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In this study, we investigate the intial value problem (IVP) for a time-fractional
fourth-order equation with nonlinear source terms. More specifically, we consider the
time-fractional biharmonic with exponential nonlinearity and the time-fractional
Cahn–Hilliard equation. By using the Fourier transform concept, the generalized
formula for the mild solution as well as the smoothing effects of resolvent operators
are proved. For the IVP associated with the first one, by using the Orlicz space with
the function Ξ(z) = e|z|

p − 1 and some embeddings between it and the usual
Lebesgue spaces, we prove that the solution is a global-in-time solution or it shall
blow up in a finite time if the initial value is regular. In the case of singular initial
data, the local-in-time/global-in-time existence and uniqueness are derived. Also, the
regularity of the mild solution is investigated. For the IVP associated with the
second one, some modifications to the generalized formula are made to deal with the
nonlinear term. We also establish some important estimates for the derivatives of
resolvent operators, they are the basis for using the Picard sequence to prove the
local-in-time existence of the solution.
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1. Introduction

Our objective in this paper is to study the following initial value problem associated
with the time-fractional derivative with biharmonic operator{

∂α
0|tu(t, x) + Δ2u(t, x) = G(t, x, u), in R+ × RN ,

u(0, x) = u0(x), in RN ,
(P)

where 0 < α < 1 and, for an absolutely continuous in time function w, the definition
the Caputo time-fractional derivative operator ∂α

0|t is introduced in [12] as follows:

∂α
0|tw(t) =

1
Γ(1− α)

∫ t

0

(t− s)−α dw

ds
ds, (1.1)

here, we assume that the integration makes sense Γ is the Gamma function. The
main equation in (P) contains the biharmonic operator Δ2 which is often called
higher-order parabolic equations and began to receive widespread attention for their
surprising and unexpected properties. More importantly, the higher-order parabolic
equations can be used to model many problems in applications, namely, the study
of weak interactions of dispersive waves, the theory of combustion, the phase
transition, the higher-order diffusion. The most common higher-order parabolic
equation is probably the polyharmonic heat equation, especially, the fourth-order
heat equation or also called the biharmonic heat equation. The current paper
only considers the source function G to be in two nonlinear cases: the exponential
nonlinear type and the Cahn–Hilliard equation form.

1.1. Fractional partial differential equations

Over the last few decades, the theory of fractional derivatives has been well
developed. As a result, the fractional partial differential equations (FPDEs) have
also been studied more and more widely. These new kinds of PDEs have many
unexpected properties and numerous applications in many applied and theoretical
fields of science and engineering. This is why many researchers have shown a big
interest in the study of FPDEs. Recently, there have been many interesting studies
concerning diffusion equations with non-local time derivatives and time-fractional
derivatives. We can refer the reader to some interesting papers on FPDEs, for exam-
ple, Caraballo et al. [42, 43], Zacher [44, 45], Vespri et al. [17], Nane et al. [5, 37],
Carvalho and Planas [13], Dong and Kim [20, 21], Tuan et al. [38, 39] and refer-
ences therein. We especially consider the interesting studies [18, 27, 40] because
our views in approaching the problem are somewhat similar to theirs. Indeed, the
works [18, 27] study time-fractional problems with second-order differential oper-
ators through the fundamental solution. Although in [18], Dipierro and co-authors
establish existence and uniqueness for the solution in an appropriate functional
space, and in [27], Zacher et al. consider decay estimates of the solution. The study
[40] investigates the same problem as [27] but the results are provided in a bounded
domain of RN and applied to investigate some specific examples corresponding to
their kernel k. When considered these studies, we found some important remarks
about appropriate functional spaces to study the fundamental solution (remark 2.1).
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Motivated by those, we made some detailed observations for ours. On the contrary,
our main contributions are the results for models with the biharmonic operators
whose properties are somewhat different from the second-order ones. Furthermore,
we focus on studying specific effects of different types of nonlinearity to our mild
solution. To provide a clearer view, we will present specific discussions below.

1.2. Discussion on problem (P) with exponential nonlinearity

The source function G is the exponential nonlinearity satisfying G(0) = 0 and

|G(u)−G(v)| � L|u− v|
(
|u|m−1 eκ|u|p + |v|m−1 eκ|v|p

)
, (1.2)

for every u, v ∈ R,m > 2 or m = 1, p > 1 and L is a positive constant independent
of u, v. In the following, we will discuss in more detail why we chose this function
G as in (1.2).

• In terms of mathematical theory : It was common knowledge that when we
consider the IVP for the classical Schrödinger equations with the polynomial
nonlinearity u|u|p−1, p ∈ (1,∞) and an initial data function in Hs(RN ), s ∈
[0, N/2), the value c̄ = 1 + 4(N − 2s)−1 is called the critical exponent. Then,
the power case p of the nonlinear function is equal to (respectively less than)
c̄ is called the critical case (respectively subcritical case). However, when con-
sidering the functional space H

N
2 (RN ), the critical value c̄ will be larger than

any power exponent of the polynomial nonlinearity. Hence, the nonlinear func-
tions of exponential type grow higher than any kind of a power nonlinearity at
infinity and also vanishes like a power at zero, which can be seen as the crit-
ical nonlinearity of this case. This is also one of the reasons why exponential
nonlinearity has been studied by many mathematicians not only for both the
Schrödinger equation and some other types of PDEs. To provide an overview
of this kind of nonlinearity, let us recall some related studies. The framework
introduced above is based on results in [33]. In this study, Nakamura and Ozawa
study the small data global HN/2(RN )-solution of the IVP for the Schrödinger
equations with the exponential nonlinearity. The IVP for heat equations with
this type of nonlinearity was considered in [24]. In [24], under the smallness
assumption on the initial data in the Orlicz space, Ioku has shown the existence
of a global-in-time solution of the semilinear heat equations. Under the small-
ness condition of initial data, decay estimates and the asymptotic behaviour
for global-in-time solutions of a semilinear heat equation with the nonlinearity
given by f(u) = |u|4/Nu eu2

was investigated in [22] by Furioli et al. For more
results about the exponential nonlinearity, we refer the reader to [6, 16, 25,
34] and the references therein.

• In terms of application: These exponential nonlinearities as in (1.2) are not only
investigated for the nonlinear Schrödinger equations but also for other types of
PDEs because of many applications in phenomena modelling. Let us mention
two well-known applications in combustion theory as follows. The first one is
the IVP for the equation ut −Δu = k eu, it can be used to model the ignition
solid fuel. The second one is the description of the small fuel loss steady-state
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model by the IVP associated with equation −Δu = k e
u

(1+εu) . More applications
and details can be found in [7, 26] and references therein.

• Contributions, challenges and novelties: To the best of our knowledge, FPDEs
with nonlinearities of exponential type have not been studied yet. Our study
can be seen as one of the first results in this topic. Due to the nonlinearity
of exponential type, it is not possible to apply Lp − Lq estimates of some pre-
vious studies [3, 4] to our current problem. In contrast to the case s > N/2,
the embedding L∞(RN )←↩ HN/2 is not true, and in view of Trudinger–Moser’s
inequality, we obtain the embeddings HN/2(RN ) ↪→ LΞ(RN ) ↪→ Lq(RN ) for any
p � q <∞, where LΞ(RN ) is the Orlicz space with the function Ξ(z) = e|z|

p − 1
(see definition 2.5). To deal with the exponential type, we shall use the Orlicz
space and the embeddings between it and the usual Lebesgue spaces. How-
ever, since our problem is considered in the whole space RN , the embedding
Lq(RN ) ↪→ Lp(RN ) does not hold anymore when q > p. For Orlicz spaces in
classical derivatives, the use of the standard smoothing effect of the exponential
resolution and Taylor expansion operators play important roles. However, they
are not available for problems with time-fractional derivatives. The appearance
of the Mittag-Leffler function and the Gamma function also caused a lot of
difficulties in setting up some needed estimates related to the Orlicz space for
problem (P). Fortunately, thanks to the results shown in [32], the standard
smoothing effect can be achieved with a presentation via the M-Wright func-
tion of the Mittag-Leffler function. We can also overcome some of the difficulties
caused by the Gamma function with some special inequalities. Our main results
in this section are briefly described as follows:
• In the regular case of u0(u0 ∈ Lp(RN ) ∩ C0(RN )), we can derive that our

mild solution blows up at a finite time or the maximal time that ensures the
unique existence of the solution is infinity.

• With the assumption of the initial value in the space LΞ(RN ), the local-in-
time existence of mild solution can be obtained by a fixed point argument
without any smallness assumptions on the initial function. Furthermore,
under the stronger assumption that u0 ∈ LΞ

0 (RN ), the global well-posed
results for the solution will be established. To achieve this goal, we have
to use the techniques introduced by Chen et al. [14], and weighted spaces to
deal with the singular term of the mild solution.

1.3. Discussion on problem (P) with Cahn–Hilliard source term

In this subsection, we introduce and discuss problem (P) with another source
G(u) ≡ ΔF (u), here F denotes the derivative of double-well potential; in general,
we consider a cubic polynomial like F (u) = u3 − u. For the case α = 1, problem
(P) is reduced to the standard Cahn–Hilliard equation. The Cahn–Hilliard equation
was proposed for the first time by Cahn and Hilliard [11], and is one of the most
often studied problems of mathematical physics, which describes the process of
phase separation of a binary alloy below the critical temperature. More recently, it
has appeared in nano-technology, in models for stellar dynamics, as well as in the
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theory of galaxy formation as a model for the evolution of two components of inter-
galactic material (see [8]). Let us mention some previous studies on the standard
Cahn–Hilliard equations with derivatives of integer order. In [1], the authors con-
sidered a Cahn–Hilliard equation which is the conserved gradient flow of a nonlocal
total free energy functional. Bosch and Stoll [9] proposed a fractional inpainting
model based on a fractional-order vector-valued Cahn–Hilliard equation [10]. We
can list many classical papers related to the study of Cahn–Hilliard equation, see,
e.g.Dlotko [19], Temam [36], Akagi [2], Zelik [15, 28] and the references therein.

• Contributions, challenges and novelties: As we mentioned above, when we con-
sider the FPDEs in RN , the relationship between two spaces Lp(RN ) and
Lq(RN ) with p �= q is not fulfilled. Specifically, one of the greatest challenges,
when we investigate the Cahn–Hilliard equations, is to deal with a nonlinear-
ity of the form G(u) = ΔF (u). Due to the appearance of the Laplacian, when
handling the existence and the uniqueness of the mild solution by the succes-
sive approximations method and Young’s convolution inequality, the property
of d/dx (f(x) ∗ g(x)) needs to be applied to make the second-order derivative
of the solution representation operator appear. This novelty in this case is
setting up the key estimates as in lemma 2.3. It is worth noting that even
when we have the main tools available, it is still not an easy task to prove our
desired existence results. Besides, when finding the regularity results, we have
to estimate the higher-order derivative of the solution representation operators.
By learning about the results and techniques of [29, 30], we found a way to
obtain the local-in-time existence and uniqueness result for problem (P) with
the Cahn–Hilliard source. The global-in-time existence of the solution is a dif-
ficult topic and will probably be studied in a forthcoming study. The section
about the time-fractional Cahn–Hilliard equation in this study includes:

• to find the solution representation by the Fourier transform and some related
properties;

• to establish some useful linear estimates;

• to prove the existence, uniqueness and regularity of local-in-time solution by
using the Picard sequence method and the smallness assumption for the initial
data function.

1.4. The outline

In § 2, we demonstrate an approach to present the formula of the mild solution
and, based on it, we establish some important linear estimates. Also in this section,
we introduce some notations and definitions related to the so-called Orlicz space, a
generalization of Lebesgue spaces and some useful embeddings between them. In § 3,
we investigate problem (P) with the exponential nonlinearities under two separate
assumptions on the initial datum function. In particular, for the first assumption,
we show that the mild solution exists on [0,∞) or blows up in a finite time. The local
existence and the global-in-time well-posedness of the solution will be stated under
the second assumption of the initial function. The main results on the problem with
the second type of nonlinearity source function will be analysed in § 4. In general,
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by using the smallness assumption on the initial function, we derive the local-in-
time existence and uniqueness of the mild solution for the IVP associated with the
time-fractional Cahn–Hilliard equation. Furthermore, the regularity result will also
be proved.

2. Preliminaries

2.1. Generalized mild solution

It is well known that for the following IVP involving a classical homogeneous
biharmonic equation{

∂tϕ(t, x) + Δ2ϕ(t, x) = 0, in R+ × RN ,

ϕ(t, x) = ϕ0(x), in {0} × RN ,

the solution is given by

ϕ(t, x) =
[
F−1

(
e−t|ξ|4

)
∗ ϕ0

]
(x) =

[
(2π)

−N

2

∫
RN

ei<ξ,x>−t|ξ|4 dξ

]
∗ ϕ0(x),

where the Fourier transform and its inverse are denoted by F ,F−1, respectively,
and < ξ, x >=

∑N
j=1 ξjxj , (ξ, x) ∈ R2N . We recall the following lemma for the kernel

K (t, x) = F−1(e−t|ξ|4).

