
Euro. Jnl of Applied Mathematics (1999), vol. 10, pp. 547–560. Printed in the United Kingdom

c© 1999 Cambridge University Press

547

Flow around a wedge of arbitrary angle in a
Hele-Shaw cell

L. J. CUMMINGS†
Lab. de Phys. Stat. de l’E.N.S., 24 Rue Lhomond, 75231 Paris Cedex 05, France

email: cummings@lps.ens.fr

(Received 17 August 1998; revised 3 February 1999)

In this note we modify and extend the work of Howison & King [12] to describe the situation

of flow around a wedge of arbitrary angle in a Hele-Shaw cell. An ingenious complex-

variable method due to Polubarinova-Kochina is used to construct an explicit solution to the

zero-surface tension problem.

1 Introduction

In a paper published in 1989, Howison & King [12] presented explicit solutions to a

selection of free boundary problems arising in fluid flow and diffusion. These problems

involved viscous-film-coating of 360◦, 270◦ and 90◦ corners (problems (P1), (P2) and (P3)

in their notation); dopant diffusion in semiconductors ((P4) and (P5)), and etching of

semiconductors (P6). The solution method used (which we shall call the P-K method)

was devised by Polubarinova-Kochina [16] to solve the rectangular dam problem, but it

is remarkably versatile in its applications. In this note we use the method to solve for

Hele-Shaw flow around a wedge of given (arbitrary) angle απ.

In the conclusions of Howison & King [12], the authors state that their solutions are

related to solutions of corresponding Hele-Shaw flows, and outline how the correspondence

works for the semiconductor etching problem (P6). In this particular problem, which is

described in detail in Kuiken [13], a pit is etched into a solid surface by covering part of

the surface with a mask, and immersing in some liquid etchant which ‘eats away’ at the

solid not covered by the mask, and partially penetrates beneath the mask. In industrial

applications it is important to know the shape of the pit so produced. In the ‘thin mask’

models of Howison & King [12] and Kuiken [13], this problem is related to that of

Hele-Shaw flow around a thin wall, or zero-angle wedge. Thus the solutions we present

in this paper, in addition to describing a Hele-Shaw flow, also describe the free boundary

for etching problems involving wedge-shaped masks, via the correspondence outlined

in Howison & King [12]. Geometries of this kind are sketched by Kuiken [13] under

the heading ‘Opportunities for further research’. With reference to Figure 1, the wedge

corresponds to the mask, the fluid region to the etchant, and the remainder corresponds

to the solid surface being etched.
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The wedge geometry in the Hele-Shaw problem is also of relevance for problems in

injection-moulding, where fluid is injected into the narrow space between two (usually

curved) plates, which form a mould. The fluid used is typically a molten plastic1, and the

mould may contain solid obstacles to form a finished product of the desired shape (e.g.

with ‘holes’ in particular places). Our solutions describe the local situation as the fluid

passes round a corner of a given obstacle within the mould. It is important to understand

the motion of the free boundary around such obstacles, since obviously one wants to

ensure that the mould is filled entirely, without any air-bubbles being trapped behind

obstacles.

After this paper was initially submitted, other similar work by Craster et al. [4, 5]

and by Hoang et al. [9] was drawn to the author’s attention. In Craster et al. [4], the

viscous film coating solutions (P1)–(P3) of Howison & King [12] are extended to arbitrary

angles; and in Craster et al. [5] and Hoang et al. [9], quasi-steady solidification problems

in wedge-shaped domains are treated. While Craster et al. [4] especially is related to this

work (in that the geometry, like ours, involves flow exterior to a wedge of given angle),

the other two papers [5, 9] both involve solidification inside a wedge. We observe that

with the quasi-steady approximation2 adopted in Craster et al. [5] and Hoang et al. [9],

the solidification problem is identical to the Hele-Shaw problem after a trivial rescaling of

time with the Stefan number (carried out in Craster et al. [5] but not in Hoang et al. [9]).

