
J. Fluid Mech. (2020), vol. 892, A28. c© The Author(s), 2020.
Published by Cambridge University Press
doi:10.1017/jfm.2020.162

892 A28-1

Acceleration of small heavy particles
in homogeneous shear flow: direct numerical

simulation and stochastic modelling of
under-resolved intermittent turbulence

A. Barge1 and M. A. Gorokhovski1,†
1Laboratoire de Mécanique des Fluides et d’Acoustique, École Centrale de Lyon,

CNRS-Université Claude Bernard Lyon 1-INSA Lyon, 69134 Ecully, France

(Received 18 September 2019; revised 4 January 2020; accepted 21 February 2020)

The acceleration of inertial particles in a homogeneous shear flow may vigorously
respond to the intense flow structures induced by the mean shear. In this study,
by direct numerical simulation (DNS) of particle-laden shear flow, we observe
the statistical properties of those accelerations, and then we assessed the recently
proposed simulation approach in which the effect of intermittency on residual scales
is linked directly with coarsely resolved flow turbulence. First, we focused on the
acceleration statistics of fluid particles in a homogeneous shear flow. Consistent with
previous findings in homogenous isotropic turbulence, the norm and the direction
of fluid acceleration in shear flow are shown to be conditioned by the dynamics
of intermittent long-lived vortical structures. The averaged acceleration norm of the
fluid particle exhibits a pseudo-cyclic behaviour, which is a signature of the periodic
action of the largest confined vortices against the mean shear. The long correlation
time of the acceleration norm, of the order of the integral time, the high level of
fluctuations of the acceleration norm (very close to the magnitude of the mean
norm of acceleration) and the log-normality in its statistical distribution reflect the
impact of intense flow structures in shear flow. The presence of these zones results
also in highly non-Gaussian statistics of the acceleration of a fluid particle and
its velocity increments at small time lags. Contrary to the acceleration norm, the
acceleration direction of a fluid particle is observed to be short, of the order of the
Kolmogorov time, and to be statistically independent of the acceleration norm. The
short-time correlation of the acceleration direction is attributed usually to effects of
centripetal forces in intense vorticity filaments. We suggest that, in homogeneous
shear turbulence, there may be a supplementary effect on the acceleration direction:
the vortex, stretched by the mean shear, may exert the preferential direction of fluid
particle acceleration. As evidence, our DNS shows that fluid particles are accelerated
preferentially in the direction of longitudinal vortical tubes, effectively stretched by
the imposed mean shear. Concerning simulations with heavy point-wise particles,
it is shown that, when the inertia of a particle is not high, its acceleration closely
follows all the aforementioned properties of the fluid particle acceleration. Particularly,
an inertial particle is also entrained by accelerating motion in the direction of the
effectively stretched vortical tubes. Although with increasing Stokes number of the
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inertial particle, the effects of strong intermittency in the flow are filtered, it is shown
that the alignment of the particle acceleration direction with vortical tubes is amplified
– particles with higher inertia respond to solicitations of stronger vortical structures.
An alternative to the Maxey (J. Fluid Mech., vol. 174, 1987, pp. 441–465) preferential
sweeping mechanism is discussed in this paper. When the shear turbulence is under-
resolved, we employed the large-eddy simulation (LES) equations with a forcing term
on the smallest resolved scales in order to simulate stochastically the effects of the
dynamics on the residual scales. The forcing term is expressed with two independent
stochastic processes, one for its norm and another for its direction. While the norm
of acceleration is modelled using Pope’s log-normal process with the integral time
for correlation, its direction is modelled in the framework of an Ornstein–Uhlenbeck
process on the unit sphere. Consistently with our DNS, the latter process contains two
presumed times: the homogeneous strain rate is specified as typical time of relaxation
towards the direction of resolved vorticity, and the Kolmogorov time is presumed as
a typical time of the diffusion process on the unit sphere. The high efficiency of this
approach is demonstrated in prediction of the small-scale dynamics observed in DNS,
even in the case when the shear length scale is not resolved by LES.

