−
12. Thus,
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if k+
11/k

−
11 = k+

12/k
−
12 but k+

21/k
−
21 
= k+

22/k
−
22, then the system satisfies stochastic detailed balance

but violates deterministic detailed balance.

4. Global potential for chemical reaction networks

In this section, we investigate the quasi-potential of chemical reaction networks, which
plays a central role in the Freidlin–Wentzell-type metastability theory. The quasi-potential
defined in (7) has two important features: (i) it is locally defined within each basin of attrac-
tion and in general cannot be globally defined over the whole space, and (ii) it is defined
in the variational form, which is usually too complicated to be computed explicitly. The fol-
lowing theorem shows that, under the condition of local detailed balance, the quasi-potential
not only can be defined globally over the whole space but also has an explicit and concise
expression.

In the following, we always assume that the stochastic model XV starts from some xV
0 ∈ EV

which satisfies xV
0 → x0 ∈Rd

≥0 as V → ∞. Recall that the critical points of a function U ∈
C1(Rd

>0) are those points in Rd
>0 at which ∇U vanishes.

Theorem 4. Suppose that a reaction network satisfies local detailed balance. Let
{ωi1, · · · , ωim} be an arbitrary basis of span(V(R)) and let M = (ωT

i1
, · · · , ωT

im) be a

d × m matrix, where m is the dimension of span(V(R)). Let F:Rd
>0 →Rd be a vector field

defined as

F(x) =
(

log
f +
i1

(x)

f −
i1

(x)
, · · · , log

f +
im (x)

f −
im

(x)

)
(MTM)−1MT . (15)

Then the following five statements hold:

(a) The definition of the vector field F is independent of the choice of the basis of
span(V(R)). In addition, for any 1 ≤ p ≤ r, we have

F(x) · ωp = log
f +
p (x)

f −
p (x)

, x ∈Rd
>0. (16)

(b) The vector field F has a potential function U ∈ C∞(Rd
>0), i.e.,

F(x) = −∇U(x), x ∈Rd
>0 ∩ (x0 + span(V(R))). (17)

(c) The potential function U satisfies

d

dt
U(x(t)) ≤ 0, t ≥ 0,

where x = x(t) is the solution of the deterministic model (1), and equality holds if and only if
the deterministic model starts from any one of its equilibrium points.

(d) The critical points of U within Rd
>0 ∩ (x0 + span(V(R))) are also the equilibrium points

of the deterministic model (1).

(e) Let c ∈Rd
>0 ∩ (x0 + span(V(R))) be an equilibrium point of the deterministic model (1).

If y ∈Rd
>0 is attracted to c for the deterministic model (1), then
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W(c, y) = U(y) − U(c), (18)

where W is the quasi-potential defined in (7).

Proof. The proof of this theorem will be given in Section 7. �

It is easy to see that if two potential functions U1,U2 ∈ C∞(Rd
>0) both satisfy (17), i.e., if

F(x) = −∇U1(x) = −∇U2(x), x ∈Rd
>0 ∩ (x0 + span(V(R))),

then U1 and U2 must coincide with each other (up to a constant) on Rd
>0 ∩ (x0 + span(V(R))).

Definition 6. The potential function U introduced in Theorem 4 is called the global potential
of the reaction network.

Remark 2. In the classic Freidlin–Wentzell theory for randomly perturbed dynamical systems
[16], it was shown that when detailed balance is satisfied, the system has a global potential that
can be computed explicitly [16, Chapter 4, Theorem 3.1]. The above theorem is actually the
counterpart of this result for stochastic reaction networks. It shows that under the condition of
local detailed balance, we are able to construct a global potential of the reaction network, which
is exactly the same as the quasi-potential (up to a constant) within each basin of attraction.

Remark 3. Combining Theorems 1 and 4, we can see that stochastic detailed balance ensures
the existence of a global potential. From the deterministic perspective, the vector field F
defined in (15) can be understood as the chemical force of the deterministic model. Recall
that F has a potential function if and only if the line integral of F (the work exerted by the
chemical force) along any smooth closed curve is zero. Similarly, from the stochastic perspec-
tive, the chemical force of the stochastic model between any two states x, y ∈ EV is defined
as log qV

x,y/q
V
y,x [47, Theorem 2.5]. Then the Kolmogorov cycle condition guarantees that the

work exerted by the chemical force along any cycle is zero; that is,

log
qV

x1,x2

qV
x2,x1

+ log
qV

x2,x3

qV
x3,x2

+ · · · + log
qV

xn,x1

qV
x1,xn

= 0

for any cycle x1 → x2 → · · · → xn → x1. This intuitively explains why stochastic detailed
balance implies the existence of a global potential.

The following corollary shows that the global potential U satisfies the time-independent
Hamilton–Jacobi equation.

Corollary 2. Suppose that a reaction network satisfies local detailed balance. Then we have

H(x,−F(x)) = 0, x ∈Rd
>0,

where H(x, θ ) is the Hamiltonian defined in (4) and F(x) is the vector field defined in (15). In
particular, we have

H(x,∇U(x)) = 0, x ∈Rd
>0 ∩ (x0 + span(V(R))),

where U(x) is the global potential introduced in Theorem 4.
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Proof. Since the network satisfies local detailed balance, it follows from Theorem 4(a) that

H(x,−F(x)) =
r∑

p=1

[
f +
p (x)

(
e−ωp·F(x) − 1

)
+ f −

p (x)
(

eωp·F(x) − 1
)]

=
r∑

p=1

[
f +
p (x)

(
e
− log

f+p (x)

f−p (x) − 1
)

+ f −
p (x)

(
e

log
f+p (x)

f−p (x) − 1
)]

=
r∑

p=1

[
f −
p (x) − f +

p (x) + f +
p (x) − f −

p (x)
]
= 0.

The rest of the proof follows immediately from Theorem 4(b). �

If a reaction network satisfies deterministic detailed balance, then any detailed balanced
equilibrium point c ∈Rd

>0 of the deterministic model (1) must also be complex balanced (see
[7] for the detailed definition of this concept). Every complex balanced equilibrium point c =
(c1, . . . , cd) ∈Rd

>0 can be used to construct a similar potential

Ũ(x) =
d∑

j=1

[
xj
(
log xj − log cj − 1

)+ cj
]
, x = (x1, . . . , xd) ∈Rd

>0, (19)

which turns out to be a Lyapunov function of the deterministic model [6, 19]. The following
theorem reveals the relationship between the global potential U introduced in Theorem 4 and
the potential Ũ defined in (19).

Theorem 5. Suppose that a reaction network satisfies deterministic detailed balance with
detailed balanced equilibrium point c ∈Rd

>0. Let U be the global potential of the reaction
network, and let Ũ be the Lyapunov function defined in (19). Then U coincides with Ũ (up to a
constant) on Rd

>0 ∩ (x0 + span(V(R))).

Proof. Since c ∈Rd
>0 is a detailed balanced equilibrium point, it follows from (8) that

log
k+

pl

k−
pl

= log c ·ωp, 1 ≤ p ≤ r, 1 ≤ l ≤ rp,

where log c = ( log c1, . . . , log cd). This shows that for any x ∈Rd
>0,

∇Ũ(x) ·ωp = ( log x − log c) ·ωp = log x ·ωp − log
k+

p1

k−
p1

.

