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Axisymmetric standing waves occur across a wide range of free surface flows. When
these waves reach a critical height (steepness), wave breaking and jet formation occur. For
travelling surface gravity waves, wave breaking is generally considered to limit wave height
and reversible wave motion. In the ocean, the behaviour of directionally spread waves
lies between the limits of purely travelling (two dimensions) and axisymmetric (three
dimensions). Hence, understanding wave breaking and jet formation on axisymmetric
surface gravity waves is an important step in understanding extreme and breaking
waves in the ocean. We examine an example of axisymmetric wave breaking and jet
formation colloquially known as the ‘spike wave’, created in the FloWave circular
wave tank at the University of Edinburgh, UK. We generate this spike wave with
maximum crest amplitudes of 0.15–6.0 m (0.024–0.98 when made non-dimensional by
characteristic radius), with wave breaking occurring for crest amplitudes greater than 1.0 m
(0.16 non-dimensionalised). Unlike two-dimensional travelling waves, wave breaking does
not limit maximum crest amplitude, and our measurements approximately follow the jet
height scaling proposed by Ghabache et al. (J. Fluid Mech., vol. 761, 2014, pp. 206–219)
for cavity collapse. The spike wave is predominantly created by linear dispersive focusing.
A trough forms, then collapses producing a jet, which is sensitive to the trough’s shape.
The evolution of the jets that form in our experiments is predicted well by the hyperbolic
jet model proposed by Longuet–Higgins (J. Fluid Mech., vol. 127, 1983, pp. 103–121),
previously applied to jets forming on bubbles.
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1. Introduction

Wave breaking is commonly considered to be the process that limits the height (steepness)
that surface gravity waves may reach. However, its precise definition may often vary;
for clarity we define wave breaking as the point at which the surface becomes unstable
to small perturbations and wave motion is no longer reversible. For purely travelling
waves, breaking has known implications on maximum wave height. Stokes (1880) first
proposed that a crest enclosing an angle of 120◦ was the limiting form prior to breaking
for a progressive surface gravity wave on deep water (see Zhong & Liao (2018) for
a study of all water depths). This limit provides an upper bound of wave height h
for a given wavenumber k and corresponds to a steepness of kh/2 = 0.44. Stokes’s
proposed waveform corresponds to a two-dimensional or infinitely long-crested wave.
In reality, ocean waves are three-dimensional, and their typical crest length depends
on the directional spreading of the local sea state. Directional spreading has a strong
effect on the onset of wave breaking and the limiting steepness of waves (e.g. She,
Greated & Esson 1994; Johannessen & Swan 2001; Babanin et al. 2011; Latheef & Swan
2013). An axisymmetric standing wave is, in essence at the point of focus, an infinitely
short-crested wave. Hence, the breaking behaviour of real-world ocean waves lies between
these two canonical forms, unidirectional (two-dimensional) or infinitely long-crested, and
axisymmetric (three-dimensional) or infinitely short-crested. Axisymmetric surface waves
occur in a number of scenarios and are often associated with jet formation. In cylindrical
vessels, Faraday resonance can create axisymmetric waves (Miles 1984), and axisymmetric
jetting behaviour is common when features with rotational symmetry, such as bubbles and
droplets, encounter a free surface or wall (e.g. Blake & Gibson 1981; Longuet-Higgins
& Oguz 1997; Zeff et al. 2000). See table 1 in Basak, Farsoiya & Dasgupta (2021) for
a comprehensive overview of theoretical, numerical and experimental studies involving
such behaviour. These examples occur across a range of scales with varying relative
importance of the effects of viscosity, capillarity and gravity. However, as suggested by
Longuet-Higgins (1983), some features such as jet formation may be ubiquitous.

The FloWave Ocean Energy Research Facility at the University of Edinburgh is
a circular wave tank surrounded by wavemakers. The geometry and wave making
capacity of this tank makes it particularly adept at generating axisymmetric waves.
As a demonstration of this ability, a wave which is colloquially known as the ‘spike
wave’ was developed. The spike wave is created when the wavemakers that surround the
tank are driven in unison to create many axisymmetric waves of different frequencies
that focus at the centre of the tank. Figure 1 shows an image of the spike wave,
which at its peak forms a singular-looking jet of water over 6 m in height. The
striking nature of this wave has attracted the attention of several popular science
outlets (e.g. https://www.youtube.com/watch?v=iWKFPTgkpXo, https://www.ed.ac.uk/
news/staff/2016/wave-image-wins-photography-prize), but the fluid mechanics that leads
to its formation are yet to be explored. We will show the spike wave created in the
FloWave tank is a unique example of a breaking axisymmetric standing wave, at an
absolute scale much larger than previously observed. Herein, we examine this wave
using several measurement techniques and counterpart numerical simulations to better
understand the fluid mechanics of the spike wave and, consequently, axisymmetric
standing wave breaking. For completeness, we note that the term ‘standing wave’ has
multiple connotations; we use this term to refer to the surface motion created when waves
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Axisymmetric wave breaking and jet formation

Figure 1. Image of the ‘spike wave’ created in the FloWave circular wave tank.

of the same frequency propagate in opposing directions. This definition does not imply
time periodicity, resonance, or an enclosed flow.

Guthrie (1875), Rayleigh (1876), Honda & Matsushita (1913) and Fultz & Murty
(1963) examined periodic axisymmetric standing waves generated by Faraday resonance
in closed cylinders. The predominant focus of these studies was on the nonlinear resonant
behaviour of such waves, particularly their generation and frequency of oscillation.
Because of this focus, the waves these authors examined were of small amplitude and
far from breaking. In similar experiments, Longuet-Higgins (1983) created standing
waves, increasing their amplitude to the point that they were ‘overdriven’ or breaking, to
illustrate the subsequent formation of hyperbolic jets. Longuet-Higgins (1983) suggested
that hyperbolic jet formation is a predominantly inertial phenomenon, ubiquitous in free
surface flows. Considerable effort has been directed at determining scaling laws for jet
formation in collapsing cavities, predominantly focusing on those created by small bubbles
and droplets (e.g. Zeff et al. 2000; Ghabache, Séon & Antkowiak 2014; Van Rijn et al.
2021). Notably, Ghabache et al. (2014) use energy arguments to demonstrate that jet height
scales with H(H/L)2, where H and L are cavity depth and width, respectively. Ghabache
et al. (2014) assume that jet behaviour is inertia dominated and use mass and momentum
conservation to derive a self-similar velocity profile for the jet. The velocity profile is used
to determine kinetic energy, and an expression for jet height is derived by balancing this
with the initial potential energy of the cavity.

Using a perturbation expansion approach, Mack (1962) derived analytical expressions
describing periodic axisymmetric standing waves up to third order in amplitude. Tsai
& Yue (1987) used expressions based on Fourier–Dini series to numerically model
periodic axisymmetric standing waves, which offered improved accuracy for shallow
water depths when compared with Mack’s solutions. However, Tsai & Yue (1987)
observed that at amplitudes approaching wave breaking the convergence of their method
is poor. Axisymmetric jet formation and break-up has been modelled successfully using
multi-phase computational fluid dynamics (CFD) simulations of bursting bubbles (e.g.
Duchemin et al. 2002) and gravity–capillary waves (e.g. Basak et al. 2021).

Owing to their reduced complexity, more progress has been made modelling
two-dimensional (2-D) standing waves numerically and analytically to the point at which
breaking occurs. The limiting form of periodic 2-D standing waves prior to breaking was
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examined by Penny & Price (1952). Using three arguments, based on stability, surface
continuity, and a fluid’s inability to withstand tension, they showed that downward fluid
acceleration cannot exceed gravity g. Assuming that the free surface is expressible as
a Taylor series, Penny & Price showed that this limit is reached when a crest encloses
an angle of 90◦ (using the same approach Mack (1962) derived a ‘limiting’ angle
of 2 tan−1(

√
2) = 109.47◦ for a periodic axisymmetric standing wave). This limiting

form has an amplitude approximately 50 % greater than the steepest travelling wave.
Using a fractal approach to examine breaking, Longuet-Higgins (1994) showed that the
acceleration of the free surface η̈ for a standing wave crest lies within the bounds −g <

η̈ < ∞. A 2-D standing wave enclosing an angle of 90◦ was reproduced experimentally
by Taylor (1953). Numerical simulations of periodic 2-D standing waves carried out by
Mercer & Roberts (1992) demonstrated that waves enclosing an angle smaller than 90◦
can be created. Their results also showed that, as η̈ approaches −g, wave height does
not increase monotonically, and bifurcation occurs. Schultz et al. (1998) produced similar
numerical results to Mercer & Roberts (1992) while also including the effects of surface
tension, suggesting that surface tension was necessary to reproduce the experimental
observations in Taylor (1953). Using a highly resolved numerical model, Wilkening (2011)
examined the behaviour of quasi-periodic standing wave solutions to the water wave
equations as acceleration approaches the limit of −g. Wilkening’s simulations show
small-scale resonant oscillations form at the wave crest, which cause multiple bifurcations;
he suggests that the self-similarity observed in previous studies is in fact a result of
insufficient resolution. The small-scale oscillations reported by Wilkening (2011) could
also be related to phenomena discussed in Tsai & Yue (1987) and Roberts & Schwartz
(1983), in which oscillations are observed at the highest modes retained in their numerical
solutions, which are attributed to non-uniqueness of their solutions and described as
‘non-physical’ therein. We also note that for travelling wave groups the steepness at which
breaking occurs reduces as bandwidth increases (Wu & Yao 2004), further limiting the
potential applicability of a single limiting form to quasi-periodic waves. Summarising, the
above experimental and numerical studies demonstrate that a limiting form of 2-D standing
waves may not exist and raise the question whether the same is true for axisymmetric
standing waves.