Key words: intermittency, turbulence simulation, particle/fluid flow

1. Introduction
In natural phenomena and practical applications, we often meet turbulent shear

flows which carry solid particles, or droplets. Various heavy particles, or rain droplets,
in the atmosphere, or in the oceanic boundary layer represent an example from
our environment (Shaw 2003). There are also numerous examples in technological
applications (Toschi & Bodenschatz 2009; Crowe et al. 2011; Minier 2015, 2016),
including spray drying, systems of pollution control, burners and direct injection
engines. Because of their ubiquity, these multiphase flows were always of a
considerable interest, and extensive experimental and numerical investigations of
inertial particle dynamics have been undertaken for different types of carrier flow,
in particular for shear flows, such as wall-bounded flows (Fessler, Kulick & Eaton
1994; Kulick, Fessler & Eaton 1994; Rouson & Eaton 2001; Ayyalasomayajula et al.
2006; Gerashchenko et al. 2008; Lavezzo et al. 2010), jets (Chung & Troutt 1988;
Longmire & Eaton 1992), wakes (Tang et al. 1991) and mixing layers (Lazero &
Lasheras 1992; Martin & Meiburg 1994). Some of these studies are focused on
the statistics of the inertial particle acceleration – a key variable of the interaction
between turbulence and the particle. So, the direct numerical simulation (DNS)
(Lavezzo et al. 2010) of the wall-bounded flow, loaded by water droplets, shows
that, without the effects of gravity, the acceleration variance of the particle is
decreasing if the particle inertia is increasing. This supports the suggestion from
DNS (Bec et al. 2006; Biferale & Toschi 2006) earlier made for heavy particles
in isotropic homogeneous turbulence (HIT): the inertial particle is less likely to
experience fluid undergoing large accelerations. This is also confirmed by experiment
(Ayyalasomayajula et al. 2006) in grid generated wind tunnel turbulence seeded by
water droplets. However, for inertial particles with gravity, an opposite effect is drawn
from experiment (Gerashchenko et al. 2008) and DNS (Lavezzo et al. 2010). It is
suggested that, compared to the case without gravity, a settling particle in the wall
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region samples the fluid with the higher shear along its path. Consequently, when
a heavier particle with gravity approaches the wall, its deceleration is stronger, and
thereby the variance of its acceleration is increased. In Ireland, Bragg & Collins
(2016b) and in Momenifar, Dhariwal & Bragg (2019), a stronger effect of gravity
in modifying particle accelerations in turbulence is argued in comparison with the
preferential sampling of the flow with higher shear. In these studies, the primary
mechanism of gravity to modify the particle acceleration is attributed to the fact that
a particle falling under gravity reduces the Lagrangian time scales of its interaction
with the underlying turbulence, which leads to large fluctuations in the velocity along
its trajectory, and to large accelerations. On the other hand, in DNS (Zamansky,
Vinkovic & Gorokhovski 2011), for the twice higher Reynolds number channel flow,
an additional effect is advanced as the result of the dynamics of long-time persisting
vortical wall structures. It is suggested that, close to the wall, the inertial particle
is subjected along its path to the spanwise rearrangements of high- and low-speed
streaks. Then, in the subrange of the particle inertia, which responds to the dynamics
of such rearrangements, the particle acceleration variance may be increased with
increasing the particle inertia, even if the gravity is neglected.

The difficulty in the above-mentioned shear flows is that the shear is spatially
inhomogeneous and it is not simple to isolate the shear effect in the particle motion
from the other flow parameters. Therefore, many studies considered simplified
academic flows. So, for example in a DNS study (Lee et al. 2015), the inertial
particles are immersed into axisymmetric expansion of initially isotropic turbulence.
In line with the rapid-distortion theory (RDT), it is argued that the higher mean
strain in the flow leads to an increased magnitude of the particle acceleration variance.
Another example of a simple background flow is the homogeneous turbulence sheared
in one spatial direction by the constant mean velocity gradient. The motion of inertial
particles in such a flow is studied by DNS (Ahmed & Elghobashi 2001; Shotorban
& Balachandar 2006; Gualtieri, Picano & Casciola 2009; Gualtieri et al. 2010) and
experiment (Nicolai et al. 2014). It is recognized that, behind the simple configuration
of the homogeneous shear flow, a surprising complexity appears – the self-regulating
structures evolve under continuous energy supply from the imposed mean shear
(Ashurst et al. 1987). In our work, we also simulated such a flow for the particle
transport. Therefore, let us briefly refer to the main steps of its regeneration cycle
suggested in DNS (Rogers & Moin 1987; Lee, Kim & Moin 1990; Kida & Tanaka
1994). Initially, the randomly distributed vorticity field is effectively amplified in the
direction of principal elongation of the mean shear, which is in line with the earlier
prominent findings in Moffat (1967) and Townsend (1976). It results in production
of longitudinal vortex tubes, which are gradually inclined towards the streamwise
direction, and are stretched by the mean velocity gradient. The strong swirling motion
around those longitudinal tubes amplifies the vorticity field, including the vorticity
in the spanwise direction produced by the mean shear. Thereby, strong vortex layers
with the spanwise component of vorticity are generated. Aligned in planes, nearly
parallel to longitudinal vortex tubes and the spanwise direction, the formed vortex
layers may roll up into spanwise (lateral) vortex tubes. These are distorted by velocity
fluctuations and elongated towards the streamwise direction. This gives rise to the
hairpin vortical structures. All involved structures interact in the energy redistribution
in a complex nonlinear way (Mamatsashvili et al. 2016), and then the large structures
break down into a disordered vorticity field, which again is stretched effectively in
the direction of expansive strain. The described self-regulating cycle was concluded
for the unbounded shear flow. However, in numerical simulations, the growth of
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vortical structures, with the exponential temporal growth of the total turbulent energy,
is limited by the dimensions of the computational domain (Pumir 1996; Gualtieri
et al. 2002; Sekimoto, Dong & Jimenez 2016). Consequently, the rotating flow in
large vortical structures, confined to the box size, is directed periodically against the
action of the mean shear. This generates the positive Reynolds stresses, destroys the
energy-containing large vortical structures, decreases the total turbulent energy and
then leads to the restart of the regeneration cycle. The DNS analysis (Pumir 1996)
of the homogeneous shear flow shows that the time history of the arising spikes of
the total turbulent energy appears as a statistically stationary process. It has been
also noted in Pumir (1996) that similar situations may take place in a turbulent
boundary layer where the vortical structures, growing in time in the logarithmic
region, attain the wall. Additionally, the DNS study carried in Gualtieri et al. (2002)
shows that, statistically, the intermittent anisotropic dynamics of large-scale structures
is manifested on length scales larger than the shear length scale (Corrsin 1958; Toschi
et al. 1999) LS =