Thus we have another interpretation of our solutions: if the fluid domain Ω is identified

with the frozen region, the ‘air’ exterior to Ω with the unfrozen liquid, and the pressure

p with the temperature, we have the quasi-steady approximation to a freezing problem

exterior to a wedge.

In constructing our solutions we shall try to indicate how the P-K method works,

but we do not attempt to give a comprehensive description. Those unfamiliar with the

method are referred elsewhere [16, 3] for details, and for useful overviews/background

reading [12, 4, 5].

2 Problem formulation

A Hele-Shaw cell consists of two rigid parallel plates separated by some small distance, be-

tween which is sandwiched a layer of viscous fluid. The flow is effectively two-dimensional

(assumed to take place in the (x, y)-plane) and irrotational, the pressure p acting as a

velocity potential. If Ω(t) is the region occupied by fluid at time t then the problem

satisfied by p is, in dimensionless variables:

∇2p = 0 in Ω(t);

∂p

∂n
= 0 on fixed boundaries Γ ;

1 Of course, molten plastics of the type common in injection moulding are generally non-

Newtonian, and require a different Hele-Shaw model (e.g based on a power-law fluid) leading to

a much more difficult problem. However, the Newtonian case provides an important starting-point

for a study of injection-moulding. Additional complications due to a curved mould will not be

important on this local lengthscale.
2 This assumes that the rate of motion of the free boundary is much slower than the rate at

which heat is conducted.
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Figure 1. The geometry of the problem.

p = 0,
∂p

∂t
+ |∇p|2 = 0 on free boundaries S(t);

see, for example, Crank [3] and Elliott & Ockendon [6]: the total fluid boundary ∂Ω(t) is

the union of Γ and S(t). The geometry we consider is sketched in Figure 1; we assume

that at time t = 0 the fluid occupies the left half-space x 6 0, so that it is in contact with

and parallel to the nearside of the wedge, which lies along the negative y-axis, the wedge

apex being at the origin. If ω(z, t) is the complex potential for the pressure (p = −<(ω)

and z = x + iy) then the solution to the outer problem, in which |z| � 1 and the free

boundary is assumed to be asymptotic to the y-axis for y large and positive, is easily

written down as

ω = f(t)
√

2iz,

where f(t) is any function of time, and the factor of 2 is just for convenience later. This

clearly has vanishing real part on the positive y-axis, and its derivative has vanishing real

part on the negative y-axis: it corresponds to the asymptotic pressure

p ∼ f(t)[(x2 + y2)
1
2 − y]

1
2 ; (2.1)

cf. problem P6 in Howison & King [12]. The question we now address is, what will be

the free boundary shape for t > 0?

The problem and boundary conditions are not, as they stand, amenable to application

of the P-K method (see elsewhere [12, 16, 3] for the general suitable problem formulation).

The first step is to eliminate time from the problem except as a parameter by applying the

well-known Baiocchi transformation to the pressure [3, 6, 14]. For t > 0 this is defined in

https://doi.org/10.1017/S0956792599003782 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792599003782


550 L. J. Cummings

the two regions x > 0, x < 0 as follows:

in x > 0: u(x, y, t) =

∫ t

$(x,y)

p(x, y, τ) dτ,

where t = $(x, y) is a parametrisation of the free boundary S(t); and

in x < 0: u(x, y, t) = u0(x, y) +

∫ t

0

p(x, y, τ) dτ,

where u0 is the solution to the Cauchy problem

∇2u0 = 1 in Ω(0),

u0 = 0 =
∂u0

∂n
on S(0),

∂u0

∂n
= 0 on Γ ,

so here u0 ≡ x2/2. The problem satisfied by u is easily seen to be

∇2u = 1 in Ω(t),

u = 0 =
∂u

∂n
on S(t),

∂u

∂n
= 0 on Γ ,

u ∼ x2

2
+ [(x2 + y2)

1
2 − y]

1
2

∫ t

0

f(τ) dτ , as x2 + y2 →∞.

