

The Picard groups of inclusions of *C**-algebras induced by equivalence bimodules

Kazunori Kodaka

Abstract. For two σ -unital C^* -algebras, we consider two equivalence bimodules over them, respectively. Then, by taking the crossed products by the equivalence bimodules, we get two inclusions of C^* -algebras. Furthermore, we suppose that one of the inclusions of C^* -algebras is irreducible, that is, the relative commutant of one of the σ -unital C^* -algebras in the multiplier C^* -algebra of the crossed product is trivial. We will give a sufficient and necessary condition that the two inclusions are strongly Morita equivalent. Applying this result, we will compute the Picard group of a unital inclusion of unital C^* -algebras induced by an equivalence bimodule over the unital C^* -algebra under the assumption that the unital inclusion of unital C^* -algebras is irreducible.

1 Introduction

In the previous paper [7], we discussed strong Morita equivalence for unital inclusions of unital C^* -algebras induced by involutive equivalence bimodules. That is, let A and B be unital C^* -algebras and X and Y an involutive A - A-equivalence bimodule and an involutive B - B-equivalence bimodule, respectively. Let C_X and C_Y be unital C^* algebras induced by X and Y, respectively which are defined in [9]. Then, we get the unital inclusions of unital C^* -algebras $A \subset C_X$ and $B \subset C_Y$, respectively. We suppose that $A' \cap C_X = \mathbb{C}$ 1. In the paper [7], we showed that $A \subset C_X$ and $B \subset C_Y$ are strongly Morita equivalent if and only if there is an A - B-equivalence bimodule M such that $Y \cong \widetilde{M} \otimes_A X \otimes_A M$ as B - B-equivalence bimodules. In the present paper, we will show the same result as above in the case of inclusions of C^* -algebras induced by σ -unital C^* -algebra equivalence bimodules.

Let *A* and *B* be σ -unital *C*^{*}-algebras and *X* and *Y* an *A* – *A*-equivalence bimodule and a *B* – *B*-equivalence bimodule, respectively. Let $A \rtimes_X \mathbb{Z}$ and $B \rtimes_Y \mathbb{Z}$ be the crossed products of *A* and *B* by *X* and *Y*, respectively, which are defined in [1]. Then, we get inclusions of *C*^{*}-algebras $A \subset A \rtimes_X \mathbb{Z}$ and $B \subset B \rtimes_Y \mathbb{Z}$ with $\overline{A(A \rtimes_X \mathbb{Z})} = A \rtimes_X \mathbb{Z}$ and $\overline{B(B \rtimes_Y \mathbb{Z})} = B \rtimes_Y \mathbb{Z}$. We suppose that $A' \cap M(A \rtimes_X \mathbb{Z}) = \mathbb{C}$ 1. We will show that $A \subset A \rtimes_X \mathbb{Z}$ and $B \subset B \rtimes_Y \mathbb{Z}$ are strongly Morita equivalent if and only if there is an A - B-equivalence bimodule *M* such that $Y \cong \widetilde{M} \otimes_A X \otimes_A M$ or $\widetilde{Y} \cong \widetilde{M} \otimes_A X \otimes_A M$ as

Received by the editors December 7, 2020; revised May 27, 2021; accepted June 29, 2021.

Published online on Cambridge Core July 6, 2021.

AMS subject classification: 46L05, 46L08.

Keywords: Crossed products, equivalence bimodules, inclusions of C^* -algebras, strong Morita equivalence, Picard groups.

B - B-equivalence bimodules, where \widetilde{M} and \widetilde{Y} are the dual B - A-equivalence bimodule and the dual B - B-equivalence bimodule of M and Y, respectively. This is our main result (Theorem 3.6).

In Section 3, we will prove it in the following way. First, we assume that there is an A - B- equivalence bimodule M satisfying the above condition. Then, modifying the proof of [1, Theorem 4.2], we can show that $A \subset A \rtimes_X \mathbb{Z}$ and $B \subset B \rtimes_Y \mathbb{Z}$ are strongly Morita equivalent. We note that in this case, we do not need the assumption that $A' \cap M(A \rtimes_X \mathbb{Z}) = \mathbb{C}1$.

Next, we assume that $A \subset A \rtimes_X \mathbb{Z}$ and $B \subset B \rtimes_Y \mathbb{Z}$ are strongly Morita equivalent. Then, there are automorphisms α and β such that $A \otimes \mathbb{K} \subset (A \otimes \mathbb{K}) \rtimes_{X \otimes \mathbb{K}} \mathbb{Z}$ and $B \otimes \mathbb{K} \subset (B \otimes \mathbb{K}) \rtimes_{Y \otimes \mathbb{K}} \mathbb{Z}$ are isomorphic to $A \otimes \mathbb{K} \subset (A \otimes \mathbb{K}) \rtimes_{\alpha} \mathbb{Z}$ and $B \otimes \mathbb{K} \subset (B \otimes \mathbb{K}) \rtimes_{\beta} \mathbb{Z}$ as inclusions of C^* -algebras, respectively, in the sense of Definition 2.1 below. Applying [8, Theorem 5.5] to α and β , we can obtain the desired conclusion. When we do it, we need the assumption that $A' \cap M(A \rtimes_X \mathbb{Z}) = \mathbb{C}1$. As mentioned in [8], the condition $A' \cap M(A \rtimes_X \mathbb{Z}) = \mathbb{C}1$ holds if and only if the action of α on $A \otimes \mathbb{K}$ is free. This freeness of α plays an important role in proving [8, Theorem 5.5]. We refer to [8, Section 4] and the references therein for more details about the notion of free action on a C^* -algebra. Furthermore, we remark that the same result as [8, Theorem 5.5] in the case of unital inclusions of unital C^* -algebras induced by coactions of a finite-dimensional C^* -Hopf algebras is obtained in [11].

In Section 4, we will give an application (Theorem 4.9) of the above result, that is, we will compute the Picard group of the inclusion of C^* -algebras $A \subset A \rtimes_X \mathbb{Z}$ under the assumption that $A' \cap M(A \rtimes_X \mathbb{Z}) = \mathbb{C}1$.

2 Preliminaries

Let **K** be the C^* -algebra of all compact operators on a countably infinite-dimensional Hilbert space and $\{e_{ij}\}_{i,j\in\mathbb{N}}$ its system of matrix units.

For each C^* -algebra A, we denote by M(A) the multiplier C^* -algebra of A. Let π be an isomorphism of A onto a C^* -algebra B. Then, there is the unique strictly continuous isomorphism of M(A) onto M(B) extending π by Jensen and Thomsen [5, Corollary 1.1.15]. We denote it by $\underline{\pi}$.

For an algebra A, we denote by id_A the identity map on A. If A is unital, we denote by 1_A the unit element of A. If no confusion arises, we denote them by id and 1, respectively.

Let *A* and *B* be *C*^{*}-algebras and *X* an *A* – *B*-bimodule. We denote its left *A*-action and right *B*-action on *X* by $a \cdot x$ and $x \cdot b$ for any $a \in A$, $b \in B$, $x \in X$, respectively. We denote by \widetilde{X} the dual *B* – *A*-bimodule of *X* and let \widetilde{x} denote the element in \widetilde{X} associated to an element $x \in X$. Furthermore, we regard *X* as a Hilbert M(A) - M(B)bimodule in the sense of [4] in the same way as described before [8, Definition 2.4].

Let $A \subset C$ and $B \subset D$ be inclusions of C^* -algebras. We give some definitions.

Definition 2.1 We say that $A \subset C$ and $B \subset D$ are *isomorphic as inclusions of* C^* -*algebras* if there is an isomorphism π of C onto D such that the restriction of π to A, $\pi|_A$ is an isomorphism of A onto B.

Definition 2.2 [10, Definition 2.1] Let $A \subset C$ and $B \subset D$ be inclusions of C^* -algebras with $\overline{AC} = C$ and $\overline{BD} = D$. Then, the inclusions $A \subset C$ and $B \subset D$ are *strongly Morita equivalent* with respect to a C - D-equivalence bimodule Y and its closed subspace X if there are a C - D-equivalence bimodule Y and its closed subspace X satisfying the following conditions:

(1)
$$a \cdot x \in X$$
, $_C\langle x, y \rangle \in A$ for any $a \in A$, $x, y \in X$, and $_C\langle X, X \rangle = A$, $_C\langle Y, X \rangle = C$,
(2) $x \cdot b \in X$, $\langle x, y \rangle_D \in B$ for any $b \in B$, $x, y \in X$, and $\overline{\langle X, X \rangle_D} = B$, $\overline{\langle Y, X \rangle_D} = D$.

We note that *X* can be regarded as an A - B-equivalence bimodule. Furthermore, we give the following definition.

Definition 2.3 Let α and β be actions of a discrete group *G* on *A* and *B*, respectively. We say that α and β are *strongly Morita equivalent with respect to* (X, λ) if there are an A - B-equivalence bimodule *X* and a linear automorphism action λ on *X* satisfying the following:

(1)
$$\alpha_t(_A\langle x, y \rangle) = _A \langle \lambda_t(x), \lambda_t(y) \rangle$$
,
(2) $\beta_t(\langle x, y \rangle_B) = \langle \lambda_t(x), \lambda_t(y) \rangle_B$, for any $x, y \in X$ and $t \in G$.