√
〈ε〉S−3 which is shown in Kim & Lim (2000) to be responsible

for the generation of streaks. Here 〈ε〉 is the mean rate of energy dissipation, and S
is the mean shear. On length scales smaller than LS, the statistics of homogeneous
isotropic turbulence are recovered. We note also that, for a large S, a self-sustained
oscillating behaviour of turbulent kinetic energy and enstrophy fluctuations has been
reproduced in Yakhot (2003) in the framework of a dynamic model for those two
coupled variables.

It is clear that the addition of inertial particles to the homogeneous shear flow will
result in complex anisotropic motions of the particles. So, the DNS study in Ahmed &
Elghobashi (2001) shows that the distortion of lateral vortex tubes and their elongation
towards the streamwise direction may reduce significantly the particle dispersion in
lateral directions. In turn, the DNS studies in Shotorban & Balachandar (2006) and
Gualtieri et al. (2009) reveal that the longitudinal vortex tubes induce the preferential
alignment of the particle distribution. Remarkably, due to the inertia of the particles,
this anisotropy may persist even on small scales below the shear length scale LS, i.e.
in the range of scales where the turbulence has already returned to isotropy (Gualtieri
et al. 2009; Nicolai et al. 2014). Two other studies (Gualtieri et al. 2010, 2013) of
the same scientific group predict the eventual effects of the anisotropic clustering on
the inter-particle collision probability and on the modulation of turbulence.