Although a single limiting form may not exist for standing waves, a characteristic
that is consistently reported in the literature is that, when standing waves break or
are ‘overdriven’, jet formation occurs. Longuet-Higgins (2001b) and Longuet-Higgins
& Dommermuth (2001a,b) examine jet formation on 2-D standing waves numerically
using a Lagrangian system of equations (Balk 1996) and a boundary integral method
(Longuet-Higgins & Cokelet 1976). They do so by prescribing arbitrary initial surface
velocity or elevation and time marching these initial conditions. Prescribing initial
conditions in such a way does not guarantee periodic surface motion, and hence the
waves they examine are not purely periodic. They show that predicted fluid acceleration
is not sensitive to the scale of waves (i.e. amplitude or height), but is determined by
the shape of the trough prior to jet formation (i.e. steepness or radius of curvature),
and report crest velocities exceeding 1.7 times the linear phase speed. Water depth has
also been shown to affect jet formation, with larger crests predicted in finite depth than
in deep-water simulations of standing waves (Wilkening & Yu 2012). Longuet-Higgins
(1983) demonstrated, when analysing bubbles approaching a free surface (Blake &
Gibson 1981), that once a jet has formed subsequent evolution takes the form of a jet
with a hyperbolic shape. The jet model presented in Longuet-Higgins (1983) suggests that
jet formation and hence indirectly breaking occurs at angles of 90◦ and 109.47◦ for 2-D
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and axisymmetric standing waves, respectively. At these angles, the model predicts a large
positive ‘jolt’ in acceleration, not −g. Longuet-Higgins (2001a) presented an asymptotic
jet model for 2-D standing waves that does not exhibit a singularity at 90◦. Hence, this
apparent jolt reported in Longuet-Higgins (1983) may be an artefact of the chosen model.
Determining the point at which wave breaking occurs for axisymmetric standing waves in
general and in the experiments presented herein in particular is a challenge in its own right.
For travelling waves, visual identification of wave breaking is straightforward (Babanin
2011). For standing waves, wave motion and jet formation may both result in vertical
movement of the free surface, and a clear distinction between the two phenomena does not
exist. Once a wave crest has transformed into a free-falling jet, breaking and irreversible
surface motion has clearly occurred. However, the onset of breaking may have occurred
prior to this. Thus free-falling jet formation alone may not be a useful indicator of wave
breaking onset.

In the following paper, we investigate the mechanisms that create the spike wave shown
in figure 1 with the aim of revealing its fluid mechanics and improving understanding
of breaking free surface gravity waves. We provide details of our experiments in § 2.
We then address the following questions. First, is the (nonlinear) wave crest amplitude
limited by breaking and how is it related to the linear input amplitude based on linear
dispersive focusing (§ 3)? Second, what are the mechanisms that lead to the generation of
the spike wave, and does ‘nonlinear focusing’ (see e.g. Dudley et al. (2019) for a review)
play a role (§ 4)? Third, do the jets that form evolve in a similar manner to observations
at smaller absolute scales and can this be modelled (§ 5)? Fourth, how may we identify
wave breaking, and do the observed mechanisms of breaking and air entertainment relate
to previous studies (§ 6)? Finally, we draw conclusions in § 7.

2. Experimental method

Experiments were conducted in the FloWave Ocean Energy Research Facility (www.
flowave.eng.ed.ac.uk) at the University of Edinburgh. The facility consists of a 25 m
diameter circular wave basin, surrounded by 168 active-absorbing force-feedback
wavemakers, with a water depth of 2 m. This circular geometry enables the creation of
waves in all directions and thus readily facilitates the generation of axisymmetric waves.
Owing to the large amplitude of the waves examined in our experiments (0.1–6.0 m), it
was not possible to make measurements using wave gauges in all cases. To measure waves
larger than approximately 0.5 m in amplitude, we employed two alternative free surface
measurement techniques: calibrated image processing and floating surface markers.
Figure 2 shows our experimental set-up. Further details of the measurement techniques
we use are provided in Appendix A with details of the wave gauge configuration in
Appendix A.1, the procedure to obtain calibrated high-speed images of the free surface in
Appendix A.2 and the free surface measurements using floating markers and the Qualisys
system in Appendix A.3.

2.1. Experimental matrix
To gain an understanding of the mechanisms that underlie the ‘spike wave’, we recreate
the wave at different amplitudes. Increasing the amplitude gradually allows for observation
of linear and nonlinear focusing mechanisms and the onset of breaking and jet formation.
The largest amplitude we created was limited by the vertical clearance above the wave
tank (≈7 m) and the field of view of the camera set-up. Table 1 lists the increments over
which we increase the linear input amplitude A0 of our experiments, from 0.2 to 1.53 m,
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(a) (b)
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Figure 2. Experimental set-up with (a) diagram of the wave tank, showing wave gauge array A, Qualisys
infra-red (IR) cameras, high-speed camera, calibration plane and screen; and (b) photograph of the wave tank
and the screen.

Experiment A0 (m) A0/r0 A0k0 No. image No. Qualisys Gauge array
repeats repeats

Exp. 10 0.204 0.033 0.103 — — B
Exp. 20 0.407 0.067 0.210 — — B
Exp. 30 0.611 0.010 0.313 2 1 A/B
Exp. 40 0.814 0.132 0.415 2 — A
Exp. 50 1.018 0.165 0.518 3 1 A
Exp. 60 1.222 0.199 0.625 3 1 A
Exp. 65 1.323 0.215 0.677 3 1 A
Exp. 70 1.425 0.233 0.733 3 1 A
Exp. 75 1.526 0.250 0.784 3 5 A

Table 1. Matrix of experimental input parameters: r0 = 6.13 m is the predicted radius of the linear
fundamental mode with corresponding wavenumber k0 = π/r0 = 0.51 m−1. Total linear wave height H0 is
equal to 1.408A0.

where A0 corresponds to the maximum amplitude of the surface elevation at the centre of
the tank according to linear theory. Details are also provided of the types of measurement
available for each experiment.

The ‘spike wave’ was designed to produce a single, highly repeatable large crest in
space and time. Producing a temporally localised wave group minimises the build-up of
reflected waves, which act as background motion in the tank and have a significant effect
on focusing and jet formation. Moreover, it is not possible to produce a single-frequency
resonant mode in the tank, as is done in vibrating cylindrical containers with fixed side
walls, as this would require large surface motion at the circumference of the tank where
the wavemakers are located. To create a large temporally and spatially localised wave,
a broad-banded spectrum was used to produce a focused wave group. The shape of the
spectrum was chosen considering the capability of the wavemakers and is based on an
International Towing Tank Conference (ITTC) spectrum (Mathews 1972), which follows
the general form

S( f ) = α

f 5 exp
(

β

f 4

)
, (2.1)
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Figure 3. Experimental input conditions: (a) linearly predicted free surface elevation η(1) at the point of
focus (r = 0), and (b) corresponding discrete amplitude spectra η̂(1) for all experiments.

where α is scaling parameter which is adjusted to achieve the desired amplitude A0 at
focus, f is frequency and β = −0.44/T̄4 is a shape parameter. All our experiments were
carried out with mean period T̄ = 2.3 s, which gives a peak period Tp = 2.8 s.

The repeat time of each experiment was 64 s, which means discrete wave components
are generated with a frequency resolution of δf = 1/64 = 0.0156 Hz. The discrete wave
components at each frequency are generated so that they are all in phase at the centre of
the tank (based on linear theory). Figure 3 shows time series of surface elevation at the
centre of the tank based on the wavemaker inputs, linear wave theory and the underlying
amplitude spectrum for all experiments.

Between experiments, the only parameter varied was the input linear amplitude at
focus A0. Based on these inputs, the waves have a characteristic wavelength λ0 =
12.2 m (wavenumber k0 = 0.51 m−1, λ0 = 2π/k0), which was calculated as twice the
radial position of the wave trough at the time of linear focus, t = 0 (i.e. r0 = 6.13 m).
Accordingly, the characteristic water depth of the waves we create is d/r0 = 0.326 or
k0d = 1.02, which is considered non-critical (Mack (1962) predicts critical depth to occur
at d/r0 ≈ 0.2; at critical depths nonlinearly generated higher modes of the fundamental
frequency are of the same order of magnitude as first-mode oscillations) or intermediate to
deep. At the scale of our experiments, the Bond number Bo = (ρg)/σk2

0 is of the order 105,
where ρ is density and where we assume the surface tension of water σ = 72 mN m−1.
For small-scale surface oscillations, as predicted by Wilkening (2011), this increases to
102. It is possible that these small-scale surface oscillations will experience an altered
effective gravity owing to the local fluid acceleration, and thus the Bond number calculated
using constant g may be misleading. We nevertheless conclude surface tension effects will
unlikely be important.

A minimum settling time of 10 min was completed between experiments to allow for the
dissipation of background motion. Failing to allow for sufficient time between experiments
has a strong effect on crest shape and jet formation, resulting in a less sharp waveform and
a reduced crest amplitude.

