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Abstract. Relativistic collisional effects on the filamentation instability are analytic-
ally and numerically investigated by comparing collisionless and collisional scenarios
for a fast ignition (FI) configuration. The theoretical kinetic model, including
warm species and space charge effects, predicts the preferential formation of larger
filaments and the inhibition/enhancement of the instability when collisions are
accounted for. These collisional effects are qualitatively and quantitatively confirmed
by 1D and 2D particle-in-cell (PIC) simulations, also providing a physical picture
for the inhibition/enhancement regime due to collisions, based on the electron
beam slowdown. By plugging typical FI parameters in the dispersion relation, the
theoretical model predicts significant growth rates of the instability deep inside
the FI target, thus showing the potential role of the filamentation instability as a
mechanism for energy deposition into the pellet core.

1. Introduction
Since the seminal work of Tabak et al. [1], the fast ignition (FI) approach
to thermonuclear fusion by inertial confinement has received an immediate and
increasing interest, also due to very promising experimental results [2]. Many efforts
have been devoted to numerically simulate the PW-laser pulse-driven electron beam
generation as well as the beam propagation through the steep density gradient inside
the compressed fuel pellet and the energy deposition into the core. The advance in
understanding and controlling the complex physics involved in these three crucial
stages allowed by numerical codes has been accompanied by an intense theoretical
activity, in which one of the most extensively explored subjects of the last years has
been the collisionless Weibel-like filamentation instability [3].

Also invoked in astrophysics as a mechanism to generate the intense magnetic
fields in gamma-ray bursts (GRBs) [4], the filamentation instability can show up
in the coronal region of the FI fuel target, when the MA-current carried by the
MeV-beam electrons is compensated by a return current as a natural response of the
background plasma [5]. As a consequence of the Lorentz force due to a magnetic
field fluctuation being amplified by the filamentation instability, beam and plasma
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particle trajectories undergo a deflection, which is responsible for the current filament
formation. After the linear stage of the instability, filaments start to merge. This
non-linear dissipative process can be either deleterious if it occurs in the coronal
region by preventing the beam propagation, or useful by depositing the beam energy
into the pellet core. Linear treatment allows to calculate the growth rate (Γ ) of the
linear stage of the collisionless filamentation instability, thus providing theoretical
predictions about the occurrence and the evolution of the instability, filament size
and the maximum value Bsat of the magnetic field generated at saturation, because
Bsat ∝ Γ 2 [6].

Moving from the corona toward the center of the pellet, the very high particle
densities in inner regions of the compressed FI target make the collision frequency
ν significant in comparison with the electron plasma frequency ωpe. Therefore,
collisions have to be included in any numerical or analytical study in order to
properly examine the roles of the filamentation instability in inner zones of the FI
target.

Implicit particle-in-cell (PIC) simulations [7], including the effects of electron
Rutherford scattering, demonstrated the suppression of the Weibel instability by
collisions. However, a non-relativistic analytical study [8] showed that the collisional
filamentation instability always occurs, regardless of the transverse temperature: For
temperatures at which the collisionless instability is suppressed, collisions guarantee
a small but non-negligible growth rate. This counterintuitive effect of the instability
enhancement, when collisions are accounted for, was also found in more recent
works by employing fluid [9] and kinetic theories [10]; nevertheless this aspect
has not been studied in detail yet and no physical picture explaining this effect
was put forward. Only recently, a non-relativistic theoretical analysis [11] showing
the inhibition/enhancement of the collisional filamentation instability provided a
physical picture of this phenomenon: whereas collisions lead to a detuning between
particle perturbations and their corresponding reactive fields, thus decreasing the
growth rate in a symmetric counterstreaming configuration, collisional effects can
also decrease this stabilization effect in an asymmetric counterstreaming scenario,
leading to an enhancement of the instability. A relativistic analysis followed [12], not
including space-charge effects, where similar results were observed. These studies are
either limited to the non-relativistic case or do not include space-charge effects. A
complete relativistic analysis, including space charge effects and a numerical study,
to compare the theoretical predictions is missing. The opposite conclusions of a
suppression or an enhancement of the filamentation instability due to collisions
show the need to clarify, both theoretically and numerically, how the collisionless–
collisional transition affects the instability, what are the relativistic effects on the
transition and what is the general role of collisions in these scenarios.

In this paper, the linear stage of the collisional filamentation instability is theoret-
ically and numerically analyzed for a FI configuration involving an electron beam,
a corresponding electron return current and a background of cold ions, employing
relativistic kinetic theory and PIC simulations with relativistic binary collisions.
Collisions are analytically included through the particle-number-conserving Krook
model [13] and space charge effects are considered, in order to account for first
order longitudinal modes coming from the charge imbalance due to the different
rate at which species filament [14, 15] (Sec. 2). In Sec. 3, a detailed growth rate
analysis by varying the collision frequency, as well as the transverse temperature of
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Figure 1. (Colour online) Scheme of the simplified scenario for the theoretical model.

the species, shows two main effects due to collisions: (i) the preferential formation
of larger filaments than those in collisionless regime and (ii) collisions can lead to
either an inhibition or an enhancement of the filamentation instability.