Then, we have the following:

$$\lambda_t(a \cdot x) = \alpha_t(a) \cdot \lambda_t(x), \quad \lambda_t(x \cdot b) = \lambda_t(x) \cdot \beta_t(b),$$

for any $a \in A$, $b \in B$, $x \in X$, and $t \in G$.

Let *A* and *B* be *C*^{*}-algebras and π an isomorphism of *B* onto *A*. We construct an A - B-equivalence bimodule X_{π} as follows: Let $X_{\pi} = A$ as a **C**-vector space. For any $a \in A, b \in B$, and $x, y \in X_{\pi}$,

$$\begin{aligned} a \cdot x &= ax, \quad x \cdot b = x\pi(b), \\ {}_{A}\langle x, y \rangle &= xy^{*}, \quad \langle x, y \rangle_{B} = \pi^{-1}(x^{*}y). \end{aligned}$$

By easy computations, we can see that X_{π} is an A - B-equivalence bimodule. We call X_{π} an A - B-equivalence bimodule induced by π . Let α be an automorphism of A. Then, in the same way as above, we construct X_{α} , an A - A-equivalence bimodule. Let u_{α} be a unitary element in $M(A \rtimes_{\alpha} \mathbb{Z})$ implementing α . Hence, $\alpha = \operatorname{Ad}(u_{\alpha})$. We regard Au_{α} as an A - A-equivalence bimodule as follows:

$$a \cdot xu_{\alpha} = axu_{\alpha}, \quad xu_{\alpha} \cdot a = x\alpha(a),$$

$$a\langle xu_{\alpha}, yu_{\alpha} \rangle = xy^{*}, \quad \langle xu_{\alpha}, yu_{\alpha} \rangle_{A} = \alpha^{-1}(x^{*}y),$$

for any $a, x, y \in A$.

Lemma 2.1 With the above notation, $X_{\alpha} \cong Au_{\alpha}$ as A - A-equivalence bimodules.

Proof This is immediate by easy computations.

Let *A* be a C^* -algebra and *X* an *A* – *A*-equivalence bimodule. Let $A \rtimes_X \mathbb{Z}$ be the crossed product of *A* by *X* defined in [1]. We regard the C^* -algebra \mathbb{K} as the trivial \mathbb{K} – \mathbb{K} -equivalence bimodule. Then, we obtain an $A \otimes \mathbb{K} - A \otimes \mathbb{K}$ -equivalence bimodule

K. Kodaka

 $X \otimes \mathbf{K}$, and we can also consider the crossed product

$$(A \otimes \mathbf{K}) \rtimes_{X \otimes \mathbf{K}} \mathbf{Z}$$

of $A \otimes \mathbf{K}$ by $X \otimes \mathbf{K}$. Hence, we have the following inclusions of C^* -algebras:

 $A \subset A \rtimes_X \mathbf{Z}, \quad A \otimes \mathbf{K} \subset (A \otimes \mathbf{K}) \rtimes_{X \otimes \mathbf{K}} \mathbf{Z}.$

Because there is an isomorphism π of $(A \otimes \mathbf{K}) \rtimes_{X \otimes \mathbf{K}} \mathbf{Z}$ onto $(A \rtimes_X \mathbf{Z}) \otimes \mathbf{K}$ such that $\pi|_{A \rtimes \mathbf{K}} = \mathrm{id}$ on $A \otimes \mathbf{K}$, we identify $A \otimes \mathbf{K} \subset (A \otimes \mathbf{K}) \rtimes_{X \otimes \mathbf{K}} \mathbf{Z}$ with $A \otimes \mathbf{K} \subset (A \rtimes_X \mathbf{Z}) \otimes \mathbf{K}$. Thus, $A \subset A \rtimes_X \mathbf{Z}$ and $A \otimes \mathbf{K} \subset (A \otimes \mathbf{K}) \rtimes_{X \otimes \mathbf{K}} \mathbf{Z}$ are strongly Morita equivalent.

Let H_A be the $A \otimes \mathbf{K} - A$ -equivalence bimodule defined as follows: Let $H_A = (A \otimes \mathbf{K})(1_{M(A)} \otimes e_{11})$ as a **C**-vector space. For any $a \in A, k \in \mathbf{K}$, and $x, y \in A \otimes \mathbf{K}$,

$$(a \otimes k) \cdot x(1 \otimes e_{11}) = (a \otimes k)x(1 \otimes e_{11}),$$

$$x(1 \otimes e_{11}) \cdot a = x(a \otimes e_{11}),$$

$$_{A \otimes K} \langle x(1 \otimes e_{11}), y(1 \otimes e_{11}) \rangle = x(1 \otimes e_{11})y^*,$$

$$\langle x(1 \otimes e_{11}), y(1 \otimes e_{11}) \rangle_A = (1 \otimes e_{11})x^*y(1 \otimes e_{11}),$$

where we identify *A* with $A \otimes e_{11}$. Let *B* be a C^* -algebra. Let H_B be as above.

Lemma 2.2 With the above notation, let *M* be an *A* – *B*- equivalence bimodule. Then,

 $(1 \otimes e_{11}) \cdot (M \otimes \mathbf{K}) \cdot (1 \otimes e_{11}) \cong M$

as A - B-equivalence bimodules, where we regard $M \otimes \mathbf{K}$ as an $A \otimes \mathbf{K} - B \otimes \mathbf{K}$ -equivalence bimodule.

Proof Because the linear span of the set

$$\{x \otimes e_{ij} \mid x \in M, i, j \in \mathbf{N}\}$$

is dense in $M \otimes \mathbf{K}$, $(1 \otimes e_{11}) \cdot (M \otimes \mathbf{K}) \cdot (1 \otimes e_{11}) \cong M \otimes e_{11}$ as A - B-equivalence bimodules. Hence,

$$(1 \otimes e_{11}) \cdot (M \otimes \mathbf{K}) \cdot (1 \otimes e_{11}) \cong M$$

as A – B-equivalence bimodules.

Lemma 2.3 With the above notation, let *M* be an *A* – *B*-equivalence bimodule. Then,

$$H_A \otimes_{A \otimes \mathbf{K}} (M \otimes \mathbf{K}) \otimes_{B \otimes \mathbf{K}} H_B \cong M$$

as A – B-equivalence bimodules.

Proof Let π be the map from $\widetilde{H}_A \otimes_{A \otimes \mathbf{K}} (M \otimes \mathbf{K}) \otimes_{B \otimes \mathbf{K}} H_B$ to $(1 \otimes e_{11}) \cdot (M \otimes \mathbf{K}) \cdot (1 \otimes e_{11})$ defined by

$$\pi([a(1 \otimes e_{11})] \otimes x \otimes b(1 \otimes e_{11})) = (1 \otimes e_{11}) \cdot (a^* \cdot x \cdot b) \cdot (1 \otimes e_{11}),$$

for any $a \in A \otimes \mathbf{K}$, $b \in B \otimes \mathbf{K}$, and $x \in M \otimes \mathbf{K}$. Then, by easy computations, π is an A - B-equivalence bimodule isomorphism of $\widetilde{H}_A \otimes_{A \otimes \mathbf{K}} (M \otimes \mathbf{K}) \otimes_{B \otimes \mathbf{K}} H_B$

The Picard groups of inclusions of C* -algebras

onto $(1 \otimes e_{11}) \cdot (M \otimes \mathbf{K}) \cdot (1 \otimes e_{11})$. Thus, by Lemma 2.2,

$$H_A \otimes_{A \otimes \mathbf{K}} (M \otimes \mathbf{K}) \otimes_{B \otimes \mathbf{K}} H_B \cong M$$

as A – B-equivalence bimodules.

We prepare the following lemma which is applied in the next section.

Lemma 2.4 Let A and B be C^{*}-algebras and X and Y an A – A-equivalence bimodule and a B – B-equivalence bimodule, respectively. Let $A \subset A \rtimes_X \mathbb{Z}$ and $B \subset B \rtimes_Y \mathbb{Z}$ be inclusions of C^{*}algebras induced by X and Y, respectively. We suppose that there is an A - B-equivalence bimodule M such that $Y \cong \widetilde{M} \otimes_A X \otimes_A M$ or $\widetilde{Y} \cong \widetilde{M} \otimes_A X \otimes_A M$ as B - B-equivalence bimodules. Then, there is an $A \rtimes_X \mathbb{Z} - B \rtimes_Y \mathbb{Z}$ -equivalence bimodule N satisfying the following:

(1) *M* is included in *N* as a closed subspace,

(2) $A \subset A \rtimes_X \mathbb{Z}$ and $B \subset B \rtimes_Y \mathbb{Z}$ are strongly Morita equivalent with respect to N and its closed subspace M.