Moreover, it follows from Theorem 4(a), Theorem 4(b), and (12) that for any x ∈Rd
>0 ∩ (x0 +

span(V(R))),

∇U(x) ·ωp = −F(x) ·ωp = log
f −
p (x)

f +
p (x)

= log x ·ωp − log
k+

p1

k−
p1

.

Combining the above two equations yields

∇Ũ(x) ·ωp = ∇U(x) ·ωp, x ∈Rd
>0 ∩ (x0 + span(V(R))).
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Then the function H = Ũ − U must satisfy

∇H(x) · z = 0, x ∈Rd
>0 ∩ (x0 + span(V(R))), z ∈ span(V(R)).

For any x, y ∈Rd
>0 ∩ (x0 + span(V(R))), let φ:[0, 1] →Rd

>0 be an arbitrary smooth curve
satisfying

φ(0) = x, φ(1) = y, φ( · ) ∈ x0 + span(V(R)).

Then we have

H(y) − H(x) =
∫ 1

0
∇H(φ(t)) · φ̇(t)dt = 0,

where we have used the fact that φ̇( · ) ∈ span(V(R)). This implies the desired result. �

From the above theorem, U must coincide with Ũ on Rd
>0 ∩ (x0 + span(V(R))) if the reac-

tion network satisfies deterministic detailed balance. Moreover, Theorem 4(b) shows that U
is the potential function of the vector field F. However, the following counterexample shows
that Ũ is not necessarily the potential function of the vector field F, even the reaction network
satisfies deterministic detailed balance.

Example 5. Consider the following chemical reaction system:

S2
k+

GGGGGGBF GGGGGG

k−
S1.

Clearly the system satisfies deterministic detailed balance and V(R)) = {(1,−1)}. It is easy to
check that the vector field F is given by

F(x1, x2) = 1

2
log

k+x2

k−x1
(1,−1). (20)

Suppose that x0 = (1, 0). Then there is a unique detailed balanced equilibrium point

c =
(

k+

k+ + k− ,
k−

k+ + k−

)
∈R2

>0 ∩ (x0 + span(V(R))).

The Lyapunov function Ũ associated with the equilibrium point c is given by

Ũ(x1, x2) = x1

(
log x1 − log

k+

k+ + k− − 1

)
+ x2

(
log x2 − log

k−

k+ + k− − 1

)
+ 1.

This shows that

∇Ũ(x1, x2) =
(

log x1 − log
k+

k+ + k− , log x2 − log
k−

k+ + k−

)
.

It is easy to check that −∇Ũ 
= F on R2
>0 ∩ (x0 + span(V(R))) unless (x1, x2) = c.

We next give an example showing the application of the results in this section.

Example 6. We revisit the chemical reaction system given in Example 4. Recall that the
system satisfies stochastic detailed balance when k+

11/k
−
11 = k+

12/k
−
12. Here we assume that
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this condition is satisfied. Under this condition, it follows from Theorem 1 that the sys-
tem also satisfies local detailed balance. Note that the reaction vectors in V(R) are given
by ω1 = (1, 0) and ω2 = (1,−1), which are linearly independent. Therefore, the matrix M is
given by

M =
(

1 1
0 −1

)
= (MTM)−1MT ,

and thus the vector field F is given by

F(x) =
(

log
f +
1 (x)

f −
1 (x)

, log
f +
2 (x)

f −
2 (x)

)
(MT M)−1MT

=
(

log
k+

11 + k+
12x1

k−
11x1 + k−

12x2
1

, log
k−

21x2 + k−
22x3

2

k+
21x1 + k+

22x1x2
2

)(
1 1
0−1

)

=
(

log
k+

11

k−
11x1

, log
k+

11(k+
21 + k+

22x2
2)

k−
11(k−

21x2 + k−
22x3

2)

)
,

where we have used the condition k+
11/k

−
11 = k+

12/k
−
12. It then follows from Theorem 4(b) that

the system has a global potential which satisfies

−
(
∂U

∂x1
,
∂U

∂x2

)
=
(

log
k+

11

k−
11x1

, log
k+

11(k+
21 + k+

22x2
2)

k−
11(k−

21x2 + k−
22x3

2)

)
.

Integrating the above equation gives the following explicit expression for the global
potential:

U(x1, x2) = x1

(
log

k−
11x1

k+
11

− 1

)
+ x2

(
log

k−
11x2

k+
11

− 1

)
+ x2 log

k−
22x2

2 + k−
21

k+
22x2

2 + k+
21

+ 2

√
k−

21

k−
22

arctan

(√
k−

22

k−
21

x2

)
− 2

√
k+

21

k+
22

arctan

(√
k+

22

k+
21

x2

)
+ C,

where C is a constant which can be chosen so that the minimum of U is zero. By Theorem
4(d), any critical point c = (c1, c2) ∈R2

>0 of the global potential U must satisfy ∇U(c) = 0,
that is,

c1 = k+
11

k−
11

, k−
11k−

22c3
2 − k+

11k+
22c2

2 + k−
11k−

21c2 − k+
11k+

21 = 0.

Note that c2 satisfies a cubic equation, which is capable of having three distinct positive real
roots. In this case, the global potential U has two local minimum points cA and cC and one
saddle point cB, as illustrated in Figure 2. It is easy to see that cA and cC are stable equilibrium
points of the deterministic model (1) and cB is an unstable equilibrium point. Therefore, by
applying Theorem 1, we have constructed a high-dimensional chemical reaction network that
both satisfies stochastic detailed balance and displays multistability, i.e. multiple attractors for
the deterministic model.
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FIGURE 2. Potential function U of the reaction network given in Example 4. (a) Three-dimensional plot
of the potential function U. (b) Heat plot of the potential function U. The rate constants of the reaction
network are chosen as k+

11 = 3, k−
11 = 1, k+

12 = 3, k−
12 = 1, k+

21 = 1000/3, k−
21 = 350, k+

22 = 35/3, k−
22 = 1.

The local minimum points of U are given by cA = (3, 20) and cC = (3, 5), and the saddle point of U is
given by cB = (3, 10).

When V is large, a stochastic reaction network can transition between multiple attractors
with low-probability events. In analogy to the classic Freidlin–Wentzell theory [16], if x0 is
in the basin of attraction of cA, then for any δ > 0, it follows from [2, Theorem 1.15] that the
transition time between attractors has the following asymptotic behavior:

lim
V→∞

1

V
logExV

0
σ (B(cC, δ)) = W(cA, cB),

where σ (B(cC, δ)) denotes the hitting time of the ball centered at cC with radius δ. By Theorem
4(e), for any y ∈R2

>0 staying in the basin of attraction of cA, we have

W(cA, y) = U(y) − U(cA).

Taking y → cB in the above equation and applying the continuity of the quasi-potential finally
yields

lim
V→∞

1

V
logExV

0
σ (B(cC, δ)) = U(cB) − U(cA).

