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Abstract

Older African Americans tend to perform more poorly on cognitive function tests than older Whites. One possible
explanation for their poorer performance is that the tests used to assess cognition may not reflect the same construct in
African Americans and Whites. Therefore, we tested measurement invariance, by race and over time, of a structured
18-test cognitive battery used in three epidemiologic cohort studies of diverse older adults. Multi-group confirmatory
factor analyses were carried out with full-information maximum likelihood estimation in all models to capture as much
information as was present in the observed data. Four different aspects of the data were fit to each model: comparative fit
index (CFI), standardized root mean square residuals (SRMR), root mean square error of approximation (RMSEA), and
model χ2. We found that the most constrained model fit the data well (CFI = 0.950; SRMR = 0.051; RMSEA = 0.057
(90% confidence interval: 0.056, 0.059); the model χ2 = 4600.68 on 862 df), supporting the characterization of this model
of cognitive test scores as invariant over time and racial group. These results support the conclusion that the cognitive
test battery used in the three studies is invariant across race and time and can be used to assess cognition among African
Americans and Whites in longitudinal studies. Furthermore, the lower performance of African Americans on these tests is
not due to bias in the tests themselves but rather likely reflect differences in social and environmental experiences over the
life course. (JINS, 2016, 22, 66–75)
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INTRODUCTION

It is well documented that older African Americans tend to
perform more poorly on cognitive function tests than older
Whites, even after adjustment for years of education (Manly,
2005). Literacy, a commonly used marker for quality of
education typically assessed by performance on reading
tests, has often been found to attenuate, but not completely
eliminate, the differences (Manly, Jacobs, Touradji, Small, &
Stern, 2002), suggesting that other factors may play a role in
the poorer performance among African Americans (e.g.,
Barnes, Lewis, et al., 2012). Some investigators have argued
that neuropsychological tests may be biased against racial/

ethnic minority populations because they were developed
with and standardized on the majority white population
(Arnold, Montgomery, Castaneda, & Longoria, 1994;
Loewenstein, Arguelles, Arguelles, & Linn-Fuentes, 1994).
In fact, there is a growing body of evidence that suggests that
background variables such as strategies, cognitive styles, and
familiarity with testing may vary by race/ethnicity as well
(e.g., Early et al., 2013; Jones, 2003), potentially influencing
interpretation of performance.
Another potential explanation for the poorer performance

of older African Americans on neuropsychological tests is
that the underlying latent structure of the tests themselves
differs as a function of race. That is, the tests used to assess
cognition may not reflect the same underlying construct in
different population groups. Although equivalence of latent
cognitive structure (i.e., measurement invariance) is critical
for comparative research with neuropsychological testing,
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relatively few studies test for equivalence in comparative
studies, whether over age, or time, race, or other groupings.
Measurement invariance is observed when, “…under
different conditions of observing and studying phenomena,
measurement operations yield measures of the same attribute”
(p. 117; Horn & McArdle, 1992). To interpret differences in
mean scores across groups, the mean values over the groups
must represent the same attribute (Bollen & Curran, 2006). In
this case, “different conditions” could refer to independent
groups or the same group over time. The validity and utility
of representing a complex measurement process within
a single theoretically and empirically supported model are
critically dependent on the demonstration of invariance of
that model over time and across groups.
Measurement invariance is a characteristic of any mea-

surement tool, and has its modern conceptualization arising
originally from concerns regarding performance on admis-
sions tests by different populations (Meredith & Teresi,
2006). Since the mid-1980s, measurement invariance has
been examined more widely, particularly in the cognitive
aging literature with older populations. For example, some
studies have examined the measurement invariance of cog-
nitive abilities across age (e.g., Bowden, Weiss, Holdnack, &
Lloyd, 2006; Hertzog & Schaie, 1986; Schaie, Willis, Jay, &
Chipuer, 1989), gender (Maitland, Intrieri, Schaie, & Willis,
2000), neurological impairment (Hayden et al., 2011;
Siedlecki, Honig, & Stern, 2008), and language (Siedlecki
et al., 2010; Tuokko et al., 2009). Although several studies
have examined racial differences in cognitive function and
cognitive decline among older adults, including change
within specific domains of function (e.g., Brewster et al.,
2014; Early et al., 2013; Schwartz et al., 2004; Sloan &
Wang, 2005), relatively few have examined measurement
invariance specifically as a function of race in late-life (e.g.,
Blankson &McArdle, 2013; Jones, 2003; Mungas, Widaman,
Reed, & Tomaszewski, 2011). This is essential, as the model
and test scores must accurately reflect the particular latent traits
measured by the test across different populations and/or
time to make valid interpretations of differences or apparent
changes in performance (Horn & McArdle, 1992).
Invariance is not an all-or-none characteristic; it falls on a