Proof Modifying the proof of [1, Theorem 4.2], we prove this lemma. We suppose that $Y \cong \widetilde{M} \otimes_A X \otimes_A M$ as B - B-equivalence bimodules. Let L_M be the linking C^* -algebra for M defined by

$$L_M = \begin{bmatrix} A & M \\ \widetilde{M} & B \end{bmatrix}.$$

Furthermore, let *W* be the $L_M - L_M$ - equivalence bimodule defined in the proof of [1, Theorem 4.2], which is defined by

$$W = \begin{bmatrix} X & X \otimes_A M \\ Y \otimes_B \widetilde{M} & Y \end{bmatrix}.$$

Let $L_M \rtimes_W \mathbf{Z}$ be the crossed product of L_M by W, and let

$$p = \begin{bmatrix} 1_{M(A)} & 0\\ 0 & 0 \end{bmatrix}, \quad q = \begin{bmatrix} 0 & 0\\ 0 & 1_{M(B)} \end{bmatrix}.$$

Furthermore, let $N = p(L_M \rtimes_W \mathbb{Z})q$. Then, because $M = pL_Mq$, M is a closed subspace of N. Hence, by the proof of [1, Theorem 4.2], $A \subset A \rtimes_X \mathbb{Z}$ and $B \subset B \rtimes_Y \mathbb{Z}$ are strongly Morita equivalent with respect N and its closed subspace M.

Next, we suppose that $\widetilde{Y} \cong \widetilde{M} \otimes_A X \otimes_A M$ as B - B-equivalence bimodules. Let

$$W_0 = \begin{bmatrix} X & X \otimes_A M \\ \widetilde{Y} \otimes_B \widetilde{M} & \widetilde{Y} \end{bmatrix}.$$

Then, W_0 is an $L_M - L_M$ -equivalence bimodule. Let $N_0 = p(L_M \rtimes_{W_0} \mathbb{Z})q$. By the above discussions, $A \subset A \rtimes_X \mathbb{Z}$ and $B \subset B \rtimes_{\widetilde{Y}} \mathbb{Z}$ are strongly Morita equivalent with respect to N_0 and its closed subspace M. On the other hand, there is an isomorphism π of $B \rtimes_Y \mathbb{Z}$ onto $B \rtimes_{\widetilde{Y}} \mathbb{Z}$ such that $\pi|_B = \text{id}$ on B. Let X_{π} be the $B \rtimes_{\widetilde{Y}} \mathbb{Z} - B \rtimes_Y \mathbb{Z}$ - equivalence bimodule induced by π . Then, B is a closed subspace of X_{π} , and we regard B as the trivial B - B-equivalence bimodule, because $\pi|_B = \text{id}$ on B. Thus, $A \subset A \rtimes_X \mathbb{Z}$

and $B \subset B \rtimes_Y \mathbb{Z}$ are strongly Morita equivalent with respect to $N_0 \otimes_{B \rtimes_{\widetilde{Y}} \mathbb{Z}} X_{\pi}$ and its closed subspace $M \otimes_B B (\cong M)$. Therefore, we obtain the conclusion.

Lemma 2.5 With the above notation, we suppose that A is a σ -unital C^{*}-algebra. Then, there is an automorphism α of $A \otimes \mathbf{K}$ such that $A \otimes \mathbf{K} \subset (A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbf{Z}$ is isomorphic to $A \otimes \mathbf{K} \subset (A \otimes \mathbf{K}) \rtimes_{X \otimes \mathbf{K}} \mathbf{Z}$ as inclusions of C^{*}-algebras.

Proof Because *A* is σ -unital, by [3, Corollary 3.5], there is an automorphism α of $A \otimes \mathbf{K}$ such that $X \otimes \mathbf{K} \cong X_{\alpha}$ as $A \otimes \mathbf{K} - A \otimes \mathbf{K}$ -equivalence bimodules, where X_{α} is the $A \otimes \mathbf{K} - A \otimes \mathbf{K}$ -equivalence bimodule induced by α . Let u_{α} be a unitary element in $M((A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbf{Z})$ implementing α . We regard $(A \otimes \mathbf{K})u_{\alpha}$ as an $A \otimes \mathbf{K} - A \otimes \mathbf{K}$ -equivalence bimodule as above. Then, by Lemma 2.1, $X_{\alpha} \cong (A \otimes \mathbf{K})u_{\alpha}$ as $A \otimes \mathbf{K} - A \otimes \mathbf{K}$ -equivalence bimodules. Let $(A \otimes \mathbf{K}) \rtimes_{(A \otimes \mathbf{K})u_{\alpha}} \mathbf{Z}$ be the crossed product of $A \otimes \mathbf{K}$ by $(A \otimes \mathbf{K})u_{\alpha}$. Then, by the definition of the crossed product of a C^* -algebra by an equivalence bimodule, we can see that

$$(A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbf{Z} \cong (A \otimes \mathbf{K}) \rtimes_{(A \otimes \mathbf{K})u_{\alpha}} \mathbf{Z}$$

as C^* -algebras. Because $X_{\alpha} \cong X \otimes \mathbf{K}$ as $A \otimes \mathbf{K} - A \otimes \mathbf{K}$ -equivalence bimodules, we obtain that

$$(A \otimes \mathbf{K}) \rtimes_{(A \otimes \mathbf{K})} u_{\alpha} \mathbf{Z} \cong (A \otimes \mathbf{K}) \rtimes_{X_{\alpha}} \mathbf{Z} \cong (A \otimes \mathbf{K}) \rtimes_{X \otimes \mathbf{K}} \mathbf{Z}$$

as C^* -algebras. Because the above isomorphisms leave any element in $A \otimes \mathbf{K}$ invariant, we can see that $A \otimes \mathbf{K} \subset (A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbf{Z}$ is isomorphic to $A \otimes \mathbf{K} \subset (A \otimes \mathbf{K}) \rtimes_{X \otimes \mathbf{K}} \mathbf{Z}$ as inclusions of C^* -algebras.

3 Strong Morita equivalence

Let *A* and *B* be σ -unital *C*^{*}-algebras and *X* and *Y* an *A* – *A*-equivalence bimodule and a *B* – *B*-equivalence bimodule, respectively. Let $A \subset A \rtimes_X \mathbb{Z}$ and $B \subset B \rtimes_Y \mathbb{Z}$ be the inclusions of *C*^{*}-algebras induced by *X* and *Y*, respectively. We suppose that $A \subset A \rtimes_X \mathbb{Z}$ and $B \subset B \rtimes_Y \mathbb{Z}$ are strongly Morita equivalent with respect to an $A \rtimes_X \mathbb{Z} - B \rtimes_Y \mathbb{Z}$ equivalence bimodule *N* and its closed subspace *M*. We suppose that $A' \cap M(A \rtimes_X \mathbb{Z}) = \mathbb{C}1$. Then, because the inclusion $A \otimes \mathbb{K} \subset (A \otimes \mathbb{K}) \rtimes_{X \otimes \mathbb{K}} \mathbb{Z}$ is isomorphic to the inclusion $A \otimes \mathbb{K} \subset (A \rtimes_X \mathbb{Z}) \otimes \mathbb{K}$ as inclusions of *C*^{*}-algebras, by [8, Lemma 3.1],

$$(A \otimes \mathbf{K})' \cap ((A \otimes \mathbf{K}) \rtimes_{X \otimes \mathbf{K}} \mathbf{Z}) = \mathbf{C}\mathbf{1}.$$

Furthermore, by the above assumptions, the inclusion $A \otimes \mathbf{K} \subset (A \otimes \mathbf{K}) \rtimes_{X \otimes \mathbf{K}} \mathbf{Z}$ is strongly Morita equivalent to the inclusion $B \otimes \mathbf{K} \subset (B \otimes \mathbf{K}) \rtimes_{Y \otimes \mathbf{K}} \mathbf{Z}$ with respect to the $(A \otimes \mathbf{K}) \rtimes_{X \otimes \mathbf{K}} \mathbf{Z} - (B \otimes \mathbf{K}) \rtimes_{Y \otimes \mathbf{K}} \mathbf{Z}$ -equivalence bimodule $N \otimes \mathbf{K}$ and its closed subspace $M \otimes \mathbf{K}$. By Lemma 2.5, there are an automorphism α of $A \otimes \mathbf{K}$ and an automorphism β of $B \otimes \mathbf{K}$ such that $A \otimes \mathbf{K} \subset (A \otimes \mathbf{K}) \rtimes_{X \otimes \mathbf{K}} \mathbf{Z}$ and $B \otimes \mathbf{K} \subset (B \otimes$ $\mathbf{K}) \rtimes_{Y \otimes \mathbf{K}} \mathbf{Z}$ are isomorphic to $A \otimes \mathbf{K} \subset (A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbf{Z}$ and $B \otimes \mathbf{K} \subset (B \otimes \mathbf{K}) \rtimes_{\beta} \mathbf{Z}$ as inclusions of C^* -algebras, respectively. Hence, we can assume that $A \otimes \mathbf{K} \subset (A \otimes$ $\mathbf{K}) \rtimes_{\alpha} \mathbf{Z}$ and $B \otimes \mathbf{K} \subset (B \otimes \mathbf{K}) \rtimes_{\beta} \mathbf{Z}$ are strongly Morita equivalent with respect to an $(A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbf{Z} - (B \otimes \mathbf{K}) \rtimes_{\beta} \mathbf{Z}$ -equivalence bimodule $N \otimes \mathbf{K}$ and its closed subspace $M \otimes \mathbf{K}$. Because A and B are σ -unital, in the same way as in the proof of [6, Proposition 3.5] or [3, Proposition 3.1], there is an isomorphism θ of $(B \otimes \mathbf{K}) \rtimes_{\beta} \mathbf{Z}$ onto $(A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbf{Z}$ satisfying the following:

(1) $\theta|_{B\otimes \mathbf{K}}$ is an isomorphism of $B\otimes \mathbf{K}$ onto $A\otimes \mathbf{K}$,

(2) There is an $(A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbf{Z} - (B \otimes \mathbf{K}) \rtimes_{\beta} \mathbf{Z}$ - equivalence bimodule isomorphism Φ of $N \otimes \mathbf{K}$ onto Y_{θ} such that $\Phi|_{M \otimes \mathbf{K}}$ is an $A \otimes \mathbf{K} - B \otimes \mathbf{K}$ -equivalence bimodule isomorphism of $M \otimes \mathbf{K}$ onto X_{θ} , where Y_{θ} is the $(A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbf{Z} - (B \otimes \mathbf{K}) \rtimes_{\beta} \mathbf{Z}$ equivalence bimodule induced by θ and X_{θ} is the $A \otimes \mathbf{K} - B \otimes \mathbf{K}$ -equivalence bimodule induced by $\theta|_{B \otimes \mathbf{K}}$.

Let

$$\gamma = \theta|_{B \otimes \mathbf{K}} \circ \beta \circ \theta|_{B \otimes \mathbf{K}}^{-1},$$

and let λ be the linear automorphism of X_{θ} defined by $\lambda(x) = \gamma(x)$ for any $x \in X_{\theta} (= A \otimes \mathbf{K})$.

Lemma 3.1 With the above notation, γ and β are strongly Morita equivalent with respect to (X_{θ}, λ) .

Proof For any $x, y \in X_{\theta}$,

$$_{A\otimes \mathbf{K}}\langle\lambda(x), \lambda(y)\rangle = \gamma(xy^*) = \gamma(_{A\otimes \mathbf{K}}\langle x, y\rangle), \langle\lambda(x), \lambda(y)\rangle_{B\otimes \mathbf{K}} = \theta|_{B\otimes \mathbf{K}}^{-1}(\gamma(x^*y)) = \beta(\theta|_{B\otimes \mathbf{K}}^{-1}(x^*y)) = \beta(\langle x y\rangle_{B\otimes \mathbf{K}}).$$

Hence, *y* and β are strongly Morita equivalent with respect to (X_{θ}, λ) .

By the proof of [8, Theorem 5.5], there is an automorphism ϕ of **Z** satisfying that γ^{ϕ} and α are exterior equivalent, that is, there is a unitary element $z \in M(A \otimes \mathbf{K})$ such that

$$\gamma^{\phi} = \operatorname{Ad}(z) \circ \alpha, \quad \underline{\alpha}(z) = z,$$

where γ^{ϕ} is the automorphism of $A \otimes \mathbf{K}$ induced by γ and ϕ , that is, γ^{ϕ} is defined by $\gamma^{\phi} = \gamma^{\phi(1)}$. We note that $\gamma^{\phi} = \gamma$ or $\gamma^{\phi} = \gamma^{-1}$. We regard $A \otimes \mathbf{K}$ as the trivial $A \otimes \mathbf{K} - A \otimes \mathbf{K}$ -equivalence bimodule. Let μ be the linear automorphism of $A \otimes \mathbf{K}$ defined by

$$\mu(x) = \alpha(x)z^*,$$

for any $x \in A \otimes \mathbf{K}$.

Lemma 3.2 With the above notation, α and γ^{ϕ} are strongly Morita equivalent with respect to $(A \otimes \mathbf{K}, \mu)$.

Proof For any $x, y \in A \otimes \mathbf{K}$,

$$A \otimes \mathbf{K} \langle \mu(x), \mu(y) \rangle = A \otimes \mathbf{K} \langle \alpha(x) z^*, \alpha(y) z^* \rangle = \alpha(xy^*) = \alpha(A \otimes \mathbf{K} \langle x, y \rangle),$$

$$\langle \mu(x), \mu(y) \rangle_{A \otimes \mathbf{K}} = z \alpha(x^* y) z^* = \gamma^{\phi}(x^* y) = \gamma^{\phi}(\langle x, y \rangle_{A \otimes \mathbf{K}}).$$

Therefore, we obtain the conclusion.

Let *v* be the linear automorphism of X_{θ} defined by

$$v(x) = \gamma^{\phi}(z^*x),$$

for any $x \in X_{\theta} (= A \otimes \mathbf{K})$.

Lemma 3.3 With the above notation, α and β^{ϕ} are strongly Morita equivalent with respect to (X_{θ}, v) , where β^{ϕ} is the automorphism of $B \otimes \mathbf{K}$ induced by β and ϕ , that is, β^{ϕ} is defined by $\beta^{\phi} = \beta^{\phi(1)}$.

Proof For any
$$x, y \in X_{\theta}$$
,

$$\begin{split} {}_{A\otimes \mathbf{K}} \langle v(x), v(y) \rangle &= {}_{A\otimes \mathbf{K}} \langle \gamma^{\phi}(z^*x), \gamma^{\phi}(z^*y) \rangle = \gamma^{\phi}(z^*xy^*z) = z\alpha(z^*xy^*z)z^* \\ &= \alpha(xy^*) = \alpha({}_{A\otimes \mathbf{K}} \langle x, y \rangle), \\ \langle v(x), v(y) \rangle_{B\otimes \mathbf{K}} &= \langle \gamma^{\phi}(z^*x), \gamma^{\phi}(z^*y) \rangle_{B\otimes \mathbf{K}} = \theta|_{B\otimes \mathbf{K}}^{-1}(\gamma^{\phi}(x^*y)) = \beta^{\phi}(\theta|_{B\otimes \mathbf{K}}^{-1}(x^*y)) \\ &= \beta^{\phi}(\langle x, y \rangle_{B\otimes \mathbf{K}}). \end{split}$$

Therefore, we obtain the conclusion.

Because $\beta^{\phi} = \beta$ or $\beta^{\phi} = \beta^{-1}$, by Lemma 3.3, α is strongly Morita equivalent to β or β^{-1} .

(I) We suppose that α is strongly Morita equivalent to β . Then, by Lemma 3.3, there is the linear automorphism v of X_{θ} satisfying the following:

(1) $v(a \cdot x) = \alpha(a) \cdot v(x),$ (2) $v(x \cdot b) = v(x) \cdot \beta(b),$ (3) ${}_{A \otimes \mathbf{K}} \langle v(x), v(y) \rangle = \alpha({}_{A \otimes \mathbf{K}} \langle x, y \rangle),$ (4) $\langle v(x), v(y) \rangle_{B \otimes \mathbf{K}} = \beta(\langle x, y \rangle_{B \otimes \mathbf{K}}),$ for any $a \in A \otimes \mathbf{K}, b \in B \otimes \mathbf{K},$ and $x, y \in X_{\theta}.$

Lemma 3.4 With the above notation and assumptions, let X_{α} and X_{β} be the $A \otimes \mathbf{K} - A \otimes \mathbf{K}$ -equivalence bimodule and the $B \otimes \mathbf{K} - B \otimes \mathbf{K}$ -equivalence bimodule induced by α and β , respectively. Then,

$$X_{\beta} \cong X_{\theta} \otimes_{A \otimes \mathbf{K}} X_{\alpha} \otimes_{A \otimes \mathbf{K}} X_{\theta}$$

as $B \otimes \mathbf{K} - B \otimes \mathbf{K}$ -equivalence bimodules.