Lemma 2.1. Suppose that p � 1. Then, for any t > 0 we have

‖K (t)‖Lp � cpt
−N

4 )(1− 1
p ), ‖DmK (t)‖Lp � cp,mt−

N
4 )(1− 1

p )−m
4 .

In view of the above approach, to find the representation for the mild solution to
problem (P), we consider the IVP for a homogeneous time-fractional biharmonic
equation as follows:{

∂α
0|tϕ(t, x) + Δ2ϕ(t, x) = 0, in R+ × RN ,

ϕ(0, x) = ϕ0(x), in RN .
(2.1)

Applying the Laplace transform, L , with respect to the time variable to the first
equation of (2.1), we have

zαL {ϕ}(z, x)− zα−1ϕ0(x) + Δ2L {ϕ}(z, x) = 0.

Then, by assuming that ϕ0 belongs to some appropriate spaces and using the Fourier
transform with respect to the spatial variable, the following equation holds

zαF(L {ϕ})(z, ξ)− zα−1F(ϕ0)(ξ) + |ξ|4F(L {ϕ})(z, ξ) = 0.

By some simple calculations, one has

F(L {ϕ})(z, ξ) =
zα−1

zα − |ξ|4 .
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We now use the inverse Laplace transform to obtain

F(ϕ)(t, ξ) = ϕ̂(t, ξ) = Eα,1

(−tα|ξ|4) ϕ̂0(τ).

Thanks to the Duhamel principle, the Fourier transform of the solution to problem
(P) is given by

û(t, ξ) = Eα,1(−tα|ξ|4)û0(ξ) +
∫ t

0

(t− s)α−1Eα,α(−(t− τ)α|ξ|4)Ĝ(u)(τ, ξ) dτ.

Where Eα,1, Eα,α are Mittag-Leffler functions. Using the inverse Fourier transform,
we obtain

u(t, x) =
[
F−1

(
Eα,1(−tα|ξ|4)

)
∗ u0

]
(x)

+
∫ t

0

F−1
(
(t− τ)α−1Eα,α(−tα|ξ|4)

)
(x) ∗G(u(τ, x)) dτ,

where we have used the fact that f̂ ∗ g(τ) = f̂(τ)ĝ(τ). For convenience, we denote

K1,α(t, x) = F−1
(
Eα,1(−tα|ξ|4)

)
(x), K2,α(t, x) = F−1

(
tα−1Eα,α(−tα|ξ|4)

)
(x),
(2.2)

and set operators Zi,α(i = 1, 2) as follows:

Zi,α(t, x)v(t, x) = Ki,α(t, x) ∗ v(t, x) =
∫

RN

Ki,α(t, x− y)v(t, y) dy, i = 1, 2.

Then, we rewrite our solution formula in a concise form

u(t, x) = Z1,α(t, x)u0(x) +
∫ t

0

Z2,α(t− τ, x)G(u(τ, x)) dτ. (2.3)

Remark 2.1. It is worth noting that the above approach is similar to the common
one used to construct the fundamental solution for time-fractional problems with
second-order differential operators. Let us provide some remarks from interesting
studies about functional spaces in which the fundamental kernels are considered.

(i) The work [18] studies an evolution problem with the Caputo derivative of
order α ∈ (0, 1) and the Dirac delta distribution centred at x = 0 (the initial
data function). The solution formula of this problem is given by

u(ξ, t) = F−1
(
Eα,1

[
(a− 4π2b|ξ|2)tα]), a � 0, b > 0.

Then, based on it, the authors have made very interesting comments about
functional spaces to which the Fourier transform of the solution belongs. More
precisely, they showed that Fu(·, t) is in Lp(RN ) if and only if p ∈ (N/2,∞).
This result implies some different case for functional spaces depending on the
dimension N .
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(ii) In [27, § 3] the authors proved optimal decay estimates for solutions to a
time-fractional diffusion equation. Their solution is as follows:

u(x, t) =
∫

RN

Z(x− y, t)u0(y) dy, where F{Z}(ξ, t) = Eα,1

(− |ξ|2tα).
From the above, they deduced as a conclusion that Z(t) fails to belong to
Lp(RN ) for N � 4 and p � N

(N−2) .

These facts are important when using the fundamental solution to establish
well-posed results. In the spirit of the above studies, we also present some similar
comments on the estimates for kernels K1,α, K2,α in remark 2.3.

In order to achieve the standard smoothing effect of Zi,α(i = 1, 2), we also present
the mild solution in another form. To this end, we recall the definition of Mittag-
Leffler function via the M-Wright type function as follows:

Eα,1(−z) =
∫ ∞

0

Mα(ζ) e−zζ dζ, Eα,α(−z) =
∫ ∞

0

αζMα(ζ) e−zζ dζ, z ∈ C.

(2.4)

Then, we have the second type representation of the solution of problem (P1)

u(t, x) =
∫ ∞

0

Mα(ζ) [K (ζtα, x) ∗ u0(x)] dζ

+
∫ t

0

∫ ∞

0

(t− τ)α−1αζMα(ζ) [K (ζ(t− τ)α, x) ∗G(u(τ, x))] dζ dτ.

(2.5)

Due to the great impact of the operator K1,α, K2,α to our results for mild solutions,
we present the following Theorem which can be seen as the combination of theorem
3.1, theorem 3.2 and remark 1.6 of [41].

Theorem 2.2. Let X = Lp(RN )(1 � p <∞) or X = C0(RN ). Then, Z1,α(t) and
t1−αZ2,α(t) are bounded linear operators on X. In addition, for w ∈ X, t→
Z1,α(t), t→ t1−αZ2,α(t) are continuous functions from R+ to X.

Remark 2.2. In fact, although theorems of [41] can be applied for other spaces in
which Δ2 generates a strongly continuous semigroup, in this study, we only focus
on the spaces Lp(RN )(1 � p <∞) and C0(RN ).

We continue the study by introducing some useful Lp-estimates for the kernel
K1,α, K2,α by the following lemma.
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Lemma 2.3. Let p � 1 and k ∈ N be constants such that k < 4−N
(
1− 1

p

)
. Then,

there exist two constants Ck,p,Ck,p which depend only on α and N , such that∥∥∥DkK1,α(t)
∥∥∥

Lp
� Ck,p(α,N)t−

αN
4 −αk

4 + αN
4p (2.6)

and ∥∥∥DkK2,α(t)
∥∥∥

Lp
� Ck,p(α,N)tα−αN

4 −1+ αN
4p −αk

4 . (2.7)

Proof. Step 1. To verify the first inequality
In this step, we deal with the term K1,α(t, x). In fact, the representation of

K1,α(t, x) and (2.4) together with Fubini’s theorem allow us to deduce

K1,α(t, x) = F−1
(
Eα,1(−tα|ξ|4)

)
(x) = (2π)−N

∫
RN

ei<ξ,x>
(
Eα,1(−tα|ξ|4)

)
dξ

= (2π)−N
∫

RN

ei<ξ,x>
(∫ ∞

0

Mα(ζ) e−tαζ|ξ|4 dζ
)

dξ

= (2π)−N
∫ ∞

0

∫
RN

Mα(ζ) ei<ξ,x> e−tαζ|ξ|4 dξ dζ.

By setting ξ = ϑ(tαζ)−
1
4 , it is straightforward that dξ = (tαζ)−

N
4 dϑ and |ξ|4 =

(tαζ)−1|ϑ|4. Let us denote by

Bk(y) =
∫

RN

|ϑ|k ei<y,ϑ> e−|ϑ|4 dϑ, k � 0. (2.8)

By some simple transformations, we find the following equality

K1,α(t, x) =
∫ ∞

0

∫
RN

(tαζ)−
N
4Mα(ζ) ei<ϑ,x>t−

α
4 ζ− 1

4 e−|ϑ|4 dϑ dζ

= t−
αN
4

(∫ ∞

0

ζ−
N
4Mα(ζ)

∫
RN

ei<ϑ,x>t−
α
4 ζ− 1

4 e−|ϑ|4 dϑ dζ

)

= t−
αN
4

∫ ∞

0

ζ−
N
4Mα(ζ)B0(x(tαζ)−

1
4 ) dζ.

If we set x(tαζ)−
1
4 = z, then it follows immediately that dx = (tαζ)

N
4 dz. Applying

Minkowski’s inequality in integral form, we have

(∫
RN

∣∣∣∣∫ ∞

0

ζ−
N
4Mα(ζ)B0(x(tαζ)−

1
4 ) dζ

∣∣∣∣p dx

) 1
q

�
∫ ∞

0

(∫
RN

∣∣∣ζ−N
4Mα(ζ)B0(x(tαζ)−

1
4 )
∣∣∣p dx

) 1
q

dζ.
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It follows that∥∥∥K1,α(t, x)
∥∥∥

Lp
� t−

αN
4

∫ ∞

0

(∫
RN

∣∣∣ζ−N
4Mα(ζ)B0

(
x(tαζ)−

1
4

) ∣∣∣p(tαζ)
N
4 dz

) 1
p

dζ

= t−
αN
4 + αN

4p

(∫ ∞

0

ζ
N
4p−N

4Mα(ζ) dζ

)(∫
RN

∣∣∣B0(z)
∣∣∣p dz

) 1
p

.

By setting Θp,N = (
∫

RN

∣∣∣B0(z)
∣∣∣p dz)

1
p and using lemma A.2, we obtain the

following bound ∥∥∥K1,α(t)
∥∥∥

Lp
�

Θp,NΓ( N
4p − N

4 + 1)

Γ(αN
4p − αN

4 + 1)
t−

αN
4 + αN

4p . (2.9)

Next, let us consider the derivative of K1,α(t, x). It is easy to see that∥∥∥DK1,α(t)
∥∥∥

Lp
=
(∫

RN

∣∣DK1,α(t, x)
∣∣p dx

)1/p

.

We have a view on the modus of the boundness for the term DkK1,α(t, x) as follows:∣∣DkK1,α(t, x)
∣∣ � t−

αN
4

∫ ∞

0

ζ−
N
4Mα(ζ)

∣∣DkB0(x(tαζ)−
1
4 )
∣∣dζ (2.10)

It follows from |ϑ|k � Nk−1
∑N

j=1 |ϑj |k that

∣∣∣DkB0

(
x(tαζ)−

1
4 )
∣∣∣ � Nk−1

N∑
j=1

∣∣∣∣∣
∫

RN

(
iϑjt

−α
4 ζ−

1
4

)k

ei<ϑ,x>t−
α
4 ζ− 1

4 e−|ϑ|4 dϑ

∣∣∣∣∣
� Nk−1t−

αk
4 ζ−

k
4

∫
RN

|ϑ|k∣∣ ei<ϑ,x>t−
α
4 ζ− 1

4 e−|ϑ|4∣∣dϑ. (2.11)

Then, by using a new variable x(tαζ)−
1
4 = z and some simple calculations, we find

that ∫
RN

|ϑ|k∣∣ei<ϑ,x>t−
α
4 ζ− 1

4 e−|ϑ|4∣∣dϑ = Bk

(
z
)
. (2.12)

Combining (2.10)–(2.12),

∥∥∥DkK1,α(t, x)
∥∥∥

Lp
=

(∫
RN

∣∣∣DkK1,α(t, x)
∣∣∣p dx

) 1
p

� Nk−1

(∫
RN

∣∣∣∣∣t−αN
4 −αk

4

∫ ∞

0

Mα(ζ)ζ−
k
4−N

4 Bk

(
z
)
dζ

∣∣∣∣∣
p

dx

) 1
p

� Nk−1t−
αN
4 −αk

4

(∫
RN

∣∣∣ ∫ ∞

0

Mα(ζ)ζ−
k
4−N

4 Bk

(
z
)
dζ
∣∣∣p dx

) 1
p

.
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Applying Minkowski’s inequality in integral form and noting that dx = (tαζ)
N
4 dz,∥∥∥DkK1,α(t, x)

∥∥∥
Lp

� Nk−1t−
αN
4 −αk

4

(∫
RN

∣∣∣ ∫ ∞

0

Mα(ζ)ζ−
k
4−N

4 Bk

(
z
)
dζ
∣∣∣p dx

) 1
p

� Nk−1t−
αN
4 −αk

4

∫ ∞

0

(∫
RN

∣∣∣Mα(ζ)ζ−
k
4−N

4 Bk

(
z
)∣∣∣p(tαζ)

N
4 dz

) 1
p

dζ

� Nk−1t−
αN
4 −αk

4 + αN
4p

∫ ∞

0

ζ−
k
4−N

4 + N
4pMα(ζ)

(∫
RN

∣∣∣Bk(z)
∣∣∣p dz

) 1
p

dζ. (2.13)

Due to the condition 1− k
4 − N

4 + N
4p > 0 and lemma A.2, we obtain

∫ ∞

0

ζ−
k
4−N

4 + N
4pMα(ζ) dζ =

Γ
(
1− k

4 − N
4 + N

4p

)
Γ
(

−αk
4 − αN

4 + αN
4p + 1

)
and, together with (2.13), allow us to deduce the following boundness result∥∥∥DkK1,α(t, x)

∥∥∥
Lp

� Ck,p(α,N)t−
αN
4 −αk

4 + αN
4p ,

where we denote

Ck,p(α,N) =
Nk−1Γ

(
1− k

4 − N
4 + N

4p

)
Γ
(

−αk
4 − αN

4 + αN
4p + 1

) (∫
RN

∣∣∣Bk(z)
∣∣∣p dz

) 1
p

.