continuum. A “hierarchy” of invariance moves from strict
invariance, which involves the same model form, factor
loadings, residual variances for items and factors, and intercepts
for all models under consideration; to strong invariance,
relating to equivalence in model form and intercepts (not
loadings); to weak (metric or pattern) invariance, which
requires the same model form and factor loadings for all
models (Meredith & Teresi, 2006). Invariance in model form
means that the same (multiple) observed variables represent
the same latent construct at each timepoint (Bollen & Curran,
2006). Invariant factor loadings means that, given the same
model form and scaling, the observed variables relate to (load
on) the latent variable(s) the same way over time. Invariance
in intercepts of the observed items or variables/indicators
means that the items or indicators are functioning in the same
way to represent the latent variable invariantly over time.

These invariance characteristics pertain to the fit features of
the model either to the same group over time or to indepen-
dent samples at a single time point. Models that can be
replicated across independent samples and over time improve
science (Mulaik, 2010), making invariance an early, impor-
tant, step in modeling and measurement. Invariance of the
residual variances, which is a defining characteristic of
“strict” invariance, is often difficult to obtain (Chen, 2007).
Invariance up to the level of intercepts (“strong-plus”) per-
mits interpretable comparisons of latent mean differences
across groups, whereas invariance up to the level of residual
variances means that group differences on the indicators of
the factors are comparable (Chen, Sousa, & West, 2005).
A focus on the latent means (“strong-plus”), rather than on
the individual observed test scores (“strict”), means that
potential sources of bias in the observed test scores (e.g., age,
education), which are the indicators or items of the latent
factors in our model, are de-emphasized.
The purpose of the current analysis, therefore, was to

examine the degree to which the latent factor structure of a
well-established cognitive battery (Wilson et al., 2002) is
invariant across race (African American vs. White) and over
time. Data come from three longitudinal community-based
cohort studies:the Minority Aging Research Study (MARS),
the Rush Memory and Aging Project (MAP), and the
Religious Orders Study (ROS). The studies have similar
recruitment strategies and operational components, and
use the same cognitive battery, which facilitates merging the
data. This project tested the hypothesis that the 18 cognitive
tests that are common to all three longitudinal studies, which
have been reported elsewhere to define five cognitive
domains (Wilson et al., 2002) within a single structural
equation (latent measurement) model of “cognition,” are
invariant over race and over time.

METHOD

Participants

Data for this project were obtained from participants enrolled
in one of three community-based cohort studies of aging and
cognition:MARS, MAP, or ROS. The Institutional Review
Board of Rush University Medical Center approved all studies
and all participants signed written informed consent. Given
essentially identical recruitment techniques and a large overlap
of identical data collection (including cognitive testing) across
all three studies, data were merged to examine measurement
invariance across race. In the current analyses, all self-reported
African Americans (from all three cohorts) were grouped
together, and compared to Whites (from MAP and ROS).
MARS enrolls older African Americans without known

dementia living in the community, who agree to annual
clinical evaluations (Barnes, Shah, Aggarwal, Bennett, &
Schneider, 2012). From the start of enrollment in August 2004,
477 persons enrolled in the study, of whom 466 completed a
baseline clinical evaluation. Of these, 13 met criteria for
dementia at baseline (see Clinical Evaluation, below) and
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were excluded from the current study. MAP enrolls older
persons of all races without known dementia from retirement
communities and senior subsidized housing facilities
across the Chicago metropolitan area (Bennett, Schneider,
Buchman, et al., 2012). Participants agree to annual clinical
evaluations and donation of their brain, spinal cord, and
selected nerves and muscles at time of death. From the start of
enrollment in 1998, 1459 persons enrolled and 1450 com-
pleted a baseline clinical evaluation. Of these, 79 met criteria
for dementia and were excluded from the current study. ROS
enrolls older Catholic nuns, priests, and brothers, from more
than 40 groups across the United States (Bennett, Schneider,
Arvanitakis, & Wilson, 2012). Participants are without known
dementia and agree to annual evaluation and brain donation.
From the start of enrollment in January 1994, 1108 persons
enrolled in the study, of whom 1106 completed a baseline
clinical evaluation. Of these, 76 met criteria for dementia at
baseline and were excluded from the current study.

Materials and Procedure

Clinical evaluation

Participants underwent uniform, structured, clinical evaluations
annually, which included a detailed medical history, neurologic
examination, and neuropsychological testing, as previously
described (Barnes, Shah, et al., 2012; Bennett, Schneider,
Arvanitakis, et al., 2012; Bennett, Schneider, Buchman, et al.,
2012). On the basis of this evaluation, an experienced clinician
classified subjects with respect to Alzheimer’s disease and other
neurologic conditions following criteria set forth by the National
Institute of Neurological and Communicative Disorders and
Stroke and the Alzheimer’s Disease and Related Disorders
Association (McKhann et al., 1984).