We can scale time t out of the problem altogether if we introduce similarity variables via

(X,Y )

∫ t

0

f(τ) dτ = (x, y), U

(∫ t

0

f(τ) dτ

)2

= u;

U then satisfies the problem

∇2U = 1 in Ω̂,

U = 0 =
∂U

∂n
on Ŝ ,

∂U

∂n
= 0 on Γ̂ ,

U ∼ X2

2
+ [(X2 + Y 2)

1
2 − Y ]

1
2 , as X2 + Y 2 →∞. (2.2)

We have used hats to distinguish between domains/boundaries in the two problems

(though in fact Γ̂ and Γ are identical, both being time-independent). We denote the

unknown point Â where the free boundary Ŝ meets the fixed boundary Γ̂ by (X0, Y0).

Taking the complex variable Z = X+ iY , with the point Â described by Z0 = X0 + iY0 =

−iR0eiαπ, we define the complex-valued function W by

W = UX − iUY −X. (2.3)

Then clearly ∂W/∂Z̄ = 0, hence W is an analytic function of Z in Ω̂. Our problem is

now in a form suitable for the P-K technique. Corresponding to Ω̂ is a region Ω in the

W -plane. We conformally map both Ω̂ and Ω onto the upper half-plane <(ζ) > 0 in a

third complex plane (ζ = ξ + iη), via the mapping functions

Z =Z(ζ), W =W(ζ);

when these maps are found the solution is completed by elimination of the auxiliary

variable ζ. The boundary ∂Ω̂ consists of the three distinct segments Γ̂1, Γ̂2 and Ŝ (cf.
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B̂

Ô

Â

0 1 ∞

B̂

Z =Z(ζ)

Figure 2. The mapping from the ζ-plane to the Z-plane. The arrows indicate the correspondence

and sense of the mapping from the real ζ-axis to the fluid boundary.

Figure 1); the points B̂ (at infinity), Ô and Â separating these three segments are singular

points of the flow. By Riemann’s mapping theorem we can prescribe the position of the

three points Â, B̂ and Ô in the ζ-plane; for convenience we place them at 0, 1 and ∞. The

point is that we are able to determine the singular behaviour of the functionsZ andW at

these points, and this in turn is sufficient to determine fully Z andW, which are analytic

except at the three singular points. By performing a local analysis on our problem at each

of the singular points we can find, at each point ξi = 0, 1, ∞, two exponents βi and γi such

that the local behaviour of Z and W satisfies:

Z ∼ L1(ζ − ξi)βiFi(ζ) + L2(ζ − ξi)γiGi(ζ),
W∼M1(ζ − ξi)βiFi(ζ) +M2(ζ − ξi)γiGi(ζ),

for functions Fi and Gi analytic in some neighbourhood of ξi. (In the general theory it is

sometimes necessary to have more complicated local behaviour than the above, involving

logarithms, but such complications do not arise in our calculation.) The only singularities

of Z and W are then algebraic (or logarithmic) branch-points, hence Z and W must be

branches of the Riemann P-function

P


0 1 ∞
β0 β1 β2 ζ

γ0 γ1 γ2

 ,

which has the desired singular behaviour at the given points (see elsewhere [1, 2, 8]

for a discussion of Riemann’s P -equation and Riemann P -functions). In this paper, we
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content ourselves with the above outline of the solution procedure (which §3 should

clarify) without attempting to justify the statements. For a more convincing argument, see

Crank [3] or Polubarinova-Kochina [16].

3 Solution to the problem

We need to find the local behaviour of Z(ζ) and W(ζ) at each of the singular points

ζ = 0, 1, ∞. To do this we must first solve the local problem for U(X,Y ) at the points Â

(Z = Z0), B̂ (Z = ∞), Ô (Z = 0).

The free boundary Ŝ must meet the fixed boundary Γ̂ at right angles at Â. On Ŝ both

U and its normal derivative must vanish, while on Γ̂ only the normal derivative vanishes.

Hence, if (X̂, Ŷ ) are co-ordinates along and perpendicular to the side of the wedge, with

origin at Â, the local solution is

U ∼ X̂2

2
≡ 1

2
((X −X0) sin απ− (Y − Y0) cos απ)2.