Our motivation in this paper is as follows. The dominance of intense, tiny and
long-time persisting vortex structures, driven by the homogeneous shear, suggests
that the seeded particles of moderate inertia may respond vigorously to these regions
of strong fluctuations of the velocity gradient. This requires us to turn attention to
the acceleration statistics of inertial particles, and to analyse the particle response
to the intermittency effects. Such an issue was fully addressed in Bec et al. (2006),
Sabelnikov, Barge & Gorokhovski (2019), Bec et al. (2010) and Ireland, Bragg
& Collins (2016a) for the case of inertial particles carried by HIT, characterized
by intermittent behaviour of the fluid particle acceleration. When the inertia of
a particle is week, its dynamics is strongly influenced by ejections from regions
of intense velocity gradients (‘vortex sheets’) which are manifested by collective
effects of rotational and irrotational components of the shear. With increasing the
Reynolds number (Ireland et al. 2016a), these ejections are more prevalent and more
efficient, thereby, the particle is less likely to reside in highly strained zones, and
its acceleration variance with respect to the variance of the fluid particle, ‘seen’
by the inertial particle, is decreased. However, when inertial particles are released
into homogeneous shear flow, the question ‘what are the common properties of the
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particle acceleration?’ remains. This motivated the first part of our study. Another
motivation is to model the particle behaviour in homogeneous shear flow at high
Reynolds number. The problem is that, in such a flow, the intermittent structures
are manifested on the finest spatial scales, which are usually filtered in practical
numerical simulations. Then, the question raised is ‘how to represent correctly
the intense effects of intermittency on the acceleration of inertial particles if the
turbulence in the shear flow is under-resolved?’ The sub-filter models employed
in previous large eddy simulations (LES) of the homogeneous shear flow with and
without inertial particles (Yeh & Lei 1991; Simonin, Deutsch & Boivin 1993; Gualtieri
et al. 2007) are not addressed to the issue of intermittency on residual scales. Based
on the Smagorinsky eddy viscosity model, LES study (Yeh & Lei 1991) of particle
dispersion is performed at times, apparently, before the statistically steady state is
reached. In Simonin et al. (1993), the Smagorinsky eddy viscosity model is also used
in the examination of the second-order closure models, proposed in Simonin (1991)
for the transport equations for the particle kinetic stresses and fluid particle velocity
covariance. Using the approximate deconvolution method (Stolz & Adams 1999) for
the evaluation of the contribution of the subgrid-scale stresses, the study in Gualtieri
et al. (2007) provides LES of homogeneous shear flow without inertial particles.
Here also, the subgrid-scale closure is invariant to the local Reynolds number, and
therefore does not hold the essential property of intermittency on residual scales.
Then, in order to simulate correctly the velocity field, the approach in Gualtieri et al.
(2007) requires the energy producing shear length scale LS to be resolved by LES.
The latter is not easy to fulfil in practical flow simulations, since increasing the mean
shear S will decrease significantly the shear length scale LS. On the other hand, by
modelling the intermittency effects on residual scales, one can avoid such a constraint
on the filter width. To this end, in the presented paper, we address the LES-SSAM
(stochastic subgrid acceleration model) approach, which is proposed in Sabel’nikov,
Chtab-Desportes & Gorokhovski (2011), Sabelnikov, Chtab-Desportes & Gorokhovski
(2007), extended in Zamansky, Vinkovic & Gorokhovski (2010, 2013) for simulation
of channel flows and recently revisited in Sabelnikov et al. (2019) in the case of
homogeneous isotropic turbulence. The idea in this approach is to force the filtered
Navier–Stokes equations by a subgrid stochastic acceleration term with statistical
properties identified earlier in experiments and DNS of intermittent turbulent flows.
Using a coarse mesh, this approach provides a stochastic model field of the velocity
at each time according to three main suggestions. Following the proposal in Pope
(1990), the stochastic acceleration on residual scales is considered as a product of
two independent stochastic variables, one is its amplitude, and another is its unit
vector containing the directional information. In LES-SSAM, these both variables
are considered in the framework of stochastic processes. Following experimental
observations (Mordant et al. 2001, 2002; Mordant, Crawford & Bodenschatz 2004),
the stochastic process for the amplitude of acceleration is characterized by the
long-time correlation – this process is derived in Sabelnikov et al. (2007), Sabel’nikov
et al. (2011) in line with the log-normal conjecture (Monin & Yaglom 1981; Pope
2000). The stochastic process for the acceleration unit vector is characterized by
short-time correlations. In Sabelnikov et al. (2019) this process is derived as the
Ornstein–Uhlenbeck process for direction components, and the relaxation time is
determined by the local Kolmogorov time. ‘Are these suggestions coherent with the
DNS statistics of the homogeneous shear flow? And is the LES-SSAM an efficient
approach in prediction of the statistics of transported inertial particles?’ are the
questions raised in our work.
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FIGURE 1. (a) Mean velocity profile in the homogeneous shear flow. Mean shear is
negative here. (b) Temporal evolution of the shear parameter S∗ for different initial values
(S∗0 = 14.5, ◦; S∗0 = 4.6,p; S∗0 = 13,u; S∗0 = 8.1, 4). The inset shows the evolution of S∗
at early times. The initial Reynolds number is Reλ = 41.

The purpose of this paper is twofold. The first objective is to characterize the
statistics of the direction and norm of the acceleration of heavy point-wise particles
in a statistically steady homogeneous shear flow. After a brief introduction to the
numerical methodology in § 2, the results of DNS are provided in § 3. The second
objective is to extend and to assess the LES-SSAM approach for the prediction of
inertial particle dynamics on a coarse mesh. To this end, § 4 revisits the motivation
and outlines a reminder of LES-SSAM, and § 5 assesses the prediction of inertial
particle statistics. The main findings are summarized in § 6.

2. Direct numerical simulations
The DNS of a turbulent flow with small heavy particles is carried out in a confined

periodic cubic box of size L = 2π discretized on N3
= 5123 grid points, and with

a uniform mean shear S imposed in one spatial direction. The mean velocity field
U(x1, x2, x3)= (Sx2, 0, 0) is sketched in figure 1(a). The advection in the x2 direction
by the mean shear is incoherent with the periodic boundary conditions specified for
the Navier–Stokes equations in this direction. In order to circumvent this problem, we
follow the proposal in Rogallo (1981) to carry out the simulation in a mesh moving
with the mean velocity frame: x′1 = x1 − Sx2t; x′2 = x2; x′3 = x3. The computational box
is preserved from increasing distortion by using a remeshing procedure. In Sekimoto
et al. (2016), it has been shown that the typical configuration of homogeneous shear
flow (stretched streamwise vortical streaks, ‘minimal’ in size in the spanwise direction)
suggests, for statistical stationarity, the spanwise box width Lz to be the main limit for
setting the length and velocity scales, with the two other box dimensions larger than
the box width. On the other hand, with increasing aspect ratio, the errors induced
by remeshing the solutions may be also increased in prediction of the small-scale
properties of the flow (Pumir 1996), particularly when the mesh is getting coarser, as
for LES with 323 grid points, for example. In our simulation, the geometry is indeed
too short for the longitudinal velocity to become independent of the box length but
the spanwise integral length scale is less than the box dimension (Lz/L∼ 0.19), and
since the main objective of our DNS and LES is to produce a background flow, with
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the emphasis on the response of particles loaded in that presumed flow, the assumed
statistical stationarity in our simulation is based on an aspect ratio equal to 1. It is also
seen in Sekimoto et al. (2016) that the bursting event period in a cubic box is similar
to the period in an optimal geometry. Besides, the numerical method has been assessed
by the good prediction (not shown in the manuscript) of Eulerian (three components
of the kinetic energy, the anisotropy tensor, integral length) and Lagrangian (the fluid
particle acceleration) statistics reported in Rogallo (1981), Rogers & Moin (1987) and
Yeung (1997). In the moving frame (hereafter we remove primes from the coordinate
notation), the Navier–Stokes equations for the fluctuating field are