Step 2. Verify the second inequality
The representation of K2,α(t, x) and (2.4) together with Fubini’s theorem imply

K2,α(t, x) = F−1
(
tα−1Eα,α(−tα|ξ|4)

)
= tα−1

∫
RN

e−i<ξ,x>
(
Eα,α(−tα|ξ|4)

)
dξ

= tα−1 (2π)−N
∫

RN

ei<ξ,x>
(∫ ∞

0

αζMα(ζ) e−tαζ|ξ|4 dζ
)

dξ

= tα−1 (2π)−N
∫ ∞

0

αζMα(ζ)

(∫
RN

ei<ξ,x> e−tαζ|ξ|4 dξ

)
dζ. (2.14)

By setting ξ = ϑ(tαζ)−
1
4 , we deduce dξ = (tαζ)−

N
4 dϑ and |ξ|4 = (tαζ)−1|ϑ|4. Using

(2.14),

K2,α(t, x) = αtα−1

∫ ∞

0

ζ(tαζ)−
N
4Mα(ζ)

∫
RN

ei<ϑ,x>t−
α
4 η− 1

4 e−|ϑ|4dϑ dζ.
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By a similar argument as in step 1,∥∥∥K2,α(t, x)
∥∥∥

Lp

� αtα−αN
4 −1

∫ ∞

0

(∫
RN

∣∣∣∣∣ζ1−N
4Mα(ζ)B0(x(tαζ)−

1
4 )

∣∣∣∣∣
p

dx

) 1
p

dζ

= αtα−αN
4 −1

∫ ∞

0

(∫
RN

∣∣∣ζ1−N
4Mα(ζ)B0

(
x(tαζ)−

1
4

) ∣∣∣p(tαζ)
N
4 dz

) 1
p

dζ

= αtα−αN
4 −1+ αN

4p

(∫
RN

∣∣∣B0(z)
∣∣∣p dz

) 1
p ∫ ∞

0

ζ1+ N
4p−N

4Mα(ζ) dζ

=
αΘp,NΓ( N

4p − N
4 + 2)

Γ(αN
4p − αN

4 + 1 + α)
tα−αN

4 −1+ αN
4p .

Now, we estimate the derivative of the quantity K2,α. Let us recall the following
formula

K2,α(t, x) = tα−1−αN
4

∫ ∞

0

αζ1−N
4Mα(ζ)B0

(
xt−

α
4 ζ−

1
4
)
dζ.

In view of the boundedness of DK1,α(t, x), we have

∣∣DkK2,α(t, x)
∣∣ � tα−1−αN

4

∫ ∞

0

αζ1−N
4Mα(ζ)

∣∣DkB0(x(tαζ)−
1
4 )
∣∣dζ. (2.15)

It follows from |ϑ|k� Nk−1
∑N

j=1 |ϑj |k that

∣∣∣DkB0

(
xt−

1
4 η− 1

4
)∣∣∣ � Nk−1

N∑
j=1

∣∣∣∣∣
∫

RN

(
iϑjt

−α
4 ζ−

1
4

)k

ei<ϑ,x>t−
α
4 ζ− 1

4 e−|ϑ|4dϑ

∣∣∣∣∣
� Nk−1t−

αk
4 ζ−

k
4

∫
RN

|ϑ|k∣∣ ei<ϑ,x>t−
α
4 ζ− 1

4 e−|ϑ|4∣∣dϑ. (2.16)

By using substitution x(tαζ)−
1
4 = z, the second derivative with respect to x of

K2,α(t, x) is estimated by

∥∥∥DkK2,α(t, x)
∥∥∥

Lp
=

(∫
RN

∣∣∣DkK2,α(t, x)
∣∣∣p dx

) 1
p

� Nk−1

(∫
RN

∣∣∣∣∣tα−1−αN
4 −αk

4

∫ ∞

0

αζ1−N
4 − k

4Mα(ζ)
∫

RN

|ϑ|k
∣∣∣

× exp
(
i < ϑ, x > t−

1
4 ζ−

1
4

)
e−|ϑ|4

∣∣∣dϑ dζ

∣∣∣∣∣
p

dx

) 1
p

https://doi.org/10.1017/prm.2021.44 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.44


Well-posed results for time-fractional biharmonic equation 1001

= Nk−1

(∫
RN

∣∣∣∣∣tα−1−αN
4 −αk

4

∫ ∞

0

αMα(ζ)ζ1−N
4 − k

4 Bk

(
z
)
dζ

∣∣∣∣∣
p

dx

) 1
p

� Nk−1tα−1−αN
4 −αk

4

(∫
RN

∣∣∣ ∫ ∞

0

αMα(ζ)ζ1−N
4 − k

4 Bk

(
z
)
dζ
∣∣∣p dx

) 1
p

.

Applying Minkowski’s inequality in integral form, we find that∥∥∥DkK2,α(t, x)
∥∥∥

Lp

� Nk−1tα−1−αN
4 −αk

4

(∫
RN

∣∣∣ ∫ ∞

0

αMα(ζ)ζ1−N
4 − k

4 Bk

(
z
)
dζ
∣∣∣p dx

) 1
p

� Nk−1αtα−1−αN
4 −αk

4

∫ ∞

0

(∫
RN

∣∣∣Mα(ζ)ζ1−N
4 − k

4 Bk

(
z
)∣∣∣p(tαζ)

N
4 dz

) 1
p

dζ

� Nk−1αtα−αN
4 −1+ αN

4p −αk
4

∫ ∞

0

ζ1−N
4 + N

4p− k
4Mα(ζ)

(∫
RN

∣∣∣Bk(z)
∣∣∣p dz

) 1
p

dζ

= Nk−1α

(∫
RN

∣∣∣Bk(z)
∣∣∣p dz

) 1
p

tα−αN
4 −1+ αN

4p −αk
4

∫ ∞

0

ζ1−N
4 + N

4p− k
4Mα(ζ) dζ.

(2.17)

Let us continue by computing the integral term on the right-hand side (RHS)
of (2.4). Indeed, using lemma (5.2) and noting that 2− N

4 + N
4p − k

4 > 0, we
immediately derive

∫ ∞

0

ζ1−N
4 + N

4p− k
4Mα(ζ) dζ =

Γ
(
2− N

4 + N
4p − k

4

)
Γ
(
1 + α− αN

4 + αN
4p − αk

4

) . (2.18)

Combining (2.17) and (2.18), we find that there exists Ck,p(α,N) such that

∥∥∥DkK2,α(t, x)
∥∥∥

Lp
� Nk−1

(∫
RN

∣∣∣Bk(z)
∣∣∣p dz

) 1
p

×
αΓ

(
2− N

4 + N
4p − k

4

)
Γ
(
1 + α− αN

4 + αN
4p − αk

4

) tα−αN
4 −1+ αN

4p −αk
4 .

We end the proof here. �

Remark 2.3. Let us state some comments on the assumptions of the above lemma
as follows.
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(i) When p = 1 the assumption k < 4−N(1− 1
p ) implies that we can take k

from the set {0, 1, 2, 3}. In addition, when p = 1 and k = 0, from the facts
that Θ1,N = 1, α

Γ(1+α) < Γ(2) = 1, we can bound Ck,p and Ck,p by 1.

(ii) When k = 0, the assumption becomes N
4 (1− 1

p ) < 1. This assumption is
always satisfied whenever N � 4. On the other hand, when N � 5, we need to
consider the condition that p < N

N−4 further, if we want to apply this lemma.

(iii) When k � 1, we have a certain restriction on the hypothesis for p. For
example, when N = 4 the hypothesis 1 � p < N

N−k implies that p ∈ {1, 2, 3}.
In short, when using lemma 2.3, the larger k and dimension N , the more
restricted on the amount of p.

Remark 2.4. From [23, proposition 2.1], we can bound Θp,N by a constant ΘN

independent of p. This fact will be needed when we set up some linear estimates.

2.2. Space setting

Definition 2.4. Assume that a function Ξ : R+ ∪ {0} → R+ ∪ {0} is increasing
convex, right continuous at 0 and

lim
z→∞Ξ(z) =∞.

Then, we define the Orlicz space LΞ(RN ) in the following fashion

LΞ(RN ) =
{

ϕ ∈ L1
loc(R

N );
∫

RN

Ξ
( |ϕ(x)|

κ

)
dx <∞, for some κ > 0

}
.

Remark 2.5. The Orlicz space LΞ(RN ) mentioned above is a Banach space,
endowed with the Luxemburg norm

‖ϕ‖Ξ = inf
{

κ > 0;
∫

RN

Ξ
( |ϕ(x)|

κ

)
dx � 1

}
.

Remark 2.6. Let 1 < p <∞, by choosing Ξ(z) = zp, we can identify the space
LΞ(RN ) with the usual Lebesgue space Lp(RN ). For the sake of brevity, we set

‖·‖Lp+Lq := ‖·‖Lp(RN )∩Lq(RN ) , p, q ∈ [1;∞].

Definition 2.5. Let 1 � p <∞, in the rest of this study, we use the symbol
LΞ(RN ) to indicate the Orlicz spaces with Ξ(z) = e|z|

p − 1. We also denote

‖·‖Lq+Ξ := ‖·‖Lq(RN )∩LΞ(RN ) , q ∈ [1;∞].

Definition 2.6. Let 1 � p <∞. We define the following subspace of LΞ(RN )

LΞ
0 (RN ) =

{
ϕ ∈ L1

loc(R
N );

∫
RN

Ξ
( |ϕ(x)|

κ

)
dx <∞, for every κ > 0

}
.

Remark 2.7. It can be shown from [25] that LΞ
0 (RN ) = C∞

0 (RN )
LΞ(RN )

.
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From the previous definitions, we can note that the Orlicz space is a generaliza-
tion of the usual Lebesgue space. Let us introduce some of the useful embeddings
between Orlicz spaces and Lebesgue spaces that we will need in our main results
section.

Lemma 2.7. For every constants p, q satisfying 1 � p � q <∞, the embedding
LΞ(RN ) ↪→ Lq(RN ) holds. In addition,

‖ϕ‖Lq �
[
Γ
(

q

p
+ 1

)] 1
q

‖ϕ‖Ξ . (2.19)

Lemma 2.8. Given 1 � q � p, we have Lq(RN ) ∩ L∞(RN ) ↪→ LΞ
0 (RN ) � LΞ(RN ).

In particular, for any ϕ ∈ Lq(RN ) ∩ L∞(RN ) the following bound holds

‖ϕ‖Ξ � (log 2)
−1
p [‖ϕ‖Lq + ‖ϕ‖L∞ ] .

Lemma 2.9. Let p � 1 and α ∈ (0, 1). Then, we can find constants C1,h,C2,h,CΞ

such that the following results hold.

(i) Suppose that h ∈ [1, p] satisfies h > N/4, for any ϕ ∈ Lh(RN ), we have

‖Z1,α(t)ϕ‖Ξ � C1,ht
−αN
4h

[
log

(
1 + t

−αN
4

)]−1
p ‖ϕ‖Lh ,

‖Z2,α(t)ϕ‖Ξ � C2,ht
−αN
4q

[
log

(
1 + t

−αN
4

)]−1
p ‖ϕ‖Lh .

(ii) For any ϕ ∈ LΞ(RN ), we have

‖Z1,α(t)ϕ‖Ξ � ‖ϕ‖Ξ , ‖Z2,α(t)ϕ‖Ξ � tα−1 ‖ϕ‖Ξ .

Proof. Firstly, by using Young’s convolution inequality, there exists a constant q ∈
[1,∞] such that

‖Zi,α(t)ϕ‖Lp � ‖Ki,α(t)‖Lq ‖ϕ‖Lh . (2.20)

Then, thanks to lemma 2.3, we have

‖Z1,α(t)ϕ‖Lp �
ΘNΓ

(
1− N

4

(
1
h − 1

p

))
Γ
(
1− αN

4

(
1
h − 1

p

)) t
−αN

4 ( 1
h− 1

p ) ‖ϕ‖Lh ,

∥∥t1−αZ2,α(t)ϕ
∥∥

Lp = t1−α ‖Z2,α(t)ϕ‖Lp

�
αΘNΓ

(
2− N

4

(
1
h − 1

p

))
Γ
(
2− αN

4

(
1
h − 1

p

)) t
−αN

4 ( 1
h− 1

p ) ‖ϕ‖Lh .

We can show that the constants on the RHS of the above estimates can be
bounded by two constants C1,h,C2,h that are independent of p, respectively. In fact,
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by properties of the Gamma function when 0 < N
4

(
1
h − 1

p

)
< 1 < 29

20 , we obtain

‖Z1,α(t)ϕ‖Lp � ΘNΓ
(

1− N

4h

)
t
−αN

4 ( 1
h− 1

p ) ‖ϕ‖Lh .