Other variables

Each participant was asked to self-report their racial category,
based on questions used by the U.S. Census Bureau (1990).

Cognitive tests

A battery of 19 cognitive function tests was administered in
a 1-hr session. The Mini-Mental State Examination (MMSE)
was used to describe the overall cognitive functioning of the
cohorts, but not in analyses. The remaining 18 performance-
based tests assess the levels of episodic memory, semantic
memory, working memory, perceptual speed, and visuospatial
abilities. Details of the cognitive function tests have been
reported previously (Wilson et al., 2002, 2005). There were
seven tests of episodic memory: immediate and delayed story
recall of story A from the Logical Memory subtest of theWMS-
R (Wechsler, 1987) and of the East Boston Story (Albert et al.,
1991), and Word List Memory, Word List Recall, and Word
List Recognition from the procedures established by CERAD
(Morris et al., 1989); two tests of semantic memory: a 15-item
version of the Boston Naming Test (Wilson et al., 2005;
Kaplan, Goodglass, & Weintraub, 1983) and semantic Verbal

Fluency fromCERAD (Wilson et al., 2005;Morris et al., 1989);
three tests of working memory: Digit Span Forward and Digit
Span Backward from the Weschler Memory Test-R (Wechsler,
1987) and Digit Ordering (Cooper & Sagar, 1993); four mea-
sures of perceptual speed: Symbol DigitModalities Test (Smith,
1982), Number Comparison (Ekstrom, French, Harman, &
Kermen, 1976), and two indices from a modified version of the
StroopNeuropsychological Screening Test: the number of color
names correctly read aloud in 30 s minus the number of errors,
and the number of colors correctly named in 30 s minus the
number of errors (Trenerry, Crosson, DeBoe, & Leber, 1989);
and two tests of visuospatial ability: a 15-item version of
Judgment of Line Orientation (Benton, Sivan, Hamsher, Varney,
& Spreen, 1994) and a 16-item version of Standard Progressive
Matrices (Raven, Court, & Raven, 1992). We created a global
composite with all tests, and composite measures of episodic
memory, semantic memory, working memory, perceptual
speed, and visuospatial ability, by converting raw scores on
each component to z scores, using the baseline mean and SD
in the entire cohort, and then averaging the Z scores, as
previously described (Wilson et al., 2002, 2005).

Data analysis

Multi-group confirmatory factor analyses (CFA) were carried
out using MPlus 6.12 (Muthén & Muthén, 1998) with full-
information maximum likelihood (FIML) estimation in all
models (Allison, 2003) to capture as much information as is
present in the observed data. In all cases, we sought to test the
hypothesis that the model was invariant over time and race
via CFA, and so we fit a fully constrained model first,
relaxing constraints iteratively from fully constrained
(“strong-plus,” which includes factor structure, indicator
loadings, and indicator intercepts each constrained to be
equal), to measurement constrained (“strong,” i.e., releasing
constraints on the intercepts, but not loadings or factor
structure), to structural (“weak,” i.e., same items loading on
same factors without the values of the loadings or intercepts
constrained), to fully unconstrained (all factors, loadings, and
parameters in the set of models estimated separately). We did
not constrain factor or indicator residual variances to be
equal in any model. We did not plan to release any specific
constraints but to move from level to level of invariance
by releasing all constraints consistent with the next level
when a more-constrained version failed to fit. Residuals and
modification indices were never used to identify constraints
to release, because our focus was on testing the hypothesis
that the model was invariant, and determining the extent to
which this invariance could be said to exist for this model.
Instead, the analysis plan was to examine residuals to identify
how or where the hypothesis that the model is invariant
was not supported. We did not plan to change features of the
model based on residuals or modification indices, but to
characterize failures of invariance according to these residuals
in case any were informative about lack of fit.
We used a factor-analytically derived model that was

described in a previous publication (Wilson et al., 2002), but
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which has never been tested for its invariance over time or
race. Model fitting specifics are provided below. We first fit
this model to the data all together at baseline to ensure that the
tests of measurement invariance over race and time would
proceed using a well-fitting model. Fit statistics (described
below) were used to study this model as well; residuals
and modification indices were also used at this step only
to better understand any sources of misfit in this overall
measurement model. For the invariance modeling, we fit the
most-constrained version of this structural equation model
for cognitive measurement first (releasing constraints as
described above) within racial groups (White and African
American), separately over time. We proceeded to the point
where a well-fitting model (representing the supported level
of invariance) over time was identified for each racial group.
Once we had iterated the CFA within racial group over time,
we then started again with samples together (i.e., testing
invariance across racial groups) at baseline, at year 1, and at
year 2. Finally, we planned to follow the same iterative
process to fit a single CFA for invariance over both time
and across racial group, moving from the most- to the least-
constrained version.
Four different aspects of fit to the data were assessed for