3. Experimental observations

In this section, we present our experimental observations, and draw comparison with
analytical expressions for surface elevation of periodic axisymmetric standing waves and
wave breaking limits by Mack (1962) (see Appendix B) thus focusing on maximum
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Figure 4. Images of Exp. 40 to Exp. 75 (left to right) from t = −0.44 to 0.28 s in intervals of 0.24 s (top to
bottom), where t = 0 corresponds to the time of linear focus. See supplementary material for movies available
at https://doi.org/10.1017/jfm.2021.1023 of the experiments shown in this figure.

crest amplitude. Figure 4 shows images of the waves produced during our experiments
as input amplitude was increased (Exp. 40 to Exp. 75, left to right), at 0.24 s intervals (top
to bottom).

3.1. Surface elevation
Owing to the amplitude of the waves we create exceeding the size of our wave gauges,
we have implemented two image-based (or indirect) methods to measure surface elevation
near the wave crest (r = 0). In figure 5 we compare measurements of surface elevation
plotted as a function of radial position r for Exp. 30 and Exp. 75. Surface elevation
measured using wave gauges ηG (blue markers), calibrated high-speed images ηI (grey
lines) and floating markers ηQ (red dots) are compared at approximately 0.16 s intervals.
Exp. 75 is the largest wave we created, and Exp. 30 is the largest experiment for
which gauge measurements were made at the centre of the tank (as well as further
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Figure 5. Surface elevation measurements for Exp. 30 (a) and Exp. 75 (b): blue open circles show gauge
measurements ηG, grey lines show measurements from calibrated images ηI and red dots show measurements
made with floating markers ηQ. Surface elevation is presented at approximately 0.16 s intervals, where artificial
‘velocities’ of 1.5 and 12 ms−1 have been applied to separate the measurements at different times on the same
vertical axis and aid clarity in panels (a) and (b), respectively.

out). In Exp. 30 surface elevation exceeded the height of the gauge at r = 0, meaning
that the measurements produced by this gauge are incorrect at the time of the wave
crest. The adjacent gauges were not over-topped and may still be used to validate the
indirect measurement techniques near r = 0. In figure 5(a) the indirect measurements of
surface elevation, ηI (calibrated images) and ηQ (floating markers), agree well with the
gauge measurements shown. As the wave crest reaches a maximum, the surface elevation
measured using the floating markers differs slightly from the image-based measurements.
At instances where the free surface experiences significant acceleration, the floating
makers will exhibit some degree of inertial behaviour and may not follow the surface
exactly. For the crest in figure 5(a), ηQ (floating markers) matches ηG (gauges) closely, so
it does not appear that the floating markers are exhibiting observable inertial effects. In
Exp. 30 the wave crest is low in the camera’s field of view and does not reach the bottom
of the screen used to aid edge detection. Therefore, there may be some parallax error in
the extracted profile in this case. In Exp. 75, in which surface elevation reaches around
6 m and lies directly in front of the screen, all three techniques compare well and can be
combined effectively to capture the extreme surface profile created.

Figure 6 shows surface elevation measured in Exp. 50-75. The top row (a–e), shows
surface elevation measured immediately prior to visual observation of the rapid (over 1–2
frames or 8–16 ms) formation of a sharp-cusped wave crest. The bottom row ( f – j) shows
surface elevation measured at the time when the wave crest reaches a maximum. The
rapid formation of a sharp-cusped wave crest is an indication of jet formation and may be
an indication of the onset of wave breaking; this hypothesis is examined in more detail
in §§ 4.1 and 4.2. As we increase the amplitude of the waves created, the point where a
cusp forms occurs earlier and at lower measured amplitude. This potentially contradicts the
concept of a limiting waveform, as the onset of breaking does not occur at a fixed amplitude
and steepness (the wavelength remains unchanged). The time at which maximum surface
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Figure 6. Surface elevation for Exp. 50 to Exp. 75 at the time of observed jet formation (a–e) and maximum
elevation ( f – j): blue open circles show gauge measurements ηG, grey lines show measurements from calibrated
images ηI and red dots show measurements made with floating markers ηQ. In (i, j) ηI is shown by a single
marker to aid clarity.

elevation is reached is delayed as input amplitude increases, and the maximum surface
elevation does not appear to be limited by breaking.

3.2. Maximum amplitude
Owing to imperfect wave generation, the waves may not be produced to the specified input
linear amplitude in the wave tank (see table 1). To estimate the actual linear amplitude A0
of the waves created, we use the measurements from wave gauge array A for Exp. 30 to
Exp. 75, and gauge array B for Exp. 10 and Exp. 20. In figure 7(a) the maximum surface
elevation A measured using the calibrated images (red dots) is plotted as a function of the
estimated linear amplitude A0. As also shown in figure 6( f – j), as the linear amplitude A0 is
increased, the maximum surface elevation A increases rapidly, reaching a value of 6.03 m
for a corresponding linear amplitude of 1.03 m. The purple markers in figure 7(a) also
show third-order accurate amplitudes predicted by Mack (1962) for periodic axisymmetric
standing waves (calculated using (B2) in Appendix B). Table 2 provides details of the
linear and total amplitudes measured during our experiments and simulations.

Figure 7(b) shows the individual second- and third-order components of wave
amplitude. The continuous lines show values predicted by Mack (1962) for periodic
axisymmetric standing waves (calculated using (B2)), and the blue dots show values
calculated using multi-chromatic second-order theory (Dalzell 1999) based on linearised
measurements. The waves we create are broad banded and hence may not be modelled well
as a monochromatic wave (as in Mack (1962)). However, the second-order components
predicted by both monochromatic Mack (1962) and multi-chromatic (Dalzell 1999)
theories agree well, which demonstrates the effects of bandwidth are at least negligible
at second order; at third order the effects of bandwidth may be more pronounced.

Visual (a sharp-cusped wave crest) and aural (see supplementary movie) signs which
may be indicative of jet formation and subsequent wave breaking were observed in
Exp. 40 and Exp. 50, respectively. Hence, we believe the onset of breaking may occur
between Exp. 30 and Exp. 40, as indicated by the grey shaded area in figure 7(a) (this
is confirmed in § 4.1). At amplitudes below this breaking onset, measured amplitude
A follows the monochromatic third-order prediction by Mack (1962) well. Above this
breaking onset, measured amplitude begins to increase rapidly.
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Figure 7. Maximum surface elevation: (a) shows total amplitude as a function of measured linear amplitude
A0, the grey dashed and dot-dashed line denote Stokes’ and Mack’s predicted limiting amplitudes, respectively;
(b) shows second- and third-order components of amplitude as a function of measured linear amplitude A0;
(c) shows measured amplitude on logarithmic axes as a function of trough depth prior to jet formation H, with
the black dashed line corresponding to A ∝ H3. Red filled markers denote measured total amplitude, blue and
purple markers denote predicted second-order and third-order amplitudes.

Experiment A0 (m) A (m) Jet velocity η̇C

Input Measured Simulated Measured Simulated Mack (1962) (ms−1)

Exp. 10 0.204 0.142† 0.142 0.146† 0.149 0.149 0.303s

Exp. 20 0.407 0.308† 0.309 0.338† 0.352 0.346 0.965s

Exp. 30 0.611 0.461†† 0.461 0.585 0.584 0.550 1.50�, 1.50s

Exp. 40 0.814 0.621†† 0.618 1.011 0.979 0.791 2.48�, 2.17s

Exp. 50 1.018 0.733†† 0.732 1.680 — 0.985 4.83, 4.58�

Exp. 60 1.221 0.871†† 0.869 2.843 — 1.245 6.79
Exp. 65 1.323 0.928†† 0.927 3.647 — 1.365 7.85
Exp. 70 1.425 0.995†† 0.992 4.848 — 1.506 9.27
Exp. 75 1.526 1.030†† 1.029 6.027 — 1.589 10.38

Table 2. Crest amplitudes and jet velocities from experimental observations: † denotes gauge measurements
at r = 0 using array B and †† those made using array A (see appendix A); other measurements are made
using calibrated images. In the rightmost column, superscripts � and s denote peak crest velocities measured
in simulations and using images from experiments, respectively. Those without superscripts are calculated as
η̇C = √

2g(A − Acusp) (see § 4).

In figure 7(c), filled markers show total measured jet amplitude AM plotted as a function
of the trough depth prior to jet formation H. This approximately follows an H3 scaling, as
predicted in Ghabache et al. (2014). We emphasise that Ghabache et al. (2014) predict A
will scale with H(H/L)2; to examine how well this agrees with our data we have assumed
a constant cavity diameter L in figure 7(c).
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4. Generation mechanism

Waves of extreme form and incipient breaking are often associated with nonlinearity and
(resonant) instabilities. For periodic axisymmetric standing waves, Mack’s third-order
solutions predict changes to the dispersion relationship, which cause amplitude-dependent
modification to the frequency of oscillation. In the following section, we aim to investigate
the mechanisms of focusing (§ 4.1) and of breaking onset (§ 4.2) of the steep axisymmetric
waves we create.

4.1. (Non) linear dispersive focusing
Steep surface gravity waves can occur as a result of linear dispersive focusing or, under
certain conditions, resonant interactions (‘nonlinear focusing’). To assist in understanding
the relative importance of these different focusing mechanisms in the formation of the
spike wave, we carry out numerical simulations based on our experiments using the
potential-flow solver OceanWave3D (see Appendix C for discussion of the method and
convergence).