Proof Let Ψ be the map from $\widetilde{X_{\theta}} \otimes_{A \otimes \mathbf{K}} X_{\alpha} \otimes_{A \otimes \mathbf{K}} X_{\theta}$ to X_{β} defined by

$$\Psi(\widetilde{x} \otimes a \otimes y) = \langle x, a \cdot v(y) \rangle_{B \otimes \mathbf{K}},$$

for any $x, y \in X_{\theta}$ and $a \in X_{\alpha}$. Then, for any $x, x_1, y, y_1 \in X_{\theta}$ and $a, a_1 \in X_{\alpha}$,

$$B \otimes \mathbf{K} \langle \widetilde{\mathbf{x}} \otimes \mathbf{a} \otimes \mathbf{y}, \widetilde{\mathbf{x}}_{1} \otimes \mathbf{a}_{1} \otimes \mathbf{y}_{1} \rangle = B \otimes \mathbf{K} \langle \widetilde{\mathbf{x}} \cdot \mathbf{A} \otimes \mathbf{K} \langle \mathbf{a} \otimes \mathbf{y}, \mathbf{a}_{1} \otimes \mathbf{y}_{1} \rangle, \widetilde{\mathbf{x}}_{1} \rangle$$
$$= \langle \mathbf{A} \otimes \mathbf{K} \langle \mathbf{a}_{1} \otimes \mathbf{y}_{1}, \mathbf{a} \otimes \mathbf{y} \rangle \cdot \mathbf{x}, \mathbf{x}_{1} \rangle_{B \otimes \mathbf{K}}$$
$$= \langle \mathbf{A} \otimes \mathbf{K} \langle \mathbf{a}_{1} \cdot \mathbf{A} \otimes \mathbf{K} \langle \mathbf{y}_{1}, \mathbf{y} \rangle, \mathbf{a} \rangle \cdot \mathbf{x}, \mathbf{x}_{1} \rangle_{B \otimes \mathbf{K}}$$
$$= \langle \mathbf{A} \otimes \mathbf{K} \langle \mathbf{a}_{1} \alpha (\mathbf{A} \otimes \mathbf{K} \langle \mathbf{y}_{1}, \mathbf{y} \rangle), \mathbf{a} \rangle \cdot \mathbf{x}, \mathbf{x}_{1} \rangle_{B \otimes \mathbf{K}}$$
$$= \langle \mathbf{a}_{1} \alpha (\mathbf{A} \otimes \mathbf{K} \langle \mathbf{y}_{1}, \mathbf{y} \rangle), \mathbf{a} \rangle \cdot \mathbf{x}, \mathbf{x}_{1} \rangle_{B \otimes \mathbf{K}}.$$

On the other hand,

$$B \otimes \mathbf{K} \langle \Psi(\widetilde{x} \otimes a \otimes y), \Psi(\widetilde{x_1} \otimes a_1 \otimes y_1) \rangle = B \otimes \mathbf{K} \langle \langle x, a \cdot v(y) \rangle_{B \otimes \mathbf{K}}, \langle x_1, a_1 \cdot v(y_1) \rangle_{B \otimes \mathbf{K}} \rangle$$

$$= \langle x, a \cdot v(y) \rangle_{B \otimes \mathbf{K}} \langle a_1 \cdot v(y_1), x_1 \rangle_{B \otimes \mathbf{K}}$$

$$= \langle x, a \cdot v(y) \cdot \langle a_1 \cdot v(y_1), x_1 \rangle_{B \otimes \mathbf{K}} \rangle_{B \otimes \mathbf{K}}$$

$$= \langle x, a_{\otimes \mathbf{K}} \langle a \cdot v(y), a_1 \cdot v(y_1) \rangle \cdot x_1 \rangle_{B \otimes \mathbf{K}}$$

$$= \langle x, a_{\otimes \mathbf{K}} \langle v(y), v(y) \rangle a_1^* \cdot x_1 \rangle_{B \otimes \mathbf{K}}$$

$$= \langle a_1 a_{\otimes \mathbf{K}} \langle v(y_1), v(y) \rangle a^* \cdot x, x_1 \rangle_{B \otimes \mathbf{K}}$$

$$= \langle a_1 \alpha \langle a_{\otimes \mathbf{K}} \langle y_1, y \rangle a^* \cdot x, x_1 \rangle_{B \otimes \mathbf{K}}.$$

Hence, Ψ preserves the left $B \otimes \mathbf{K}$ -valued inner products. Furthermore,

$$\begin{aligned} \langle \widetilde{x} \otimes a \otimes y, \, \widetilde{x_1} \otimes a_1 \otimes y_1 \rangle_{B \otimes \mathbf{K}} &= \langle y, \, \langle \widetilde{x} \otimes a, \, \widetilde{x_1} \otimes a_1 \rangle_{A \otimes \mathbf{K}} \cdot y_1 \rangle_{B \otimes \mathbf{K}} \\ &= \langle y, \, \langle a, \, {}_{A \otimes \mathbf{K}} \langle x, \, x_1 \rangle \cdot a_1 \rangle_{A \otimes \mathbf{K}} \cdot y_1 \rangle_{B \otimes \mathbf{K}} \\ &= \langle y, \, \langle a, \, {}_{A \otimes \mathbf{K}} \langle x, \, x_1 \rangle a_1 \rangle_{A \otimes \mathbf{K}} \cdot y_1 \rangle_{B \otimes \mathbf{K}} \\ &= \langle y, \, \alpha^{-1}(a^* \, {}_{A \otimes \mathbf{K}} \langle x, \, x_1 \rangle a_1) \cdot y_1 \rangle_{B \otimes \mathbf{K}}. \end{aligned}$$

On the other hand,

$$\begin{split} \langle \Psi(\widetilde{x} \otimes a \otimes y), \Psi(\widetilde{x_1} \otimes a_1 \otimes y_1) \rangle_{B \otimes \mathbf{K}} &= \langle \langle x, a \cdot v(y) \rangle_{B \otimes \mathbf{K}}, \langle x_1, a_1 \cdot v(y_1) \rangle_{B \otimes \mathbf{K}} \rangle_{B \otimes \mathbf{K}} \\ &= \beta^{-1} (\langle a \cdot v(y), x \rangle_{B \otimes \mathbf{K}} \langle x_1, a_1 \cdot v(y_1) \rangle_{B \otimes \mathbf{K}}) \\ &= \beta^{-1} (\langle a \cdot v(y), x \cdot \langle x_1, a_1 \cdot v(y_1) \rangle_{B \otimes \mathbf{K}}) \\ &= \beta^{-1} (\langle a \cdot v(y), a \cdot \langle x_1, a_1 \cdot v(y_1) \rangle_{B \otimes \mathbf{K}}) \\ &= \beta^{-1} (\langle v(y), a^*_{A \otimes \mathbf{K}} \langle x, x_1 \rangle a_1 \cdot v(y_1) \rangle_{B \otimes \mathbf{K}}) \\ &= \langle y, \alpha^{-1} (a^*_{A \otimes \mathbf{K}} \langle x, x_1 \rangle a_1) \cdot y_1 \rangle_{B \otimes \mathbf{K}}. \end{split}$$

Hence, Ψ preserves the right $B \otimes \mathbf{K}$ -valued inner products. Therefore, we obtain the conclusion.

(II) We suppose that α is strongly Morita equivalent to β^{-1} . Then, by Lemma 3.4,

$$X_{\beta^{-1}} \cong \widetilde{X_{\theta}} \otimes_{A \otimes \mathbf{K}} X_{\alpha} \otimes_{A \otimes \mathbf{K}} X_{\theta}$$

as $B \otimes \mathbf{K} - B \otimes \mathbf{K}$ -equivalence bimodules. Thus, we obtain the following lemma.

 \sim

Lemma 3.5 With the above notation and assumptions,

$$X_{\beta} \cong X_{\beta^{-1}} \cong X_{\theta} \otimes_{A \otimes \mathbf{K}} X_{\alpha} \otimes_{A \otimes \mathbf{K}} X_{\theta}$$

as $B \otimes \mathbf{K} - B \otimes \mathbf{K}$ -equivalence bimodules.

We recall that there is an $(A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbf{Z} - (B \otimes \mathbf{K}) \rtimes_{\beta} \mathbf{Z}$ - equivalence bimodule isomorphism Φ of $N \otimes \mathbf{K}$ onto Y_{θ} such that $\Phi|_{M \otimes \mathbf{K}}$ is an $A \otimes \mathbf{K} - B \otimes \mathbf{K}$ -equivalence bimodule isomorphism of $M \otimes \mathbf{K}$ onto X_{θ} . We identify $M \otimes \mathbf{K}$ with X_{θ} by $\Phi|_{M \otimes \mathbf{K}}$. Then, by Lemmas 3.4 and 3.5,

$$X_{\beta} \cong (M \otimes \mathbf{K}) \otimes_{A \otimes \mathbf{K}} X_{\alpha} \otimes_{A \otimes \mathbf{K}} (M \otimes \mathbf{K})$$

or

$$\widetilde{X_{\beta}} \cong (\widetilde{M \otimes \mathbf{K}}) \otimes_{A \otimes \mathbf{K}} X_{\alpha} \otimes_{A \otimes \mathbf{K}} (M \otimes \mathbf{K})$$

as $B \otimes \mathbf{K} - B \otimes \mathbf{K}$ -equivalence bimodules. Furthermore, we recall that $X_{\alpha} \cong X \otimes \mathbf{K}$ as $A \otimes \mathbf{K} - A \otimes \mathbf{K}$ -equivalence bimodules and that $X_{\beta} \cong Y \otimes \mathbf{K}$ as $B \otimes \mathbf{K} - B \otimes \mathbf{K}$ equivalence bimodules. Thus,

$$Y \otimes \mathbf{K} \cong (M \otimes \mathbf{K}) \otimes_{A \otimes \mathbf{K}} (X \otimes \mathbf{K}) \otimes_{A \otimes \mathbf{K}} (M \otimes \mathbf{K})$$