Hybrid codes, in which fast electrons are treated as particles and background
electrons as a cold stationary fluid [16], are very useful to perform multi-dimensional
simulations of FI scenarios, not yet possible with PIC codes because of computa-
tional limitations. However, hybrid codes pay the price of the loss of spatial and
temporal resolution at the scales of the kinetic effects mentioned above, for which
the electron collisionless skin depth c/ωpe and the electron plasma period ω−1

pe must
be resolved. In order to properly study these kinetic effects, PIC codes with collisions
are required.

PIC simulations with relativistic binary collisions are presented in Sec. 4: based
on both numerical and theoretical considerations, a physical picture to explain
the enhancement/inhibition regime due to collisions is illustrated, deriving from
relativistic effects and electron beam slowdown; furthermore, a direct comparison
between theoretical and numerical growth rates of the filamentation instability is
presented. In Sec. 5, a parametric study of FI typical scenarios shows that, according
to the theory, the filamentation instability can occur deep inside the FI target, thus
making the instability a mechanism that may contribute to energy deposition into
the core. Finally, the main conclusions are summarized in Sec. 6.

2. Theoretical model
In order to model the interaction between electron beam and plasma return current
inside the PW-laser hit FI target, we consider a simplified scenario according to
Fig. 1, where beam electrons and return current plasma electrons move along one
direction without any divergence. Plasma ions are the neutralizing background and
are assumed cold.

To perform our theoretical analysis of the collisional filamentation instability,
we employ relativistic kinetic theory, choosing the particle-number-conserving
Bhatnagar–Gross–Krook (BGK or Krook) model [13,18] for the collision term. Al-
though only a Fokker–Planck collisional operator guarantees both particle-number
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and energy conservation, the advantage of the particle-number-conserving BGK
model resides in its relative simplicity to carry out analytical calculations. Further-
more, a numerical assessment of the Krook operator [19] has shown the accuracy
of the particle-number-conserving version of the BGK model when compared with
both particle-number and energy-conserving models. Another important result of
that study is the inadequacy of the simpler and often used non-conserving Krook
operator, where the replacement of the frequency ω by ω + iν is the only change
to be made in the collisionless dispersion relation when collisions are accounted
for. Therefore, the choice of the particle-number-conserving Krook model is a good
trade-off between accuracy and analytical simplicity, keeping in mind that it is valid
as long as the collision frequency, in general a function of velocity, can be considered
constant (e.g. electron–ion collisions). The perturbed relativistic Maxwell–Boltzmann
equation reads

∂f1s

∂t
+ v0s · ∇f1s + qs

(
E1 +

v0s

c
× B1

)
· ∇pf0s = −νs (f1s − n1sF0s)︸ ︷︷ ︸

K

, (1)

where the species s is described by the perturbed (f1) and the unperturbed
(F0 = f0/n0) distribution function, the charge q, the mass m, the unperturbed velocity
v0, the perturbed density n1 =

∫
f1(p)dp and the collision frequency ν; K is the

collision term provided by the Krook model and is also called the Krook operator.
As for the study of the Weibel instability in the dynamics of collisionless counter-
streaming plasma shells in GRB scenarios [15], we take the space charge effects into
account by keeping the component of the electric field E along the wave vector k
in our calculations. Thus, the filamentation instability examined here is not purely
electromagnetic (i.e. k ·E �= 0) due to the different pinching rate of electrons and ions
leading to a charge imbalance and a consequent longitudinal electric field established
in the region surrounding each filament [14]. We choose a waterbag distribution
function

F0s =
1

2pz0,s
δ(px − px0,s)δ(py)[Θ(pz + pz0,s) − Θ(pz − pz0,s)], (2)

in which px0 is the momentum in the x direction, pz0 is the momentum thermal
spread in the z direction and Θ (x) is the Heaviside step function. For our choice,
the distribution function F0s describes a cold species s in the x and y directions,
propagating along the x direction, with a thermal spread along the z direction, which
defines the transverse direction. As return current plasma electrons have the largest
collision frequency νe, for the sake of simplicity only collisions made by them are
considered in the calculations [20]. Following the same technique outlined in [15]
and considering perturbations ∝ exp [i (ωt − kz)], the perturbed plasma electron
distribution function is

f1e = − i

ω − kvze

en0e

ω
{[(ω − kvze)∂px + kvxe∂pz ]F0eEx

+ [(ω − kvze)∂py + kvye∂pz ]F0eEy + ω∂pzF0eEz} +
iνe

ω + iνe − kvze
F0en1e. (3)

As n1e =
∫
f1e (p) dp (the subscript “e” refers to plasma electrons), after performing

the integration and assuming that px0,e�pz0,e (i.e. γe ≈ [1 + p2
x0,e/(m

2
ec

2)]1/2), the
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perturbed electron plasma density is

n1e = − ien0e

ω2

∫
dp

ΥxzF0eEx + ΥyzF0eEy + ∂pzF0eEz

ω† − kvz

(
1 − iνe

2kcβth0,e
L

)−1

, (4)

where βth0,e stands for the plasma electron thermal velocity and with the definitions
ω† =ω + iνe, Υmn = [(1 − kvz/ω)∂pm + (kvm/ω)∂pn ] and L= ln[(ω† + kcβth0,e)/(ω

† −
kcβth0,e)].