∂ui

∂t
+
∂uiuj

∂xj
+ Su2δi1 =−

1
ρ

∂p
∂xi
+ ν

∂ui

∂xj∂xj
, (2.1)

∂ui

∂xi
= 0. (2.2)

These equations are solved by pseudo-spectral methods in space; the nonlinear terms
are directly solved with the classical 2/3 rule in order to avoid aliasing errors, and
the linear terms are implicitly calculated. The time integration scheme is based on the
second-order Runge–Kutta scheme. The shear parameter S∗ = Sk/ε, with k= 〈uiui〉/2,
which characterizes the measure of the strength of the shear relative to the turbulence
time scale, has been used in many studies of homogeneous shear flow. The question
as to whether or not the long term asymptotics of the homogeneous shear flow are
sensitive to the choice of the initial value of this parameter is addressed in Isaza
& Collins (2009). Using different DNS, which yielded mixed results in response
to this question, Isaza & Collins (2009) have demonstrated such sensitivity, and
particularly in the temporal evolution of the shear parameter itself. However, that
study was performed for relatively short-time behaviour of the homogeneous shear
flow (S · t < 8), and not for long times S · t when the statistically stationary state
is attained. We performed simulations with different initial values of the shear
parameter by varying both the uniform mean shear S and the kinematic viscosity
ν, up to the statistically stationary state S · t = 100. The latter, characterized by a
succession of spikes in the total turbulent kinetic energy, is defined on the bases
of the time averaged parameters, such as the integral length scale, the total kinetic
energy, the total dissipation rate, the Reynolds number and the Kolmogorov length.
If those parameters are not varying with time, the state is referred to as statistically
stationary. The initial condition is a random homogeneous isotropic velocity field
generated at the prescribed Reynolds number. The evolution of S∗ for each case
is shown in figure 1(b). It is seen that, at early times, the evolution of the shear
parameter is sensitive to its initial value choice, as in Isaza & Collins (2009). When
the flow reaches the statistically stationary state, the shear parameter is likely to
lose such sensitivity. In this study, we define the homogeneous shear S as the
main parameter and not the initial value of the shear parameter S∗. The parameters
we use are S = 3.2 s−1 and ν = 0.005 m2 s−1. The inertial particles are injected
when the flow reaches the statistically stationary state. The latter is characterized
by the following parameters, averaged in time: the integral scale Lint = 3.96 m, the
shear length scale LS = 0.66 m, the Kolmogorov scale η = 0.00961 m, the integral
time scale Tint = 0.55 s, the Kolmogorov time τη = 0.0185 s, the viscous dissipation
〈ε〉= 14.6 m2 s−3 and the Reynolds number Reλ= 2k

√
5/(3〈ε〉ν)= 164. We measured

the quality of our resolution by ensuring that κmaxη> 1, as is commonly done in the
literature (Pumir 1996; Gualtieri et al. 2002). Here, κmaxη = 2.3 with κmax ≈

√
2N/3.
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In Isaza & Collins (2009) it is recommended also that L11/L6 0.1 to properly resolve
the large scales. This condition is difficult to fulfil in the homogeneous shear flow
at the statistically stationary state since the integral values are confined by the size
of the box. Therefore, to gauge our resolution, we required κmaxη> 1. Assuming the
Stokes drag to be the only force acting on the particle, the particle motion equations
are

dxpi

dt
= upi(t)+ δi1Sxp2(t), (2.3)

dupi

dt
=

ui(xpi(t), t)− upi(t)
τp

+ δi1Sup2(t). (2.4)