On the other hand, the Gautschi inequality implies

Γ
(
2− N

4

(
1
h − 1

p

))
Γ
(
2− αN

4

(
1
h − 1

p

)) �
[
1− αN

4

(
1
h
− 1

p

)] (α−1)N
4 ( 1

h− 1
p )

�
(

1− αN

4h

) (α−1)N
4h

.

It follows that

∥∥t1−αZ2,α(t)ϕ
∥∥

Lp � αΘN

(
1− αN

4h

) (α−1)N
4h

t
−αN

4 ( 1
h− 1

p ) ‖ϕ‖Lh .

We are now ready to verify our main statements. Because the techniques are the
same, we will present only the proof for the second one, Z2,α(t)ϕ. We note that for
j � 1∥∥t1−αZ2,α(t)ϕ

∥∥pj

Lpj � C pj
2,ht

−αNpj
4 ( 1

h− 1
pj ) ‖ϕ‖pj

Lh � t
αN
4

[
C2,ht

−αN
4h ‖ϕ‖Lh

]pj

.

Then, the Taylor expansion of the exponential leads us to∫
RN

[
exp

(∣∣t1−αZ2,α(t)ϕ(x)
∣∣p

κp

)
− 1

]
dx =

∞∑
j=1

∥∥t1−αZ2,α(t)ϕ
∥∥pj

Lpj

j!κpj

� t
αN
4

∞∑
j=1

[
C2,ht

−αN
4h ‖ϕ‖Lh

]pj

j!κpj

= t
αN
4

[
exp

(
C2,ht

−αN
4h ‖ϕ‖Lh

κ

)p

− 1

]
.

(2.21)

Next, assume that the RHS of the above estimate is less than or equal 1. Then, we
can easily find that

C2,ht
−αN
4h

[
log

(
1 + t

−αN
4

)]−1
p ‖ϕ‖Lh � κ.

In view of (2.21), if we set

A :=
{

κ > 0;
∫

RN

[
exp

( |Z2,α(t)ϕ(x)|p
κp

)
− 1

]
dx � 1

}
,

B :=
{

κ > 0;C2,ht
−αN
4h

[
log

(
1 + t

−αN
4

)]−1
p ‖ϕ‖Lh � κ

}
,
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the cover result B ⊂ A holds. This implies that

inf A � inf B = C2,ht
−αN
4h

[
log

(
1 + t

−αN
4

)]−1
p ‖ϕ‖Lh .

We obtain the first results of this lemma. To prove the remaining result, we only
need to modify slightly inequality (2.21) in the following way

∫
RN

[
exp

(∣∣t1−αZ2,α(t)ϕ(x)
∣∣p

κp

)
− 1

]
dx =

∞∑
j=1

∥∥t1−αZ2,α(t)ϕ
∥∥pj

Lpj(RN )

j!κpj

�
∞∑

j=1

‖ϕ‖pj
Lpj(RN )

j!κpj
= exp

(‖ϕ‖Lp

κ

)p

− 1.

Then, our statements follow. �

Proposition 2.1. Assume that ϕ ∈ LΞ
0 (RN ). Then, we have

Z1,α(t)ϕ ∈ C
(
[0, T ];LΞ

0 (RN )
)
.

Proof. Since ϕ ∈ LΞ
0 (RN ), there exists a sequence {ϕn}n∈N ⊂ C∞

0 (RN ) such that
ϕn converges to ϕ with respect to LΞ(RN ) norm. This implies that, for any t > 0,
Z1,α(t)ϕn will converge to Z1,α(t)ϕ. Indeed, by applying lemma 2.9, we have

‖Z1,α(t)ϕn − Z1,α(t)ϕ‖Ξ � ‖ϕn − ϕ‖Ξ n→∞−−−−→ 0.

By taking two number t1, t2 > 0, the triangle inequality implies

‖Z1,α(t2)ϕ− Z1,α(t1)ϕ‖Ξ
� ‖Z1,α(t2)ϕn − Z1,α(t2)ϕ‖Ξ + ‖Z1,α(t1)ϕn − Z1,α(t1)ϕ‖Ξ

+ ‖Z1,α(t2)ϕn − Z1,α(t1)ϕn‖Ξ .

Combining lemma 2.9, the definition of LΞ
0 (RN ) and the application of theorem 2.2

for Lp(RN ) and C0(RN ){
limt2→t1 ‖Z1,α(t2)ϕn − Z1,α(t1)ϕn‖Lp = 0, ϕn ∈ C∞

0 (RN ),
limt2→t1 ‖Z1,α(t2)ϕn − Z1,α(t1)ϕn‖L∞ = 0, ϕn ∈ C∞

0 (RN ),

and {
limn→∞ ‖Z1,α(t1)ϕn − Z1,α(t1)ϕ‖Ξ = 0,

limn→∞ ‖Z1,α(t2)ϕn − Z1,α(t2)ϕ‖Ξ = 0.

Consequently, by an appropriate choice of n, the desired conclusion of this
proposition can be drawn easily. �

https://doi.org/10.1017/prm.2021.44 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.44


1006 A. Tuan Nguyen et al.

3. Time-fractional biharmonic equation with exponential nonlinearity

In this section, we investigate the IVP for the time-fractional biharmonic equation
with exponential nonlinearity{

∂α
0|tu(t, x) + Δ2u(t, x) = G(u(t, x)), in R+ × RN ,

u(0, x) = u0(x), in RN ,
(P1)

with the following assumptions of the initial function:

Assumption 1. The initial function u0 belongs to Lp(RN ) ∩ C0(RN ).

Assumption 2. The initial function u0 belongs to LΞ(RN ) or LΞ
0 (RN ).

3.1. Unique existence of mild solution under the first assumption for
the initial function

In this section, we investigate problem (P1) with the assumption that u0 belongs
to the space Lp(RN ) ∩ C0(RN ).

Theorem 3.1. Assume that u0 ∈ LΞ(RN ) ∩ C0(RN ). Then, there exists a unique
solution of problem (P1) that belongs to C

(
(0, T ];LΞ(RN ) ∩ C0(RN )

)
.

Proof. The proof is begun by fixing a constant  > 0 and choosing a small time

T < α

√
α−1

1 , where 1 is defined in (3.7). Next, we consider the following space

A :=

{
u ∈ C

(
(0, T ];LΞ(RN ) ∩ C0(RN )

)
; sup
t∈(0,T ]

‖u(t)− Z1,α(t)u0‖L∞+Ξ � 
}

,

and the operator F : A→ A given by

Fu(t) = Z1,α(t)u0 +
∫ t

0

Z2,α(t− τ)G(u(τ)) dτ. (3.1)

By Young’s convolution inequality and lemma 2.3, we have∥∥∥∥∥
∫

RN

K1,α(t, ·−y)u0(y) dy

∥∥∥∥∥
L∞

=
∥∥∥K1,α(t) ∗ u0

∥∥∥
L∞

� ‖K1,α(t)‖L1(RN )‖u0‖L∞ � ‖u0‖L∞ .

Then, for every u ∈ A, the following estimate holds

‖u(t)‖L∞+Ξ � ‖Z1,α(t)u0‖L∞+Ξ + ‖u(t)− Z1,α(t)u0‖L∞+Ξ

� 2(log 2)
−1
p ‖u0‖L∞+Ξ +  =: 0. (3.2)
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Our main goal is to prove that the integral equation (3.1) has a unique solution by
the fixed point argument. To this end, we present the following two steps.

Step 1. From (1.2), for any u ∈ A and t > 0, we deduce{
‖G(u(t))‖L∞ � L ‖u(t)‖mL∞ eκ‖u(t)‖p

L∞ � Lm
0 eκ�p

0 ,

‖G(u(t))‖Lp � L ‖u(t)‖mLmp eκ‖u(t)‖p
L∞ � Lm

0 eκ�p
0 (Γ(m + 1))

1
p ,

(3.3)

where we have used lemma 2.7 to achieve the second inequality. It follows that

‖G(u(t))‖L∞+Ξ � (log 2)
−1
p ‖G(u(t))‖Lp+L∞ + ‖G(u(t))‖L∞

� L
(
2 + (Γ(m + 1))

1
p

)
m

0 (log 2)
−1
p eκ�p

0 .

In addition, by using lemma 2.8 and applying theorem 2.2 with respect to the spaces
Lp(RN ), C0(RN ), for any τ, t ∈ (0, T ], we deduce

t1−αZ2,α(t)G(u(τ)) ∈ C
(
(0, T ];LΞ(RN ) ∩ C0(RN )

)
. (3.4)

Next, by taking a positive number h and r ∈ {t, t + h}, for any t � ξ, we obtain

(t + h− τ)α−1
∥∥(r − τ)1−αZ2,α(r − τ)G(u(τ))

∥∥
L∞+Ξ

� (t− τ)α−1 ‖G(u(τ))‖L∞+Ξ � C(t− τ)α−1.

Then, applying the Lebesgue dominated convergence theorem,

lim
h→0

∥∥∥∥∫ t

0

(t + h− ξ)α−1

[
Z2,α(t + h− τ)
(t + h− τ)α−1

− Z2,α(t− τ)
(t− τ)α−1

]
G(u(τ)) dτ

∥∥∥∥
L∞+Ξ

= 0.

(3.5)

On the other hand, using the fact that limh→0 |(t + h)α − hα − tα| = 0 and (3.4),
we further find that

lim
h→0

∥∥∥∥∫ t

0

[
(t + h− ξ)α−1 − (t− ξ)α−1

] Z2,α(t + h− τ)
(t + h− τ)α−1

G(u(τ)) dτ

∥∥∥∥
L∞+Ξ

= 0.

(3.6)

For the purpose of proving that the integral term on the RHS of (3.1) is continuous
on (0, T ], we also need the upcoming fact∫ t+h

t

‖Z2,α(t + h− τ)G(u(τ)) dτ‖L∞+Ξ dτ � Chα h→0−−−→ 0.

Taking into consideration the above limit results and applying theorem 2.2 to u0 ∈
Lp(RN ) ∩ C0(RN ), we can claim that Fu(t) is a continuous mapping on (0, T ].

Step 2. By using the Hölder inequality, for a constant ℵ ∈ [1,∞) and u1, u2 ∈ A,
we have

‖G(u1(τ))−G(u2(τ))‖Lp

� L

⎡⎣∑
j=1,2

∥∥∥|uj(τ)|m−1 eκ|uj(τ)|p
∥∥∥

L
ℵp

ℵ−1

⎤⎦ ‖u1(τ)− u2(τ)‖Lℵp .
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Since the embedding LΞ(RN ) ↪→ Lq(RN ) holds for any q ∈ [p,∞), and uj(τ) ∈
C0(RN )(j = 1, 2), the above inequality becomes

‖G(u1(τ))−G(u2(τ))‖Lp � 2L (Γ(ℵ+ 1))
1
ℵp

(
Γ
(ℵ(m− 1)
ℵ − 1

+ 1
))ℵ−1

ℵp

×m−1
0 eκ�p

0 ‖u1(τ)− u2(τ)‖Ξ .

On the other hand, it is a simple matter to check that

‖G(u1(τ))−G(u2(τ))‖L∞ � L

⎡⎣∑
j=1,2

‖uj(τ)‖m−1
L∞ eκ‖uj(τ)‖p

L∞

⎤⎦ ‖u1(τ)− u2(τ)‖L∞

� 2Lm−1
0 eκ�p

0 ‖u1(τ)− u2(τ)‖L∞ .

The two above results help us to deduce

‖G(u1(τ))−G(u2(τ))‖L∞+Ξ

� 2L

[
2 + (Γ(ℵ+ 1))

1
ℵp

(
Γ
(ℵ(m− 1)
ℵ − 1

+ 1
))ℵ−1

ℵp

]
× (log 2)

−1
p m−1

0 eκ�p
0 ‖u1(τ)− u2(τ)‖L∞+Ξ

=: 1 ‖u1(τ)− u2(τ)‖L∞+Ξ . (3.7)

Also, lemma 2.3 shows us that∥∥∥∥∥
∫

RN

K2,α(t− τ, x− y) [G(u1(τ, y))−G(u2(τ, y))] dy

∥∥∥∥∥
L∞

� ‖K2,α(t− τ, x)‖L1(RN ) ‖G(u1(τ))−G(u2(τ))‖L∞

� (t− τ)α−1 ‖G(u1(τ))−G(u2(τ))‖L∞ .

From this result and lemma 2.9, we find that

‖Fu1(t)−Fu2(t)‖L∞+Ξ �
∫ t

0

‖Z2,α(t− τ) [G(u1(τ))−G(u2(τ))]‖L∞+Ξ dτ

�
∫ t

0

(t− τ)α−1 ‖G(u1(τ))−G(u2(τ))‖L∞+Ξ dτ

� Tα1

α
sup

t∈(0,T ]

‖u1(t)− u2(t)‖L∞+Ξ .