each model: model χ2, a general data-model fit statistic;
comparative fit index (CFI), representing incremental model
fit relative to independence—the closer to 1.0 the better,
with acceptable models having CFI > .96; standardized root
mean square residuals (SRMR) summarizing mean absolute
value of the covariance residuals—the smaller (and <0.09)
the better; and root mean square error of approximation
(RMSEA) representing the error in the approximation of the
data by the model—acceptable models have an upper bound
on the 90% RMSEA confidence interval (CI) <0.06 (Hu &
Bentler, 1999). Hu and Bentler (1999) propose that an
acceptable model has all of the following fit characteristics:
CFI> 0.96; and SRMR< 0.09; and RMSEA< 0.06. When
we were comparing more- to less-constrained models, in
addition to observing that all fit indices were in the required
ranges, we also required that the CFI values change less
than 0.01 (Byrne, 2006, 2011) between more- and less-
constrained models. This way, we could be confident of both
the fit of the model to the data and also that the incremental
model fit was not changing in practically important but possibly
not statistically significant ways.
Once we had our base model, the invariance testing began

with the most constrained model, and as soon as a model fit
the data well according to all fit indices and (if applicable) the
CFI values having changed by less than 0.01, the modeling
procedure stopped and the level of constraints in this model
was taken as the level of invariance. In the event that a more-
and a less-constrained model seemed to fit comparably, we
planned to use a likelihood ratio test, using the difference in
numbers of parameter estimates as the degrees of freedom, to
determine if the less-constrained model was a significantly
better fit than the more constrained model. If it was not, then
the more-constrained model was retained. In every case, we
planned to release all constraints consistent with the next level of

invariance, that is, we did not plan to release constraints on any
specific path but rather, planned to move from strong-plus to
strong; from strong to weak; and from weak to no invariance—
stopping as soon as a good fitting model was identified.
In addition to examining and comparing fit indices outlined

above, we planned to examine the residuals (comparing the
observed andmodel-implied variance-covariance matrices) and
modification indices for two competing levels of invariance to
identify, where relevant, those indicators for which the models
did not fit well over time, across cohorts, or both (Tractenberg,
Aisen, Weiner, Cummings, & Hancock, 2006).

RESULTS

Table 1 lists demographic characteristics across the three
study cohorts; other than racial composition, characteristics
were similar across cohort. Within the combined sample,
African Americans were slightly younger [73.0 (SD = 6.8)
vs. 78.4 (SD = 7.4] years) and had fewer years of education
[14.9 (SD = 3.5) vs. 16.3 (SD = 3.5)] compared with
Whites. However, baseline MMSE score 27.8 (SD = 2.4) for
African Americans versus 28.2 (SD = 1.9) for Whites and
distribution of women (76.6% in African Americans vs.
71.4% in Whites) were similar across the two groups.
All data at the baseline visit were used to estimate the

“base” model to be tested for invariance within groups over
time and across groups at each visit. Table 2 shows the sample
sizes that were used in the modeling. Because the sample size
for the African Americans dropped off significantly after
the 2nd year of follow-up, our analyses focused on the three
annual evaluations in the baseline–2nd year time frame.
The five-factor model that has been reported previously

(Wilson et al., 2002) was fit to the data to ensure that our
conceptual model would be an appropriate starting point. This
pre-specified model fit the baseline data from all participants
together well [CFI = 0.961; SRMR = 0.037; RMSEA = 0.052
(90% CI [0.049, 0.055]) with model χ2 = 1129.467 on 122 df],
once covariances were added (based on modification indices)
among the errors associated with 3 of the 18 cognitive tests
(Story A from the Logical Memory subtest; East Boston
Story recall; and Word List Recall). This was the model
(see Figure 1) we used for the invariance analyses.

Table 1. Demographic characteristics by study cohort

MARS
n = 453

MAP
n = 1,371

ROS
n = 1,030

Mean age (SD) 73.6 (6.3) 80.1 (7.2) 75.1 (7.2)
Mean education (SD) 14.8 (3.4) 14.7 (2.9) 18.3 (3.2)
% female 74 74.5 69.3
% African American 100 6.9 7.1
Mean MMSEa (SD) 27.8 (2.4) 27.9 (2.1) 28.5 (1.6)

aMini-Mental State Examination.
MARS, Minority Aging Research Study; MAP, Rush Memory and Aging
Project; ROS, Religious Orders Study.
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Invariance over Time

Table 3 shows the fits of the most-constrained model within
each group separately to test invariance of the model over time.
Because this most-constrained model fit within required
ranges of all fit indices, we stopped at this level and did not fit
less-constrained versions.