Note that the right-hand side of this equation is independent of cC. This is because the trajectory
of the stochastic model will be attracted by cC with very high speed once it has escaped from
the basin of attraction of cA. Therefore, the hitting time of B(cC, δ) is mainly determined by
the exit time from the basin of attraction of cA.

Remark 4. The reaction networks in Examples 1 and 4 are called multistable systems, since
they are capable of producing multiple positive equilibrium points of the deterministic model.
So far, many results have been obtained to identify whether a deterministic reaction net-
work admits multiple equilibrium points [10, 11, 28]. Here we mainly focus on the stochastic
model, and our results can be applied to investigate the stochastic transitions between multiple
attractors.
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5. Proof of Theorem 1

Proof of Theorem 1. By the definition of the transition rates of the stochastic model, it is
easy to see that for any 1 ≤ p ≤ r, xV ∈ EV , and xV → x ∈Rd

>0, we have

lim
V→∞

qV
xV ,xV+ωp

V

V
= lim

V→∞

rp∑
l=1

k+
pl

d∏
j=1

VxV
j

V

VxV
j − 1

V
. . .

VxV
j − ν

j
pl + 1

V

=
rp∑

l=1

k+
pl

d∏
j=1

x
ν

j
pl

j = f +
p (x),

lim
V→∞

qV
xV+ωp

V ,x
V

V
= lim

V→∞

rp∑
l=1

k−
pl

d∏
j=1

VxV
j +ω

j
p

V

VxV
j +ω

j
p − 1

V
. . .

VxV
j +ω

j
p − ν′j

pl + 1

V

=
rp∑

l=1

k−
pl

d∏
j=1

x
ν
′j
pl

j = f −
p (x).

This clearly shows that

lim
V→∞

qV
xV ,xV +ωp

V

qV
xV+ωp

V ,x
V

= f +
p (x)

f −
p (x)

. (21)

To prove that the system satisfies local detailed balance, we first prove that zero-order local
detailed balance is satisfied. For any sufficiently large V and any integers ξ1, . . . , ξr satisfying∑r

p=1 ξpωp = 0, we construct the following cycle in EV :

xV → xV + sgn(ξ1)ω1

V
→ · · · → xV + ξ1ω1

V

→ xV + ξ1ω1 + sgn(ξ2)ω2

V
→ · · · → xV + ξ1ω1 + ξ2ω2

V
→ · · ·

→ xV + ξ1ω1 + ξ2ω2 + · · · + sgn(ξr)ωr

V
→ · · · → xV + ξ1ω1 + ξ2ω2 + · · · + ξrωr

V
= xV ,

where sgn(x) is the sign function, which takes the value of 1 if x> 0, takes the value of 0 if
x = 0, and takes the value of −1 if x< 0. Applying the Kolmogorov cycle condition to this
cycle yields

|ξ1|−1∏
l=0

qV
xV+ sgn(ξ1)lω1

V ,xV+ sgn(ξ1)(l+1)ω1
V

qV
xV+ sgn(ξ1)(l+1)ω1

V ,xV+ sgn(ξ1)lω1
V

· · ·

|ξr |−1∏
l=0

qV
xV+ ξ1ω1+ξ2ω2+···+sgn(ξr )lωr

V ,xV+ ξ1ω1+ξ2ω2+···+sgn(ξr)(l+1)ωr
V

qV
xV+ ξ1ω1+ξ2ω2+···+sgn(ξr )(l+1)ωr

V ,xV+ ξ1ω1+ξ2ω2+···+sgn(ξr )lωr
V

= 1.

Taking the limit as V → ∞ in this equation and applying (21) yields(
f +
1 (x)

f −
1 (x)

)ξ1

· · ·
(

f +
r (x)

f −
r (x)

)ξr

= 1.
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Taking logarithms on both sides yields

r∑
p=1

ξp log
f +
p (x)

f −
p (x)

= 0,

which shows that the system satisfies zero-order local detailed balance.
We next prove that first-order local detailed balance is satisfied. To this end, for any suffi-

ciently large V and any 1 ≤ p, q ≤ r with p 
= q, we consider the following parallelogram cycle
in EV :

xV → xV + ωp

V
→ xV + ωp

V
+ ωq

V
→ xV + ωq

V
→ xV .

Applying the Kolmogorov cycle condition to this cycle yields

qV
xV ,xV+ωp

V
qV

xV+ωp
V ,x

V +ωp
V +ωq

V
qV

xV +ωp
V +ωq

V ,x
V +ωq

V
qV

xV+ωq
V ,x

V

qV
xV+ωp

V ,x
V qV

xV+ωp
V +ωq

V ,x
V+ωp

V
qV

xV +ωq
V ,x

V +ωp
V +ωq

V
qV

xV ,xV+ωq
V

= 1.

Taking logarithms on both sides of this equation yields

IV : = log

∑rp
l=1

k+
pl

V |νpl|
(VxV+ωq)!

(VxV+ωq−νpl)!∑rp

l=1
k−

pl

V |ν′pl|
(VxV+ωq+ωp)!

(VxV +ωq+ωp−ν′pl)!

− log

∑rp
l=1

k+
pl

V |νpl|
(VxV )!

(VxV−νpl)!∑rp

l=1
k−

pl

V |ν′pl|
(VxV +ωp)!

(VxV+ωp−ν′pl)!

= log

∑rq
l=1

k+
ql

V |νql|
(VxV+ωp)!

(VxV+ωp−νql)!∑rq
l=1

k−
ql

V |ν′ql|
(VxV+ωp+ωq)!

(VxV +ωp+ωq−ν′ql)!

− log

∑rq
l=1

k+
ql

V |νql|
(VxV )!

(VxV−νql)!∑rq
l=1

k−
ql

V |ν′ql|
(VxV +ωq)!

(VxV+ωq−ν′ql)!

: = IIV .

By the mean value theorem, it is not hard to prove that

lim
V→∞

IV
1
V

=ωq · ∇ log
f +
p (x)

f −
p (x)

,

lim
V→∞

IIV
1
V

=ωp · ∇ log
f +
q (x)

f −
q (x)

.

Combining the above two equations yields

ωq · ∇ log
f +
p (x)

f −
p (x)

=ωp · ∇ log
f +
q (x)

f −
q (x)

,

which shows that first-order local detailed balance is also satisfied. �

6. Proof of Theorem 3

To prove that a reaction network satisfies stochastic detailed balance, it suffices to prove
that for any V > 0 and any cycle η1 → η2 → · · · → ηL → η1 in EV , the Kolmogorov cycle
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condition
qV
η1,η2

qV
η2,η3

· · · qV
ηL,η1

= qV
η2,η1

qV
η3,η2

· · · qV
η1,ηL

is satisfied. To this end, we need the following lemma.