By choosing u2 ≡ 0 and u1 ∈ A in step 2, we derive

sup
t∈(0,T ]

‖Fu1(t)− Z1,α(t)u0‖L∞+Ξ � Tα1

α
sup

t∈(0,T ]

‖u1(t)‖L∞+Ξ � .
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This result along with step 1 show that F is invariant on A. Furthermore, it is
obvious that A is a complete metric space with the metric

d(u, v) := sup
t∈(0,T ]

‖u(t)− v(t)‖L∞+Ξ .

Therefore, the Banach principle argument can be applied to conclude that F
has a unique fixed point, which means that there exists a unique solution of the
problem (P1) belonging to A. �

Lemma 3.2. Let u : (0, T ]→ LΞ(RN ) ∩ C0(RN ) be the unique mild solution of prob-
lem (P1). Then there exists a unique continuous extension u∗ of u on (0, T + h],
for some h > 0.

Proof. The main idea of the proof is to show that there exists a unique solution of
(P1) which belongs to the space

B =

{
w ∈ C

(
(0, T + h]; LΞ(RN ) ∩ C0(RN )

) ∣∣∣∣∣ w(t) = u(t), ∀t ∈ (0, T ]
supt∈[T,T+h] ‖w(t) − u(T )‖L∞+Ξ � �

}
,

where , h > 0 will be chosen later. To this end, let us consider the function J :
B→ B, satisfying

J w(t) = Z1,α(t)u0 +
∫ t

0

Z2,α(t− τ)G(u(τ)) dτ.

It is easily seen that for any t ∈ (0, T ], J (w(t)) = J (u(t)) = u(t). The continuity
result of J on (0, T + h] can be drawn by the same arguments as in theorem 3.1.
Our remaining part of proving the well definition of J is to find that if w ∈ B,
supt∈[T,T+h] ‖J (w(t))− u(T )‖L∞+Ξ � . Indeed, for any t ∈ [T, T + h], we have

‖J (w(t))− u(T )‖L∞+Ξ � ‖Z1,α(t)u0 − Z1,α(T )u0‖L∞+Ξ︸ ︷︷ ︸
(I)

+
∫ t

T

‖Z2,α(t− τ)G(u(τ))‖L∞+Ξ dτ︸ ︷︷ ︸
(II)

+
∫ T

0

∥∥∥ [Z2,α(t− τ)− Z2,α(T − τ)]G(u(τ))
∥∥∥

L∞+Ξ
dτ︸ ︷︷ ︸

(III)

.

• Choosing a sufficiently small h1 and using theorem 2.2, lemma 2.8, for every
t ∈ [T, T + h1], we can find that (I) � �

3 .
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• Choosing a sufficiently small h2, for every t ∈ [T, T + h2], we obtain

(II) �
L
(
2 + (Γ(m + 1))

1
p

) (‖u(T )‖L∞+Ξ + )m

(log 2)
1
p e−κ(‖u(T )‖L∞+Ξ+�)p

∫ T+h2

T

(t− τ)α−1 dτ

� C [(t− T )α − (t− T − h2)α] � 
3

.

• Choosing a sufficiently small h3 and repeating the arguments for (3.5), (3.6),
we can also find that

(III) � 
3

, for every t ∈ [T, T + h3].

Additionally, J is a contraction mapping on B if h = h4 is small enough. In
fact, for u1, u2 ∈ B, we have

‖J u1(t)−J u2(t)‖L∞+Ξ �
∫ t

T

(t− τ)α−1 ‖G(u1(τ))−G(u2(τ))‖L∞+Ξ dτ

�
2L

[
2 + (Γ(ℵ+ 1))

1
ℵp

(
Γ
(

ℵ(m−1)
ℵ−1 + 1

))ℵ−1
ℵp

]
αh−α

4 (log 2)
1
p (‖u(T )‖+ )1−m e−κ(‖u(T )‖+�)p

sup
t∈[T,T+h]

‖u1(t)− u2(t)‖L∞+Ξ

� L sup
t∈[T,T+h]

‖u1(t)− u2(t)‖L∞+Ξ .

Thanks to an appropriate choice of h4, L can be proved to be less than 1.
By setting h = min{h1, h2, h3, h4}, we can now apply the Banach principle argu-

ments to declare that the solution to problem (P1) has been extended to some
larger interval. �

Theorem 3.3. Let Tmax be the supremum of the set of all T > 0 such that problem
(P1) has a unique local solution on (0, T ]. Assume that G satisfies (1.2) and u0

belongs to Lp(RN ) ∩ C0(RN ). Then, we can conclude that Tmax =∞ or Tmax <∞
and lim supt→T−

max
‖u(t)‖L∞+Ξ =∞.

Proof. Arguing by contradiction, we assume that Tmax <∞ and there exist a
positive constant  <∞ such that

‖u(t)‖L∞+Ξ � . (3.8)

Let {tj}j∈N ⊂ (0, Tmax) satisfy tj
j→∞−−−→ Tmax. Our goal is to show that {u(tj)}j∈N

is a Cauchy sequence. To this end, let us take ta, tb ∈ {tj}j∈N, without loss of
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generality, we suppose that ta < tb. Then, we have

‖u(tb)− u(ta)‖L∞+Ξ � ‖Z1,α(tb)u0 − Z1,α(ta)u0‖L∞+Ξ

+
∫ tb

ta

‖Z2,α(Tmax − τ)G(u(τ))‖L∞+Ξ dτ

+
∫ ta

0

∥∥∥ [Z2,α(Tmax − τ)− Z2,α(ta − τ)] G(u(τ))
∥∥∥

L∞+Ξ
dτ

+
∫ tb

0

∥∥∥ [Z2,α(tb − τ)− Z2,α(Tmax − τ)] G(u(τ))
∥∥∥

L∞+Ξ
dτ.

Given ε > 0, let us consider some large enough constants j1, j2, j3 defined through
the following steps.

Step 1. Thanks to the property of Z1,α(t), we can choose a sufficiently large j1
such that

‖Z1,α(tb)u0 − Z1,α(ta)u0‖L∞+Ξ <
ε

4
, for any a, b � j1.

Step 2. For the sake of simplicity, let us set

∗ = L(log 2)
−1
p

(
2 + (Γ(m + 1))

1
mp

)
m e−κ�p

.

and choose a large j2 such that

|tj − Tmax| < εα

8∗ , for any j � j2.

Then, similar to the proof of theorem 3.1, it is easily seen that

∫ tb

ta

‖Z2,α(Tmax − τ)G(u(τ))‖L∞+Ξ dτ �
∫ tb

ta

(Tmax − τ)α−1 ‖G(u(τ))‖L∞+Ξ dτ

� ∗α−1 (|tb−Tmax|α + |ta−Tmax|α) <
ε

4
.

Step 3. The Lebesgue dominated convergence theorem helps us to find a sufficiently
large j3 such that, for any j � j3,∫ tj

0

‖[Z2,α(Tmax − τ)− Z2,α(tj − τ)] G(u(τ))‖L∞+Ξ dτ <
ε

4
.

Now choosing j0 = max{j1, j2, j3} yields that

‖u(ta)− u(tb)‖L∞+Ξ � ε, for every a, b � j0.
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Then, there exists a limit of the Cauchy sequence {u(tj)}j∈N in LΞ(RN ) ∩ C0(RN )
as j tends to infinity denoted by u∗. Hence, we can check that∥∥∥∥∥

∫ tj

0

Z2,α(tj − τ)G(u(τ)) dτ −
∫ Tmax

0

Z2,α(Tmax − τ)G(u(τ)) dτ

∥∥∥∥∥
L∞+Ξ

�
∫ tj

0

‖[Z2,α(tj − τ)− Z2,α(Tmax − ξ)] G(u(τ))‖L∞+Ξ dτ

+
∗(Tmax − tj)α

α

j→∞−−−→ 0.

It implies that

u∗ : = lim
j→∞

[
Z1,α(tj)u0 +

∫ tj

0

Z2,α(tj − τ)G(u(τ)) dτ

]
= Z1,α(Tmax)u0 +

∫ Tmax

0

Z2,α(Tmax − τ)G(u(τ)) dτ.

This result helps us to enlarge the solution u of the problem (P1) over the interval
[0, Tmax]. Therefore, lemma 3.2 is available to extend u to an interval that is larger
than [0, Tmax]. This fact contradicts our definition of Tmax. �

3.2. Well-posedness results under the second assumption on the initial
function

First of all, let us introduce the important nonlinear estimate for problem (P1).
To achieve this aim, we need the following lemma about the Gamma function, that
can be found in [22, lemma 3.3].

Lemma 3.4. For any p, q � 1, there exists a positive constant M̄ such that

[Γ(pq + 1)]
1
q � M̄Γ(p + 1)qp.

Lemma 3.5. Let u, v ∈ LΞ(RN ) and V = max{‖u‖Ξ , ‖v‖Ξ}. Then, for any h � p,
the following estimate holds

‖G(u)−G(v)‖Lh � ChVm−1
∞∑

j=0

(3hκVp)j ‖u− v‖Ξ .

Proof. From (1.2), by using Taylor expansion, for any u, v ∈ LΞ(RN ), one has

‖G(u)−G(v)‖Lh � L

∞∑
j=0

κj

j!
‖u− v‖L3h

×
(
‖u‖pj

L3hpj ‖u‖m−1
L3h(m−1) + ‖v‖pj

L3hpj ‖v‖m−1
L3h(m−1)

)
, (3.9)
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where we have used the Hölder inequality with 1
h = 1

3h + 1
3h + 1

3h . By the embed-
ding stated in lemma 2.7, the estimate (3.9) becomes

‖G(u)−G(v)‖Lh � 2LVm−1(Γ(3hp−1 + 1))
1
3h

(Γ(3h(m− 1)p−1 + 1))
−1
3h

‖u− v‖Ξ

×
∞∑

j=0

(
κj

j!
Vpj [Γ(3hj + 1)]

1
3h

)
. (3.10)

It follows from lemma 3.4 that

[Γ(3hj + 1)]
1
3h � M̄Γ (j + 1) (3h)j = M̄(3h)jj!.

Based on the above results, the following approximation is satisfied

‖G(u)−G(v)‖Lh � 2LVm−1(Γ(3hp−1 + 1))
1
3h

(Γ(3h(m− 1)p−1 + 1))
−1
3h

‖u− v‖Ξ
∞∑

j=0

(3hκVp)j . (3.11)

�

3.2.1. Local-in-time solution

Theorem 3.6. Let u0 be in LΞ(RN ) with sufficiently small data and h >
max{p, N

4 }. Then there exists a locally unique mild solution to problem (4.3),

belonging to an open ball centred at the origin with radius ε < (3hκ)
−1
p .

Proof. Our proof starts with the observation that

‖Z1,α(t)u0‖Ξ � ‖u0‖Ξ , t > 0, (3.12)

where we have used lemma 2.9. In addition, for any u, v ∈ L∞ (
0, T ;LΞ(RN )

)
, T >

0, lemma 3.5 implies for a fixed constant h > max{p, N
4 } and t ∈ (0, T ) that∫ t

0

(t− τ)α(1− N
4h )−1 ‖G(u(τ))−G(v(τ))‖Lh dτ

� Ch

∞∑
j=0

(3hκ)j

∫ t

0

(t− τ)α(1− N
4h )−1 ‖u(τ)− v(τ)‖Ξ [V(τ)]m−1+pj dτ

� ChTα(1− N
4h )

α
(
1− N

4h

) ‖u− v‖L∞
T Ξ ‖V‖m−1

L∞
T Ξ

∞∑
j=0

(3hκ ‖V‖pL∞
T Ξ)j ,

here we set V(t) = max{‖u(t)‖Ξ , ‖v(t)‖Ξ}. Next, for purpose of using the fixed
point principle, let us define the following mapping

G u(t) = Z1,α(t)u0 +
∫ t

0

Z2,α(t− τ)G(u(τ)) dτ, (3.13)

https://doi.org/10.1017/prm.2021.44 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.44


1014 A. Tuan Nguyen et al.

which maps a closed ball BL∞(0,T ;LΞ(RN ))(0, ε) to itself, provided that ε < (3hκ)
−1
p

and T satisfies

max
{

C0, h
h−1

(α,N)Ch,C0,1(α,N)Cp

}
α(log 2)

1
p (1− 3hκεp)

[(
1− N

4h

)−1

Tα(1− N
4h ) + Tα

]
εm−1 � 1

2
.

We first prove the invariance of BL∞(0,T ;LΞ(RN ))(0, ε) under the action of G . Indeed,
the Young convolution inequality and lemma 2.3 imply∥∥∥∥∫

RN

K2,α(t− τ, x− y) [G(u(τ, y))−G(v(τ, y))] dy

∥∥∥∥
L∞

� ‖K2,α(t− τ, x)‖
L

h
h−1
‖G(u(τ))−G(v(τ))‖Lh

� C0, h
h−1

(α,N)(t− τ)α(1− N
4h )−1 ‖G(u(τ))−G(v(τ))‖Lh . (3.14)

This result leads us to

‖G u− G v‖L∞
T L∞

x
� C0, h

h−1
(α,N)

∫ t

0

(t− τ)α(1− N
4h )−1 ‖G(u(τ))−G(v(τ))‖Lh dτ.