or

$$\widetilde{Y \otimes \mathbf{K}} \cong (\widetilde{M \otimes \mathbf{K}}) \otimes_{A \otimes \mathbf{K}} (X \otimes \mathbf{K}) \otimes_{A \otimes \mathbf{K}} (M \otimes \mathbf{K})$$

as $B \otimes \mathbf{K} - B \otimes \mathbf{K}$ -equivalence bimodules. Furthermore, by Lemma 2.3,

$$X \otimes \mathbf{K} \cong H_A \otimes_A X \otimes_A \widetilde{H_A}$$

as $A \otimes \mathbf{K} - A \otimes \mathbf{K}$ -equivalence bimodules and

$$Y \otimes \mathbf{K} \cong H_B \otimes_B Y \otimes_B \widetilde{H_B}$$

as $B \otimes \mathbf{K} - B \otimes \mathbf{K}$ -equivalence bimodules. Thus,

$$Y \cong \widetilde{H_B} \otimes_{B \otimes \mathbf{K}} (Y \otimes \mathbf{K}) \otimes_{B \otimes \mathbf{K}} H_B$$

$$\cong \widetilde{H_B} \otimes_{B \otimes \mathbf{K}} (\widetilde{M \otimes \mathbf{K}}) \otimes_{A \otimes \mathbf{K}} (X \otimes \mathbf{K}) \otimes_{A \otimes \mathbf{K}} (M \otimes \mathbf{K}) \otimes_{B \otimes \mathbf{K}} H_B$$

$$\cong \widetilde{H_B} \otimes_{B \otimes \mathbf{K}} (\widetilde{M \otimes \mathbf{K}}) \otimes_{A \otimes \mathbf{K}} H_A \otimes_A X \otimes_A \widetilde{H_A} \otimes_{A \otimes \mathbf{K}} (M \otimes \mathbf{K}) \otimes_{B \otimes \mathbf{K}} H_B$$

or similarly

$$\widetilde{Y} \cong \widetilde{H_B} \otimes_{B \otimes \mathbf{K}} (\widetilde{M \otimes \mathbf{K}}) \otimes_{A \otimes \mathbf{K}} H_A \otimes_A X \otimes_A \widetilde{H_A} \otimes_{A \otimes \mathbf{K}} (M \otimes \mathbf{K}) \otimes_{B \otimes \mathbf{K}} H_B$$

as $B \otimes \mathbf{K} - B \otimes \mathbf{K}$ -equivalence bimodules. Furthermore, by Lemma 2.3,

$$H_A \otimes_{A \otimes \mathbf{K}} (M \otimes \mathbf{K}) \otimes_{B \otimes \mathbf{K}} H_B \cong M$$

as A - B-equivalence bimodules. Hence,

$$Y \cong \widetilde{M} \otimes_A X \otimes_A M$$
 or $\widetilde{Y} \cong \widetilde{M} \otimes_A X \otimes_A M$

as B - B-equivalence bimodules. Therefore, we obtain the following theorem.

Theorem 3.6 Let A and B be σ -unital C^{*}-algebras and X and Y an A – A-equivalence bimodule and a B – B-equivalence bimodule, respectively. Let $A \subset A \rtimes_X \mathbb{Z}$ and $B \subset B \rtimes_Y \mathbb{Z}$ be the inclusions of C^{*}-algebras induced by X and Y, respectively. We suppose that $A' \cap M(A \rtimes_X \mathbb{Z}) \cong \mathbb{C}$ 1. Then, the following conditions are equivalent:

(1) $A \subset A \rtimes_X \mathbb{Z}$ and $B \subset B \rtimes_Y \mathbb{Z}$ are strongly Morita equivalent with respect to an $A \rtimes_X \mathbb{Z} - B \rtimes_Y \mathbb{Z}$ -equivalence bimodule N and its closed subspace M,

(2) $Y \cong \widetilde{M} \otimes_A X \otimes_A M$ or $\widetilde{Y} \cong \widetilde{M} \otimes_A X \otimes_A M$ as B - B-equivalence bimodules.

Proof $(1)\Rightarrow(2)$: This is immediate by the above discussions. $(2)\Rightarrow(1)$: This is immediate by Lemma 2.4.

Remark 3.7 The above theorem says that the inclusions $A \subset A \rtimes_X \mathbb{Z}$ and $B \subset B \rtimes_Y \mathbb{Z}$ are strongly Morita equivalent if and if *X* and *Y* are "flip" conjugate as equivalence bimodules. This is natural, because α and β , the corresponding actions on $A \otimes \mathbb{K}$ and $B \otimes \mathbb{K}$ to *X* and *Y*, respectively, are "flip" exterior equivalent, that is, α and β (or β^{-1}) are exterior equivalent.

4 The Picard groups

Let *A* be a unital C^* -algebra and *X* an *A* – *A*-equivalence bimodule. Let $A \subset A \rtimes_X \mathbb{Z}$ be the inclusion of unital C^* -algebras induced by *X*. We suppose that $A' \cap (A \rtimes_X \mathbb{Z}) = \mathbb{C}$ l. In this section, we shall compute $\operatorname{Pic}(A, A \rtimes_X \mathbb{Z})$, the Picard group of the inclusion $A \subset A \rtimes_X \mathbb{Z}$ (See [6]).

Let *G* be the subgroup of Pic(A) defined by

$$G = \{ [M] \in \operatorname{Pic}(A) \mid X \cong \widetilde{M} \otimes_A X \otimes_A M \text{ or } \widetilde{X} \cong \widetilde{M} \otimes_A X \otimes_A M$$

as $A - A$ -equivalence bimodules $\}$.

Let f_A be the homomorphism of Pic($A, A \rtimes_X \mathbf{Z}$) to Pic(A) defined by

$$f_A([M,N]) = [M]$$

for any $[M, N] \in \text{Pic}(A, A \rtimes_X \mathbb{Z})$. First, we show $\text{Im} f_A = G$, where $\text{Im} f_A$ is the image of f_A .

Lemma 4.1 With the above notation, $\text{Im } f_A = G$.

Proof Let $[M, N] \in \text{Pic}(A, A \rtimes_X \mathbb{Z})$. Then, by the definition of $\text{Pic}(A, A \rtimes_X \mathbb{Z})$, the inclusion $A \subset A \rtimes_X \mathbb{Z}$ is strongly Morita equivalent to itself with respect to an $A \rtimes_X \mathbb{Z} - A \rtimes_X \mathbb{Z}$ -equivalence bimodule N and its closed subspace M. Hence, by Theorem 3.6, $X \cong \widetilde{M} \otimes_A X \otimes_A M$ or $\widetilde{X} \cong \widetilde{M} \otimes_A X \otimes_A M$ as A - A-equivalence bimodules. Thus, $\text{Im} f_A \subset G$. Next, let $[M] \in G$. Then, by Lemma 2.4, there is an $A \rtimes_X \mathbb{Z} - A \rtimes_X \mathbb{Z}$ -equivalence bimodule N satisfying the following:

(1) *M* is included in *N* as a closed subspace,

(2) $[M, N] \in \operatorname{Pic}(A, A \rtimes_X \mathbf{Z}).$

Hence, $G \subset \text{Im} f_A$. Therefore, we obtain the conclusion.

Next, we compute Ker f_A , the kernel of f_A . Let Aut $(A, A \rtimes_X \mathbb{Z})$ be the group of all automorphisms α of $A \rtimes_X \mathbb{Z}$ such that $\alpha|_A$ is an automorphism of A. Let Aut $_0(A, A \rtimes_X \mathbb{Z})$ be the group of all automorphisms α of $A \rtimes_X \mathbb{Z}$ such that $\alpha|_A = \text{id on } A$. It is clear that Aut $_0(A, A \rtimes_X \mathbb{Z})$ is a normal subgroup of Aut $(A, A \rtimes_X \mathbb{Z})$. Let π be the homomorphism of Aut $(A, A \rtimes_X \mathbb{Z})$ to Pic $(A, A \rtimes_X \mathbb{Z})$ defined by

$$\pi(\alpha) = [M_{\alpha}, N_{\alpha}],$$

for any $\alpha \in Aut(A, A \rtimes_X \mathbb{Z})$, where $[M_{\alpha}, N_{\alpha}]$ is an element in Pic $(A, A \rtimes_X \mathbb{Z})$ induced by α (See [6, Section 3]).

Lemma 4.2 With the above notation,

$$\operatorname{Ker} f_A = \{ [A, N_\beta] \in \operatorname{Pic}(A, A \rtimes_X \mathbf{Z}) \mid \beta \in \operatorname{Aut}_0(A, A \rtimes_X \mathbf{Z}) \}.$$

Proof Let $[M, N] \in \text{Ker} f_A$. Then, [M] = [A] in Pic(*A*), and by [6, Lemma 7.5], there is a $\beta \in \text{Aut}_0(A, A \rtimes_X \mathbf{Z})$ such that

$$[M,N] = [A,N_{\beta}]$$

in Pic(A, $A \rtimes_X \mathbf{Z}$), where N_β is the $A \rtimes_X \mathbf{Z} - A \rtimes_X \mathbf{Z}$ -equivalence bimodule induced by β . Therefore, we obtain the conclusion.