Lemma 1. Under the conditions in Theorem 3, for any x ∈ EV and any integers ξ1, · · · , ξr,
whenever

qV
x,x+ωp

V
> 0

and
qV

x̃,x̃+ωp
V
> 0

for some 1 ≤ p ≤ r, we have

qV
x,x+ωp

V

qV
x+ωp

V ,x

· (Vx +ωp)!
(Vx)! =

qV
x̃,x̃+ωp

V

qV
x̃+ωp

V ,x̃

· (Vx̃ +ωp)!
(Vx̃)! , (22)

where
x̃ = x +

∑
q 
=p

ξq
ωq

V
.

Proof. We first discuss the relationship between the reactions that can occur at x and the
reactions that can occur at x̃. For each 1 ≤ p ≤ r, let

R+
p (x) = {R+

pl ∈R+
p :Vxj ≥ νj

pl for all 1 ≤ j ≤ d}

be the family of reactions that belong to R+
p and can occur at x. We claim that if ωp satisfies

the orthogonality condition, R+
p (x) 
=∅, and R+

p (x̃) 
=∅, then R+
p (x) =R+

p (x̃). To prove this,
set

Jp = {1 ≤ j ≤ d:νj
pl1

= ν
j
pl2

for all 1 ≤ l1, l2 ≤ rp}.
Since R+

p (x) 
=∅, there exists 1 ≤ l1 ≤ rp such that Vxj ≥ νj
pl1

for all 1 ≤ j ≤ d. It then follows

from the definition of Jp that Vxj ≥ νj
pl for all j ∈ Jp and 1 ≤ l ≤ rp. Similarly, since R+

p (x̃) 
=∅,

we conclude that Vx̃j ≥ νj
pl for all j ∈ Jp and 1 ≤ l ≤ rp. On the other hand, if ωp satisfies the

orthogonality condition, then ωj
q = 0 for all j /∈ Jp and q 
= p. This shows that

x̃j = xj +
∑
q 
=p

ξq
ω

j
q

V
= xj

for all j /∈ Jp. Therefore, for all 1 ≤ j ≤ d and 1 ≤ l ≤ rp, we have proved that Vxj ≥ νj
pl holds if

and only if Vx̃j ≥ νj
pl holds. This clearly shows that R+

p (x) =R+
p (x̃). We are now in a position

to prove (22). For each 1 ≤ p ≤ r, note that

qV
x,x+ωp

V

qV
x+ωp

V ,x

· (Vx +ωp)!
(Vx)! =

∑
l:R+

pl∈R+
p (x)

k+
pl

V |νpl|−1
(Vx)!

(Vx−νpl)!∑
l:R+

pl∈R+
p (x)

k−
pl

V |ν′pl|−1

(Vx+ωp)!
(Vx+ωp−ν′pl)!

(Vx +ωp)!
(Vx)!
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=
∑

l:R+
pl∈R+

p (x)
k+

pl

V |νpl|−1
1

(Vx−νpl)!∑
l:R+

pl∈R+
p (x)

k−
pl

V |ν′pl|−1

1
(Vx−νpl)!

,

where we have used the fact that ωp − ν′
pl = −νpl for any 1 ≤ p ≤ r and 1 ≤ l ≤ rp. Since

qV
x,x+ωp

V
> 0

and

qV
x̃,x̃+ωp

V
> 0,

we have R+
p (x) 
=∅ and R+

p (x̃) 
=∅. This shows that R+
p (x) =R+

p (x̃). Similarly, we have

qV
x̃,x̃+ωp

V

qV
x̃+ωp

V ,x̃

· (Vx̃ +ωp)!
(Vx̃)! =

∑
l:R+

pl∈R+
p (x̃)

k+
pl

V |νpl|−1
(Vx̃)!

(Vx̃−νpl)!∑
l:R+

pl∈R+
p (x̃)

k−
pl

V |ν′pl|−1

(Vx̃+ωp)!
(Vx̃+ωp−ν′pl)!

(Vx̃ +ωp)!
(Vx̃)!

=
∑

l:R+
pl∈R+

p (x)
k+

pl

V |νpl|−1
1

(Vx̃−νpl)!∑
l:R+

pl∈R+
p (x)

k−
pl

V |ν′pl|−1

1
(Vx̃−νpl)!

.

To prove (22), we only need to prove

∑
l:R+

pl∈R+
p (x)

k+
pl

V |νpl|−1
1

(Vx−νpl)!∑
l:R+

pl∈R+
p (x)

k−
pl

V |ν′pl|−1

1
(Vx−νpl)!

=
∑

l:R+
pl∈R+

p (x)
k+

pl

V |νpl|−1
1

(Vx̃−νpl)!∑
l:R+

pl∈R+
p (x)

k−
pl

V |ν′pl|−1

1
(Vx̃−νpl)!

.

Since ν′
pl = νpl +ωp for any 1 ≤ p ≤ r and 1 ≤ l ≤ rp, we only need to prove

∑
l:R+

pl∈R+
p (x)

k+
pl

V |νpl|
1

(Vx−νpl)!∑
l:R+

pl∈R+
p (x)

k−
pl

V |νpl|
1

(Vx−νpl)!
=
∑

l:R+
pl∈R+

p (x)
k+

pl

V |νpl|
1

(Vx̃−νpl)!∑
l:R+

pl∈R+
p (x)

k−
pl

V |νpl|
1

(Vx̃−νpl)!
. (23)

If ωp does not satisfy the orthogonality condition, then (14) must hold. In this case, it is easy
to see that

∑
l:R+

pl∈R+
p (x)

k+
pl

V |νpl|
1

(Vx−νpl)!∑
l:R+

pl∈R+
p (x)

k−
pl

V |νpl|
1

(Vx−νpl)!
= k+

p1

k−
p1

=
∑

l:R+
pl∈R+

p (x)
k+

pl

V |νpl|
1

(Vx̃−νpl)!∑
l:R+

pl∈R+
p (x)

k−
pl

V |νpl|
1

(Vx̃−νpl)!
.
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If ωp satisfies the orthogonality condition, then we have

∑
l:R+

pl∈R+
p (x)

k+
pl

V |νpl|
1

(Vx̃−νpl)!∑
l:R+

pl∈R+
p (x)

k−
pl

V |νpl|
1

(Vx̃−νpl)!

=
∑

l:R+
pl∈R+

p (x)
k+

pl

V |νpl|
1∏

j∈Jp (Vx̃j−ν j
pl)!
∏

j/∈Jp (Vx̃j−ν j
pl)!∑

l:R+
pl∈R+

p (x)
k−

pl

V |νpl|
1∏

j∈Jp (Vx̃j−ν j
pl)!
∏

j/∈Jp (Vx̃j−ν j
pl)!

=
∑

l:R+
pl∈R+

p (x)
k+

pl

V |νpl|
1∏

j/∈Jp (Vxj−ν j
pl)!∑

l:R+
pl∈R+

p (x)
k−

pl

V |νpl|
1∏

j/∈Jp (Vxj−ν j
pl)!

=
∑

l:R+
pl∈R+

p (x)
k+

pl

V |νpl|
1∏d

j=1 (Vxj−ν j
pl)!∑

l:R+
pl∈R+

p (x)
k−

pl

V |νpl|
1∏d

j=1 (Vxj−ν j
pl)!