Our methods specified that we would stop releasing
constraints as soon as we hit the model that met fit index
criteria and where the CFI value did not change from the
previous model (where possible) by 0.01 or more. The
model fit information shown in Table 3 shows that the
most-constrained model, where factor loadings, indicator
intercepts and factor structure were all fixed to be equal
within one race group at each of three annual assessments,
fit the data well in both groups. As was specified earlier,
covariances among the latent factors and between errors on
any test score; the residual variances on the 18 tests; latent
variable means; and latent variable variances were not
constrained to be equal within a group over time. The most
constrained model generally fit well over time within each
group. The fit is marginally better for the larger sample
(Whites) than for the smaller, African American sample, and
examination of the modification indices and the residual
matrices suggested no specific areas of misfit to address in the

Table 2. Sample sizes, across racial groups, over time

Baseline Year 1 Year 2

White 2392 2120 1898
African Americana 652 479 426
Total 1520 1303 1151

aAfrican American participants in Religious Orders Study (ROS) and Rush
Memory and Aging Project (MAP) were combined with those in the MARS
cohort; ROS and MAP Whites were combined for the other group.

EP

0.72 0.76 0.64 0.78 0.79 0.690.69

Story WLIIWLIIWLIEBMTDelay EBDR

PS

0.91 0.76 0.74 0.64

SDMT CNameNCCRTD WREAD

WO

0.58 0.70 0.63

DBDF DOPerf

SE

0.61 0.74

BName Catflu

PO

0.56 0.68

LOPair PMat

0.73 0.81

0.64 0.77

0.68

0.68
0.91 0.88

0.65 0.61

0.76 0.57 0.39

Fig. 1. Model used for the invariance analyses. Abbreviations: DF=Digits forward; DB=Digits backward; DOPerf=Digits Ordering;
Bname=Boston Naming Test; Catflu=Category Fluency; LoPair=Line orientation; Pmat= Progressive Matrices; Story= Story A
Immediate Recall; Delay=Story A Delayed Recall; EBMT=East Boston Memory Test; EBDR=East Boston Delayed Recall;
WLI=Word List Learning; WLII=Word List Recall; WLIII=Word List Recognition; SDMT=Symbol Digits Modality Test;
NCCRTD=Number Comparisons Test; Cname= Stroop, color naming test; WREAD=Stroop, word reading test. SE= Semantic
Memory; PO=Visuospatial Abilities; PS= Perceptual Speed; EP=Episodic Memory; WO=Working Memory.
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model for either group. The most constrained model that was
fit was a good fit by all our fit indices within each group, so
less-constrained versions of this model were not attempted.
These results support the characterization of invariance of the
measurement model over time within each group.

Invariance across Groups

Table 4 shows the fits of the most constrained model
(equivalent factor loadings, indicator intercepts and factor
structure for each racial group) to the data from African
American and White participants at each visit (baseline,
year 1, year 2).
The model fit results in Table 4 show that, when analyzed

with our five-factor model constrained to be equivalent across
racial group, the most constrained model was a good fit to the
data at each of the three visits. The upper bound on the 90%
CI around the RMSEA value exceeded the recommended
limit [0.06] (Hu & Bentler, 1999) in years 1 and 2, so we
examined the modification indices and residuals matrices.
There was no evidence of specific contributions to misfit in
the residuals matrices. Modification indices suggested that
the most theoretically and clinically plausible sources of this
specific aspect of misfit involved three of the test scores
(indicators) for the episodic memory (EP) factor. Given the
critical contribution of episodic memory assessment in the
definition and detection of cognitive aging, we re-fit this
most-constrained model with all of the EP indicators’ loadings
unconstrained. That is, to determine if the equivalence

constraint on loadings for the indicators on the EP factor was
driving the too-wide range in the RMSEA 90% CI, we fit the
same model, but without the constraints of equivalence on the
EP factors. The fit was marginally statistically significantly
better by likelihood ratio test (χ230 = 44.48; p = .043), but
Akaike’s Information Criterion (AIC) favored the most-
constrained model over the one without equivalent loadings
on the EP factor indicators. Since AIC is not sensitive to
sample size (and this likelihood ratio test is well known to
be so), we conclude that overall, these results generally
support the characterization of the measurement model as
invariant across these two racial groups at each of the three
annual assessments.
Given the results in Tables 3 and 4 that the model with the