In (3.14) and the above inequality, if we take v ≡ 0, then from the property of
geometric series, the following holds

‖G u− Z1,α(·)u0‖L∞
T L∞

x

� C0, h
h−1

(α,N)Ch

[
α

(
1− N

4h

)]−1

Tα(1− N
4h )εm

⎡⎣ ∞∑
j=0

(3hκεp)j

⎤⎦
= C0, h

h−1
(α,N)Ch

[
α

(
1− N

4h

)]−1

Tα(1− N
4h )εm(1− 3hκεp)−1.

Similarly, we also obtain the following estimate for the Lp(RN ) norm

‖G u− Z1,αu0‖L∞
T Lp

x
� C0,1(α,N)Cpα

−1Tαεm

⎡⎣ ∞∑
j=0

(3hκεp)j

⎤⎦
= C0,1(α,N)Cpα

−1Tαεm(1− 3pκεp)−1.

It follows from the above results that

‖G u‖L∞
T Ξ � ‖Z1,αu0‖L∞

T Ξ + (log 2)
−1
p

×
(
‖G u− Z1,αu0‖L∞

T L∞
x

+ ‖G u− Z1,αu0‖L∞
T Lp

x

)
� ‖u0‖Ξ +

max
{

C0, h
h−1

(α,N)Ch,C0,1(α,N)Cp

}
α(log 2)

1
p (1− 3hκεp)

×
[(

1− N

4h

)−1

Tα(1− N
4h ) + Tα

]
εm � ε,
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where we have used the smallness assumption for the initial data function that
2 ‖u0‖Ξ � ε < (3hκ)

−1
p . Hence, the invariance property of G is ensured. Further-

more, by using analogous arguments and the chosen time T , we can easily show
that G is a strict contraction on BL∞(0,T ;LΞ(RN ))(0, ε). Then, the Banach princi-
ple argument yields that our problem has a unique local-in-time mild solution in
L∞ (

0, T ;LΞ(RN )
)

and the proof is complete. �

3.2.2. Global-in-time well-posedness results

Lemma 3.7 (see [14, lemma 8)]. Let m,n > −1 such that m + n > −1. Then

sup
t∈[0,T ]

th
∫ 1

0

sm(1− s)n e−μt(1−s)ds
μ−→∞−−−−−−−−→ 0.

Definition 3.8. Let X be a Banach space. Then, we denote by L∞
a,b ((0, T ];X) the

subspace of L∞(0, T ;X) such that

sup
t∈(0,T ]

ta e−bt ‖ϕ(t)‖X <∞, ϕ ∈ L∞
a,b ((0, T ];X) .

for some positive numbers a, b.

Theorem 3.9. Assume that the initial function u0 belongs to LΞ
0 (RN ) and

m = 1. Then, problem (P1) has a unique solution in C
(
(0, T ];Lq(RN )

) ∩
L∞

a,b

(
(0, T ];LΞ

0 (RN )
)

for a ∈ (0, 1) and some b0 > 0. Furthermore, if N < 4p, a <

min{ 1
2 , αN

4p }, we have

‖u(t)‖Lp � Ct−a eb0t ‖u0‖Ξ . (3.15)

Proof. The proof starts by handling the nonlinear source term on the RHS of the
first equation of problem (P1). For every u ∈ L∞

a,b

(
(0, T ];LΞ

0 (RN )
)
, we can choose

two functions u1, u2 such that⎧⎪⎨⎪⎩
u(t) = u1(t) + u2(t) ∀t ∈ (0, T ],
u1(t) ∈ C∞

0 (RN ), ∀t ∈ (0, T ],
‖u2(t)‖Ξ < (3hκ2p−1)

−1
p , ∀t ∈ (0, T ].

(3.16)

For brevity, we set

CT := sup
u∈L∞

a,b((0,T ];LΞ
0 (RN ))

{
sup

t∈(0,T ]

{
|u1(t)| : u1(t) satisfies (3.16)

}}
.

Then, for any h ∈ [p,∞),

‖G(u(t))−G(v(t))‖Lh � L
∥∥∥|u(t)− v(t)|

(
eκ|u1(t)+u2(t)|p + eκ|v1(t)+v2(t)|p

)∥∥∥
Lh

.
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Using the inequality (a + b)q < 2p−1(aq + bq) for a, b > 0, q > 1, we obtain

‖G(u(t))−G(v(t))‖Lh

� L
∥∥∥|u(t)− v(t)|

(
eκ2p−1|up

1(t)+up
2(t)| + eκ2p−1|vp

1 (t)+vp
2 (t)|

)∥∥∥
Lh

� L eκ2p−1C p
T

∥∥∥|u(t)− v(t)|
(
eκ2p−1|up

2(t)| + eκ2p−1|vp
2 (t)|

)∥∥∥
Lh

.

Then, it follows from lemmas 3.5 and 2.7 that

‖G(u(t))−G(v(t))‖Lh

� C ‖u(t)− v(t)‖Ξ
∞∑

j=0

(
3hκ2p−1

[
max

w∈{u2,v2}

{
sup

t∈(0,T ]

‖w(t)‖Ξ
}]p)j

. (3.17)

Then, by (3.16), the following nonlinear estimate holds

‖G(u(t))−G(v(t))‖Lh � C ‖u(t)− v(t)‖Ξ . (3.18)

Now, we define the following set

O :=

{
u ∈ C

(
(0, T ];Lp(RN )

) ∩ L∞
a,b

(
(0, T ];LΞ

0 (RN )
) ∣∣ sup

t∈(0,T ]

ta e−bt ‖u(t)‖Ξ <∞
}

and a mapping H that maps O to itself, formulated by

H u(t) = Z1,α(t)u0 +
∫ t

0

Z2,α(t− τ)G(u(τ)) dτ. (3.19)

Since u0 ∈ LΞ
0 (RN ), lemma 2.1 ensures the continuity on (0, T ] of the first term on

the RHS of (3.19). Furthermore, combining (3.18) and the same argument as in
theorem 3.1, we have

H u− Z1,αu0 ∈ C
(
(0, T ];Lp(RN )

)
.

In addition, for any u ∈ O, H u is completely bounded in time. Notice also that
u ∈ L∞

a,b

(
(0, T ];LΞ

0 (RN )
)
. Then, the Young convolution inequality and lemma 2.3

imply that

‖H u(t)− Z1,α(t)u0‖L∞

�
∫ t

0

‖Z2,α(t− τ)G(u(τ))‖L∞ dτ

�
∫ t

0

(t− τ)α(1− N
4h )−1 ‖G(u(τ))‖Lh dτ, for h > max

{
N

4
, p

}
.
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By using (3.18), we obtain

‖H u(t)− Z1,α(t)u0‖L∞ � C sup
t∈(0,T ]

‖u(t)‖Ξ
(∫ t

0

(t− τ)α(1− N
4h )−1 dτ

)

=
CTα(1− N

4h )

α
(
1− N

4h

) sup
t∈(0,T ]

‖u(t)‖Ξ .

Likewise, we also have

‖H u(t)− Z1,α(t)u0‖Lp � C sup
t∈(0,T ]

‖u(t)‖Ξ
(∫ t

0

(t− τ)α−1 dτ

)
= CTαα−1 sup

t∈(0,T ]

‖u(t)‖Ξ .

From two results above, lemmas 2.8 and 2.9, the conclusion H u ∈
L∞,∗ ((0, T ];LΞ

0 (RN )
)

can be drawn through the following one

‖H u(t)‖Ξ � ‖Z1,α(t)u0‖Ξ + ‖H u(t)− Z1,α(t)u0‖Ξ
� ‖u0‖Ξ + C

(
Tα(1− N

4h ) + Tα
)

sup
t∈(0,T ]

‖u(t)‖Ξ .

We note that O is a complete metric space with the metric

dO(u, v) := sup
t∈(0,T ]

ta e−bt ‖u(t)− v(t)‖Ξ .

The remaining part of this proof is to show that H is a strict contraction on O
with respect to the above metric. Indeed, for any u, v ∈ O, we have

ta e−bt ‖H u(t)−H v(t)‖Lp+L∞

�
∫ t

0

(t− τ)α−1 ‖Z2,α(t− τ) [G(u(τ))−G(v(τ))]‖Lp+L∞ dτ

� ta e−bt

∫ t

0

(t− τ)α−1 ‖G(u(τ))−G(v(τ))‖Lp+L∞ dτ

� CdO(u, v)ta
∫ t

0

τ−a
[
(t− τ)α−1 + (t− τ)α(1− N

4h )−1
]

e−b(t−τ) dτ. (3.20)

Using the substitution technique, the latter inequality becomes

ta e−bt ‖H u(t)−H v(t)‖Lp+L∞

� CdO(u, v)tα
∫ 1

0

τ−a(1− τ)α−1 e−bt(1−τ) dτ

+ CdO(u, v)tα(1− N
4h )

∫ 1

0

τ−a(1− τ)α(1− N
4h )−1 e−bt(1−τ) dτ.
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Choosing 0 < a < α < 1 and 4h > N , we use lemma 3.7 to obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩
lim

b→∞
sup

t∈(0,T ]

tα
∫ 1

0

τ−a(1− τ)α−1 e−bt(1−r) dτ = 0,

lim
b→∞

sup
t∈(0,T ]

tα(1− N
4h )

∫ 1

0

τ−a(1− τ)α(1− N
4h )−1 e−bt(1−r) dτ = 0.

Hence, there exists a large number b0 such that the following holds

ta e−b0t ‖H u(t)−H v(t)‖Lp+L∞ � L(log 2)−p dO(u, v),

where L is a positive constant less than 1. This implies that

dO(H u,H v) � LdO(u, v).

Therefore, H has a unique fixed point in O. Therefore, we can conclude that there
exists a unique solution to problem (P1).

Next, let us verify the correctness of the statement (3.15) as N < 4p. Firstly, if
t � 1, we have

ta e−b0t ‖Z1,α(t)u0‖Lp � C ‖Z1,α(t)u0‖Lp � C ‖u0‖Lp � C ‖u0‖Ξ .

In addition, if t > 1, by using the Cauchy inequality and lemma 2.9, we obtain

ta e−b0t ‖Z1,α(t)u0‖Lp � C ‖Z1,α(t)u0‖Ξ

� Cta−
αN
4p

[
log

(
2t

−αN
8

)]−1
p ‖u0‖Lp � C ‖u0‖Ξ ,

where we have used the assumption that a � αN
4p . On the other hand, if u ∈

L∞ (
(0, T ];LΞ

0 (RN )
)
, we can use (3.18) to derive the following estimate

‖G(u(t))‖Lp � C ‖u(t)‖Ξ .

It follows immediately that

ta e−b0t

∫ t

0

(t− τ)α−1 ‖Z2,α(t)(t− τ)G(u(τ))‖Lp dτ

� Cta e−b0t

∫ t

0

(t− τ)α−1 ‖Z2,α(t− τ)u(τ)‖Ξ dτ.

Thanks to the assumption that N < 4p, lemma 2.9 implies

ta e−b0t ‖u(t)− Z1,α(t)u0‖Lp � Cta e−b0t

∫ t

0

(t− τ)α(1− N
4p )−1

×
[
log

(
1 + (t− τ)

−αN
4

)]−1
p ‖u(τ)‖Lp dτ.
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Thanks to the Hölder inequality,

ta e−b0t ‖u(t)− Z1,α(t)u0‖Lp

� C

(
t2a

∫ t

0

(t− τ)α(1− N
4p )−1

[
log

(
1 + (t− τ)

−αN
4

)]−2
p

τ−2a e−2b0(t−τ) dτ

) 1
2

×
(∫ t

0

(t− τ)α(1− N
4p )−1

[
τa e−b0τ ‖u(τ)‖Lp

]2
dτ

) 1
2

To deal with the log term, let us denote by γ the infimum of the set {z > 0 : z >

2 log(1 + z)}. If t
−αN

4 > γ, the results will be covered by the opposite case, for this
reason, we only need to consider the case t

−αN
4 > γ. As t

−αN
4 > γ, thanks to lemma

3.7, the two following claims will be obtained.

Claim 1. If τ � t− γ
−4
αN , we have (t− τ)

αN
4 < γ. This one implies that

log
(
1 + (t− τ)

−αN
4

)
>

(t− τ)
−αN

4

2
, for 0 < τ � t− γ

−4
αN .