Here, upi(t) is the particle velocity, ui(xpi(t), t) is the fluid velocity at the particle
position and τp = (ρpd2

p)/18ρν is the typical response time of the particles. The
interpolation of the fluid velocity to the particle position is done using the
interpolation kernel described in Lagaert, Balarac & Cottet (2014) which is of order
4 in space; details may be found also in Cottet et al. (2014). Henceforth, the Stokes
number is defined as St= τp/τη. In simulations, we consider the flow seeded by either
infinitesimal tracers, or inertial particles, these are characterized by St = 0.3 (small
particles) and St= 3.0 (large particles). As is seen from (2.4), the mean acceleration
in the streamwise direction is defined by Sup2. It has been shown in Yeung (1997)
that the latter makes a negligible contribution to the particle dynamics. Therefore,
we consider the fluctuating components of the acceleration only, denoted hereafter by
a1, a2 and a3. The remeshing step in the algorithm from Rogallo (1981) is known to
create losses of the total kinetic energy and dissipation rate. To minimize the impact
of this feature on the particle statistics, we applied a time-filtering operation on the
particle velocity signal with a filter width chosen to be lower than the Kolmogorov
time. The particle acceleration is then recomputed by the derivative of the velocity
signal. Oscillations of the particle acceleration statistics due to the remeshing step
may be seen in figure 6(a). However, these variations are small in comparison with
global variations of the acceleration. Moreover, with increasing Stokes number, these
oscillations are substantially decreased. The statistics sampled on time windows
without remeshing did not show significant differences with the statistics computed
on the whole simulation. In the next section, the DNS statistics accumulated for all
computed particles at the statistically stationary state are presented.

3. Statistics of the particle acceleration in homogeneous shear flow
With increasing particle inertia, the impact of intense acceleration events in the

fluid on the particle motion is filtered. In HIT, this is illustrated, for example in Bec
et al. (2006) and Sabelnikov et al. (2019). The illustration of this effect in the case
of homogeneous shear flow is given in figure 2(a). While the particle acceleration
probability density function (PDF) for the fluid particle and for the particle with
relatively low inertia, St = 0.3, exhibit stretched tails, these are significantly reduced
if the Stokes number is increased up to St = 3.0. The same conclusion holds
for the PDF of the acceleration norm |a| = (aiai)

1/2, as is shown in figure 2(b).
Surprisingly, in the case of fluid and small inertial particles (addressed here to
St= 0.3), the ratio of the acceleration norm to its root mean square (the subscript rms)
ξ = |a|/arms, arms = 〈a2

〉
1/2 follows fairly well the log-normal distribution expressed

by LN(ξ , µ, σ 2) = 1/ξσ 2
√

2π exp(−((ln ξ −µ)2)/2σ 2), with the presumed mean
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FIGURE 2. (a) Longitudinal acceleration PDF of fluid particles (– – –) and solid particles
(St = 0.3: · · · · · ·; St = 3.0: ——) in the homogeneous shear flow. The PDFs are
standardized by arms = 〈a2

〉
1/2. (b) PDFs of the acceleration norm of fluid and solid

particles compared to the log-normal distribution (u) with the following parameters: µ=
−ln2/2, σ = ln 2. PDFs are standardized by arms = 〈a2

〉
1/2.

µ = −ln2/2 and standard deviation σ 2
= ln 2. Here, the angled brackets denote the

average over all particles in the statistically stationary flow. Using the expression
for the moments of the log-normal distribution mk = exp(kµ+ k2σ 2/2), as shown in
Zamansky et al. (2013), the mentioned values of parameters µ and σ correspond to
the following condition for the acceleration norm: 〈|a|2〉1/2 = 〈|a|〉. The occurrence
of such a high level of fluctuations of the particle acceleration components in highly
turbulent conditions is discussed in Chen et al. (2010). Remarkably also is that the
log-normality of the particle acceleration norm persists for different ‘latitude’ angles
θ (indicated in figure 3(a)) of the particle acceleration direction. In figure 3(b,c),
it is seen that the distributions of the acceleration norm of the fluid particle, and
of the small inertial particle as well, preserve the same shape independently of the
‘latitude’ θ ; these distributions follow fairly well the unconditional PDF, which is
log-normal. As seen in figure 3(d), the norm of the large inertial particle, St = 3.0,
preserves also the statistical independence of its orientation. The same results (not
demonstrated here) are obtained for varying the ‘longitude’ φ. We conclude that, in
the statistically stationary homogeneous shear flow, the amplitude and the direction of
the Lagrangian acceleration behave as two almost statistically independent variables.
The same conclusion was also drawn for inertial particles in HIT (Pope 1990;
Mordant et al. 2002; Sabelnikov et al. 2019) and channel flows (Zamansky et al.
2013). This implies a large separation in time scales for autocorrelation functions
corresponding to the fluctuating parts of the particle acceleration and its amplitude.
The demonstration for the fluid particle and for the particle with St = 0.3, as well
as for the angle θ , is given in figure 4. The corresponding correlation times, T|a|
and Ta, and the Kolmogorov time τη, are also presented in this figure. It is seen
that, although both correlation times Ta for St = 0.3 and St = 3.0 remain of the
order of the Kolmogorov time, the correlation time Ta is increased when the Stokes
number is increased: the direction of the heavier particle, being changed by helical
structures, persists for a longer time. As to the amplitude of the particle acceleration,
it correlates to much longer times than the acceleration direction, and the correlation
time T|a| is decreased when the Stokes number is increased: the particle response to
the short-lived intense perturbations of the fluid has a lesser magnitude for a heavier
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FIGURE 3. (a) Definition of the angles and the acceleration components. (b) Distribution
of the fluid particle acceleration norm conditioned to different values of the angle θ
(· · · · · · from light to dark grey: θ = −3π/8, −π/4, −π/8, 0, π/8, π/4, 3π/8) and
compared with the unconditioned distribution (u) to the angle θ . (c) Same for the small
inertial particle, St= 0.3. (d) Same for the large inertial particle, St= 3.0.