same (highest) level of constraints fit within group over time
(Table 3), and across groups at each time point (Table 4),
we proceeded to test the fit of the model to the two groups
over time. This multigroup CFA tested the theoretical -
general - invariance (“strong-plus”: equivalent factor loadings,
indicator intercepts and factor structure) of this five factor
model of cognitive functioning based on these 18 tests over
time and racial group.
The most constrained model, with factor structure, indi-

cator loadings, and indicator intercepts each constrained to be
equal across racial groups and over time, was a good fit to the
data (CFI = 0.950; SRMR = 0.051; RMSEA = 0.057 (90%
CI [0.056, 0.059]; the model = 4600.68 on 862 df). All fit
indices were within recommended range, suggesting that the
measurement model, shown in Figure 1, is invariant across
these racial groups and over time.
The final model is shown in Figure 1; the final standardized

parameter estimates are included in the Figure. Table 5
presents the latent factor means.
The observation of good fit of this model to the data

enables us to estimate “true” group means and explore their
differences across cohorts over time. Table 5 shows the
standardized mean factor scores from our final model (shown
in Figure 1), estimated for racial group and time. These factor
score means are standardized, so that the overall average is
zero, and standard deviations are equal to one. The values in
Table 5 show that, while the estimated group means for
African Americans are lower in nearly every case than they
are for Whites, all group values are well within one standard
deviation of the mean (zero). That is, even if these particular
groups differ in their means at any timepoint, relying on an
invariant model from which factor scores can be reliably
derived (as in Table 5) permits us to discern that the groups
are not “significantly different” in their mean levels of any
cognitive factor at any of the three annual exams. With a
factor score that has been shown to be invariant to time and
racial group, the observed differences—whether or not they
are statistically significant—can be interpreted with con-
fidence. Now that we have demonstrated the time and group
invariance of the measurement models, these models may be
used in future studies in the analysis of other outcomes
like neuropathology, MRI volumetrics, or the evaluation of
intra-individual variability.

Table 3. Fit of most-constrained invariance in the five factor model
over time (baseline, 1 year, 2 year) within racial group

Fit index: how did most
constrained model fit? White African American

Model χ2 (418 df) 2944.295 1022.370
CFI 0.959 0.952
SRMR 0.039 0.049
RMSEA .053 (.051, .055) .053 (.049, .057)

CFI: comparative fit index; SRMR: standardized root mean square residuals.
RMSEA: root mean square error of approximation.

Table 4. Fit of most-constrained invariance in the five factor model
for racial group: participants in the two racial groups from all three
cohorts were all modeled together, separately by year

Fit index: how did most
constrained model fit? Baseline Year 1 Year 2

Model χ2 (270 df) 1490.4 1452.36 1408.74
CFI 0.953 0.953 0.952
SRMR 0.051 0.050 0.046
RMSEA .054

(.052, .057)
.058

(.055, .061)
.060

(.057, .063)

CFI: comparative fit index; SRMR: standardized root mean square residuals.
RMSEA: root mean square error of approximation.
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DISCUSSION

The present study examined the measurement invariance of a
performance-based neuropsychological test battery, used in
three ongoing longitudinal epidemiologic cohort studies,
across race and time. Starting with the published measure-
ment model for cognitive functioning (Wilson et al., 2002),
we iteratively tested the hypothesis that this model was
invariant over time within racial group, across racial group by
visit, and finally, for both racial group and time within a
single multi-group confirmatory analysis. In each case, we
found that the most-constrained (“strong-plus”) model fit the
data well, supporting the characterization of this model of
cognitive test scores as invariant over time and racial group.
These results support the conclusion that the cognitive test
battery used in MARS, MAP, and ROS is invariant across
race and time and can be used to assess cognition among
African Americans andWhites in our longitudinal studies. As
noted, invariance up to the level of intercepts (“strong-plus”)
permits interpretable comparisons of latent mean differences
across groups (Chen et al., 2005).
We focused our analyses on invariance at the level of latent

factor means (“strong plus), rather than on the individual
observed test scores (“strict”), for two reasons. First, cogni-
tion is a complex construct, requiring assessment of many
complementary domains (i.e., the full 18-test battery). Thus,
invariance on the individual test scores is not of interest in
our longitudinal work, whereas the latent factors represent
cognition at a sufficiently comprehensive level. Second,
emphasis on the factor, rather than the individual, scores
attenuates the likelihood of bias in the observed test scores
(e.g., possibly arising from age, education, or other factors
that we could and did not test) in group comparisons. This
study of measurement invariance tested the hypothesis that the
model was invariant and was, therefore, more confirmatory in
nature than many other examples in the literature. We took the
modeling approach articulated by Burnham and Anderson
(2002), treating the effects of time and race as potential sources
of bias (as described by Millsap, 2011).
In all cases, we fit a more-fully constrained model first,