Inserting (4) in (1), the dispersion relation for waves propagating in the z direction
with wave vector k= kez is obtained by combining (1) and Faraday’s and Ampère’s
equations yielding [17]

(ω2 − k2c2 + Cxxz )[(ω
2 − k2c2 + Cyyz)(ω

2 + Dz) − DyCzyz] − Cxyz[Cyxz(ω
2 + Dz)

−DyCzxz ] + Dx[CyxzCzyz − (ω2 − k2c2 + Cyyz)Czxz ] = 0, (5)

where the coefficients in (5) are given by summing up the contributions of the three
species, calculated with

(
Clmn,s

Dl,s

)
= ω2

p0,sms

∫
dp

{
ωvl

ω† − kvz

(
Υmn

∂pz

)
F0s

}
(6)

for the collisionless species, namely beam electrons (“b”) and cold plasma ions (‘i’),
and the contribution of plasma electrons is

(
Clmn,e

Dl,e

)
= ω2

p0,eme

∫
dp

{
ωvl

ω† − kvz

(
Υmn

∂pz

)
F0e

− iνe
ωvl

ω† − kvz

F0e

1 − (iνe/2kcβth0,e)L

∫
dp

1

ω† − kvz

(
Υmn

∂pz

)
F0e

}
, (7)

where ωp0,s stands for the plasma frequency of the species s. Hence Clmn =
∑

s Clmn,s

and Dl =
∑

s Dl,s. It is worth pointing out that whereas the equivalent coefficients
of the dispersion relation for the collisionless filamentation instability admit any
distribution function [15], in the coefficients (7) the choice of the distribution
function has been already made, being necessary to calculate the perturbed density
n1 through (4) appearing in the Krook operator. A waterbag distribution function
allows to deal with relativistic kinetic calculations in a closely analytical form,
concerning the pm-, pn- and pz-integrations involved in the coefficients (6) and
(7). Furthermore, Cottrill et al. [20] have shown that the relativistic waterbag
distribution guarantees reasonable approximations to instability growth, even with
collisions. After performing the integration over the distribution function (note that
Cxyz =Cyxz =Czyz =Dy = 0), the dispersion relation is reduced to

(ω2 − k2 + [Cxxz ])(ω
2 + [Dz]) − [Czxz ][Dx] = 0, (8)

where the coefficients in square brackets are normalized in time to the electron plasma
period 1/ωp0,e and in space to the electron plasma skin depth c/ωp0,e yielding (from
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now on, the subscript ‘0’ indicating zeroth-order quantities is omitted)

[Cxxz ] = −
{

F +
∑
s

[
ns

ms

]
1

γs

k2β2
s

ω2 − k2β2
th,s

+

[
ne

me

][
β2
e

γe

iνeω
† + k2

ω†2 − k2β2
th,e

− iνeL

2uth,ek

− iνeβ
2
eL

[1 − (iνeL/2βth,ek)]2uth,ek

(
iνeL

2βth,ek
− iνeω

† + k2

ω†2 − k2β2
th,e

) ]}
(9a)

[Dz] = −
{∑

s

[
ns

ms

]
1

γs

1

ω2 − k2β2
th,s

ω2

+

[[
ne

me

]
1

γe

ω

ω†2 − k2β2
th,e

[
ω† − iνe

[1 − (iνeL/2βth,ek)]

(
1 − ω†L

2βth,ek

)]]}
(9b)

[Czxz ] = −
{∑

s

[
ns

ms

]
1

γs

kβs

ω2 − k2β2
th,s

ω +

[
ne

me

][
ω†βe
γek

(
iνeω

† + k2

ω†2 − k2β2
th,e

− iνeL

2βth,ek

)

+
iνeβe(2kβth,e − ω†L)

[1 − (iνeL/2βth,ek)]2uth,ek2

(
iνeL

2βth,ek
− iνeω

† + k2

ω†2 − k2β2
th,e

) ]}
(9c)

[Dx] = −
{∑

s

[
ns

ms

]
1

γs

kβs

ω2 − k2β2
th,s

+

[
ne

me

] [
1

γe

kβe

ω†2 − k2β2
th,e

+
iνeL

[1 − (iνeL/2βth,ek)]2uth,e

βe

ω†2 − k2β2
th,e

]}
ω, (9d)

where the sum in j is over beam electrons and ions, and n is normalized to the
background density, m is normalized to the electron mass, β is the velocity along the x
direction and βth is the perpendicular thermal velocity, with the standard definitions
γ= (1 − β2 − β2

th)
−1/2, u= γβ and uth = γβth, complemented by the definition

(
1

γs

)
=

∫
dp

Fs

γ
=

1

2uth,s
ln

(
1 + βth,s

1 − βth,s

)
(10)

for our choice of the distribution function (2), where ‘s’ is for each one of the three
species considered, and with

F =

3∑
s=1

[
ns

ms

] [(
1

γs

)
− 1

γs

u2
s

1 + u2
s

]
. (11)

After solving the dispersion relation for the perturbation frequency ω, it is possible
to evaluate the growth rate of the instability that corresponds to the largest positive
imaginary part of ω. Due to its complexity, the dispersion relation will be solved
numerically.
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Figure 2. (Colour online) Shifting of kmax toward smaller ks. Growth rate of the collisionless
(black dashed line) and collisional (red solid line) filamentation instability versus wavenumber
for T⊥b = 0.13 keV, T⊥e = 10 eV and α= 0.1, for an electron collision frequency νe = 0.25, 0.75:
(a) for ub = 0.83, collisions lead to an inhibition of the instability, (b) for ub = 5, collisions lead
to an enhancement.