The red dot-dashed and blue solid lines in figure 8 show simulated surface elevation
ηO at the point of focus r = 0 (x = 0, y = 0) for grid resolutions Δ = 0.098 and Δ =
0.049 m, respectively. Simulations were carried out with the same duration for all the
experiments (Exp. 10 to Exp. 75). For Exp. 40 onwards the simulations became unstable
and stopped prior to completion (cf. figure 8a–i). For Exp. 40 and Exp. 50, numerical
instability occurs after the wave crest has formed. As the amplitude of the waves is
increased, numerical instability occurs at earlier times. We note that increasing resolution
may improve the stability of our simulations at large amplitudes (i.e. Exp. 50 onwards). It
may be possible to model aspects of jet formation more accurately using multi-phase CFD
(e.g. Duchemin et al. 2002). However, the intended use of our simulations is primarily
to elucidate the focusing mechanisms of the ‘spike wave’. Our simulations converge (see
Appendix C.3) and provide reliable results up until the point of wave breaking (Exp. 40).
Increasing resolution further is beyond the scope of the current paper owing to constraints
on memory. We note that localised jets on 2-D standing waves have been successfully
modelled using potential flow (Longuet-Higgins & Dommermuth 2001a).

In figure 8(a,b) black dots shows gauge measurements from our experiments, which
compare well with numerical simulations. At larger amplitudes, we compare numerical
results with measurements from calibrated images in figures 9 and 10, which show Exp. 40
and Exp. 50, respectively. In these figures, numerical surface elevation ηO (m) has been
transformed to pixels and super-imposed onto the images using our in-plane calibration.
For Exp. 40 in figure 9 our simulations compare well with our experiments, replicating
the sharp crest that forms. However, for Exp. 50 in figure 10 the sharp crest that forms is
not captured, and the simulations become unstable at around t = 0.04 s. Our simulations
become unreliable the near the wave crest for Exp. 50 onwards. However, away from the
crest our simulations agree with well the images. Therefore, we focus the analysis of our
simulations on times prior to crest formation for Exp. 50 onwards, for which simulations
are stable and accurate.

The grey solid lines in figure 8 show surface elevation from simulations carried
out retaining only linear terms in the governing equations η

(1)
O . The grey dotted

lines show the results of the linear simulations with second-order bound components
super-imposed, η

(1)
O + η

(2)
T , where the second-order bound component η

(2)
T are calculated

using multi-chromatic second-order theory (Dalzell 1999). The predicted second-order
accurate crest acceleration is less than −g for Exp. 60 onwards, suggesting the solutions
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Figure 8. Numerically simulated surface elevation η at the point of focus (r = 0) for Exp. 10 to Exp. 75: grey
solid lines show linear simulations η

(1)
O , grey dotted lines linear simulations with multi-chromatic second-order

bound waves super-imposed η
(1)
O + η

(2)
T , red dot-dashed and blue lines show fully nonlinear potential-flow

simulations ηO at grid resolutions Δ = 0.098 and 0.049 m, respectively. Nonlinear potential flow simulations
are shown until the time they become unstable. In (a,b), black dots show surface elevation ηG measured using
a wave gauge during Exp. 10 to Exp. 30, which agree well with the nonlinear potential-flow simulations (the
lines overlap).

t = –0.36 s t = –0.28 s t = –0.2 s t = –0.12 s
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1
 m

(e)
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Figure 9. Numerically simulated surface elevation super-imposed on calibrated images from Exp. 40: each
panel shows calibrated images at different instances in time, gold lines show surface elevation from nonlinear
potential-flow simulations ηO.
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Figure 10. Numerically simulated surface elevation super-imposed on calibrated images from Exp. 50: each
panel shows calibrated images at different instances in time, gold lines show surface elevation from nonlinear
potential-flow simulations ηO. The simulations become unstable at around t = 0.04 s, after which they are not
shown.

have become invalid for these amplitudes. By comparing linear and fully nonlinear surface
elevation in figure 8, we can examine the relative importance of linear and nonlinear
focusing mechanisms. As amplitude is increased from Exp. 10 to Exp. 50, the linearly and
nonlinearly simulated wave crest occur at approximately the same time (within ±0.05 s,
or ±0.018Tp); a clear phase shift does not occur.

In figure 11 we compare numerically simulated linear and nonlinear surface elevation
plotted as a function of radial position r for Exp. 10 to Exp. 40. We observe that the
majority of the surface motion is effectively linear, with only the region around the crest
(r ± 0.05λ0) showing significant nonlinearity at the time of maximum crest elevation
(solid lines). At times prior to the maximum crest, the entire surface is effectively linear
(dotted and dashed lines show surface elevation at the time of minimum trough). It appears
that the localisation in space and time of the waves we create limits the duration and
spatial extent of nonlinear contributions that may lead to resonant changes to focusing
(see Appendix D for a full decomposition of the simulations for Exp. 40 into their different
(non)linear components). The majority of surface motion leading up to the spike wave is
linear. Nonlinearity clearly affects the total crest height we observe, but perhaps not in the
quasi-resonant manner typical associated with steep travelling waves (e.g. Janssen 2003).

4.2. Curvature collapse
As the input amplitude of the wave is increased, a highly localised crest or jet forms at the
times shown in figure 6(a–e); this phenomenon can also be seen in figure 10(b).

The formation of a highly localised jet from a collapsing trough is sometimes referred to
as ‘curvature collapse’ (Zeff et al. 2000; Longuet-Higgins 2001b) or ‘flip trough’ for waves
incident on a vertical wall (Cooker & Peregrine 1990). We believe this is the mechanism
responsible the sharp wave crests we observe in Exp. 40 onwards. Figure 12 shows a series
of images captured during Exp. 75, which illustrate the process of curvature collapse for
the largest axisymmetric standing wave we create. As time progresses, the constructive
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Figure 11. Numerically simulated surface elevation η as a function of radial position r at the time of maximum
crest ηC (solid lines) and minimum trough ηT (dotted and dashed lines) for Exp. 10 to Exp. 40 (left to right):
grey and red lines show linear η

(1)
O and nonlinear ηO simulations, respectively.
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Figure 12. Images of trough focusing, curvature collapse and initial jet formation observed during Exp. 75:
sequential images at intervals of approximately 0.1 s.

interference of multiple axisymmetric waves can be clearly observed with these waves
coming into focus forming a deep trough from which a jet emerges (figure 12 j).

Longuet-Higgins (2001b) shows that the severity of jet formation is linked to the
curvature of the collapsing wave trough. Moreover, Longuet-Higgins (1994) illustrates
how superimposing multiple standing waves can result in unbounded acceleration.
Figure 13 illustrates trough shape preceding curvature collapse taken from our numerical
simulations and experiments. As input amplitude is increased, increases in the depth of
the corresponding troughs are linear and small, whereas the corresponding changes in
maximum crest elevation we observe in Exp. 40 onwards are large are highly nonlinear.
The small variations in trough shape and curvature we observe in figure 13 may cause
the discrepancies we observe between our measured crest and a line of slope A ∝ H3 in
figure 7(c).

In Longuet-Higgins (2001b) vertical crest velocities exceeding 1.7 the predicted linear
phase velocity cp are simulated for 2-D standing waves. Assuming the waves crests we
measure are in free fall between the two heights measured in the top and bottom row
of panels in figure 6, we can estimate the initial crest velocity as η̇C = √

2g(A − Acusp),
where Acusp is the amplitude at the instance formation of a cusp as identified in figure 6,
which was only possible for Exp. 50 to Exp. 75, and A the maximum crest amplitude.
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Figure 13. Shape of the trough prior to jet formation, showing the surface elevation as a function of radial
position r at the instance in time when η reaches a minimum value for Exp. 10 to Exp. 75: (a) numerical
simulations; (b) numerical simulations ηO (lines) and measurements made using floating markers ηQ (solid
markers), where curves of different simulations and corresponding measurements have been stacked to aid
clarity.

Estimates of initial crest velocity obtained using this method are included in table 2
and lie in the range 4.83–10.38 ms−1, which corresponds to (1.26–2.70)cp,0, where cp,0
is the phase velocity obtained using the linear dispersion relation for k0 = 0.51 m−1.
Measurements of maximum crest velocity calculated by differentiating simulated (ηO) and
measured (ηI) surface elevation are also included in table 2. In Exp. 50 both methods of
calculating crest velocity agree reasonably well.

5. Jet formation and evolution

Although previous studies indicate that 2-D standing wave breaking may not be
self-similar with a universal limiting waveform, when standing waves are driven beyond
a critical point the formation of a jet is universal feature (Longuet-Higgins 2001b;
Longuet-Higgins & Dommermuth 2001b; Wilkening 2011). Thus, the formation of a
free-falling jet, rather than the angle enclosed by the crest falling below a critical
angle, may provide an indication of wave breaking for axisymmetric standing waves.
Longuet-Higgins (1983) demonstrates that the axisymmetric jets formed by gas bubbles
approaching a free surface (Blake & Gibson 1981) could be described using a simple
model based on the Dirichlet hyperboloid. In the same paper, Longuet–Higgins also
demonstrates that overdriven axisymmetric waves generated by sub-harmonic Faraday
resonance in a small beaker produce similar jets (although these jets are not compared with
the model owing to their short duration), proposing that hyperbolic jets occur commonly
in free surface flows.