planning to relax constraints iteratively from this level of
constraint (“strong-plus”: factor structure, indicator loadings,
and indicator intercepts each constrained to be equal), to
measurement constrained (“strong,” i.e., releasing constraints

on the intercepts, but not loadings or factor structure), to
structural (“weak,” i.e., same items loading on same factors
without the values of the loadings or intercepts constrained),
to fully unconstrained (“none,” all factors, loadings, and
parameters in the set of models estimated separately).
Because this type of modeling specifically sought to test the
hypothesis of measurement invariance, releasing constraints
stopped as soon as a model fit the data well. In the cases where
a less-constrained model was also attempted, likelihood ratio
testing of these nested models showed the less-constrained
model did not fit the data statistically significantly better than
the more-constrained version did, so the more constrained
models were retained in all cases.
Previous studies have examined measurement invariance

of cognitive abilities across age (Bowden et al., 2006;
Hertzog & Schaie, 1986; Schaie et al., 1989), gender
(Maitland et al., 2000), neurological impairment (Hayden
et al., 2011; Siedlecki et al., 2008), and language (Siedlecki
et al., 2010; Tuokko et al., 2009). Relatively few studies,
however, have examined measurement invariance as a func-
tion of race (Blankson & McArdle, 2013; Jones, 2003;
Mungas et al., 2011). Measurement invariance as a function
of race is important because it is well established that older
African Americans consistently perform at lower levels on
cognitive function tasks compared to older Whites, and these
differences often persist despite adjustments for education
(e.g., Jones, 2003; Manly, 2005; Manly et al., 2002). While
biological and social factors such as, physical illness or
vascular disease (Crowe et al., 2010), educational quality
(Crowe et al., 2013), and psychosocial constructs like per-
ceived discrimination and stereotype threat (Barnes, Lewis,
et al., 2012; Thames et al., 2013) are most commonly pro-
posed as factors underlying differences in test performance,
measurement variance is often offered as a possible expla-
nation for the discrepancy in performance across race
(Brickman, Cabo, & Manly, 2006; Jones, 2003; Manly,
2005). Our results demonstrate that measurement variance is
not a reason for lower cognitive performance among the
African Americans in this study. However, we did not test for
other sources of bias (e.g., education or age); our focus on
“strong-plus” rather than “strict” invariance as our highest
level was in part an effort to minimize contributions from these
sources, including any inherent test bias associated with the
cognitive measures used in our battery. The findings that the

Table 5. Standardized mean factor scores from invariant model over time, by racial group

Racial group Year Episodic memory Semantic memory Working memory Perceptual speed Visuospatial ability

White BL 0a 0a 0a 0a 0a

African American BL −0.043 −0.246 −0.477 −0.275 −0.870
White 1 0.068 −0.006 0.069 −0.006 −0.003
African American 1 0.156 −0.158 −0.441 −0.261 −0.825
White 2 0.059 −0.078 −0.009 −0.093 −0.050
African American 2 0.118 −0.198 −0.412 −0.193 −0.749

aMEAN for standardized scores = 0; SD for standardized scores is 1. White baseline scores were arbitrarily selected to be the reference group and their mean at
baseline was constrained to be zero.
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groupmean factor scores were lower, albeit not significantly so,
for AfricanAmericans relative toWhites are consistent with the
idea that differences in test performance between African
Americans and Whites likely reflect a combination of multiple
social and environmental experiences over the life course
(e.g., Jones, 2003). For example, differences in literacy
between older African Americans and Whites born before the
historic Brown versus Board of Education decision are well
established, and have been shown to not only attenuate racial
differences in cognitive test performance (Manly et al., 2002),
but also to be an important construct to account for differences
compared to years of education or race-stratified normative data
(Silverberg, Hanks, & Tompkins, 2013). Other race-relevant
variables such as perceived discrimination (Barnes, Lewis,
et al., 2012) and segregation (Aiken-Morgan, Gamaldo, Sims,
Allaire, & Whitfield, 2014) have been shown to be important
covariates of cognitive performance in African Americans as
well. Older African Americans and Whites in the United States
differ with respect to social environment, history, experience,
cultural norms, beliefs, and attitudes. Future studies are needed
to determine whether these differences may influence cognitive
test performance, and whether these factors can account for the
lower performance observed in this and other studies. Impor-
tantly, given that the underlying latent construct of our cogni-
tive battery was found to be invariant across race, we are now
free to investigate lifestyle factors and other racial experiences
that may explain the lower performance.
The study has some limitations. First, all models con-