3. Collisional effects on the filamentation instability
To examine collisional effects on the growth rate of the filamentation instability
predicted by the theory, we first choose a relativistic electron beam characterized
by ub = γbβb = 0.83 and a thermal velocity βth,b = 0.024, which corresponds to a
transverse temperature T⊥b = 0.13 keV according to the expression, for a species s,
obtained from the energy–momentum tensor T⊥s =

∫
dp pzvzFs, yielding

kBT⊥s

msc2
=

γs

2

[
1 +

1 − β2
th,s

2βth,s
ln

(
1 − βth,s

1 + βth,s

)]
(12)

for a relativistic waterbag distribution function [21]. Being the ratio α= nb/ni between
the beam electron density nb and the plasma ion density ni, charge conservation is
guaranteed by imposing ne = (1 − α)ni. Current is also conserved, establishing a
constraint on the return current electron velocity βe = α

1−α
βb, where βb = −βbex is

the beam electron velocity. Ions are initialized as cold and stationary, but are free
to move as the instability grows.

In Fig. 2(a), the growth rate Γ of the filamentation instability is plotted for
all wavenumbers, comparing the collisionless case with collisional scenarios with
normalized electron collision frequencies νe = 0.25 and 0.75, for α= 0.1 and a
transverse temperature of the return current electrons T⊥e = 10 eV. As νe increases,
the wavenumber kmax corresponding to the maximum growth rate Γmax, is shifted
toward smaller ks, i.e. larger wavelengths. This shifting due to collisions indicates a
preferential formation of larger filaments than those formed in collisionless scenarios.
Another effect shown in Fig. 2(a), by comparing the collisionless and collisional
growth rate, is that even though collisions increase Γ for small modes, Γmax is
decreased and the filamentation instability is weakened for high modes [22]. However,
by changing ub = 5 and consequently the beam electron transverse temperature
T⊥b = 0.5 keV according to (12), the growth rate of the collisional filamentation
instability is larger than in the collisionless case for a wider range of wavenumbers,
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Figure 3. (Colour online) Enhancement of the filamentation instability due to collisions.
Growth rate as a function of wavenumber in collisionless (dashed lines) and collisional (solid
lines) scenarios for ub = 5, T⊥e = 10 eV, α= 0.1, a fixed νe = 0.5 and increasing beam electron
transverse temperature: T⊥b = 0.5 keV (blue lines), T⊥b = 9 keV (magenta lines) and T⊥b = 34
keV (red lines).

as shown in Fig. 2(b). Furthermore, Γmax is larger when collisions are included, the
shifting of kmax toward larger λ’s being always present.

The growth rate of the filamentation instability for a proper velocity of the
beam electrons ub = 5, plasma electron transverse temperature T⊥e = 10 eV and
beam electron and ion density ratio α= 0.1, for increasing T⊥b, is depicted in
Fig. 3, comparing collisionless and collisional cases; νe = 0.5 is kept fixed for
collisional Γ ’s. Although the instability is weakened by transverse thermal effects, the
maximum value of the growth rate of the filamentation instability when collisions
are accounted for is always larger than in the collisionless scenarios, and the
enhancement is predicted for a wide range of unstable modes, becoming stronger for
large transverse temperature. At T⊥b = 34 keV, the occurrence of the filamentation
instability is guaranteed by collisions, whereas only moving ions allow for the tiny
growth rate appearing in Fig. 3: the collisionless filamentation instability would be
completely shut down otherwise [15]. Therefore, according to the theory, collisions
guarantee the occurrence of the filamentation instability regardless of the transverse
temperature [8].

The kmax shifting toward small wavenumbers also occurs in collisionless scenarios
because of large transverse temperatures, as shown in Fig. 3. Collisions have a
similar effect as the thermal pressure force, which prevents the formation of small
filaments by acting against the magnetic pinching force. The shifting of kmax is
dominated by collisions as long as the transverse temperature is relatively small. As
T⊥b increases, the effect of thermal pressure takes over and scenarios exist in which
the collisionless kmax is smaller than the collisional one.
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Figure 4. (Colour online) Set-up of simulations for the numerical study of collisional effects
on the filamentation instability.

As the filamentation instability is fed by the kinetic energy of the electron beam,
and the Weibel instability is fed by the temperature anisotropy of a species [7],
collisions should always lead to an inhibition of the instability through isotropization.
The counterintuitive result of the enhancement of the filamentation instability due
to collisions, predicted by the theory, suggests that other kinetic effects may play
more important roles than isotropization. Since finding an explicit expression for Γ

from the dispersion relation (8) is not possible analytically, this intriguing issue will
be addressed in the next section by resorting to PIC simulations.