=
∑

l:R+
pl∈R+

p (x)
k+

pl

V |νpl|
1

(Vx−νpl)!∑
l:R+

pl∈R+
p (x)

k−
pl

V |νpl|
1

(Vx−νpl)!
,

(24)

where the second and third equalities in (24) follow from the fact that νj
pl1

= ν
j
pl2

for any 1 ≤
l1, l2 ≤ rp and j ∈ Jp and the fact that x̃j = xj for any j /∈ Jp. Therefore, we have proved (23).
This completes the proof. �

We are now in a position to prove Theorem 3.

Proof of Theorem 3. Let η1 → η2 → · · · → ηL → η1 be an arbitrary cycle in EV . We first
prove that there is a one-to-one correspondence between the transitions in the cycle. Since
ω1, · · · , ωr are linearly independent, for each 1 ≤ p ≤ r, the number of transitions resulting
from the reaction vector ωp in the cycle must be equal to the number of transitions resulting
from the reaction vector −ωp. (Otherwise, the reaction vector ωp could be linearly expressed
by other reaction vectors in V(R), which would contradict the fact that the elements in V(R)
are linearly independent.) We then pair the transitions resulting from the reaction vector ωp

with the transitions resulting from the reaction vector −ωp in the following manner. First, we
project the cycle onto the one-dimensional line spanned by ωp, as illustrated in Figure 3. Note
that the projection mentioned here means oblique projection rather than orthogonal projec-
tion. (Suppose that ω1, · · · , ωr are linearly independent vectors; if a vector ω can be linearly
expressed by ω1, · · · , ωr as ω= a1ω1 + · · · + arωr , then the (oblique) projection of ω onto
the direction of ωp is simply defined as apωp.) The image of the projection onto the one-
dimensional line is still a cycle, and only the transitions resulting from ±ωp exist in the pro-
jected cycle. Second, we decompose the transitions in the projected cycle into multiple floors,
and we pair each transition with one of its reversed transitions located on the same floor, as
depicted in Figure 3. This is always possible since the number of transitions resulting from ωp

on each floor must be equal to that resulting from −ωp. Based on this method, each transition

ηi → ηi+1 = ηi ± ωp

V
can be paired with a transition

ηi +
∑
q 
=p

ξq
ωq

V
± ωp

V
= ηj → ηj+1 = ηi +

∑
q 
=p

ξq
ωq

V
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14

1st floor

2nd floor
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FIGURE 3. Pairing of the transitions in a cycle resulting from the reaction vector ω1 with the transitions
resulting from the reaction vector −ω1. The cycle to the left can be projected onto the direction of
ω1, forming the projected cycle (‘projection’ here refers to oblique projection rather than orthogonal
projection). The projected cycle can be decomposed into many floors. Each transition in the projected
cycle can then be paired with one of its reversed transitions located on the same floor. This establishes a
one-to-one correspondence between the transitions resulting from ω1 and the transitions resulting from
−ω1. In this way, η1 → η2 is paired with η9 → η10, η2 → η3 is paired with η4 → η5, η6 → η7 is paired
with η8 → η9, and η11 → η12 is paired with η13 → η14.

for some integers ξ1, · · · , ξr. Obviously, this method establishes a one-to-one correspondence
between the transitions in the cycle. Applying Lemma 1 to the paired transitions yields

qV
ηi,ηi+1

qV
ηi+1,ηi

(Vηi+1)!
(Vηi)! =

qV
ηj+1,ηj

qV
ηj,ηj+1

(Vηj)!
(Vηj+1)! .

This shows that
qV
ηi,ηi+1

qV
ηj,ηj+1

qV
ηi+1,ηi

qV
ηj+1,ηj

= (Vηi)!(Vηj)!
(Vηi+1)!(Vηj+1)! .

Thanks to the one-to-one correspondence between the transitions in the cycle, we finally
obtain

qV
η1,η2

qV
η2,η3

· · · qV
ηL,η1

qV
η2,η1

qV
η3,η2

· · · qV
η1,ηL

= (Vη1)!(Vη2)! · · · (VηL)!
(Vη2)!(Vη3)! · · · (Vη1)! = 1.

Thus we have proved that the Kolmogorov cycle condition is satisfied for each cycle, which
implies that the system satisfies stochastic detailed balance. �

7. Proof of Theorem 4

To prove Theorem 4, we need some lemmas. The following lemma is exactly Theorem 4(a).

Lemma 2. Suppose that a reaction network satisfies zero-order local detailed balance. Then
the vector field F defined in (15) is independent of the choice of the basis of span(V(R)).
Moreover, for any 1 ≤ p ≤ r, we have

F(x) ·ωp = log
f +
p (x)

f −
p (x)

, x ∈Rd
>0.
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Proof of Lemma 2. Let {ωi1, . . . , ωim} and {ωj1, . . . , ωjm} be two arbitrary bases of
span(V(R)), and let M = (ωT

i1
, . . . , ωT

im) and M̃ = (ωT
j1
, . . . , ωT

jm ) be two matrices. Since the

columns of M, as well as the columns of M̃, are linearly independent, there exists an invertible
matrix A = (apk) ∈ Mm×m(R) such that M̃ = MA, where Mm×m(R) denotes the set of m × m
matrices whose components are all real numbers. Since rank(M) = m, the matrix M must have
an invertible m × m submatrix. Since the entries of M and M̃ are all rational numbers, using
Cramer’s rule for computing the inverse matrix, it is easy to see that the entries of A are all ratio-
nal numbers. Note that each column of M̃ can be linearly expressed by the columns of M as

ωjk =
m∑

p=1

apkωip , 1 ≤ k ≤ m.

Since the system satisfies zero-order local detailed balance and since apk ∈Q for all
1 ≤ p, k ≤ m, we obtain

log
f +
jk

(x)

f −
jk

(x)
=

m∑
p=1

apk log
f +
ip

(x)

f −
ip (x)

, 1 ≤ k ≤ m.

Since rank(A) = rank(ATA) for an arbitrary real matrix A [46, Section 3.5], it is easy to see
that the matrices MTM and M̃T M̃ are both invertible. Thus we obtain(

log
f +
j1

(x)

f −
j1

(x)
, . . . , log

f +
jm

(x)

f −
jm (x)

)
(M̃TM̃)−1M̃T

=
(

log
f +
j1

(x)

f −
j1

(x)
, . . . , log

f +
jm (x)

f −
jm (x)

)
A−1(MT M)−1MT

=
(

log
f +
i1

(x)

f −
i1

(x)
, . . . , log

f +
im

(x)

f −
im

(x)

)
(MTM)−1MT .

This implies that the definition of the vector field F is independent of the choice of the basis
of span(V(R)). On the other hand, since {ωi1, · · · , ωim} is a basis of span(V(R)), for each
1 ≤ p ≤ r, the reaction vector ωp can be linearly expressed by ωi1, · · · , ωim as

ωp = a1ωi1 + · · · + amωim = aMT ,

where a = (a1, · · · , am) ∈Rm. This shows that

(ωT
i1, · · · , ωT

im)(MTM)−1MTωT
p = M(MT M)−1MTMaT = MaT =ωT

p .