The model proposed by Longuet-Higgins (1983) assumes that jet formation is inertial
(thus ignoring gravity) and inviscid and predicts that, after an initial ‘jolt’ of acceleration
occurring when the angle enclosed by the crest is 109.47◦, a free-falling jet forms, after
which the time evolution of jet angle γ is given by,

tan(γ ) ≈
√

2

(1 + τ/
√

3)3/2
, (5.1)

where τ is non-dimensional time, and 2γ is the angle enclosed by the free surface.
Non-dimensional time is defined as τ = U(t − t0)/l with t dimensional time, and U
and l characteristic velocity and length scales, both of which are unknown a priori for
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Figure 14. Jet angle γ as a function of time for Exp. 30 to Exp. 50: dashed lines show critical angle
(109.47/2◦), solid black lines show angle predicted by (5.1), coloured markers show γ measured using
calibrated images (multiple experiments are denoted by different coloured markers where available).

our experiments. Time t0 corresponds to the instant at which the surface encloses the
critical angle, i.e. 2γ = 109.47◦. In Longuet-Higgins (1983), a mapping between τ and
t is obtained by measuring γ and hence τ at two instances in time and estimating U/l.
The angle γ is measured by fitting a hyperbola to the surface profile extracted from the
calibrated images. We perform the same mapping by fitting U/l using the first 5 frames
(corresponding to 0.04 s) after 2γ become less than 109.47◦ at the initial stage of jet
formation.

We follow the above approach to examine if the simple model proposed by
Longuet-Higgins (1983) may be applied to axisymmetric waves of a similar nature
but several orders of magnitude larger and to provide insight into when a hyperbolic
free-falling jet may have formed. We plot the evolution of crest angle γ as a function of
time in figure 14. We only show Exp. 30 to Exp. 50, as in larger-amplitude experiments the
profile of the jet becomes indistinct and the edge hard to detect automatically from images.
The dashed horizontal lines denote the critical angle 109.47/2◦. In figure 14(a) γ is plotted
as a function of dimensional time, as γ does not fall below the critical angle, and a jet does
not form. In figure 14(b,c) γ falls below 109.47/2◦ and evolves as predicted by (5.1). As
time progresses, measured γ deviates slightly from predictions by (5.1). This may be a
result of gravitational acceleration, which is not considered in the model for jet evolution
of Longuet-Higgins (1983). The characteristic velocity U will be reduced by gravitational
acceleration, which will affect the mapping between τ and dimensional time. In the case
of Exp. 40, where disagreement between measurements and (5.1) is most pronounced, jet
formation is marginal and short lived. We likely observe a combination of jet formation
and wave motion, as the crest is only in free fall briefly. We note that in Longuet-Higgins
(2001b) and Longuet-Higgins & Dommermuth (2001b) similar numerical examples are
shown where jets emerge and are then reabsorbed by the body of the crest.

In figure 15 we use the surface elevation measured in the calibrated images to plot
the trajectory of the jet, showing its maximum elevation η and velocity η̇ (at r = 0) as
a function of time for Exp. 30 to Exp. 50. The dots show measured values and the solid
lines of corresponding colours denote predicted free-fall trajectories and velocities based
on the velocity estimated at the first measured time steps after jet formation. In Exp. 40
and Exp. 50 free-falling trajectories are clearly observed, as is most evident from the jet
velocities, which decrease linearly in time at a rate −g. This provides an indication that
wave breaking (if identified by the formation of a free-falling jet) occurs between Exp. 30
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Figure 15. Jet trajectories for Exp. 30 to Exp. 50, showing the maximum crest elevation η (a–c) and the crest
velocity η̇ (d– f ) as a function of time t: the lines show predictions based on a free-fall trajectory, coloured
markers show measurements made using calibrated images (multiple experiments are denoted by different
coloured markers where available).

and Exp. 40. However, unlike breaking that occurs for travelling waves, wave breaking here
does not provide a limit for how large the crest can become, as the waves and breaking jet
continue to increase in height.

In figure 16 we examine if the simple jet model (5.1) can be applied to the largest wave
we created (Exp. 75). Panels (a–e) show images of Exp. 75 at 0.16 s intervals; these images
correspond to the vertical dashed lines in ( f,g). At τ > 10 manual edge detection was
necessary and thus was only carried out at times corresponding to (b–e). Prior to the image
shown in (a), the surface profile was sufficiently distinct, and automated edge detection
could be used to measure surface elevation; these measurements were used to determine
U/l, which was used to predict γ at subsequent times according to (5.1). Similarly,
measured surface elevation and velocity prior to (a) are used to predict the subsequent
surface elevation of the jet. Panels ( f,g) respectively show measured and predicted angle
γ and measured and predicted crest elevation. Predicted jet angle and crest elevation are
super-imposed on the images in (a–e). As the jet approaches maximum height, it begins to
distort and bend to the left slightly. Lateral motion of the jet occurs as a result of imperfect
focusing that is caused by small residual motion in the wave tank prior to experiments and
potentially small errors in the motion of the wavemakers. The jet also begins to break up
forming droplets as a result of Plateau–Rayleigh type instability. The break-up and lateral
motion of the jet make it difficult to compare predicted jet angle γ with images in (b–e).
In (a) τ ≈ 10 and γ ≈ 6◦, indicating that at this early stage (dimensional time t = −0.2 s)
the jet has already evolved to have a very narrow angle and hence has a very large initial
velocity. As in the experiments carried out at smaller amplitudes (cf. figure 15), the tip of
the jet follows a parabolic trajectory, as shown in (g).
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t = –0.21 s t = –0.05 s t = –0.11 s t = –0.27 s t = –0.43 s
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Figure 16. Crest angle γ and crest elevation η for the largest wave (Exp. 75) plotted as a function of time in
( f,g), respectively, with black lines showing the angle predicted using (5.1) ( f ) and the free-fall trajectory (g),
and markers showing γ and η measured using calibrated images. (a–e) Show images, which correspond to the
vertical lines in ( f,g), with super-imposed predictions of maximum jet elevation and angle.

6. Wave breaking

6.1. Identification of wave breaking
As stated previously, we define wave breaking as the point at which surface becomes
unstable to small perturbations and wave motion is no longer reversible. When a travelling
wave reaches critical steepness, gentle spilling or more violent plunging of the forward
face of the wave crest provides clear visual indication of wave breaking. Broadly speaking,
this occurs when fluid velocity in the wave crest exceeds the velocity at which the crest
propagates. This process limits the maximum steepness a travelling wave can reach. For a
standing wave, both wave motion and jet formation contribute to vertical movement of the
free surface. Therefore, maximum crest elevation is not limited by jet formation. Moreover,
a clear distinction between vertical wave motion and jet formation is not obvious, which
makes it difficult to identify the exact onset of breaking for standing waves, although this
has been attempted in a number of previous studies (e.g. Taylor 1953).

Potential-flow simulations demonstrate jet formation and re-absorption for 2-D
standing waves and may thus suggest that this process is reversible (Longuet-Higgins
& Dommermuth 2001b), up until the point of surface reattachment if this occurs
(Longuet-Higgins & Dommermuth 2001a). This is also the case for plunging breakers in
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travelling waves. In our experiments, it is clear that a form of ‘breaking’ has occurred when
the free-falling jet collides with the free surface (cf. figure 17 f ) and energy is dissipated.
In practice, prior to reconnection to the free surface, a falling jet becomes unstable as it
contracts, forming droplets (Longuet-Higgins 1994). Thus, the point at which a free-falling
jet forms is indicative that wave breaking has occurred, as the fluid has reached a state in
which wave motion is no longer reversible.

In the scenario we examine wave breaking may not be directly observable, and its onset
difficult to detect. Moreover, breaking does not appear to provide an obvious limit to
surface motion. Bubble pinch-off has been shown to cause non-monotonic increases in
jetting height in Zeff et al. (2000) and Krishna Raja, Das & Hopfinger (2019). These factors
may raise the question whether the concept of wave breaking is useful for characterising
axisymmetric surface gravity waves. However, as such waves transition from reversible to
a point where they become unstable and dissipate energy, although different from classical
interpretations, breaking has occurred. Characterising when and how ocean waves become
unstable and dissipate energy is one of the main motivations for continued research into
wave breaking.

6.2. Three breaking forms
Although the majority of our focus is on the formation of the large sharp wave
crest, this is not the only mode of wave breaking and dissipation we observe. We
illustrate the types of breaking observed in figure 17, which shows images of Exp. 75
accompanied by diagrams of the three forms of breaking phenomena we observe. The
axisymmetric breaking phenomena observed in our experiments display characteristic
breaking behaviour analogous to observations made in previous studies of 2-D standing
waves (Jiang, Perlin & Schultz 1998; Longuet-Higgins & Dommermuth 2001a; Aurther
et al. 2019).

First, sharp-crested wave breaking occurs, where a single crest forms in the centre
of tank leading to the formation of free-falling jet, as shown in figure 17(a,b). As
the jet evolves, continued dispersive focusing of the waves creates a trough, shown in
figure 17(c–e).

Second, the falling jet is then enclosed by the narrowing trough causing the entrainment
of air bubbles, as shown in figure 17(d– f ). In addition to this trapping of pockets of air,
entrainment occurs as a result of the impact of the falling jet on the free surface, as shown
in ( f ). The diagram we use to illustrate this process in figure 17 is adapted from the 2-D
numerical simulations carried out in Longuet-Higgins & Dommermuth (2001a) and the
diagrammatic explanation of the air entrainment process for falling jets in Bertola, Wang
& Chanson (2018). The jet behaviour we observe bears striking resemblance to the 2-D
numerical simulations presented in Longuet-Higgins & Dommermuth (2001a).