4. PIC simulations of the collisional filamentation instability
As shown in Fig. 4, the chosen set-up for PIC simulations is represented by a
2D perpendicular configuration with the counter-streaming beam electrons and
the return current electrons (from the background) propagating along the x3

direction perpendicular to the x1–x2 simulation plane; ions represent the neutralizing
background. Simulations are carried out with the PIC code OSIRIS 2.0 [23];
relativistic collisions are included through a binary collision model [24] based on
an extension of the non-relativistic Monte-Carlo method proposed by Takizuka and
Abe [25]. Simulations are performed on a 640 × 640 grid, with 64 × 4 particles-
per-cell (ppc) per species and three species, thus leading to a total of 315 million
particles. The distribution of the particles in a cell is motivated by the fact of having
more resolution in the hot x1 direction, along which the density is initially perturbed
by the filamentation instability. Temporal and spatial scales in the simulations are
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normalized to the inverse electron plasma frequency ω−1
pe and the collisionless skin

depth λe = c/ωpe, respectively; charges and masses are measured in the units of
the electron charge e and the electron mass me. In these normalized units and by
choosing a grid cell size Δx1 = Δx2 = 0.1 c/ωpe, the box size is 64.0 × 64.0 (c/ωpe)

2

and the time step is Δt= 0.07 ω−1
pe . The simulation duration for both collisionless

and collisional scenarios is 70.0 ω−1
pe in order to analyze the linear phase of the

instability. Periodic boundary conditions are used. The initial fluid momentum of
beam electrons, along the x3 direction, is ub = γbβb = 5, whereas the fluid momentum
of the return current (plasma) electrons is obtained by imposing current neutrality,
considering a beam electron–ion density ratio α= 0.1. Beam and plasma electrons
have a thermal spread with the root-mean-square momentum (rms) uth = γ0βth of
uth,b = 0.122 and uth,e = 0.0077, respectively, along the transverse x1 direction, with
a waterbag distribution function. For collisional simulations, extra parameters have
to be specified as inputs. We consider a numerical collision of the particles for each
time step, collision cells having the size of 20 × 20 PIC cells and a fixed Coulomb
logarithm to speed up the simulations. To reduce the numerical noise and to save
computational time, only plasma electron–ion collisions are included; simulations
with all species making collisions were performed, and no crucial differences were
observed. In order to observe collisional effects earlier in time, we use a large
collision frequency νei = 0.57 ωpe calculated with the general formula (in SI units)
for colliding species ‘α’ and ‘β’

ναβ =
lnΛαβ

4π

(
qαqβ

ε0μαβ

)2 nβ g
−3
αβ

γ2
αβ

, (13)

where qα and qβ represent the charges of the species, ε0 is the permittivity of free
space, μαβ is the reduced mass, nβ is the number density, gαβ(= |vα − vβ |) and γαβ are
the relative velocity and the corresponding Lorentz factor, respectively, and lnΛαβ

is the Coulomb logarithm.
The comparison between the collisionless and collisional dynamics of the beam

electron density is shown in Fig. 5 for three different times progressively. The initially
uniform electron beam breaks up in filaments as the filamentation instability occurs;
after being formed, filaments start to merge as shown in the last frame of the figure.
By comparing the two scenarios, it is evident that the size of the filaments in the
collisional regime is larger than the size in the collisionless regime. The theoretical
prediction of the shifting of the wavenumber kmax corresponding to the maximum
growth rate of the filamentation instability toward smaller wavenumbers, i.e. larger
wavelengths, is confirmed by the simulations. Collisions lead to a preferential
formation of larger filaments than those in collisionless scenarios.

Further collisional effects can be evidenced by examining the temporal evolution
of the fluid momentum in the propagation direction p3 (pi = ui in simulation units,
for i= 1, 2, 3) as a function of the momentum in the transverse hot direction p1. As
for the p3–p1 evolution for plasma electrons, from Fig. 6 we can observe that, within
the linear stage of the collisionless filamentation instability, there is no change of
momenta. Only in the last frame at 50.4 ω−1

pe , where the instability is about to
enter the nonlinear stage, the slight increase of the p1 spread indicates plasma
electron heating. The same simulation, with the inclusion of collisions, shows a
completely different plasma electron behavior. As soon as the simulation begins,
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Figure 5. (Colour online) Temporal evolution of the beam electron density: collisionless
simulation in the upper row, collisional simulation in the lower row. The preferential formation
of larger filaments when collisions are included confirms the theoretical prediction of the kmax

shifting toward large wavelengths.

Figure 6. (Colour online) Temporal evolution of the propagation and transverse momenta of
the plasma electrons: collisionless simulation in the upper row, collisional simulation in the
lower row. The strong isotropization due to collisions is evident.

a strong isotropization due to collisions is observed, characterized by almost the
same momentum spread in both directions during the entire linear stage of the
filamentation instability, represented by a circle in the p3–p1 plot. The collisionless
p3–p1 temporal evolution of beam electrons shows the same features of plasma
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Figure 7. (Colour online) Temporal evolution of the propagation and transverse momenta
of the beam electrons: collisionless simulation in the upper row, collisional simulation in the
lower row. The most important observed effect is the beam slowdown due to collisions.

electrons, with the initial distribution unchanged during the linear phase of the
instability and a slight heating as the filamentation instability enters the nonlinear
stage (see Fig. 7). When collisions are included in the simulations, beam electrons
undergo a progressive slowdown during the entire linear phase of the instability. At
50.4 ω−1

pe , beam electrons heat up slightly more than in the collisionless scenario, but
within the linear phase of the instability there is, interestingly, almost no changes in
the transverse momentum.