particle, and thereby that magnitude is probably less correlated (Jung, Yeo & Lee
2008). It is also seen that, with increasing Stokes number, the particle acceleration
component in the downstream direction is correlated on longer times in comparison
with the two other components, suggesting that the effect of the particle entrainment
by longitudinal vortical structures is enhanced with increasing particle inertia. We will
return to this effect later on. The long-time correlation of the particle acceleration
norm suggests that its statistics may be linked with the properties of the large-scale
structure fluctuations, as it takes place in the regeneration cycle in homogeneous
shear flow. The spectral energy balance, performed in Barge & Gorokhovski (2019)
conditionally on periods of increase and decrease of the total kinetic energy, shows
that the energy transfer down to smaller scales is different for these periods, and the
difference is attributed to scales larger than the shear length scale LS. Consequently,
one can expect also a sensitivity of the acceleration norm to the regenerating cycle.
This is illustrated in figures 5 and 6. It is seen that the time correlation of the
acceleration norm is larger during a growth phase, characterized by the formation
of energetic persisting structures. It is seen from figure 5 that such sensitivity is
more visible with increasing inertia of the particles. The temporal evolution of
the acceleration norm of the fluid and inertial particle is shown in figure 6. As
expected, the succession of spikes in the time evolution of this variable is very
reminiscent of what has been observed for the total kinetic energy and the enstrophy
in homogeneous sheared turbulence (Pumir 1996). The Reynolds stress given in
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FIGURE 4. (a) Autocorrelation functions of the norm |a| (u), components (a1, C; a2, ×;
a3,f) and the orientation angle θ = arctan(a2/a1) (— · · —) of the acceleration vector of
fluid particles. (b) Same for the large particles, St= 3.0. Here T|a| is the correlation time
of the particle acceleration norm, Ta is the correlation time of the particle acceleration
and τη is the Kolmogorov time.
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FIGURE 5. (a) Autocorrelation functions of the acceleration norm |a| of fluid particles
in the homogeneous shear flow averaged over the complete simulation (——) and
conditioned to the growth phase (– – –) and to the collapse phase (u). (b) Same for
inertial particle with St= 3.0. Here T|a| is the correlation time of the particle acceleration
norm, subscripts ‘G’ and ‘C’ denote the conditioning to the growth and collapse phases,
respectively.

figure 6 shows also the correlation between the Eulerian statistics and the periodic
character of the particle acceleration due to the burst events in the flow. It is also
seen that, for the fluid particle, the mean norm of the particle acceleration follows its
variance very closely, whereas with increasing particle inertia, the fluctuations of the
acceleration norm are decreasing, and the spikes become lower. Perhaps surprisingly,
the direction of the particle acceleration, which is exerted by centripetal forces in
fine-scale vortical structures, exhibits a significant response to these vortical structures,
effectively stretched by the mean shear. The preferential alignment of the acceleration
direction with the direction of these structures, is shown in figure 7. The PDFs of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

16
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.162


892 A28-12 A. Barge and M. A. Gorokhovski

0 10 20 30 40 50 60

0 10 20 30 40 50 60 0 10 20 30 40 50 60

2.0

1.5

1.0

0.5

2.0

1.5

1.0

0.5

2.0

1.5

1.0

0.5

S · t

S · t S · t

(a) (b)

(c)

FIGURE 6. Succession of spikes in the standard deviation 〈|a|2〉1/2 (——) and in the mean
〈|a|〉 (u) of the acceleration norm of all particles at the given moment; these values are
non-dimensionalized by averaged 〈|a|〉t, over the full time. The Eulerian Reynolds stress
〈u1u2〉/〈u1u2〉t (– – –) is plotted also to see the correlation between the Eulerian statistics
and the periodic character of the particle acceleration due to the bursting events in the
flow. (a) Fluid particle. (b) St= 0.3. (c) St= 3.0.