In terms of Z , then, the local behaviour of W is

W ∼ − 1
2
(Z + Z̄0)− 1

2
e−2iαπ(Z − Z0), (3.1)

near Z = Z0. At large distances (infinity, or the point B̂) W satisfies

W ∼ ±
(

i

2Z

) 1
2

as |Z | → ∞, (3.2)

as may be seen from (2.2) and (2.3); the branch of the square-root must be chosen

consistently later. Near the wedge tip Ô the leading-order behaviour of U is

U ∼ λR1/(2−α) cos

(
3π/2− θ

2− α
)

+
R2

4
,

where R2 = X2 + Y 2, tan θ = Y /X and λ is a (real) constant; hence the behaviour of W

is

W ∼ kZ−(1−α)/(2−α) − Z

2
, (3.3)

where the complex constant k has the form k = λ̃ exp(−3πi/(2(2− α))), λ̃ ∈ R. If we now

write down the behaviour of the mapping function Z(ζ) at each of the singular points,

the above allows us to deduce the local behaviour of W(ζ) also, and hence the values of

the exponents in the Riemann P -function.

The unknown point Â = (X0, Y0) is the image of ζ = 0. From the geometry, simple

considerations of conformal mapping show that near ζ = 0 we require

Z(ζ) ∼ Z0 + µeiαπζ
1
2 µ ∈ R+, (3.4)

so from (3.1) we find

W(ζ) ∼ −R0 sin απ− µζ 1
2 cos απ. (3.5)

Thus the values of the exponents at ζ = 0 are β0 = 0, γ0 = 1
2
.
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The point at infinity B̂ is the image of ζ = 1; near this point we have

Z(ζ) ∼ iν

1− ζ ν ∈ R+; (3.6)

(3.2) then gives

W(ζ) ∼ ±
(

1− ζ
2ν

) 1
2

, (3.7)

so the exponents at ζ = 1 are β1 = −1, γ1 = 1
2
.

Finally, near the wedge-tip Ô, ζ →∞ and we have

Z(ζ) ∼ −iσζ−(2−α) σ ∈ R+, (3.8)

so that by (3.3)

W(ζ) ∼ σ̃ exp

(
− iπ(2 + α)

2(2− α)
)
ζ1−α σ̃ ∈ R. (3.9)

Thus the exponents at ζ = ∞ are β2 = 2− α, γ2 = −1 + α. It then follows from the P-K

theory that the functions Z(ζ) and W(ζ) are branches of the Riemann P -function

P


0 1 ∞
0 −1 2− α ζ
1
2

1
2
−1 + α

 ≡ (1− ζ)−1P


0 1 ∞
0 0 1− α ζ
1
2

3
2
−2 + α

 ;

the equality is due to a transformation given in Carrier et al. [2]. This is equivalent to

being able to express Z and W in terms of branches of a hypergeometric function,

since the branches of the P -function on the right-hand side are in fact branches of the

hypergeometric function F(1− α,−2 + α; 1
2
; ζ) [2].

For convenience of notation, we write a = 1 − α, then Z(ζ) and W(ζ) are linear

combinations of independent branches of (1 − ζ)−1F(a,−1 − a; 1
2
; ζ). Abramowitz &

Stegun [1] and Gradshteyn & Ryzhik [8] give closed-form expressions for one branch of

each of the hypergeometric functions F(a,−a; 1
2
; ζ) and F(a, 1 − a; 1

2
; ζ); these functions

are simply related to the function we seek by one of Gauss’ relations for contiguous

hypergeometric functions ((15.2.11) in Abramowitz & Stegun [1]; (9.137.3) in Gradshteyn

& Ryzhik [8]). For our purposes, this relation takes the form:

(a+ 1
2
)F(a,−1− a; 1

2
; ζ)− ( 1

2
+ 2a(1− ζ))F(a,−a; 1

2
; ζ)