Since the system satisfies zero-order local detailed balance and since the entries of
(MT M)−1MTωT

p are all rational numbers, we immediately obtain

F(x) ·ωp =
(

log
f +
i1

(x)

f −
i1

(x)
, · · · , log

f +
im

(x)

f −
im (x)

)
(MTM)−1MTωT

p

= log
f +
p (x)

f −
p (x)

, x ∈Rd
>0.

(25)

This completes the proof. �
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The following lemma is exactly Theorem 4(b).

Lemma 3. Suppose that a reaction network satisfies local detailed balance. Then the vector
field F has a potential function U ∈ C∞(Rd

>0), i.e.,

F(x) = −∇U(x), x ∈Rd
>0 ∩ (x0 + span(V(R))).

Proof. For any x ∈ x0 + span(V(R)), there exists y = (y1, · · · , ym) ∈Rm such that

x = x0 + y1ωi1 + · · · + ymωim = x0 + yMT .

Since {ωi1, · · · , ωim} is a basis of span(V(R)), this equation establishes a one-to-one corre-
spondence between x ∈Rd

>0 ∩ (x0 + span(V(R))) and y ∈ E, where E is some convex open
subset of Rm. We denote this correspondence by

g : E →Rd
>0 ∩ (x0 + span(V(R))), g(y) = x0 + yMT .

The inverse of this affine transformation is then given by

g−1 : Rd
>0 ∩ (x0 + span(V(R))) → E, g−1(x) = (x − x0)M(MTM)−1.

For convenience, we introduce a function h:E →Rm defined by

h(y) =
(

log
f +
i1

(g(y))

f −
i1

(g(y))
, · · · , log

f +
im (g(y))

f −
im (g(y))

)
.

It is then easy to check that

∂lhk(y) =
d∑

p=1

∂p

[
log

f +
ik

(g(y))

f −
ik

(g(y))

]
ω

p
il

=ωil · ∇ log
f +
ik

(g(y))

f −
ik

(g(y))
.

Since the system satisfies first-order local detailed balance, we immediately obtain

∂lhk(y) = ∂khl(y), 1 ≤ k, l ≤ m. (26)

To proceed, we construct the following smooth differential 1-form on E:

ω=
m∑

k=1

hk(y)dyk.

It then follows from (26) that

dω=
m∑

k=1

m∑
l=1

∂lhk(y)dyl ∧ dyk =
∑
k<l

[∂khl(y) − ∂lhk(y)]dyk ∧ dyl = 0.

This shows that the differential form ω is closed. Since E is a convex open subset of Rm, it then
follows from the Poincaré lemma [35, Theorem 17.14] that the kth de Rham cohomology of
E vanishes for each k ≥ 1, which means that ω is exact. In other words, there exists a function
Ũ ∈ C∞(E) such that

ω= −dŨ = −
m∑

k=1

∂kŨ(y)dyk.
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This clearly shows that h = −∇Ũ. Since Ũ is a smooth function on the open set E ⊂Rm,
we can extend it to a function Ũ ∈ C∞(Rm). To proceed, we define the potential function
U ∈ C∞(Rd

>0) as

U(x) = Ũ((x − x0)M(MT M)−1), x ∈Rd
>0.

For any x ∈Rd
>0 ∩ (x0 + span(V(R))), straightforward computations show that

−∇U(x) = −∇Ũ(g−1(x))(MTM)−1MT = h(g−1(x))(MTM)−1MT

=
(

log
f +
i1

(x)

f −
i1

(x)
, · · · , log

f +
im (x)

f −
im

(x)

)
(MTM)−1MT = F(x).

This completes the proof. �

The following lemma is exactly Theorem 4(c)–(d).

Lemma 4. Suppose that a reaction network satisfies local detailed balance. Then

d

dt
U(x(t)) ≤ 0, t ≥ 0,

where x = x(t) is the solution of the deterministic model (1), and equality holds if and only
if the deterministic model starts from any one of its equilibrium points. Moreover, the critical
points of U within Rd

>0 ∩ (x0 + span(V(R))) are also the equilibrium points of the deterministic
model.

Proof. Let x = x(t) be the solution of the deterministic model (1). It then follows from
Lemma 2 that

d

dt
U(x(t)) = ∇U(x(t)) · ẋ(t)

= −
r∑

p=1

[f +
p (x(t)) − f −

p (x(t))]F(x(t)) · ωp

= −
r∑

p=1

[f +
p (x(t)) − f −

p (x(t))] log
f +
p (x(t))

f −
p (x(t))

≤ 0,

(27)

where the equality holds for some t ≥ 0 if and only if f +
p (x(t)) = f −

p (x(t)) for all 1 ≤ p ≤ r,
which implies that x(t) is an equilibrium point of the deterministic model (1). If the determin-
istic model does not start from any one of its equilibrium points, then x(t) is not an equilibrium
point and thus the equality in (27) cannot be attained. Finally, if c ∈Rd

>0 ∩ (x0 + span(V(R)))
is a critical point of U, then we have F(c) = −∇U(c) = 0. It then follows from (16) that f +

p (c) =
f −
p (c) for each 1 ≤ p ≤ r, which shows that c is an equilibrium point of the deterministic

model. �

The above lemma shows that the asymptotic stability of equilibrium points of the determin-
istic model (1) can be analyzed with the aid of the potential function U, according to the classic
Lyapunov stability criterion [45, Chapter 30].
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Lemma 5. Let {ωi1, · · · , ωim} be an arbitrary basis of span(V(R)), and let M =
(ωT

i1
, · · · , ωT

im
) be a d × m matrix. Then for any x ∈Rd

>0 and y ∈ span(V(R)), we have

L(x, y) = max
θ∈Rm

(
θ · yA −

r∑
p=1

[
f +
p (x)

(
eθ ·ωpA − 1

)
+ f −

p (x)
(

e−θ ·ωpA − 1
)] )

,

where A = M(MTM)−1 and L(x,y) is the Lagrangian defined in (5). Furthermore, there exists
a unique θ = θ0 ∈Rm at which the maximum is attained.

Proof. Let {v1, · · · , vd−m} be an arbitrary basis of span(V(R))⊥, and let

N = (vT
1 , . . . , vT

d−m)d×(d−m), B =
(

(MTM)−1MT

NT

)
d×d

be two matrices. We first prove that the square matrix B is invertible. To this end, we consider
the system of linear equations BzT = 0. Since BzT = 0, we have MTzT = 0 and NTzT = 0. Since
the columns of M and N constitute a basis of Rd , we conclude that z = 0. Thus the system of
linear equations BzT = 0 has only the zero solution, which implies that B is invertible. �

For any x ∈Rd
>0 and y ∈ span(V(R)), we have

L(x, y) = sup
θ∈Rd

(
θ · y −

r∑
p=1

[
f +
p (x)(eωp·θ − 1) + f −

p (x)(e−ωp·θ − 1)
] )

= sup
θ∈Rd

(
θB · y −

r∑
p=1

[
f +
p (x)(eωp·θB − 1) + f −

p (x)(e−ωp·θB − 1)
] )

= sup
θ∈Rd

(
θ · yBT −

r∑
p=1

[
f +
p (x)(eθ ·ωpBT − 1) + f −

p (x)(e−θ ·ωpBT − 1)
] )
,

(28)

where we have used the fact that B is invertible. Since y ∈ span(V(R)), there exist k1, · · · , km ∈
R such that y = k1ωi1 + · · · + kmωim . Since the columns of M and the columns of N are
orthogonal, we have

yBT = (k1, . . . , km)MT (M(MTM)−1,N) = (k1, . . . , km, 0, . . . , 0).