Let $Int(A, A \rtimes_X \mathbb{Z})$ be the group of all Ad(u) such that u is a unitary element in A. By [6, Lemma 3.4],

$$\operatorname{Ker} \pi \cap \operatorname{Aut}_0(A, A \rtimes_X \mathbf{Z}) = \operatorname{Int}(A, A \rtimes_X \mathbf{Z}) \cap \operatorname{Aut}_0(A, A \rtimes_X \mathbf{Z}).$$

Hence,

Ker
$$\pi \cap \operatorname{Aut}_0(A, A \rtimes_X \mathbf{Z})$$

= {Ad(u) \in Aut₀($A, A \rtimes_X \mathbf{Z}$) | u is a unitary element in A }
= {Ad(u) \in Aut₀($A, A \rtimes_X \mathbf{Z}$) | u is a unitary element in $A' \cap A$ }

Because $A' \cap (A \rtimes_X \mathbf{Z}) = \mathbf{Cl}, A' \cap A = \mathbf{Cl}$. Thus,

$$\operatorname{Ker} \pi \cap \operatorname{Aut}_0(A, A \rtimes_X \mathbf{Z}) = \{1\}.$$

It follows that we can obtain the following lemma.

Lemma 4.3 With the above notation, $\operatorname{Ker} f_A \cong \operatorname{Aut}_0(A, A \rtimes_X \mathbf{Z})$.

Proof Because Ker $\pi \cap \text{Aut}_0(A, A \rtimes_X \mathbf{Z}) = \{1\}$, by Lemma 4.2,

$$\operatorname{Ker} f_A = \pi(\operatorname{Aut}_0(A, A \rtimes_X \mathbf{Z})) \cong \operatorname{Aut}_0(A, A \rtimes_X \mathbf{Z})/(\operatorname{Ker} \pi \cap \operatorname{Aut}_0(A, A \rtimes_X \mathbf{Z}))$$
$$= \operatorname{Aut}_0(A, A \rtimes_X \mathbf{Z}).$$

Therefore, we obtain the conclusion.

We recall that the inclusions of C^* -algebras $A \otimes \mathbf{K} \subset (A \rtimes_X \mathbf{Z}) \otimes \mathbf{K}$ and $A \otimes \mathbf{K} \subset (A \otimes \mathbf{K}) \rtimes_{X \otimes \mathbf{K}} \mathbf{Z}$ are isomorphic as inclusions of C^* -algebras. Furthermore, there is an automorphism α of $A \otimes \mathbf{K}$ such that $A \otimes \mathbf{K} \subset (A \otimes \mathbf{K}) \rtimes_{X \otimes \mathbf{K}} \mathbf{Z}$ and $A \otimes \mathbf{K} \subset (A \otimes \mathbf{K}) \rtimes_{X \otimes \mathbf{K}} \mathbf{Z}$ and $A \otimes \mathbf{K} \subset (A \otimes \mathbf{K}) \rtimes_{X \otimes \mathbf{K}} \mathbf{Z}$ are isomorphic as inclusions of C^* -algebras.

Lemma 4.4 With the above notation, the action α of \mathbf{Z} is free, that is, for any $n \in \mathbf{Z} \setminus \{0\}$, α^n satisfies the following: If $x \in M(A \otimes \mathbf{K})$ satisfies that $xa = \alpha^n(a)x$ for any $a \in A \otimes \mathbf{K}$, then x = 0.

Proof Because $A' \cap (A \rtimes_X \mathbf{Z}) = \mathbf{C}\mathbf{l}$, by [8, Lemma 3.1], $(A \otimes \mathbf{K})' \cap M((A \rtimes_X \mathbf{Z}) \otimes \mathbf{K}) = \mathbf{C}\mathbf{l}$. Hence, because $A \otimes \mathbf{K} \subset (A \rtimes_X \mathbf{Z}) \otimes \mathbf{K}$ is isomorphic to $A \otimes \mathbf{K} \subset (A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbf{Z}$ as inclusions of C^* -algebras,

$$(A \otimes \mathbf{K})' \cap M((A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbf{Z}) = \mathbf{C}\mathbf{1}.$$

Thus, by [8, Corollary 4.2], the action α is free.

For any $n \in \mathbb{Z}$, let δ_n be the function on \mathbb{Z} defined by

$$\delta_n(m) = \begin{cases} 1 & m = n \\ 0 & m \neq n \end{cases}.$$

We regard δ_n as an element in $M((A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbf{Z})$.

Let $E^{M(A \otimes \mathbf{K})}$ be the canonical faithful conditional expectation from $M(A \otimes \mathbf{K}) \rtimes_{\underline{\alpha}} \mathbb{Z}$ onto $M(A \otimes \mathbf{K})$ defined in [2, Section 3]. Then, we may let $E^{A \otimes \mathbf{K}}$ be the restriction of $E^{M(A \otimes \mathbf{K})}$ to $(A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbb{Z}$, that is, $E^{A \otimes \mathbf{K}} = E^{M(A \otimes \mathbf{K})}|_{(A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbb{Z}}$. Let $\{u_i\}_{i \in I}$ be an approximate unit of $A \otimes \mathbf{K}$. We fix the approximate unit $\{u_i\}_{i \in I}$ of $A \otimes \mathbf{K}$. For any $x \in M((A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbb{Z})$, we define the Fourier coefficient of x at $n \in \mathbb{Z}$ as in the same way as in [8, Section 2]. We show that $\operatorname{Aut}_0(A \otimes \mathbf{K}, (A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbb{Z}) \cong \mathbb{T}$.

Let $\beta \in Aut_0(A \otimes \mathbf{K}, (A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbf{Z})$. For any $a \in A \otimes \mathbf{K}$,

$$\beta(\delta_1)a\beta(\delta_1^*) = \beta(\delta_1a\delta_1^*) = \beta(\alpha(a)) = \alpha(a)$$

Hence, $\beta(\delta_1)a = \alpha(a)\beta(\delta_1)$ for any $a \in A \otimes \mathbf{K}$.

Lemma 4.5 With the above notation, let a_n be the Fourier coefficient of $\underline{\beta}(\delta_1)$ at $n \in \mathbb{Z}$. Then, for any $a \in A \otimes \mathbb{K}$,

$$a_n\alpha^{n-1}(a)=aa_n.$$

Proof Let $a \in A \otimes K$. Then, because $||au_i - u_i a|| \to 0 (i \to \infty)$, the Fourier coefficient of $\beta(\delta_1)a$ at $n \in \mathbb{Z}$ is given by

$$\lim_{i} E^{A \otimes \mathbf{K}}(\underline{\beta}(\delta_{1})au_{i}\delta_{n}) = \lim_{i} E^{A \otimes \mathbf{K}}(\underline{\beta}(\delta_{1})u_{i}a\delta_{n})$$
$$= \lim_{i} E^{A \otimes \mathbf{K}}(\underline{\beta}(\delta_{1})u_{i}\delta_{n}\alpha^{n}(a))$$
$$= \lim_{i} E^{A \otimes \mathbf{K}}(\underline{\beta}(\delta_{1})u_{i}\delta_{n})\alpha^{n}(a)$$
$$= a_{n}\alpha^{n}(a).$$

Furthermore, the Fourier coefficient of $\alpha(a)\beta(\delta_1)$ at $n \in \mathbb{Z}$ is given by

$$\lim_{i} E^{A\otimes \mathbf{K}}(\alpha(a)\underline{\beta}(\delta_{1})u_{i}\delta_{n}) = \alpha(a)\lim_{i} E^{A\otimes \mathbf{K}}(\underline{\beta}(\delta_{1})u_{i}\delta_{n}) = \alpha(a)a_{n}.$$

Because $\underline{\beta}(\delta_1)a = \alpha(a)\underline{\beta}(\delta_1)$, we get that

$$a_n \alpha^n(a) = \alpha(a) a_n,$$

for any $a \in A \otimes K$. Because *a* is an arbitrary element in $A \otimes K$, replacing *a* by $\alpha^{-1}(a)$, we obtain the conclusion.