As observed, when the collision frequency is high enough (i.e. νei/ωpe ∼ 0.1−1), the
beam slows down before the instability develops. Thus, it is instructive to understand
how the beam electron slowdown affects the growth rate of the filamentation
instability. To do that, and as we are assuming that the only role of collisions is to
slow down the beam, the collisionless relativistic fluid theory can be employed. For
a simplified scenario with two counter-streaming beams with the same density, the
growth rate of the filamentation instability reads

Γ ∝ βb

√
α

γb
. (14)

In Fig. 8, the growth rate, shown in (14), of the filamentation instability is plotted as
a function of γb for the contrast ratio we used in the simulations α= 0.1. Due to a
high collisionality, beam electrons first slow down, then they lead to a filamentation
where the actual γb is lower than the initial one. This scenario can lead to either
a smaller or a larger growth rate [20], depending on the initial value of γb. Being
γb,max ≈ 1.73 the Lorentz factor corresponding to the maximum growth rate, if the
initial γb � γb,max, the slowdown of the beam electrons due to collisions leads to an
inhibition of the filamentation instability. On the other hand, if the initial γb � γb,max,
the slowdown of the beam electrons due to collisions leads to an enhancement of
the filamentation instability.

According to the theoretical model described in Sec. 2, the Lorentz factors
appearing in the coefficients (9a) of the dispersion relation are 0th order quantities,
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Figure 8. (Colour online) Ratio proportional to the collisionless relativistic fluid growth rate
of the filamentation instability as a function of γb. The beam electron slowdown due to
collisions can lead to either an inhibition or an enhancement of the filamentation instability,
depending on the initial value of γb.

thus treated as constants. However, as long as νei > Γ , the plasma feels the
stronger collision effects more than the weaker instability effects mainly through
	

(
ω†) = 	(ω+iνei) =Γ+νei [11], thus indirectly leading to a first-order perturbation

−γ1b of the initial beam electron Lorentz factor, which affects the filamentation
unstable mode contribution to the distribution function evolution. This perturbation
is related to the assumption of the 0th order quasi-neutrality nbvb + neve = 0, which
leads to the treatment of currents due to collisions as first-order effects. The
theoretical model fits the physical picture based on the beam electron slowdown.

In order to quantitatively test the collisional effects on the filamentation instability
predicted by our theoretical model, as well as the physical picture illustrated above,
it is necessary to compare the theoretical and the numerical growth rates of the
instability. One of the main difficulties arising in this comparison is the sensitivity
of the growth rate of the filamentation instability to the numerical noise. A
simulation set-up similar to the one shown in Fig. 4 is chosen. The simulated
direction corresponds to the one along which the species have a thermal spread
and the density perturbation grows forming the filaments. The advantage of the
1D simulation is that it is possible to increase both the spatial resolution and
the number of ppc with a reasonable computational power: the numerical noise is
strongly reduced by choosing a grid cell size Δx1 = 0.025 c/ωpe and 5000 ppc/species.
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The 1D simulations are performed on a 204 800 grid, with beam and return current
electrons moving along the x3 direction perpendicular to the simulation direction x1

and moving ions representing the neutralizing background. The three species lead
to a remarkable total of 3.072 billion particles. The box size is 5120.0 c/ωpe and the
time step is Δt= 0.0249 ω−1

pe . In order to test the physical picture of the inhibition
and enhancement regimes, the initial beam electron fluid momentum is ub = 0.83,
with uth,b = 0.0312, for the inhibition simulation, and ub = 0.5, with uth,b = 0.122, for
the enhancement simulation; in both simulations the thermal velocity is the same
(βth,b = 0.024). The plasma electron thermal momentum is uth,e = 0.077, while the
initial fluid momentum is established by current neutrality through the contrast
ratio α, which, as well as the plasma electron-ion collision frequency, is the same
as in the 2D simulations. A waterbag distribution function is used to initialize
the species. The simulation durations are 140.0 ω−1

pe for the inhibition regime and

70.0 ω−1
pe for the enhancement regime, for both collisionless and collisional scenarios,

in order to analyze the linear phase of the instability. For the collisional simulations,
numerical particles are set to collide each time step, collisions cells have the size of 20
PIC cells and a fixed Coulomb logarithm is considered to speed up the simulations.
Periodic boundary conditions are used. Fields and currents are smoothed through
the compensator technique and a second-order interpolation method is employed
in the collisionless simulations. With these numerical parameters and according to
the empirical model provided by Hockney [26], the normalized numerical collision
frequency for plasma electrons is νnum,e ≈ 1.03×10−4 ωpe. As the plasma electron–ion
collisions frequency that we use for our 1D simulations is νei = 0.57 ωpe (�νnum,e),
numerical collisional effects are significantly smaller than physical collisional effects.