Similarly, we can prove that the last d − m components of ωpBT are 0 for all 1 ≤ p ≤ r. Thus
the supremum in the last equality of (28) can be taken over the first m components of θ ;
that is,

L(x, y) = sup
θ∈Rm

G(x, y, θ ),

where

G(x, y, θ ) = θ · yA −
r∑

p=1

[
f +
p (x)

(
eθ ·ωpA − 1

)
+ f −

p (x)
(

e−θ ·ωpA − 1
)]
, θ ∈Rm, (29)
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and A = M(MTM)−1. Direct computations show that the Hessian matrix of the function
G(x, y, θ ) with respect to θ is given by

−AT (ωT
1 , ω

T
2 , · · · , ωT

r )

⎛
⎜⎜⎜⎝

g1(x, θ ) 0 . . . 0
0 g2(x, θ ) . . . 0

. . .

0 0 . . . gr(x, θ )

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
ω1
ω2
...

ωr

⎞
⎟⎟⎟⎠ A,

where
gp(x, θ ) = f +

p (x)eθ ·ωpA + f −
p (x)e−θ ·ωpA, 1 ≤ p ≤ r.

Since AT (ωT
i1
, . . . , ωT

im) = (MTM)−1MTM = I and gp(x, θ )> 0 for any x ∈Rd
>0, it is easy to

check that the Hessian matrix is negative definite. Therefore, G(x, y, θ ) is a strictly concave
function with respect to θ [37, Corollary 3.8.6].

We next prove that

lim‖θ‖→∞ θ · yA −
r∑

p=1

[
f +
p (x)

(
eθ ·ωpA − 1

)
+ f −

p (x)
(

e−θ ·ωpA − 1
)]

= −∞. (30)

Since yA = (k1, · · · , km), for any θ = (θ1, · · · , θm), we have

θ · yA −
r∑

p=1

[
f +
p (x)

(
eθ ·ωpA − 1

)
+ f −

p (x)
(

e−θ ·ωpA − 1
)]

≤
m∑

p=1

kpθp −
m∑

p=1

[
f +
ip (x)eθ ·ωip A + f −

ip (x)e−θ ·ωip A
]
+

r∑
p=1

[
f +
p (x) + f −

p (x)
]

=
m∑

p=1

kpθp −
m∑

p=1

[
f +
ip

(x)eθp + f −
ip

(x)e−θp
]
+

r∑
p=1

[
f +
p (x) + f −

p (x)
]

=
m∑

p=1

[
kpθp −

(
f +
ip (x)eθp + f −

ip (x)e−θp
)]

+
r∑

p=1

[
f +
p (x) + f −

p (x)
]

.

Therefore, (30) follows directly from the fact that exponential functions grow much faster than
linear functions.

Since G(x, y, θ ) is a strictly concave function with respect to θ and since (30) holds, it fol-
lows that G(x, y, θ ) must attain its maximum at a unique θ = θ0 ∈Rm [18, Chapter B, Theorem
4.1.1]. �

For any absolutely continuous trajectory φ:[0, T] →Rd
>0 satisfying

φ(0) = x0, φ(T) = y, φ( · ) ∈ x0 + span(V(R)),

we define

S(φ) =
∫ T

0
F(φ(t)) · φ̇(t)dt

to be the line integral of the vector field F along the trajectory φ. If the system satisfies local
detailed balance, then the vector field F has a potential function U. In this case, S(φ) can be
represented by the potential function U as

S(φ) = −
∫ T

0
∇U(φ(t)) · φ̇(t)dt = U(x0) − U(y),
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which depends only on the endpoints of the trajectory φ and thus is ‘path-independent’.
Moreover, we define the reversed trajectory of φ as

φ−(t) = φ(T − t), 0 ≤ t ≤ T.

Lemma 6. Suppose that a reaction network satisfies local detailed balance. Then for any
absolutely continuous trajectory φ:[0, T] →Rd

>0 satisfying

φ(0) = x0, φ(T) = y, φ( · ) ∈ x0 + span(V(R)),

we have
Iy,T (φ−) − Ix0,T (φ) = U(x0) − U(y), (31)

where φ− is the reversed trajectory of φ.

Proof of Lemma 6. Since φ( · ) ∈ x0 + span(V(R)), we have φ̇( · ) ∈ span(V(R)). It then fol-
lows from Lemma 5 that for each 0 ≤ t ≤ T, there exists a unique θ = θ1(t) ∈Rm such that the
following maximum is attained:

L(φ(t), φ̇(t)) = max
θ∈Rm

G(φ(t), φ̇(t), θ ), (32)

where G(x, y, θ ) is the function defined in (29). Using Lemma 5 again shows that for each
0 ≤ t ≤ T, there exists a unique θ = θ2(t) ∈Rm such that the following maximum is attained:

L(φ(t),−φ̇(t)) = max
θ∈Rm

G(φ(t),−φ̇(t), θ ). (33)

Since the maximum in (32) is attained at θ = θ1(t), taking the derivatives of G(φ(t), φ̇(t), θ )
with respect to θ and evaluating at θ = θ1(t) yields

φ̇(t)A =
r∑

p=1

(
f +
p (φ(t))eθ1(t)·ωpA − f −

p (φ(t))e−θ1(t)·ωpA
)
ωpA,

where A = M(MT M)−1. By the proof of Lemma 5, G(φ(t), φ̇(t), θ ) is a strictly concave func-
tion with respect to θ . This shows that θ = θ1(t) is the unique solution of the following equation:

φ̇(t)A =
r∑

p=1

(
f +
p (φ(t))eθ ·ωpA − f −

p (φ(t))e−θ ·ωpA
)
ωpA. (34)

Similarly, since the maximum in (33) is attained at θ = θ2(t), we obtain

φ̇(t)A = −
r∑

p=1

(
f +
p (φ(t))eθ2(t)·ωpA − f −

p (φ(t))e−θ2(t)·ωpA
)
ωpA. (35)

To proceed, let

f (x) =
(

log
f +
i1

(x)

f −
i1

(x)
, · · · , log

f +
im (x)

f −
im (x)

)
, x ∈Rd

>0.

https://doi.org/10.1017/apr.2021.3 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.3


918 C. JIA ET AL.

It then follows from (16) that

f (x) · ωpA = F(x) · ωp = log
f +
p (x)

f −
p (x)

.