Lemma 4.6 With the above notation,

$$\operatorname{Aut}_0(A \otimes \mathbf{K}, (A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbf{Z}) \cong \mathbf{T}.$$

Proof Let $\beta \in \operatorname{Aut}_0(A \otimes \mathbf{K}, (A \otimes \mathbf{K}) \rtimes_\alpha \mathbf{Z})$, and let a_n be the Fourier coefficient of $\underline{\beta}(\delta_1)$ at $n \in \mathbf{Z}$. Then, by Lemma 4.5, $a_n \alpha^{n-1}(a) = aa_n$ for any $a \in A \otimes \mathbf{K}$. Because the automorphism α^{n-1} is free for any $n \in \mathbf{Z} \setminus \{1\}$ by Lemma 4.4, $a_n = 0$ for any $n \in \mathbf{Z} \setminus \{1\}$. Thus, $\beta(\delta_1) = a_1\delta_1$. Because $\beta(\delta_1)a\beta(\delta_1^*) = \alpha(a)$, for any $a \in A \otimes \mathbf{K}$,

$$a_1\delta_1a\delta_1^*a_1^*=\alpha(a).$$

Because $\delta_1 a \delta_1^* = \alpha(a)$,

$$a_1\alpha(a)a_1^*=\alpha(a),$$

for any $a \in A \otimes \mathbf{K}$. Because δ_1 and $\beta(\delta_1)$ are unitary elements in $M((A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbf{Z})$, a_1 is a unitary element in $M(A \otimes \mathbf{K})$. Thus,

$$a_1\alpha(a) = \alpha(a)a_1,$$

for any $a \in A \otimes \mathbf{K}$. Because $(A \otimes \mathbf{K})' \cap M(A \otimes \mathbf{K}) = \mathbb{C}\mathbf{l}, a_1 \in \mathbb{C}\mathbf{l}$. Because a_1 is a unitary element in $M(A \otimes \mathbf{K})$, there is the unique element $c_\beta \in \mathbf{T}$ such that $a_1 = c_\beta \mathbf{l}$. Let ε be the map from $\operatorname{Aut}_0(A \otimes \mathbf{K}, (A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbf{Z})$ onto \mathbf{T} defined by $\varepsilon(\beta) = c_\beta$. By routine computations, we can see that ε is an isomorphism of $\operatorname{Aut}_0(A \otimes \mathbf{K}, (A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbf{Z})$ onto \mathbf{T} .

Lemma 4.7 With the above notation,

$$\operatorname{Aut}_0(A, A \rtimes_X \mathbf{Z}) \cong \operatorname{Aut}_0(A \otimes \mathbf{K}, (A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbf{Z}).$$

Proof Because $A \otimes \mathbf{K} \subset (A \otimes \mathbf{K}) \rtimes_{\alpha} \mathbf{Z}$ and $A \otimes \mathbf{K} \subset (A \rtimes_X \mathbf{Z}) \otimes \mathbf{K}$ are isomorphic as inclusions of C^* -algebras, it suffices to show that

$$\operatorname{Aut}_0(A, A \rtimes_X \mathbf{Z}) \cong \operatorname{Aut}_0(A \otimes \mathbf{K}, (A \rtimes_X \mathbf{Z}) \otimes \mathbf{K}).$$

Let κ be the homomorphism of Aut₀(A, $A \rtimes_X \mathbf{Z}$) to Aut₀($A \otimes \mathbf{K}$, ($A \rtimes_X \mathbf{Z}$) $\otimes \mathbf{K}$) defined by

$$\kappa(\beta) = \beta \otimes \mathrm{id}_{\mathbf{K}},$$

for any $\beta \in \operatorname{Aut}_0(A, A \rtimes_X \mathbb{Z})$. Then, it is clear that κ is a monomorphism of $\operatorname{Aut}_0(A, A \rtimes_X \mathbb{Z})$ to $\operatorname{Aut}_0(A \otimes \mathbb{K}, (A \rtimes_X \mathbb{Z}) \otimes \mathbb{K})$. We show that κ is surjective. Let $\gamma \in \operatorname{Aut}_0(A \otimes \mathbb{K}, (A \rtimes_X \mathbb{Z}) \otimes \mathbb{K})$. Then,

$$\gamma(a \otimes e_{ij}) = a \otimes e_{ij},$$

for any $a \in A$, $i, j \in \mathbb{N}$. Thus,

$$\gamma(x \otimes e_{11}) = (1 \otimes e_{11})\gamma(x \otimes e_{11})(1 \otimes e_{11}),$$

for any $x \in A \rtimes_X \mathbf{Z}$. Hence, there is an automorphism β of $A \rtimes_X \mathbf{Z}$ such that

$$\gamma(x \otimes e_{11}) = \beta(x) \otimes e_{11},$$

for any $x \in A \rtimes_X \mathbf{Z}$. For any $i, j \in \mathbf{N}$ and $x \in A \rtimes_X \mathbf{Z}$,

$$\gamma(x \otimes e_{ij}) = \gamma((1 \otimes e_{i1})(x \otimes e_{11})(1 \otimes e_{1j})) = (1 \otimes e_{i1})(\beta(x) \otimes e_{11})(1 \otimes e_{1j})$$
$$= \beta(x) \otimes e_{ij}.$$

https://doi.org/10.4153/S0008439521000497 Published online by Cambridge University Press

Especially, if $a \in A$, $\beta(a) \otimes e_{ij} = \gamma(a \otimes e_{ij}) = a \otimes e_{ij}$, for any $i, j \in \mathbb{N}$. Thus, $\beta(a) = a$, for any $a \in A$. Therefore, $\gamma = \beta \otimes id_{\mathbb{K}}$ and $\beta \in Aut_0(A, A \rtimes_X \mathbb{K})$. Hence, we have shown that κ is surjective.

Lemma 4.8 *With the above notation,* $\text{Ker} f_A \cong \mathbf{T}$.

Proof This is immediate by Lemmas 4.3, 4.6, and 4.7.

By Lemmas 4.1 and 4.8, we have the following exact sequence:

$$1 \longrightarrow \mathbf{T} \longrightarrow \operatorname{Pic}(A, A \rtimes_X \mathbf{Z}) \longrightarrow G \longrightarrow 1,$$

where

$$G = \{ [M] \in \operatorname{Pic}(A) \mid X \cong \widetilde{M} \otimes_A X \otimes_A M \text{ or } \widetilde{X} \cong \widetilde{M} \otimes_A X \otimes_A M$$

as *A* – *A*-equivalence bimodules}.

Let *g* be the map from *G* to Pic($A, A \rtimes_X \mathbf{Z}$) defined by

$$g([M]) = [M, N],$$

where *N* is the $A \rtimes_X \mathbf{Z} - A \rtimes_X \mathbf{Z}$ -equivalence bimodule defined in the proof of Lemma 2.4. Then, *g* is a homomorphism of *G* to Pic($A, A \rtimes_X \mathbf{Z}$) such that

 $f_A \circ g = \mathrm{id}$

on G. Thus, we obtain the following theorem.

Theorem 4.9 Let A be a unital C^* -algebra and X an A - A-equivalence bimodule. Let $A \subset A \rtimes_X \mathbb{Z}$ be the unital inclusion of unital C^* -algebras induced by X. We suppose that $A' \cap (A \rtimes_X \mathbb{Z}) = \mathbb{C}$ 1. Then, $\operatorname{Pic}(A, A \rtimes_X \mathbb{Z})$ is a semidirect product of G by T.

References

- B. Abadie, S. Eilers, and R. Exel, Morita equivalence for crossed products by Hilbert C*-bimodules. Trans. Amer. Math. Soc. 350(1998), 3043–3054.
- [2] E. Bédos and R. Conti, On discrete twisted C*-dynamical systems, Hilbert C*-modules and regularity. Münster J. Math. 5(2012), 183–208.
- [3] L. G. Brown, P. Green, and M. A. Rieffel, *Stable isomorphism and strong Morita equivalence of* C^{*}-algebras. Pacific J. Math. 71(1977), 349–363.
- [4] L. G. Brown, J. Mingo, and N.-T. Shen, Quasi-multipliers and embeddings of Hilbert C*-bimodules. Canad. J. Math. 46(1994), 1150–1174.
- [5] K. K. Jensen and K. Thomsen, *Elements of KK-theory*, Birkhuser Birkhäuser, 1991.
- [6] K. Kodaka, *The Picard groups for unital inclusions of unital C*-algebras*. Acta Sci. Math. (Szeged) 86(2020), 183–207.
- [7] K. Kodaka, Equivalence bundles over a finite group and strong Morita equivalence for unital inclusions of unital C*-algebras. Math. Bohem., to appear.
- [8] K. Kodaka, Strong Morita equivalence for inclusions of C*-algebras induced by twisted actions of a countable discrete group. Math. Scand., to appear.
- [9] K. Kodaka and T. Teruya, Involutive equivalence bimodules and inclusions of C* -algebras with Watatani index 2. J. Operator Theory 57(2007), 3–18.
- [10] K. Kodaka and T. Teruya, The strong Morita equivalence for inclusions of C*-algebras and conditional expectations for equivalence bimodules. J. Aust. Math. Soc. 105(2018), 103–144.

https://doi.org/10.4153/S0008439521000497 Published online by Cambridge University Press

[11] K. Kodaka and T. Teruya, Coactions of a finite dimensional C* -Hopf algebra on unital C* -algebras, unital inclusions of unital C* -algebras and the strong Morita equivalence. Studia Math. 256(2021), 147–167.

Department of Mathematical Sciences, Faculty of Science, Ryukyu University, Nishihara-cho, Okinawa 903-0213, Japan

e-mail: kodaka@math.u-ryukyu.ac.jp