In Fig. 9 the growth rate of the filamentation instability for both collisionless and
collisional scenarios is plotted as a function of wavenumber; solid lines are from the
theoretical model and markers are taken from the simulation results. The agreement
between theory and simulation is very good in both collisionless and collisional
scenarios, even though, as expected, the collisional case shows more numerical noise.
The theoretical prediction of the shifting of the wavenumber kmax, corresponding
to the maximum growth rate toward smaller ks due to collisions, is numerically
confirmed (cf. Fig. 5). Having γb ≈ 1.3, α= 0.1 and according to Fig. 8, the inhibition
of the filamentation instability due to collisions is quantitatively and qualitatively
confirmed by the simulation. Figure 9(b), corresponding to a scenario of γb ≈ 5.1 and
α= 0.1, completes the physical picture of Fig. 8 by showing the enhancement of the
filamentation instability due to collisions not only predicted by the theory but also
confirmed by the simulation. Having a very good agreement between theory and
simulation, the kmax shifting is again recovered numerically. Significant numerical
noise reduction in collisional simulations is expected as soon as the higher order
interpolation schemes are integrated in the OSIRIS 2.0 collision module.

For beam electron thermal velocities βth,b > 0.05, the agreement between theory
and simulations in terms of the growth rate of the filamentation instability is not as
good as shown in Fig. 9 in the collisional case, whereas in the collisionless regime
the match remains very good. The mismatch in the collisional case shows the limited
accuracy of the Krook operator in analytical dealing with collisions. The theory
predicts larger growth rates than the ones calculated from simulations. This result
suggests that the particle-number-conserving Krook operator can be unreliable
for quantitative predictions at large transverse temperatures: the imaginary part
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Figure 9. (Colour online) Growth rate of the filamentation instability as a function
of wavenumber for α= 0.1 and νei = 0.57: comparison between theory (solid lines) and
simulations (markers) for (a) ub = 0.83 (γb ≈ 1.3) and (b) ub = 5 (γb ≈ 5.1). Numerical results
quantitatively confirm the kmax shifting and the inhibition regime due to collisions predicted
by the theory.

of a general dispersion relation (in this case, the growth rate of the collisional
filamentation instability) is usually overestimated in comparison with the predictions
of a more reliable both energy and particle-number-conserving Krook model [19].
However, even at large temperatures the enhancement and the inhibition regimes
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Figure 10. (Colour online) Scheme used to estimate the growth rate of the filamentation
instability along a FI pellet profile.

due to collisions as well as the kmax position predicted by the theory are qualitatively
recovered by simulations.

5. FI scenarios: theoretical predictions
The theoretical model described in Sec. 2 provides us a means to estimate whether
the filamentation instability can significantly occur along the compressed FI target
by using typical FI parameters. Let us imagine a cylinder-like PW-laser pulse hitting
the compressed FI fuel pellet and generating a cylinder-like MeV-electron beam, as
sketched in Fig. 10. By knowing the energy EL and the duration τL of the laser
pulse, it is possible to calculate the laser energy going into the electrons of the fuel
target corresponding to the electron beam energy, as well as the power of the laser
pulse. The engineering formulas for the laser pulse power PL and for the electron
beam energy Ebeam are

PL(PW) =

(
EL

1 kJ

)(
τL

1 ps

)−1

; Ebeam(kJ) =

(
η

100 %

)(
EL

1 kJ

)
, (15)

where η is the laser-to-electron transfer efficiency. From the mean kinetic energy of
the beam electrons Eb, the laser spot radius w0L and considering an electron beam
length equal to the laser pulse length L= τL c and a beam radius w0b of the same size
as that of the laser spot, the density of the beam electrons is given by the following
engineering formula:

nb(cm
−3) 
 6.636 × 1024

(
Ebeam

1 kJ

)(
Eb

1MeV

)−1 (
w0b

1 μm

)−2 (
τL

1 ps

)−1

. (16)

Considering the beam electron proper fluid velocity ub = γbβb ≈ (1 − β2
b )

−1/2βb,
estimating the total current carried by the electron beam is now straightforward:

Ib(MA) 
 1.509 × 10−3 βb

(
nb

1019 cm−3

)(
w0b

1 μm

)2

. (17)

The electron beam is generated at the edge of the FI target, where, for a laser
wavelength λL, the corresponding critical density (i.e. when ωL =ωpe) is

nc =
πmec

2

e2λ2
L

; nc(cm
−3) 
 1.115 × 1021

(
λL

1 μm

)−2

. (18)
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Table 1. Typical Parameters Along a FI Pellet Profile at the Peak of Compression According
to a Possible HiPER Scenario with a Gold Cone Insertion [31]

n [cm−3] r [μm] νei [ωpe] α T⊥e [eV]

1022 240 0.0001 0.26 1 000

1023 70 0.020 0.026 700

1024 37 0.33 0.0026 150

The ratio between the beam and plasma electron densities (called contrast ratio) at
the edge of the FI target is finally

α =
nb

nc
. (19)

For the sake of simplicity, we do not consider any relativistic correction due
to nonlinear phenomena showing up with high-intensity lasers, such as relativistic-
induced trasparency [27] and hole boring [28]. As both of these effects lead to a laser
pulse penetration into overdense plasmas, the maximum plasma electron frequency
allowing for laser propagation will be larger than that predicted by the linear theory;
the critical density at the edge of the FI target will be smaller than the density
calculated with (18), thus guaranteeing a larger contrast ratio and a consequent
larger growth rate of the filamentation instability. Therefore, not considering any
relativistic effects related with high-intensity lasers represents a conservative case in
which theoretical predictions of the growth rate of the filamentation instability are
underestimated.