+a(1− ζ)F(a, 1− a; 1
2
; ζ) = 0,

where

F(a,−a; 1
2
; ζ) = cos(2a sin−1

√
ζ),

F(a, 1− a; 1
2
; ζ) = 1√

1−ζ cos((2a− 1) sin−1
√
ζ),

(formulae (15.1.17), (15.1.18) in Abramowitz & Stegun [1] and (9.121.31), (9.121.32) in

Gradshteyn & Ryzhik [8]). Hence one branch of the required hypergeometric function is

(a+ 1
2
)F(a,−1− a; 1

2
; ζ) = ( 1

2
+ 2a(1− ζ)) cos(2a sin−1

√
ζ)

−a√1− ζ cos((2a− 1) sin−1
√
ζ), (3.10)
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which is readily verified to be the branch analytic at ζ = 0 (corresponding to the zero index

at ζ = 0). Another, independent branch is given [1, 2, 8] by
√
ζF(a+ 1

2
,−(a+ 1

2
); 3

2
; ζ); we

again use properties of contiguous hypergeometric functions and closed-form expressions

for the related functions (given this time by (15.1.15), (15.1.16) in Abramowitz & Stegun [1]

and (9.121.29), (9.121.30) in Gradshteyn & Ryzhik [8]) to find

2a(a+ 1)
√
ζF(a+ 1

2
,−(a+ 1

2
); 3

2
; ζ) = ( 1

2
+ 2a(1− ζ)) sin(2a sin−1

√
ζ)

−a√1− ζ sin((2a− 1) sin−1
√
ζ). (3.11)

To summarise, then, if we denote by B1(ζ) and B2(ζ) the two independent branches we

require for our solutions, we have (from (3.10) and (3.11), respectively)

B1(ζ) = ( 1
2

+ 2a(1− ζ)) cos(2a sin−1
√
ζ)− a√1− ζ cos((2a− 1) sin−1

√
ζ), (3.12)

B2(ζ) = ( 1
2

+ 2a(1− ζ)) sin(2a sin−1
√
ζ)− a√1− ζ sin((2a− 1) sin−1

√
ζ), (3.13)

where a = 1− α, and the solutions Z(ζ), W(ζ) are

Z(ζ) =
L1B1(ζ)

1− ζ +
L2B2(ζ)

1− ζ , (3.14)

W(ζ) =
M1B1(ζ)

1− ζ +
M2B2(ζ)

1− ζ , (3.15)

for some constants Li, Mi ∈ C to be determined.

To find the values of Li and Mi we must determine the local behaviour of Bi(ζ) at each

of the singular points so that we can match the behaviour of the solutions as written above

to the known behaviour given in (3.4)–(3.9). When evaluating the behaviour as ζ → ∞ it

seems we need to make some assumption about the parameter α, since this determines the

relative sizes of the terms in the large-ζ expansion. If we assume an acute-angled wedge

0 < α < 1
2

( 1
2
< a < 1), then analysis of the functions Bi(ζ)/(1− ζ) allows us to calculate

the terms of orders ζa, ζa−1, ζ−a, ζa−2, ζ−a−1, which will be of descending size. We find,

for |ζ| � 1,

B1(ζ)

1− ζ = (−4)a
[
aζa +

(
−a

2

2
+
a

4
− 1

4

)
ζa−1 + 0 · ζ−a +

1

16
(2a3 − 5a2 + 5a− 4)ζa−2

− (a+ 1)

4 · 16a
ζ−a−1 +

(
a4

48
+
a3

16
− 49a2

192
+

21a

64
− 1

4

)
ζa−3 + O(ζ−a−2)

]
(3.16)

and

B2(ζ)

1− ζ = i(−4)a
[
aζa +

(
−a

2

2
+
a

4
− 1

4

)
ζa−1 + 0 · ζ−a +

1

16
(2a3 − 5a2 + 5a− 4)ζa−2

+
(a+ 1)

4 · 16a
ζ−a−1 +

(
a4

48
+
a3

16
− 49a2

192
+

21a

64
− 1

4

)
ζa−3 + O(ζ−a−2)

]
. (3.17)