Third, radial wave breaking occurs, where the continued dispersive focusing causes
spilling motion as the waves propagate away from the centre of the tank, as shown
in figure 17(g,h). The radial wave breaking we observe is similar in form to the
‘double-peaked crest’ observed for 2-D periodic standing waves in Jiang et al. (1998).
This is referred to as ‘mode B’ in what Jiang et al. (1998) refer to as period tripling,
where ‘mode B’ follows the formation of the sharp crest (their ‘mode A’). In Jiang et al.
(1998) recurrent breaking, at a period three times that of the fundamental period, is brought
about by the interaction between the fundamental harmonic and the nonlinearly generated
second harmonic. In our experiments, we believe a similar effect is brought about by the
transient focusing and then defocusing of the radial group structure of the broad-banded
waves we create. Initially, the waves focus in the centre of the tank forming a single
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(e) (g) (h)

(b)(a) (c) (d )

(a), (b) (g), (h)(c) –( f )

( f )

Sharp-Crested Breaking/
Mode A 

Falling Jet/
Air Entrainment

Radial Breaking/
Mode B

Figure 17. Sequence of images depicting three forms of breaking: (a,b) initial sharp-crested breaking in the
form of jet formation (mode A in Jiang et al. 1998), (c– f ) falling jet impact including air entrainment and
(g,h) radial breaking (mode B in Jiang et al. 1998). Diagrams depicting the three forms of breaking: initial
sharp-crested breaking (mode A in Jiang et al. (1998)) pertaining to (a,b), falling jet impact including air
entrainment pertaining to (c– f ) and radial breaking (mode B in Jiang et al. 1998) pertaining to (g,h). The
diagrams are adapted from Jiang et al. (1998), Longuet-Higgins & Dommermuth (2001a) and Bertola et al.
(2018).

large crest. As focusing continues, a second crest forms that travels radially outward.
Therefore, it is possible to create axisymmetric overturning breaking, similar to
the 2-D simulations presented in Longuet-Higgins (2001b) and Longuet-Higgins &
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Dommermuth (2001b), by controlling the relative phase of carrier wave and wave
group.

7. Conclusions

We have examined axisymmetric wave breaking and jet formation in a 25 m diameter,
2 m deep circular wave tank. Axisymmetric waves with a characteristic length scale
r0 = 6.13 m (k0 = 0.51 m−1, d/r0 = 0.326, k0d = 1.02) are generated using paddle-type
wavemakers that surround the tank. We create wave groups which are localised in space
and time with a broad-banded underlying spectrum, resulting in a single large wave crest,
known colloquially as the ‘spike wave’. The linear amplitude of the waves created was
increased from 0.14 to 1.03 m (A0/r0 = 0.0228 to 0.168), and the corresponding wave
crests reached a measured amplitude A of 0.146 to 6.03 m (A/r0 = 0.0238 to 0.984).

The most similar experiments to ours, are studies where axisymmetric waves and jets
have been generated through Faraday resonance. In seminal experiments (Guthrie 1875;
Rayleigh 1876; Honda & Matsushita 1913; Fultz & Murty 1963), in which axisymmetric
waves were generated by sub-harmonic Faraday resonance in cylindrical containers, the
predominant focus was on generation and nonlinear changes to the frequency of oscillation
at amplitudes well below wave breaking (A/r0 � 0.07). Tsai & Yue (1987) numerically
investigated similar properties up to a maximum amplitude of A/r0 = 0.25. In deep
water (d/r0 = 1) their solutions agree with Mack (1962) over the range A/r0 = 0 to
0.25; in shallow water (d/r0 = 0.1) they are similar the experiments of Fultz & Murty
(1963) (A/r0 � 0.04). The experimental observations of axisymmetric waves driven to
the point of breaking most similar to ours are found in Longuet-Higgins (1983), in
which a qualitative analysis is performed of waves generated in a cylindrical beaker
with a diameter 16.4 cm, which was oscillated at 6.64 Hz (resonant frequency 3.43 Hz)
with a maximum excitation amplitude of 0.5 mm. Longuet–Higgins observed that when
‘overdriven’, vertical jets formed near the wave trough, in which the most extreme case
rose to an incredible height of 1.70 m (A/r0 = 10.4). In experiments where surface
motion is created through vertical excitation of cylindrical vessels, typical diameters are
around 10–20 cm. Vertical periodic excitation creates periodic first-mode axisymmetric
surface motion at a frequency half that of the excitation frequency. Our experiments are
large (2r0 = 12.26 m) and multi-chromatic; these properties constitute their predominant
differences with previous studies. For travelling waves (two dimensions), increasing
bandwidth reduces the steepness at which wave breaking occurs (Rapp & Melville 1990;
Wu & Yao 2004; Perlin, Choi & Tian 2013), and thus periodic and monochromatic
waves exhibit markedly different breaking behaviour. For standing waves, cavity shape
has a strong influence on collapse and subsequent jet formation (Longuet-Higgins 2001b;
Longuet-Higgins & Dommermuth 2001b). Different cavity shapes can occur as a result
of the particular types of forcing used to create them (Hogrefe et al. 1998; Krishna Raja
et al. 2019). Broad-banded surface gravity waves provide a rich source of potential cavity
shape variation (Cooker & Peregrine 1990). The absolute scale of the waves we create is
two to three orders of magnitude larger than previous studies of axisymmetric standing
waves and jet formation. However, absolute scale alone does not predicate differences
in behaviour. We contextualise the relative scale of our experiments by comparison with
those presented in Zeff et al. (2000), which are similar in scale to Longuet-Higgins (1983),
feature quantitative measurements, and use multiple working fluids. The physical scale
and working fluid of our experiments result in Reynolds numbers of the order 107, and 108

for standard (Re = η̇CL/ν, Ghabache et al. 2014) and wave-based (Re =
√

gλ3/ν, Deike,
Popinet & Melville 2015) Reynolds numbers, respectively, while those for the experiments
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of Zeff et al. (2000) are 103 to 104, and 102 to 103, respectively. The reduced viscosity of
our experiments does not, however, result in observable formation of parasitic capillary
waves and surface perturbations (Zeff et al. 2000). Weber (We = ρη̇CA0/σ , Zeff et al.
2000) and Bond (Bo = ρg/σk2, Deike et al. 2015) numbers for our experiments are 104 to
106, and 105, respectively, while those estimated for the experiments in Zeff et al. (2000)
are 103 and 100. Thus, while the role of curvature in jet formation may be similar, the
surface motion in our experiments is less likely to generate small-scale capillary waves.
Finally, Froude numbers (Fr = (A0ω)2/gr, Krishna Raja et al. 2019) for our experiments
are 10−3 to 10−2, and 100 in Zeff et al. (2000), meaning the importance of gravity is
larger in our experiments. The duration of jet formation in our experiments is around
0.5 s, whereas in Longuet-Higgins (1983), and Zeff et al. (2000) the jet formation is
approximately 5.5 and 33 ms in duration, respectively. The short duration of jet formation
in these previous studies limits the potential effects of gravity, whereas for our experiments
it is likely that gravity may have an effect on jet evolution. The large scale at which we
carry out our experiments also made it possible to perform detailed measurements of jet
angle and evolution, which were only possible for the bubbles (Blake & Gibson 1981) and
not for the Faraday waves presented in Longuet-Higgins (1983).

Visual and aural observations made during our experiments provided preliminary
indications that wave breaking first occurred during Exp. 40, for a total measured
amplitude A = 1.01 m (A/r0 = 0.165, Ak0 = 0.515). This amplitude lies between the
Stokes limit for a travelling wave and Mack’s third-order accurate breaking limit for
an axisymmetric standing wave, which are 0.86 and 1.30 m respectively at the scale of
our experiments. In Exp. 50 onwards, a sharp-cusped wave crest forms rapidly as the
waves come into focus. As we increase the input amplitude of the experiments, this cusp
formation occurs earlier in time when the wave is smaller in amplitude. We identify
this as a potential indication of jet formation and indirectly wave breaking, which is
consistent with observations in Longuet-Higgins (1983). In Exp. 40, a sharp wave crest
also forms, but the formation is more gradual suggesting that jet formation is short lived
and breaking may be marginal. Although wave breaking appears to have occurred in
Exp. 40 onwards, this does not limit subsequent motion of the wave crest. The measured
post-breaking amplitude increases sharply and appears to approximately follow an H3

scaling, as suggested by Ghabache et al. (2014), with H denoting trough depth. As also
suggested in Ghabache et al. (2014), we note that for surface gravity waves collapse is
highly sensitive to trough or cavity shape, which may explain small discrepancies between
their jet height scaling argument and our measurements.

Both linear and nonlinear focusing mechanisms can play a role in the formation and
breaking onset of travelling waves (Perlin et al. 2013). Nonlinear interactions have also
been shown to significantly affect surface motion of steep monochromatic axisymmetric
standing waves (Mack 1962; Tsai & Yue 1987; Basak et al. 2021). To examine the influence
of such mechanisms for the waves we create, we carry out numerical simulations of
our experiments. Performing numerical simulations provides the opportunity to examine
directly linear and nonlinear aspects of wave motion. Our simulations, carried out using
the potential-flow model OceanWave3D (Engsig-Karup, Bingham & Lindberg 2009),
reproduce well Exp. 10 to Exp. 40. At greater input amplitudes, when a violent jet starts
to emanate from the wave crest, simulations fail and do not capture the jet’s behaviour.
Our simulated results show that surface motion directly prior to the formation of the
wave crest is linear (t � −0.18Tp), and that nonlinear motion is highly localised in space
r = ±0.16λ0. Nonlinearity makes a clear contribution to the total amplitude of the wave
crest (≈37 % in Exp. 40), but it appears the extreme (geometric) spatial and temporal
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localisation of the waves we create may limit the effect of nonlinear focusing mechanisms.
As the waves we create come into focus (linearly), prior to the formation a violent jet, a
trough forms. It is the collapse of this trough that creates the violent jets that we observe.
This process is often referred to as curvature collapse (Zeff et al. 2000; Longuet-Higgins
2001b) or flip through (Cooker & Peregrine 1990). It is the shape of the collapsing trough
that determines the magnitude of fluid acceleration and resulting jet formation.