This clearly shows that

f +
p (φ(t)) = f −

p (φ(t))ef (φ(t))·ωpA, f −
p (φ(t)) = f +

p (φ(t))e−f (φ(t))·ωpA, (36)

which implies that

f −
p (φ(t))e−θ2(t)·ωpA − f +

p (φ(t))eθ2(t)·ωpA

= f +
p (φ(t))e−[θ2(t)+f (φ(t))]·ωpA − f −

p (φ(t))e[θ2(t)+f (φ(t))]·ωpA.

Substituting this equation into (35), it is easy to check that θ = −θ2(t) − f (φ(t)) is also a
solution of the equation (34). By the uniqueness of the solution of the equation (34), we
immediately obtain

θ1(t) + θ2(t) = −f (φ(t)).

It follows from (32), (33), and (36) that

L(φ(t),−φ̇(t)) − L(φ(t), φ̇(t))

= G(φ(t),−φ̇(t), θ2(t)) − G(φ(t), φ̇(t), θ1(t))

= − (θ1(t) + θ2(t)) · φ̇(t)A

+
r∑

p=1

[
f +
p (φ(t))e(θ1(t)+θ2(t))·ωpA − f −

p (φ(t))
] (

e−θ2(t)·ωpA − e−θ1(t)·ωpA
)

= f (φ(t)) · φ̇(t)A = F(φ(t)) · φ̇(t).

For the reversed trajectory φ−, note that

L(φ−(T − t), φ̇−(T − t)) = L(φ(t),−φ̇(t)).

Finally, we obtain

Iy,T(φ−) − Ix0,T (φ) =
∫ T

0

[
(L(φ−(T − t), φ̇−(T − t)) − L(φ(t), φ̇(t))

]
dt

=
∫ T

0

[
L(φ(t),−φ̇(t)) − L(φ(t), φ̇(t))

]
dt

=
∫ T

0
F(φ(t)) · φ̇(t)dt = S(φ) = U(x0) − U(y).

This completes the proof.
The following lemma is exactly Theorem 4(e).

Lemma 7. Suppose that a reaction network satisfies local detailed balance. Let c ∈Rd
>0 ∩

(x0 + span(V(R))) be an equilibrium point of the deterministic model (1). If y ∈Rd
>0 is

attracted to c for the deterministic model (1), then

W(c, y) = U(y) − U(c).
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Proof. Let φ:[0, T] →Rd
>0 be an arbitrary absolutely continuous trajectory satisfying

φ(0) = c, φ(T) = y, φ( · ) ∈ x0 + span(V(R)).

It thus follows from Lemma 6 that

Ic,T (φ) = U(y) − U(c) + Iy,T (φ−) ≥ U(y) − U(c),

where φ− is the reversed trajectory of φ. Taking the infimum over φ on both sides of this
equation yields

W(c, y) ≥ U(y) − U(c). (37)

On the other hand, let φy(t) denote the trajectory of the deterministic model (1) starting from
y. In addition, let

ψT (t) = φy(T − t), 0 ≤ t ≤ T,

denote the reversed trajectory of φy over the interval [0,T]. Applying Lemma 6 again shows
that

Iφy(T),T(ψT ) = U(y) − U(φy(T)) + Iy,T(φy) = U(y) − U(φy(T)).

Moreover, let

ζT(t) = c + (φy(T) − c)t

‖φy(T) − c‖ , 0 ≤ t ≤ ‖φy(T) − c‖,

be an absolutely continuous trajectory from c to φy(T). Recall that for any y ∈ span(V(R)), we
have

L(x, y) = sup
θ∈Rm

(
θ · yA −

r∑
p=1

[
f +
p (x)(eθ ·ωpA − 1) + f −

p (x)(e−θ ·ωpA − 1)
] )

= sup
θ∈Rm

(
θ · yA −

r∑
p=1

[
f +
p (x)eθ ·ωpA + f −

p (x)e−θ ·ωpA
] )

+
r∑

p=1

[
f +
p (x) + f −

p (x)
]
,

where A = M(MTM)−1. Since y is attracted to c, for any ε > 0, we have ‖φy(T) − c‖ ≤ ε when
T is sufficiently large. For convenience, set

C0 = min‖x−c‖≤ε{f
+
1 (x), f −

1 (x), . . . , f +
r (x), f −

r (x)},
C1 = max‖x−c‖≤ε{f

+
1 (x), f −

1 (x), . . . , f +
r (x), f −

r (x)}.

For any θ = (θ1, · · · , θm) ∈Rm, whenever ‖x − c‖ ≤ ε, we have

r∑
p=1

(
f +
p (x)eθ ·ωpA + f −

p (x)e−θ ·ωpA
)

≥ C0

r∑
p=1

(
eθ ·ωpA + e−θ ·ωpA

)

≥ C0

m∑
p=1

(
eθ ·ωip A + e−θ ·ωip A

)
= C0

m∑
p=1

(
eθp + e−θp

)
.
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Thus for any y = k1ωi1 + · · · + kmωim ∈ span(V(R)), whenever ‖x − c‖ ≤ ε, we have

L(x, y) −
r∑

p=1

[
f +
p (x) + f −

p (x)
]
= sup

θ∈Rm

(
θ · yA −

r∑
p=1

[
f +
p (x)eθ ·ωpA + f −

p (x)e−θ ·ωpA
] )

≤ sup
θ∈Rm

( m∑
p=1

kpθp − C0

m∑
p=1

(
eθp + e−θp

) )

=
m∑

p=1

sup
θp∈R

(
kpθp − C0

(
eθp + e−θp

))

=
m∑

p=1

kpθ
�
p − C0

(
eθ

�
p + e−θ�p

)
: = f �(y),

(38)

where

θ�p = log
kp +

√
k2

p + 4C2
0

2C0
, 1 ≤ p ≤ m.

It is easy to see that the function f � is continuous on span(V(R)). Since ‖ζ̇T (t)‖ ≡ 1 and f � is
bounded on compact sets, there exists a constant C2 > 0 such that for any T ≥ 0 and 0 ≤ t ≤
‖φy(T) − c‖,

|f �(ζ̇T(t))| ≤ C2.

Thus when T is sufficiently large, it follows from (38) that for any 0 ≤ t ≤ ‖φy(T) − c‖,

L(ζT (t), ζ̇T(t)) ≤
r∑

p=1

[
f +
p (ζT(t)) + f −

p (ζT(t))
]
+ f �(ζ̇T(t)) ≤ 2rC1 + C2,

where we have used the fact that ‖ζT (t) − c‖ ≤ ε when T is sufficiently large. Finally, we obtain

Ic,‖φy(T)−c‖(ζT) =
∫ ‖φy(T)−c‖

0
L(ζT(t), ζ̇T (t))dt ≤ (2rC1 + C2)ε.

Combining ζT and ψT , we obtain an absolutely continuous trajectory from c to y. Therefore,
we have

W(c, y) ≤ Ic,‖φy(T)−c‖(ζT) + Iφy(T),T (ψT ) ≤ U(y) − U(φy(T)) + (2rC1 + C2)ε.

Since y is attracted to c, taking T → ∞ in the above equation yields

W(c, y) ≤ U(y) − U(c), (39)

where we have used the arbitrariness of ε. Finally, the desired result follows from (37)
and (39). �
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