Matching the behaviour of Z(ζ), W(ζ) as given by (3.14), (3.15) with that in (3.8), (3.9)

yields the following relations between the coefficients and the unknown constants σ, σ̃:

L1 = −iL2, L2 =
2σ4aeiαπ

a+ 1
, (3.18)
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M1 − iM2 =
iσ̃

a4a
exp

(
iαπ(1− α)

2− α
)
. (3.19)

Due to the way the coefficients appear in the expressions (3.16) and (3.17), it is clear that

the same matching follows through also for the case a = 1, and for the obtuse angled

wedge 1
2
< α < 1 and the right-angled wedge α = 1

2
. The case a→ 0 is a singular limit in

our solution, as we would expect: as the wedge angle approaches π in the configuration

of Figure 1, the distance OA must increase very rapidly from zero as the free boundary

shoots up the side of the wedge. When the wedge angle is actually equal to π the solution

is trivial, since the initial ‘free boundary’ is everywhere in contact with the wedge, and the

fluid must just sit there.

The behaviour of B1(ζ) and B2(ζ) near ζ = 0 (Z = Z0, the point Â) in (3.14), (3.15)

gives

Z(ζ) = L1(a+ 1
2
) + 2aL2(a+ 1)

√
ζ − L1ζ(2a

2 + 2a− 1) + O(ζ
3
2 ),

W(ζ) = M1(a+ 1
2
) + 2aM2(a+ 1)

√
ζ −M1ζ(2a

2 + 2a− 1) + O(ζ
3
2 );

comparing these with (3.4) and (3.5) we find the further relations

L1 = − iR0eiαπ

a+ 1
2

, L2 =
R0eiαπ

a+ 1
2

, µ =
2a(a+ 1)R0

a+ 1
2

; (3.20)

M1 = −R0 sin απ

a+ 1
2

, M2 = − µ cos απ

2a(a+ 1)
= −R0 cos απ

a+ 1
2

, (3.21)

(R0 is still unknown here, being the modulus of Z0). Finally, we examine the neighbourhood

of ζ = 1, where (3.14) and (3.15) give

Z(ζ) = (−L1 cos απ+ L2 sin απ)

(
1

2(1− ζ) + a(a+ 1)

)
+(L1 sin απ+ L2 cos απ)

2a

3
(2a+ 1)(a+ 1)(1− ζ) 1

2 + O(1− ζ),

W(ζ) = (−M1 cos απ+M2 sin απ)

(
1

2(1− ζ) + a(a+ 1)

)
+(M1 sin απ+M2 cos απ)

2a

3
(2a+ 1)(a+ 1)(1− ζ) 1

2 + O(1− ζ);
comparison with (3.6) and (3.7) gives

−L1 cos απ+ L2 sin απ = 2iν, (3.22)

−M1 cos απ+M2 sin απ = 0, (3.23)

2a

3
(2a+ 1)(a+ 1)(M1 sin απ+M2 cos απ) = ± 1√

2ν
. (3.24)

Putting all this information together we find that, provided we take the negative branch of

the square-root in (3.2), giving minus signs in (3.7) and (3.24), the conditions (3.18)–(3.24)

are all compatible with the restrictions that the constants σ, µ, ν be real and positive, and
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Figure 3. Plot showing the free boundary at times t = 0.5, 1, π/2 with wedge angle α = 0.3π. The

fluid flow is from left to right, and the initial free boundary is along the positive y-axis.

that σ̃ be real. In terms of the wedge angle απ and a = 1− α we have

L1 = −ieiαπ[(2a/3)(2a+ 1)(a+ 1)]−
2
3 , L2 = eiαπ[(2a/3)(2a+ 1)(a+ 1)]−

2
3 ;

M1 = − sin απ[(2a/3)(2a+ 1)(a+ 1)]−
2
3 , M2 = − cos απ[(2a/3)(2a+ 1)(a+ 1)]−

2
3 ;

R0 =

[
9(2a+ 1)

32a2(a+ 1)2

] 1
3

.