Based on the above inequality, one can derive that

t2a

∫ t−γ
−4
αN

0

(t− τ)α(1− N
4p )−1

[
log

(
1 + (t− τ)

−αN
4

)]−2
p

τ−2a e−2b0(t−τ) dτ

� Ct2a

∫ t−γ
−4
αN

0

(t− τ)α(1+ N
4p )−1τ−2a e−2b0(t−τ) dτ

� Ct
α(1+ N

4p )
∫ 1

0

(1− r)α(1+ N
4p )−1τ−2a e−2b0t(1−τ) dτ � C. (3.21)

Claim 2. On the contrary, if t− r < γ
−4
αN , we have

t2a

∫ t

t−γ
−4
αN

(t− τ)α(1− N
4p )−1

[
log

(
1 + (t− τ)

−αN
4

)]−2
p

τ−2a e−2b0(t−τ) dr

� Ct2a[log(1 + γ)]
−2
p

∫ t

t−γ
−4
αN

(t− τ)α(1− N
4p )−1τ−2a e−2b0(t−τ) dτ

� t
α(1− N

4p )
∫ 1

0

(1− r)α(1− N
4p )−1τ−2a e−2b0t(1−τ) dτ � C.

Combining the above results, the triangle inequality and the inequality (a + b)2 �
2(a2 + b2) we deduce

t2a e−2b0t ‖u(t)‖2Lp � C ‖u0‖2Ξ + C

∫ t

0

(t− τ)α(1− N
4p )−1

[
τa e−b0τ ‖u(τ)‖Lp

]2
dτ.

Now, we are in the position to apply the Grönwall inequality to achieve the desired
result

‖u(t)‖Lp � Ct−a eb0t ‖u0‖Ξ . �
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4. Time-fractional Cahn–Hilliard on the unbounded domain RN

In this section, we consider the following time-fractional Cahn–Hilliard on RN

{
∂α
0|tu(t, x) + Δ2u(t, x)−ΔF (t, x, u) = 0, in R+ × RN ,

u(0, x) = u0(x), in RN .
(P2)

Lemma 4.1 (see [35]). If 1 � b � p � d and v ∈ Lb(RN ) ∩ Ld(RN ), then v ∈
Lp(RN ) where

‖u‖Lp � ‖u‖αLb‖u‖1−α
Ld ,

1
p

=
α

b
+

1− α

d
(4.1)

We first consider the following linear problem

{
Dα

t û(t, ξ) + |ξ|4û(t, ξ) = Δ̂F (t, ξ), in (0, T ]× RN ,

û(0, ξ) = û0(ξ), in RN ,
(4.2)

As in the previous section, by the Duhamel principle, the solution to problem (4.2)
is given by

û(t, ξ) = Eα,1(−tα|ξ|4)û0(ξ) +
∫ t

0

(t− s)α−1Eα,α(−(t− τ)α|ξ|4)Δ̂F (τ, ξ) dξ (4.3)

To deal with the source term in the form of ΔH, we have to do some revisions
to the generalized formula of solution. Applying the fact that d

dx (f(x) ∗ g(x)) =
( d
dxf(x)) ∗ g(x), we immediately have that

ΔZi,α(t)v(x) = Δ
(
Ki,α(t, x) ∗ v(t, x)

)
=
(
Δv(t, x)

)
∗Ki,α(t, x)

=
∫

RN

ΔKi,α(t, x− y)v(t, y) dy, i = 1, 2.

Next, we show that u satisfies the following equality

u(t, x) = Z1,α(t)u0(x)︸ ︷︷ ︸
I1(t,x)

+
∫ t

0

ΔZ2,α(t− s)F (u(s, x)) ds︸ ︷︷ ︸
I2(t,x)

.

Using (2.2), we infer that the Fourier transform of the first quantity I1(t, x) is
given by

Î1(t, ξ) = ̂K1,α ∗ u0 = K̂1,αû0 = Eα,1(−t|ξ|4)û0(ξ).

https://doi.org/10.1017/prm.2021.44 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.44


Well-posed results for time-fractional biharmonic equation 1021

It is not difficult to verify that the Fourier transformation of the given second
quantity I2(t, x) is as follows:

Î2(t, ξ) =
∫

RN

e−i<ξ,x>

∫ t

0

ΔZ2,α(t− τ)F (u(τ, x)) dτ dx

=
∫ t

0

(∫
RN

e−i<ξ,x>K2,α(t− τ)ΔF (u(τ, x)) dx
)

dτ

=
∫ t

0

F
((

ΔF (u(τ, x))
)
∗K2,α(t− τ, x)

)
dτ

=
∫ t

0

K̂2,α(t− τ, ξ)Δ̂F (u(τ, x)) dτ

where we have used the formula F(f ∗ g) = f̂ ĝ, and from the following fact

K̂2,α(t− τ, ξ) = (t− τ)α−1Eα,α

(− (t− τ)α|ξ|4),
we arrive at the following equality

Î2(t, ξ) =
∫ t

0

(t− s)α−1Eα,α(−(t− s)α|ξ|4)Δ̂F (u(s, ξ)) dξ.

We establish the local well-posedness of solutions for problem (P2) with small initial
data in RN by using Kato’s method (see [29]). More precisely, our main result in
this section can be stated as follows.

Theorem 4.2. Let α > 1
2 and E > 0 be a sufficientl y small constant. Assume that

‖u0‖L∞ � E and max
|z|�E

L∑
k=1

∣∣∣DkF (z)
∣∣∣ = A.

Then, problem (P2) has a unique solution u(t, x) on the strip

PT0 =
{

(t, x) : 0 < t � T0, x ∈ RN
}

such that

‖u(t)‖L∞ � 2E , 0 � t � T0. (4.4)

Here T0 is given by

T0 � min

{
1,

(
αΓ(α/2 + 1)

4
( ∫

RN

∣∣∣B2(z)
∣∣∣dz

)
AΓ

(
3
2

)
Γ(α/2)

) 2
α

,

×
(

αΓ(α/2 + 1)

4
( ∫

RN

∣∣∣B2(z)
∣∣∣dz

)
AΓ

(
3
2

)) 2
α

}
. (4.5)
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In addition, for each partition 0 < t1 < t2 < · · · < tN < t � T0, it holds the follow-
ing estimate

‖Dku(t)‖L∞ � (t− tk)−
αk
4 Qk(E , α, tk − t1, t− tk), tk < t � T0,

where Qk is a continuous increasing function of t− tk.

Proof. Let us consider the following integral

u(t, x) =
∫

RN

K1,α(t, x− y)u0(y) dy +
∫ t

0

∫
RN

K2,α(t− τ, x− y)F (u(τ, y)) dτ.

(4.6)
First, we show that for T0 defined by (4.5), the integro-differential equation (4.6)
admits a unique continuous solution u(t, x) on the strip PT0 . We apply the
successive approximations method given in [29]. Let us consider the following
sequence

v0(t, x) = u0(x),

vn(t, x) =
∫

RN

K1,α(t, x− y)u0(y) dy

+
∫ t

0

∫
RN

ΔK2,α(t− τ, x− y)F (vn−1(τ, y)) dy dτ (4.7)

= Z1,α(t)u0(x) +
∫ t

0

ΔZ2,α(t− τ)F (vn−1(τ, x)) dτ. (4.8)

It is easy to see that vn is well defined on [0,∞)× RN . For n = 0, we have imme-
diately that ‖v0‖L∞ = ‖u0‖L∞ � E . Thus, we apply inequality (2.9) for p = 1 to
derive

∥∥∥K1,α(t)
∥∥∥

L1(RN )
�

( ∫
RN

∣∣∣B0(z)
∣∣∣dz

)
Γ(1)

Γ(1)
�1, (4.9)

where we have used the fact that
∫

RN

∣∣∣B0(z)
∣∣∣dz =

∫
RN

∣∣∣ ∫
RN eizϑ e−|ϑ|4dϑ

∣∣∣dz = 1.
Now, we apply induction method to show the following inequality

|||vj |||PT0
= sup

(t,x)∈PT0

|vj(t, x)| � 2E , j � 1. (4.10)

For n = 1, we recall the result based on the Young convolution inequality and (4.9)
as follows∥∥∥∥∥

∫
RN

K1,α(t, ·−y)u0(y) dy

∥∥∥∥∥
L∞

=
∥∥∥K1,α(t) ∗ u0

∥∥∥
L∞

� ‖K1,α(t)‖L1(RN )‖u0‖L∞ � ‖u0‖L∞ � E . (4.11)
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Let us continue to verify that∥∥∥∥∥
∫ t

0

ΔZ2,α(t− τ)F (v0(τ, x)) dτ

∥∥∥∥∥
L∞

=

∥∥∥∥∥
∫ t

0

∫
RN

ΔK2,α(t− τ, x− y)F (v0(τ, y))dy dτ

∥∥∥∥∥
L∞

�
∫ t

0

∥∥∥∥∥
∫

RN

ΔK2,α(t− τ, x− y)F (v0(τ, y))dy

∥∥∥∥∥
L∞

dτ

�
∫ t

0

‖ΔK2,α(t− τ, x)‖L1(RN )‖F (v0(τ, x))‖L∞ dτ.

By taking p = 1 and k = 2 into inequality (2.7), we obtain the following bound
immediately

∥∥∥ΔK2,α(t, x)
∥∥∥

L1(RN )
=
∥∥∥D2K2,α(t, x)

∥∥∥
L1(RN )

�

( ∫
RN

∣∣∣B2(z)
∣∣∣dz

)
Γ
(

3
2

)
Γ
(
1 + α

2

) t
α
2 −1,

(4.12)

which combined with the condition

‖F (v0(s, x))‖L∞ � A sup
(t,x)∈S0

|v0(t, x)|, (4.13)

imply ∥∥∥∥∥
∫ t

0

ΔZ2,α(t− s)F (v0(s, x)) ds

∥∥∥∥∥
L∞

�

( ∫
RN

∣∣∣B2(z)
∣∣∣dz

)
AΓ

(
3
2

)
Γ
(
1 + α

2

) sup
(t,x)∈S0

|v0(t, x)|
∫ t

0

(t− s)α/2−1 ds

�

( ∫
RN

∣∣∣B2(z)
∣∣∣dz

)
AΓ

(
3
2

)
Γ
(
1 + α

2

) 2tα/2

α
2E

�
4
( ∫

RN

∣∣∣B2(z)
∣∣∣dz

)
AΓ

(
3
2

) |T0|α/2E
αΓ

(
1 + α

2

) � E . (4.14)

Estimates (4.11) and (4.14) yield that

sup
(t,x)∈S0

|v1(t, x)| �
∥∥∥T1,α(t)u0

∥∥∥
L∞

+

∥∥∥∥∥
∫ t

0

ΔT2,α(t− τ)F (v0(τ, x)) ds

∥∥∥∥∥
L∞

� E + E = 2E ,
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where T0 is given by (4.5). Let us assume that sup(t,x)∈S0
|vn(t, x)| � 2E , n � 1.

Then for any (t, x) ∈ S0, it follows

|vn+1(t, x)| �
∥∥∥∥∥
∫

RN

K1,α(t, x− y)u0(y) dy

∥∥∥∥∥
L∞

+

∥∥∥∥∥
∫ t

0

∫
RN

ΔK2,α(t, x− y)F (vn(τ, y))dy dτ

∥∥∥∥∥
L∞

�
∥∥K1,α(t, x)

∥∥
L1(RN )

‖u0‖L∞

+
∫ t

0

∥∥ΔK2,α(t, x)
∥∥

L1(RN )

∥∥F (vn(τ, x))
∥∥

L∞ dτ

� E +

( ∫
RN

∣∣∣B2(z)
∣∣∣dz

)
AΓ

(
3
2

)
Γ
(
1 + α

2

) sup
(t,x)∈S0

|vn(t, x)|
∫ t

0

(t− τ)α/2−1 dτ

� E +
4
( ∫

RN

∣∣∣B2(z)
∣∣∣dz

)
AΓ

(
3
2

) |T0|α/2E
αΓ

(
1 + α

2

) � 2E ,

where it follows from (4.5) that 4(
∫

RN |B2(z)|dz)AΓ( 3
2 )|T0|α/2

αΓ(1+ α
2 ) � 1. The latter inequality

is true for j = n and, by induction, we deduce that (4.10) holds for any j � 0.
In the following, we show that the following estimate holds for j � 0

sup
x∈RN

|vj+1(t, x)− vj(t, x)| � (Cαt
α
2 )j+1

Γ(αj
2 + α

2 + 1)
, (4.15)

where Cα is given by

Cα = 4
(∫

RN

∣∣∣B2(z)
∣∣∣dz

)
AΓ

(
3
2

)
max

(E
α

,
Γ(α/2)

2Γ(α/2 + 1)

)
. (4.16)

Indeed, for j = 0, using (4.12) and (4.13), we find that

sup
x∈RN

∣∣∣v1(t, x)− v0(t, x)
∣∣∣ �

∥∥∥∥∥
∫ t

0

ΔK2,α(t− τ)F (v0(τ, x)) ds

∥∥∥∥∥
L∞

�
∫ t

0

‖ΔK2,α(t− τ, x)‖L1(RN )‖F (v0(τ, x))‖L∞ dτ

�
2E
( ∫

RN

∣∣∣B2(z)
∣∣∣dz

)
AΓ

(
3
2

)
Γ
(
1 + α

2

) ∫ t

0

(t− τ)α/2−1 dτ

=
4Etα/2

( ∫
RN

∣∣∣B2(z)
∣∣∣dz

)
AΓ

(
3
2

)
αΓ

(
1 + α

2

) � tα/2Cα
Γ(α/2 + 1)