The proposed European high-power laser facility HiPER [29] is expected to
have an ignitor laser beam characterized by an energy EL = 80kJ, a pulse duration
τL = 10ps, a wavelength λ= 1 μm and a spot size w0L = 40 μm [30]. Furthermore,
experimental and numerical studies have suggested for HiPER a laser-to-beam
electron energy transfer efficiency η ≈ 25 % and the use of a gold cone [2] whose tip
is inserted inside the fuel pellet to reduce the distance the beam electrons have to
cover to deposit their energy into the core. By plugging this set of parameters in (15),
(16), (17) and (18) and considering w0b =w0L, ub = 5 and Eb = 4MeV, one obtains
a laser pulse power PL = 8PW, an electron beam energy Ebeam = 20 kJ, a beam
electron density nb = 2.592 × 1021 cm−3 and a beam electron current Ib = 613.7MA,
with the critical density nc = 1.115 × 1021 cm−3. Assuming a distance between the
cone tip and the center of the pellet r= 240 μm, which, according to Table 1,
corresponds to a background plasma density n= 1022 cm−3, the contrast ratio at
the cone tip is α= 0.26. The plasma electron–ion collision frequency is calculated
with (13).

Figure 11 shows the growth rate of the filamentation instability as a function of
wavenumber for T⊥b = 100 keV. Even though the largest growth rate corresponds
to the almost collisionless plasma at the tip of the cone, collisions lead to important
unstable modes deep inside the FI pellet, with Γmax comparable with the outer
growth rate. Due to the high collisionality, the Γmax for a background plasma
density n= 1024 cm−3 is even larger than the maximum growth rate at n= 1023 cm−3,
making the occurrence of the filamentation instability closer to the core and very
likely the consequent enhancement of energy deposition.
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Figure 11. (Colour online) HiPER scenario with a gold cone insertion at 240 μm from the
pellet center: growth rate of the filamentation instability as a function of wavenumber for
T⊥b = 100 keV. r represents the distance from the center of the pellet, where r= 0.

6. Conclusions
The collisionless–collisional transition effects on the filamentation instability have
been investigated both theoretically and numerically in the context of FI. A
theoretical model using relativistic kinetic theory to analyze the linear stage of
the filamentation instability with the inclusion of collisions through the particle-
number-conserving Krook operator has been presented in detail. By comparing the
growth rate of the instability in collisionless and collisional scenarios, two main
effects are predicted. As the collision frequency increases, the wavenumber kmax,
corresponding to the maximum value of the growth rate, shifts toward smaller ks,
i.e. larger wavelengths: collisions lead to a preferential formation of larger filaments
than those in collisionless cases. The inclusion of collisions can lead to either an
inhibition or an enhancement of the filamentation instability, depending on the
chosen scenario. In the case of enhancement, thermal effects reduce the instability,
but they cannot shut it down even for temperatures at which collisionless unstable
modes are cancelled out: collisions guarantee the occurrence of the instability
regardless of the transverse temperature.

In order to test the collisional effects predicted by the theory, results of 2D PIC
simulations with binary collisions have been presented, with beam and return current
plasma electrons moving in counter-propagation, in a neutralizing background
of moving ions. The comparison of collisionless and collisional scenarios of the
temporal evolution of the beam electron density during the linear stage of the
filamentation instability shows a preferential formations of larger filaments than
those in collisionless simulations, correctly recovering the kmax shifting toward larger
wavelengths due to collisions predicted by the theory. The temporal evolution
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of the momentum along the propagation direction against the momentum along
the transverse direction for collisional simulations shows a strong plasma electron
isotropization and a beam electron slowdown. From the collisionless fluid theory it
has been shown that, depending on the initial γb, in strongly collisional scenarios
collisions can lead to either an inhibition or an enhancement of the filamentation
instability due to the beam electron slowdown. This physical picture, which qualit-
atively confirms the theoretical predictions concerning the inhibition–enhancement
regimes due to collisions, has been tested with high-resolution 1D PIC simulations by
calculating the numerical growth rate of the filamentation instability. The agreement
between the theoretical and numerical growth rates of the filamentation instability
is very good for both collisionless and collisional scenarios, recovering both the
kmax shifting toward larger wavelengths and the inhibition–enhancement regimes
due to collisions predicted by the theory. For high transverse temperatures, the
quantitative agreement in the collisional scenario is not as good as in the low
transverse temperature scenarios, thus suggesting the unreliability of the non-energy-
conserving Krook operator used in the theory. However, the inhibition–enhancement
regimes as well as the kmax position predicted by the theory are qualitatively recovered
by the simulations even in these scenarios.

Once numerically tested, the theoretical model has been applied to a possible
HiPER scenario: the analysis of the growth rate of the filamentation instability
along a FI pellet profile reveals that the growth rate is strongly reduced by the
transverse temperature and by the small density ratio α as one moves toward the
center. However, there can be scenarios in which collisions sustain the instability
deeply inside the target: the filamentation instability can then contribute as a
mechanism to deposit the beam electron energy in the center of the FI pellet.
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