Hence the solution to the problem. In terms of the original variables a parametric

representation of the free boundary is given, for 0 6 ξ 6 1, by

z =Z(ξ)

∫ t

0

f(τ) dτ =

L1

∫ t

0

f(τ) dτ

(1− ξ)
(1− i cot απ)(B1(ξ) + iB2(ξ)),

=

ie−iaπ(i
√
ξ +
√

1− ξ)2a

∫ t

0

f(τ) dτ

(1− ξ)[(2a/3)(2a+ 1)(a+ 1)]
2
3

{
1

2
+ 2a(1− ξ)− a

√
1− ξ

i
√
ξ +
√

1− ξ
}
.

The function f(t) is arbitrary, being the dimensionless timescale on which the pressure
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Figure 4. Plot showing the free boundary at times t = 0.5, 1, π/2 with wedge angle α = 0.8π. The

fluid flow is from left to right, and the initial free boundary is along the positive y-axis.

is varying at infinity. However, if we wish the analysis to hold for large times then the

free boundary must not move off to x = +∞ as t → ∞, since then the outer solution

for the pressure (2.1) would no longer be appropriate. Thus we require
∫ ∞

0
f(τ) dτ < ∞,

which requires f(t) ∼ t−λ as t→∞ for some λ > 1 (though this cannot be the small-time

behaviour).

Typical free boundary evolution is shown in Figures 3, 4 and 5; Figure 3 depicts an

acute-angled wedge (α = 0.3), Figure 4 depicts an obtuse-angled wedge (α = 0.8), and

Figure 5 shows the right-angled wedge. For convenience the function f(t) is chosen as

f(t) = 5 arctan t, since this gives acceptable t→∞ behaviour.

4 Conclusions

We have constructed an exact time-dependent solution for the flow of fluid in a Hele-Shaw

cell driven by the asymptotic pressure field given in (2.1), around a wedge of arbitrary

angle 0 6 απ < π. The case α = 0 (the zero-angle wedge) may also be obtained from the

results of problem (P6) in Howison & King [12] (in this context we note that the term 8ζ2
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Figure 5. Plot showing the free boundary at times t = 0.5, 1, π/2 with wedge angle α = π/2. The

fluid flow is from left to right, and the initial free boundary is along the positive y-axis.

occurring in the formulae for Z6 and W6 should be 8ζ2/3). The case α = 1 is, as noted,

trivial with our assumed initial geometry, since the ‘free boundary’ then lies along the

wedge for all time. At a given time t, the distance which the free boundary has advanced

along the wedge is given by

R0

∫ t

0

f(τ) dτ ≡
[

9(2a+ 1)

32a2(a+ 1)2

] 1
3
∫ t

0

f(τ) dτ.

As mentioned in the Introduction, with a simple rescaling of time the plots also represent

the motion of the free boundary as a fluid freezes around a corner of given angle, in the

quasi-static approximation.

Obviously there are techniques other than the one we have used for solving zero

surface tension Hele-Shaw free boundary problems. Other common procedures include: (i)

conformally mapping the unit disk onto the fluid domain and reformulating the boundary

conditions on the unit circle (another technique due to Polubarinova-Kochina [15], as well

as to Galin [7]), and (ii) making use of a relation between the Schwarz function of the

free boundary and the complex potential of the flow (e.g. see Howison [11]). The difficulty
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in our problem is the fact that we have a free boundary and a rigid boundary on which

we have to apply different boundary conditions. No satisfactory conformal mapping or

Schwarz function method has yet been formulated to deal with general problems of this

type. Certain special geometries can be solved for, using the more conventional techniques,

e.g. channel flow [10, 17, 18], or flow problems inside a wedge of angle 2π/n for integers

n [10]. In such symmetrical cases the flow problem may be ‘reflected’ in the walls so that

one need only solve for a flow with free boundaries (the boundary condition on the walls

is satisfied automatically). However, we do not have such symmetry in our problem, and

this approach does not work.

Finally, we note that since the problem we consider is of the well-posed type in which

the viscous fluid is advancing, we do not expect the addition of small positive surface

tension to greatly affect our solution behaviour.
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