,
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which means that (4.15) holds for j = 0. Suppose that (4.15) holds for j � n− 1,
where n � 2 is a positive integer. From (4.8), we find that

sup
x∈RN

∣∣∣vn(t, x)− vn−1(t, x)
∣∣∣

�
∥∥∥∥∥
∫ t

0

ΔK2,α(t− τ)
(
F (vn−1(τ, x)− F (vn−2(s, x)

)
dτ

∥∥∥∥∥
L∞

�
∫ t

0

∥∥∥ΔK2,α(t− τ, x)
∥∥∥

L1(RN )

∥∥∥F (vn−1(τ, x)− F (vn−2(τ, x)
∥∥∥

L∞
dτ

�
2E
( ∫

RN

∣∣∣B2(z)
∣∣∣dz

)
AΓ

(
3
2

)
Γ
(
1 + α

2

) ∫ t

0

(t− τ)α/2−1‖vn−1(τ, .)− vn−2(τ, .)‖L∞ dτ

�
2E
( ∫

RN

∣∣∣B2(z)
∣∣∣dz

)
AΓ

(
3
2

)
Γ
(
1 + α

2

) ∫ t

0

(t− τ)α/2−1(Cαt
α
2 )n−1

Γ(αn
2 − α

2 + 1)
dτ. (4.17)

Noting that Γ(α) � 1, we observe the following:

TheRHSof(4.17)

=
2E
( ∫

RN

∣∣∣B2(z)
∣∣∣dz

)
AΓ

(
3
2

)
Γ
(
1 + α

2

) (Cα)n−1

Γ(αn
2 − α

2 + 1)

∫ t

0

(t− τ)α/2−1τ
αn−α

2 dτ

=
2E
( ∫

RN

∣∣∣B2(z)
∣∣∣dz

)
AΓ

(
3
2

)
Γ
(
1 + α

2

) (Cα)n−1

Γ(αn
2 − α

2 + 1)
t

αn
2

Γ(α/2)Γ(αn−α
2 + 1)

Γ(αn
2 + 1)

�
2Γ(α/2)E

( ∫
RN

∣∣∣B2(z)
∣∣∣dz

)
AΓ

(
3
2

)
Γ
(
1 + α

2

) (Cα)n−1

Γ(αn
2 + 1)

t
αn
2 � (Cαtα/2)n

Γ(αn
2 + 1)

,

where in the last inequality, we have used from (4.16) that

2Γ(α/2)E
( ∫

RN

∣∣∣B2(z)
∣∣∣dz

)
AΓ

(
3
2

)
Γ
(
1 + α

2

) � Cα.

By the induction method, we derive that the estimate (4.15) holds for any j � 1.
It follows from (4.15) that

|||vj+1 − vj |||PT0
= sup

(t,x)∈PT0

∣∣∣vj+1(t, x)− vj(t, x)
∣∣∣

� sup
0�t�T0

(Cαt
α
2 )j+1

Γ(αj
2 + α

2 + 1)
=

(CαT
α
2

0 )j+1

Γ(αj
2 + α

2 + 1)
. (4.18)
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Since (4.18), we deduce that for m > n

|||vm − vn|||PT0
= sup

(t,x)∈PT0

∣∣∣vm(t, x)− vn(t, x)
∣∣∣ �

m∑
j=n

∥∥vj+1(t, x)− vj(t, x)
∥∥

L∞

�
m∑

j=n

(CαT
α
2

0 )j+1

Γ(αj
2 + α

2 + 1)
. (4.19)

In the next step, we claim that the infinite sum
∑∞

j=1
(CαT

α
2

0 )j+1

Γ( αj
2 + α

2 +1)
is convergent. Due

to the definition of T0 as in (4.5), we find that T
α/2
0 � αΓ(α/2+1)

4(
∫

RN |B2(z)|dz)AΓ( 3
2 )Γ(α/2)

.

By relying on (4.16), we can easily achieve that

(CαT
α/2
0 )j+1 �

(
4
(∫

RN

∣∣∣B2(z)
∣∣∣dz

)
AΓ

(
3
2

)
Γ(α/2)

2Γ(α/2 + 1)
T

α/2
0

)j+1

�
(α

2

)j+1

.

Since α > 1/2, we know that αj + α + 1 > 2 for j � 1. Due to the fact that the
function Γ(z) is increasing for z > 2, we find that Γ(αj + α + 1) > Γ(2α + 1). It
follows from (4.20) that for m > n � M

∥∥vm(t, x)− vn(t, x)
∥∥

L∞ � 1
Γ(2α + 1)

m∑
j=n

(α

2

)j+1

� 1
Γ(2α + 1)

∞∑
j=M

(α

2

)j+1

� 2
(2− α)Γ(2α + 1)

(α

2

)M+1

.

Now, given any ε > 0, we can pick M , depending on ε, such that
2

(2−α)Γ(2α+1) (
α
2 )M+1 < ε. Some of above observations allow us to conclude that

the sequence {vn} is a Cauchy one in the space L∞(RN ). Therefore, there exists a
function v(t, x) which is the limitation of the sequence {vn} on the strip PT0 .
It is obvious to see that v is a continuous solution of the integral equation
(4.6) on the strip PT0 . Next, we examine the regularity of the solution u. We
only need to derive the following estimation. For each 1 � k � L, n � 1, there
exists Qk which is a continuous increasing function of t− tk such that, for each
0 < t1 < t2 < · · · < tN < t � T0, the following estimate holds true

‖Dkvn(t, x)‖L∞ � (t− tk)−
αk
4 Qk(E , α, tk − t1, t− tk), tk < t � T0.

From formula (4.8), we find that

Dvn(t, x) = DZ1,α(t− t1)vn(t1, x)

+
∫ t

t1

D3Z2,α(t− τ)F (vn−1(τ, x)) dτ, t1 � t � T0. (4.20)
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This implies that

sup
x∈RN

∣∣∣Dvn(t, x)
∣∣∣ � sup

x∈RN

∣∣∣DZ1,α(t− t1)vn(t1, x)
∣∣∣

+ sup
x∈RN

∣∣∣∣∣
∫ t

t1

D3Z2,α(t− τ)F (vn−1(τ, x)) dτ

∣∣∣∣∣
= sup

x∈RN

∣∣∣D(K1,α(t− t1, x) ∗ vn(t1, x)
)∣∣∣︸ ︷︷ ︸

(I)

+ sup
x∈RN

∫ t

t1

∣∣D3Z2,α(t− τ)F (vn−1(τ, x))
∣∣ dτ︸ ︷︷ ︸

(II)

. (4.21)

Using the fact that d
dx (f(x) ∗ g(x)) = ( d

dxf(x)) ∗ g(x) and thanks to lemma (2.3),
the term (I) is bounded by

(I) = sup
x∈RN

∣∣∣D(K1,α(t− t1, x) ∗ vn(t1, x)
)∣∣∣ =

∥∥∥DK1,α(t− t1, .) ∗ vn(t1, .)
∥∥∥

L∞

� ‖DK1,α(t− t1, .)‖L1(RN )‖vn(t1, .)‖L∞ � 2EC1,1(α,N)(t− t1)−
α
4 (4.22)

Using (4.4) and the second part of lemma (2.3) with p = 1, k = 3, we find that the
term (II) is bounded by

(II) �
∫ t

t1

∥∥D3Z2,α(t− τ)F (vn−1(τ, x))
∥∥

L∞ dτ

�
∫ t

t1

∥∥D3K2,α(t− τ, .)
∥∥

L1(RN )
‖F (vn−1(τ, .))‖L∞ dτ

� A sup
(t,x)∈[0,T0]×RN

|vn−1(t, x)|
∫ t

t1

∥∥∥D3K2,α(t− τ, .)
∥∥∥

L1(RN )
dτ

� 2EAC3,1(α,N)
∫ t

t1

(t− τ)α−αN
4 −1+ αN

4 − 3α
4 dτ =

8EAC3,1(α,N)
α

(t− t1)
α
4 .

(4.23)

Combining (4.21), (4.22) and (4.23), we deduce that there exists Q1 which is a
continuous increasing function of t− t1 such that

sup
x∈RN

∣∣∣Dvn(t, x)
∣∣∣ � (t− t1)

−α
4 Q1(E , α, t− t1). (4.24)

From formula (4.8), we find that

D2vn(t, x) = D2Z1,α(t− t2)vn(t1, x)

+
∫ t

t2

D4Z2,α(t− τ)F (vn−1(τ, x)) dτ, t2 � t � T0. (4.25)
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By a similar argument as above, we find that

sup
x∈RN

∣∣∣D2vn(t, x)
∣∣∣ � sup

x∈RN

∣∣∣D2Z1,α(t− t2)vn(t2, x)
∣∣∣

+ sup
x∈RN

∣∣∣∣∣
∫ t

t2

D4Z2,α(t− τ)F (vn−1(τ, x)) dτ

∣∣∣∣∣
�
∥∥∥D2K1,α(t− t2, .)

∥∥∥
L1(RN )

‖vn(t2, .)‖L∞

+
∫ t

t2

∥∥D3K2,α(t− τ, .)
∥∥

L1(RN )
‖DF (vn−1(τ, .))‖L∞ dτ

� 2EC2,1(α,N)(t− t2)−
α
2 + (12E2 + 1)C3,1(α,N)

×
∫ t

t2

Q1(E , α, τ − t1)(τ − t1)
−α
4 (t− τ)

α
4 −1 dτ, (4.26)

where it follows from (4.24) that∥∥DF (vn−1(τ, .))
∥∥

L∞ � ‖3v2
n−1 − 1‖L∞‖D(vn−1(τ, .))‖L∞

� (12E2 + 1)(τ − t1)
−α
4 Q1(E , α, τ − t1).

Now, we handle the integral term on the RHS of expression (4.26). It is noted that
(τ − t1)

−α
4 � (t2 − t1)

−α
4 for any τ � t2, and we find that∫ t

t2

Q1(E , α, τ − t1)(τ − t1)
−α
4 (t− τ)

α
4 −1 dτ

� Q1(E , α, t2 − t1)(t2 − t1)
−α
4

∫ t

t2

(t− τ)
α
4 −1 dτ

where we recall that Q1 is a continuous increasing function of t− t1. Therefore, it
follows from the latter above estimate that∫ t

t2

Q1(E , α, τ − t1)(τ − t1)
−α
4 (t− τ)

α
4 −1 dτ

� 4Q1(E , α, t2 − t1)(t2 − t1)
−α
4

α
(t− t2)α/4. (4.27)

Combining (4.26) and (4.27), we arrive at

sup
x∈RN

∣∣∣D2vn(t, x)
∣∣∣ � Q2(E , α, t2 − t1, t− t2)(t− t2)−

α
2 ,

where

Q2(E , α, t2 − t1, t− t2) = 2EC2,1(α,N)

+
4Q1(E , α, t2 − t1)(t2 − t1)

−α
4

α
(t− t2)3α/4.

It is easy to verify that Q2 as above is a continuous increasing function of t− t2.
By a similar way as above, we can verify that Qk as above is a continuous increasing
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function of t− tk for any k is a natural number such that k � 2. This completes
our proof. �

Appendix A.

Definition A.1. Let α be a complex number whose real part is positive.
The Gamma function can be formulated as Γ(α) =

∫∞
0

xα−1

ex dx, and the M-Wright
type function Mα is given by Mα(z) =

∑∞
j=1

(−z)m

m!Γ[−αm+(1−α)] .

Lemma A.2 (see [13, proposition 2] or [31, Appendix F]). Let α ∈ (0, 1) and θ >
−1. Then, the following properties holds

Mα(ν) � 0, ∀ ν � 0, and
∫ ∞

0

νθMα(ν)dν =
Γ(θ + 1)
Γ(θα + 1)

, ∀ θ > −1. (A.1)

Proposition A.1. Let a, b > 0 and q � 1. Then the following inequality holds

(a + b)p � 2q−1 (aq + bq) .

Proof. From the fact that q(q − 1)xq−2 � 0 for any x > 0 and q � 1, we assert that
the one variable function f(x) = xq, q > 0 is a convex function. It follows that

f

(∑M
k=1 ak

M

)
�
∑M

k=1 f(ak)
M

.

This one gives us the desired result. �

Lemma A.3 (Young’s convolution inequality). Let p, q, r ∈ [1,∞] such that

1 +
1
r

=
1
p

+
1
q
.

Then, the inequality ‖u ∗ v‖Lr � ‖u‖Lp ‖v‖Lq holds for every u ∈ Lp(RN ) and v ∈
Lq(RN ).

Lemma A.4 (fractional Grönwall inequality). Let m,n be positive constants and
ζ ∈ (0, 1). Assume that function u ∈ L∞,∗(0, T ] satisfies the following inequality

u(t) � m + n

∫ t

0

(t− τ)ζ−1u(r)dr, for all t ∈ (0, T ],

then, the result below is satisfied

u(t) � mEζ,1

(
nΓ(ζ)tζ

)
.
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