sidered in these analyses were linear. This does not preclude
future tests of hypothesized nonlinear relationships among
these cognitive test scores or among the factors con-
ceptualized as representing “cognitive function.” However,
our linear modeling is consistent with current models of
Alzheimer’s disease and change in symptoms or biomarkers,
which are typically derived as simple differences over time,
that is, focused on linear change. While not necessarily ideal,
linear models are simple to interpret and can bring statistical
models closer to clinical applications, supporting this
common modeling stance. Our model involves 18 tests and
specialized estimation, and while a less complex con-
ceptualization of “cognitive function” might be simpler to
interpret, reducing the complexity of the cognitive battery
might very well reduce the validity of the assessment
overall—and might not be invariant as ours appears to be.
Along this line, this study focused specifically on the level of
invariance, and not on the model itself (which has been
validated elsewhere; Wilson et al., 2004). Therefore, overlap
in factor constructs or factor makeup was not studied and was
instead treated as “given.”
Second, our methodology was to start with the most

constrained (“strong-plus”) invariance and proceed through
“strong” to “weak” invariance by iteratively releasing
constraints for the models consistent with each level of
invariance. An alternative approach is to begin with a freely
estimated model and add constraints (moving from “none” to
“weak” to “strong” to “strict” invariance) instead. This is
more common and is advisable in projects where the

measurement model is not well established, especially if the
model fit has never been replicated in an independent sample.
However, there might be highly localized invariant para-
meters within this model that were missed in our approach.
Our argument is that, since cognition is so complex that the
particular components of the model are unlikely to be
meaningful measurement models on their own, this overall
model fits the construct (cognitive function) sufficiently
well and invariantly over time and race to yield useful and
clinically meaningful assessments and—most importantly—
comparisons over time. Because the measurement model we
tested here has been used/fit in independent samples, we
believed that the assumption that meeting our identified
model fit criteria at any of the three levels would be sufficient
to rule out any non-invariance that has practical or clinical
significance.
Third, because MARS (from which the African American

sample we analyzed was derived) started approximately
6 years after ROS and MAP, we were only able to model 2
years of follow-up data. Future studies with these cohorts will
be able to include more years of longitudinal data collection.
These analyses establish the invariance of our measurement
model, so we are now more confident about pursuing
structural models of cognitive change, and over longer time
periods.
A final consideration is the variation in the strengths of

associations of each test with its factor (factor loadings).
Some factors have many fewer indicator tests than others,
which is more of a function of the availability of valid cog-
nitive tests than it is of our modeling or results. Although the
results support the use and interpretability of factor scores
that are derived from this model and its constituent tests,
these results do not suggest that these assessments are “ideal”
for capturing these cognitive domains. If other tests are
preferred or used, these results suggest that establishing
measurement invariance over time and race is achievable;
best practices in the assessment and measurement fields
dictate that they are also necessary.
This study also has strengths. First, our data come from

three well-characterized epidemiologic cohorts with large
sample sizes for both African Americans and Whites.
Second, the five-factor cognitive model used in this study is
fairly complex and factor analytic support for the five
domains has been previously reported (Wilson et al., 2002).
Third, the modeling approach that we used is consistent with
best practices for studying and establishing measurement
invariance (see e.g., Bollen & Curran, 2006; Horn &
McArdle, 1992; Meredith & Teresi, 2006). Finally, our three
cohorts were recruited with similar strategies, and cognitive
function was assessed using a uniform and fairly elaborate
collection of assessments. The cohorts do not represent a
random sample from the general population of Whites or
African Americans of this age range, and the assessments—
while standard neuropsychological instruments—are not
typically all assessed in the same individuals. Therefore, our
cohorts all have similar years of education, and possibly other
social similarities that we did not assess, and our model—and
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its invariance—could have been affected by these factors. As
stated previously, most racial differences stem from multiple
cultural and social attributes often associated with race
including, but not limited to, socioeconomic status, low
literacy and education, racial discrimination, residential and
school segregation, and lack of access to quality healthcare.
Future studies will need to examine these and other factors in
studies that compare cognitive performance between African
Americans and Whites. However, it is important to note that
the purpose of a measurement model is to represent whatever
is being measured for anyone in whom it would be measured,
and these results suggest that our complex model (Figure 1)
for cognitive assessment functions as intended over time
and across race (White and African American). Although
there is clearly room for improvements, including stronger
associations between indicators and factors, more indicators
for some factors (e.g., semantic and working memories)
and fewer for others (episodic memory), this validated
measurement-invariant model of cognitive function in older
African Americans and Whites can now be confidently used
in other studies, including exploration of cognitive effects of
neuropathology and studies of neuroimaging and other
biomarkers.
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