We identify wave breaking as having occurred when the wave crest undergoes free fall
(i.e. η̈ = −g). Using different theoretical arguments Mack (1962) and Longuet-Higgins
(1983) suggest that wave breaking and jet formation will occur when a crest encloses an
angle of less than 104.97◦. We measure angles 2γ > 104.97◦ in Exp. 40 onwards. Once the
angle enclosed by the crest (2γ ) drops below 104.97◦ during our experiments, its evolution
is predicted well by the hyperbolic jet model proposed by Longuet-Higgins (1983). In
our experiments the crest also follows a parabolic trajectory, and our measurements
confirm η̈ = −g for a sustained duration, confirming previous indications that breaking
has occurred. Although the absolute scale at which we create waves is three orders of
magnitude larger than bubbles examined in Longuet-Higgins (1983), the resulting jet
follows the same hyperbolic behaviour.

Owing to the large crest velocities generated at the instance of jet formation, measuring
acceleration using images is inaccurate and estimating the angle enclosed by the crest is
subject to error. Therefore, we do not attempt to establish the exact angle at which the onset
of breaking occurs during our experiments as was attempted previously in two dimensions
by (Taylor 1953). In our numerical simulations of Exp. 40, η̈ = −g occurs when the angle
enclosed by the crest is less than 104.97◦, which may suggest that jet formation occurs at
a different angle for broad-banded waves. It is also possible that there is a delay between
jet formation and free fall.

The axisymmetric waves we create form a sharp cusp that evolves into a singular jet. In
two dimensions, Longuet-Higgins (2001b), Longuet-Higgins & Dommermuth (2001b,a)
and Jiang et al. (1998) show that the form of wave breaking that may occur for standing
waves is not limited to a single sharp crest. For periodic standing waves, depending
on the phase relationship between the fundamental harmonic and the second-order
super-harmonic, Jiang et al. (1998) observe either sharp-crested (mode A) or overturning
wave breaking (mode B). For non-periodic standing waves of arbitrary initial trough shape,
Longuet-Higgins (2001b) reproduces mode B and Longuet-Higgins & Dommermuth
(2001a) mode A wave breaking, where the form of breaking is determined by the initial
shape of the wave trough. In our experiments we also observe wave breaking modes A
and B, where mode B occurs after the initial formation of the large wave crest. For our
experiments the phase shift required for mode B arises owing to the group structure of
the waves. After initial wave breaking occurs, the free surface forms a trough, which then
encloses the falling jet. The falling jet then collides with the free surface causing a large
splash. Both of these processes cause air entrainment in a mechanism that is potentially
quite different to entrainment caused by travelling wave breaking.

The potential implications of this work for future research are as follows. Our
experiments demonstrate that axisymmetric wave breaking behaviour is very different to
wave breaking associated with travelling waves. Wave breaking still prevents reversible
wave motion but does not limit the height that the crest of a wave may reach. Thus, in
highly spread or crossing-sea conditions, where partial standing waves occur, existing
wave breaking models may underestimate crest heights, and jetting behaviour occurs,
as observed in the ocean (Dudley, Sarano & Dias 2013) and recently in an experimental
recreation of the Draupner wave (McAllister et al. 2019). The height which an asymmetric
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wave crest may reach appears only to be bounded by the stability of the jet that forms.
Future work should examine the implications of this for wave breaking in realistic
crossing-sea conditions in the ocean.

Supplementary movies. Movies corresponding the images shown in figure 4 are available in the
supplementary material. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.1023.
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Appendix A. Experimental measurements

A.1. Wave gauge array
To measure surface elevation directly we use multiplexed resistance-type wave gauges
sampled at a frequency of 128 Hz. The wave gauges are 1.00 m in length; this has the
implication that they cannot measure waves with a trough to crest height approaching
1.00 m. For the majority of experiments (Exp. 40 to Exp. 75) the waves created were larger
than this limit at the centre of the tank. To measure the surface elevation in experiments,
the wave gauges were configured radially between r ≈ 4 and 9 m (array A, see table 3). For
Exp. 10 to Exp. 30, in which waves at the centre of the tank could be measured by gauges,
gauge array B was used. In array B, a gauge was located at the focus point r = 0, providing
a direct measurement of maximum surface elevation. Table 3 details the positions of the
gauges in each array. The wave gauges were calibrated at the start of each day of testing.

A.2. Calibrated high-speed images
We use calibrated high-speed images to indirectly measure surface elevation of the waves
created in Exp. 30 to Exp. 75. A Photron FASTCAM SA4 high-speed camera was used
to acquire images of the free surface at a frame rate of 125 Hz. In order to allow
for quantitative measurement using these images, the camera was calibrated using the
process outlined in Zhang (2000). First, the intrinsic parameters of the lens and camera
were estimated using multiple images of a chequerboard pattern positioned within the
camera’s field of view. Estimating intrinsic parameters allows for the removal of any lens
distortion and calibrates the camera’s field of view. The chequerboard was then orientated
perpendicular to the camera along the y-axis of the wave tank (see figure 2a). In this
position, the chequerboard may be used to estimate the in-plane extrinsics, which allows
for measurements to be made along this plane using only a single camera.

To track the position of the free surface in the calibrated images, the Canny edge
detection method was used (Canny 1986). To aid this process, a large canvas screen
was located behind the waves in background of the images (see figure 2b). The process
of edge detection was automated, but each frame was subsequently checked manually

935 A5-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
23

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1023
https://orcid.org/0000-0002-5142-3172
https://orcid.org/0000-0002-5142-3172
https://orcid.org/0000-0002-7372-980X
https://orcid.org/0000-0002-7372-980X
https://orcid.org/0000-0002-3298-1873
https://orcid.org/0000-0002-3298-1873
https://orcid.org/0000-0001-7556-1193
https://orcid.org/0000-0001-7556-1193
https://orcid.org/0000-0002-2372-9502
https://orcid.org/0000-0002-2372-9502
https://orcid.org/0000-0001-6154-3357
https://orcid.org/0000-0001-6154-3357
https://doi.org/10.1017/jfm.2021.1023


M.L. McAllister and others

Array A Array B

x (m) y (m) x (m) y (m)

0 −3.96 0 −2
0 3.96 0 −1.5
0 4.3 0 −1.0
0 4.93 0 −0.5
0 5.74 0 0
0 6.67 0 0.5
0 7.67 0 1.0
0 8.72 0 1.5
— — 0 2.0

Table 3. Wave gauge positions.

Figure 18. Example of calibrated image edge detection, showing a series of images from Exp. 40 with
overlaid red lines showing the detected edges in each image.

and erroneously detected edges removed. Figure 18 shows an example of the results
from this process, where extracted edges have been overlaid on a series of images for
Exp. 40. At moderate amplitudes (i.e. figure 18) the free surface forms a clear edge against
the white background, and the edge detection process was highly effective. As the wave
crests and resulting jets become larger, the surface approaches the vertical, making the
white background visible through the fluid and edge detection less effective. Manual edge
detection was used for frames where this was the case. Post-processing consisting of white
balancing and foreground selection has been performed on the images presented herein to
improve image clarity.

A.3. Floating markers
The image processing technique described above can only be used when the free surface
makes a large departure above the still water line and forms a clear silhouette with the
screen behind it. To achieve measurements of surface elevation over a broader time range
and in particular in the wave trough, we use a system of floating markers. The markers are
covered in a material that reflects IR light, and their position is measured using a system
of four pairs of Qualisys motion tracking cameras that transmit and record IR light (see
figure 2).

935 A5-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
23

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1023


Axisymmetric wave breaking and jet formation

(a)
(b)

(c)

0

0 0–5 –5

5
5

z 
(m

)

z 
(m

)y (m) x (m)

r (m)

0.5

–0.5

0

0 0–5 –5
–0.6

–0.4

–0.2

5
5

z 
(m

)

y (m) x (m)

0.5

–0.5

0 2 4 6 8

0

0.2

0.4

0.6

0.8

Figure 19. Illustration of the floating marker surface measurement system for Exp. 75: blue and red dots
respectively show start and end positions of individual markers; their trajectories are shown by light grey lines.
Panels on the left show marker positions plotted in three dimensions and the corresponding axisymmetric
surface at the start (bottom) and end (top) points of the plotted trajectories. The panel on the right shows the
same trajectories and a fitted surface projected on to a single radial dimension η(r).

The 40 mm diameter markers were scattered on the quiescent free surface prior to
experiments, resulting in a random distribution of starting positions. To achieve coverage
of the surface near the point of focus (r = 0), the markers were collected and redistributed
over this area for multiple repeats of each experiment. The position vector of each
marker xi(t) = (xi(t), yi(t), zi(t)) is tracked by the camera system over the duration of an
experiment. To process these data we make use of the symmetry of the waves. At each
time step, surface elevation η(r, t) is calculated by fitting a spline to the available markers.
Figure 19 illustrates an example of the marker trajectories recorded during five repeats of
Exp. 75 and shows the spline fitted to the measurements as a function of radial position.

A.4. Measurement error
To quantify the sources of error affecting our measurements, we examine the role of the
various sources of error and uncertainty involved in our experiments. For the wave gauge
measurements, the leading source of error was associated with wave gauge calibration and
was approximately 0.4 mm (two standard deviations). The calibration error of the camera
was estimated to be 0.24 pixels, which corresponds to an error of 1.6 mm at the point
of measurement. At times when the jet starts to form and the crest is travelling at high
velocity, the apparent edge can become blurred and spread over multiple pixels. In these
cases, the error associated with our image processing will be larger than the calibration
error and is of the order of 2–3 pixels (a single pixel corresponds to 6.8 mm). Blurring is
only an issue at the time of initial jet formation and does not affect much of the subsequent
jet evolution. For the floating markers the leading source of error was associated with the
measurement residuals. Of the eight cameras, each possible pairing is used to measure
locations of the floating markers; the residual values measure the time-varying error in the
position of the markers and ranged from ±0.5 to ±2.0 mm.
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Appendix B. Periodic axisymmetric standing waves up to third order in amplitude
(Mack 1962)

Mack (1962) derived analytical solutions for periodic axisymmetric standing waves using
perturbation expansions up to third order in amplitude. In the following section, we present
simplified forms of Mack’s original solutions to provide predictions of surface elevation
and maximum crest amplitude, which we compare with our experimental observations in
§ 3.

B.1. Surface elevation
Evaluating Mack’s expressions for non-dimensional surface elevation η̃T (defined as
η̃T = ηT/r0) in non-critical water depths (Mack’s equations (12)–(20)) at r = 0 yields
an equation of the form,

η̃T =
(

Ã + M3,1Ã3
)

cos(t̃) + M2,0Ã2 + M2,2Ã2 cos(2t̃) + M3,3Ã3 cos(3t̃), (B1)

where the coefficients Mi,j are a function of water depth and are computed using a
Bessel function integral transform (of order N). The (linear) amplitude A0 is made
non-dimensional using the characteristic radius as Ã = A0/r0, and time as t̃ = ωt with
ω the angular velocity of the wave. Truncating the series to N = 10 terms and considering
a non-dimensional water depth d/r0 = 0.36 (using the more accurate value of r0 obtained
from simulations) gives the following values,

η̃T =
(

Ã + 3.41148Ã3
)

cos(t̃) + 0.745577Ã2 + 0.271147Ã2 cos(2t̃) + 0.448192Ã3 cos(3t̃).

(B2)

As all the coefficients in (B2) are positive, and the components in phase, a third-order
accurate prediction of maximum crest amplitude may be calculated for a given linear
amplitude Ã by setting time t̃ = 0.

B.2. Wave breaking
By defining wave breaking as the point at which vertical acceleration is equal to
−g, Mack (1962) predicts that breaking will occur for a value of A1,1K2

1 ≈ 0.8 with
A1,1 = Ã/(K1 tanh(K1d)) and K1 corresponding to the first zero of the Bessel function
J1. Hence, Mack’s prediction yields a maximum non-dimensional linear amplitude of
Ã = 0.184, which corresponds to A = Ãr0 = 1.13 m at the scale of our experiments
when r0 is based on our linear inputs. This corresponds to a total third-order accurate,
non-dimensional, maximum crest amplitude of ÃT = η̃T |t̃=0 = 0.237, which corresponds
to ÃTr0 = 1.452 m at the scale of our experiments.

Appendix C. Numerical method

To provide additional insight into the mechanisms of focusing and wave breaking that
we observe experimentally, we carry out a series of numerical simulations based on our
experiments using the fully nonlinear potential-flow model OceanWave3D (OW3D). In
the following section, we provide a brief description of the numerical method (§ C.1).
We then detail how we derive initial conditions based on our experimental observations
(§ C.2). Finally, we address the convergence of our simulations (§ C.3).

935 A5-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
23

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1023


Axisymmetric wave breaking and jet formation

(a) (b)
η

 (m
)

φ
 (m

2  
s–1

)

0

0
0

–50

50
50 50

y (m)
x (m)

0.05

–0.05

0

0
0

–50

50

y (m)
x (m)

0.5

–0.5

Figure 20. Initial conditions for OW3D numerical simulations of Exp. 30, showing (a) surface elevation
η(x, y, t0) and (b) the surface value of the potential φ(x, y, z = η, t0).

C.1. Numerical model – OW3D
OW3D is a potential-flow model, which solves the Laplace equation subject to the standard
boundary conditions for free surface gravity waves over the full fluid domain (x, y, z). To
account for the moving free surface η(x, y, t), a non-conformal transform is used to map
the fluid domain to a uniform grid. The discretised system of equations is then solved
using the generalised minimum residuals algorithm. For full details of the method see
Engsig-Karup et al. (2009). For all simulations sixth-order finite differences were used for
calculation of spatial derivatives, and fourth-order Runge–Kutta time marching was used.

C.2. Initial conditions
OW3D offers multiple means of wave generation. We run our simulations by defining
initial conditions and time marching forward. In this mode of operation, OW3D requires
initial values of free surface elevation η(x, y, t0) and the potential evaluated on this surface
φ(x, y, η(x, y, t0), t0) for the entire domain. Run in this way, we do not model wavemakers,
and the numerical domain is square with reflecting sidewalls. Owing to the difference
in domain shape and boundary conditions between our simulations and experiments, we
make the numerical domain significantly larger to avoid reflections from the sidewalls.
Figure 20 shows an example of initial conditions provided to OW3D. We generate the
initial conditions by extending the surface elevation measured by the wave gauges during
our experiments to the full numerical domain using linear wave theory. As our inputs are
based on linear wave theory, we must define our start time t0 such that the waves at this
instance are small to avoid the creation of any (nonlinear) error waves. For reproducing our
experiments, we found that a domain size of 100 × 100 m and a start time of t0 = −11 s
from focus allowed for linear input conditions, while avoiding sidewall reflections. Details
of the simulation parameters used are presented in table 4.

C.3. Convergence
To test that our simulations are carried out with sufficient grid resolution, we perform
simulations on three grids (see table 4). Owing to constraints on memory it was not
possible to carry out simulations with a number of grid points Nx = Ny > 1024. Instead,
we run our finer resolution simulations using a smaller domain and use results from
lower resolution simulations at t = −1 s as initial conditions. Vertical grid spacing is not
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Domain size (m) Grid size Δ (m) λ0/Δx Δt (s) CFL t0 (s)
x, y, z Nx, Ny, Nz x, y cgΔt/Δx

100, 100, 2 1024, 1024, 8 0.098, 0.098 125 0.05 0.90 −11
50, 50, 2 1024, 1024, 16 0.049, 0.049 250 0.01 0.36 −1
25, 25, 2 1024, 1024, 16 0.024, 0.024 500 0.01 0.72 −1

100 m

50 m

25 m

Ny = 1024

Nx = 1024

Table 4. Details of the numerical domain and diagram showing the square domains relative to the circular
wave tank.

η
 (m

)

0 1–1–2

–0.5

13.4

13.6

13.8

0.50

Δ = 0.098 m Δ = 0.049 m Δ = 0.024 m

–3–4–5 2 3 4 5
r (m)

–0.2

0

0.2

0.4

0.6

0.8

1.0

Figure 21. Convergence study of surface elevation η at 0.05 s intervals for three grid resolutions Δ = Δx =
Δy. The inset plot shows a close-up of the wave crest, where an artificial ‘velocity’ of 3.0 ms−1 has been
applied to separate the measurements at different times on the same vertical axis and aid clarity.

included in table 4, as this is non-uniform with more grid points located towards the free
surface (it follows a Chebyshev–Gauss–Lobatto distribution). Figure 21 shows free surface
elevation simulated using the three grid resolutions in table 4 for Exp. 40. For the majority
of the domain, all three grid resolutions give visually indistinguishable results. At the crest
of the wave, small differences are observable; simulations carried out with Δx = 0.049
and 0.024 m appear to have converged.

Appendix D. Decomposition of numerically simulated surface elevation

In figure 22 we directly examine the nonlinear components of surface elevation for Exp. 40.
Panels (a,b) show surface elevation as a function of radial position at 0.05 s increments
prior to maximum crest elevation, and (c,d) show surface elevation as function of time
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Figure 22. Decomposition of numerically simulated surface elevation for Exp. 40. (a) shows nonlinear ηO

(red lines) and linear η
(1)
O (grey lines) surface elevation as a function of radial position r, and (b) shows the

same signals decomposed into even η
(even)
O (black dot-dashed lines) and odd η

(odd)
O (blue dashed lines) powers.

Both panels show surface elevation at 0.05 s intervals from t = −0.55 to time of linear focus t = 0, where an
artificial ‘velocity’ of 5.5 ms−1 has been applied to separate the measurements at different times on the same
vertical axis and aid clarity. (c,d) Show the same as panels (a,b), respectively, but as a function of time at r = 0.

at the point of focus (r = 0). In (a,c) we compare linear (grey lines) and nonlinear (red
lines) simulations, and in (b,d) we compare the nonlinear components of surface elevation
(i.e. η − η(1)): black dot-dashed and blue dashed lines show the contributions of harmonics
of odd (i.e. predominantly third- and fifth-order) and even (i.e. predominantly second- and
fourth-order) powers of amplitude (see e.g. McAllister et al. (2018) for an example of how
to extract these harmonic components). As is evident from (a), the nonlinear simulations
only begin to deviate from linear as the crest emerges, and the preceding trough shows
little nonlinearity. The nonlinear simulations reach a maximum 0.05 s after the linear
simulations (note the time step of our simulations is 0.05 s). The even and odd harmonics
respectively reach a maximum 0.2 and 0.25 s after the linear crest. These terms may cause
a small phase shift and contribute approximately 25 % and 15 % of the total wave crest,
respectively.
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