angles θ and φ of the Lagrangian acceleration vector, projected in planes x1, x2

and x1, x3 for fluid and solid particles, are shown in figure 7(a). It is seen that the
acceleration of the particles manifests statistically a preferential direction close to
the direction of the inclined longitudinal vortex structures (approximately −40◦ in
the positive longitudinal direction and −140◦ in the opposite direction; note that
compared to Rogers & Moin (1987), the mean shear here is negative). It is also
seen that the effect of the preferential orientation along with the stretched vortical
structures is amplified with increasing particle inertia – the acceleration direction
of particles with larger Stokes numbers responds to the orientation of more intense
structures. In order to demonstrate the alignment of the particle acceleration vector
with the vorticity direction in vortex structures, we applied the idea of Kadanoff’s
block picture. The computational domain is subdivided into identical cubic blocks
containing a few grid cells. Particles located in each block are considered in the
following manner. In the sheared plan, we calculate the averaged angle of their
accelerations and of the vorticity in the fluid ‘seen’ by these particles. Then, the
correlation coefficient between these two directions is computed over all blocks. This
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FIGURE 7. (a) The PDF of the angle of the Lagrangian acceleration vector projected
in plane x1, x2 (upper curves) and x1, x3 (lower curves), fluid particles (– – –); solid
particles (St = 0.3, · · · · · ·; St = 3.0, ——). (b) Evolution of the correlation coefficient
between the orientation of the fluid particle acceleration and the orientation of the vorticity
vector ‘seen’ by the particles as a function of block sizes. (c) Block pictures PDF of
the θ angle for fluid particles and for different block sizes (5η, − · −; 10η, – – –;
20η, ——; 50η, · · · · · ·; unconditioned, u). (d) Same figure for inertial particles with
St= 3.0 (5η, − ·−; 10η, – – –; 50η, ——;100η, · · · · · ·; unconditioned,u).

procedure is repeated for successively increasing sizes of blocks. For fluid particles,
the result is demonstrated in figure 7(b). It is seen that, with increasing block size, the
correlation coefficient is increasing, and starting from blocks of approximately 40–50η,
the directions of the particle acceleration and of the vorticity ‘seen’ by the particle
are correlated fairly well. The signature of the longitudinal vortex structures is also
shown in figure 7(c). Here, the PDF of the block angle θ of the particle acceleration
is presented for different block sizes and is compared with the unconditional PDF
of θ for all the particles. It is seen that the unconditioned PDF is close to the PDF
corresponding to a block size of 50η, i.e. the alignment of the particle acceleration
along with the preferential orientation is mostly affected by structures up to 50η.
As seen in figure 7(d), the particles with St = 3.0 are entrained into accelerating
motion by structures of larger size. In addition to Shotorban & Balachandar (2006),
illustrations of the anisotropy of the particle clustering, figure 8(a,b), demonstrate the
preferential orientation of the particle acceleration along the stretched vortex structures.
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FIGURE 8. (a) Three-dimensional view of the PDF of the particle acceleration orientation.
Here, X= x1, Y = x2 and Z = x3. (b) Probability for a particle with its acceleration vector
oriented in the preferential direction to find another particle in its vicinity with the same
acceleration orientation in the x1, x2 plane.

Figure 8(a) gives a three-dimensional view of the particle acceleration direction for
a fluid tracer. In figure 8(b), a supplementary demonstration of the alignment of
the acceleration direction with the large vorticity structures is shown. To this end,
for a given fluid particle with the acceleration oriented in the preferential direction,
we calculate the probability in its vicinity of finding another particle with the same
preferential orientation of its acceleration. This probability is remarkably higher in
the direction corresponding to the inclination angle of longitudinal vorticity tubes
(Rogers & Moin 1987). It is somewhat surprising, but the effect of the preferential
direction of particle acceleration along with the vorticity, and the amplification of
this effect with increasing Stokes number, is rather in contrast to the mechanism
of preferential sampling of the fluid velocity gradient field by the weakly inertial
particles, St � 1 (Maxey 1987). In the theoretical analyses of Maxey (1987), the
particle velocity is approximated as a field, vpi = ui − τpai, where ai is the total
acceleration in the fluid at the particle position, and for such a field the divergence
∇· vp was expressed by contributions of the strain rate and of the rotation in the
fluid. For particles denser that the surrounding fluid, the contribution from the strain
is positive, and it is negative from the rotation. This suggest the tendency of inertial
particles to be concentrated in regions of high strain or low vorticity. However,
when the Reynolds number is high, the Maxey (1987) approximation for the particle
velocity field is questionable. Taking the equation of particle motion in integrated
form, and using twice the integration by parts, one can express the next term in the
Maxey (1987) development, which will include the derivative of the acceleration a
of the fluid along the particle path. In the framework of the classical Kolmogorov
scaling, at a high Reynolds number, this term is of magnitude greater than the term
retained in the Maxey (1987) approximation; consequently, the expression for the
particle velocity divergency becomes more complicated than in the Maxey (1987)
interpretation. In the considered case of homogeneous strain, the alternative physical
interpretation could be this. The longitudinal vortical tubes, which derive their energy
directly from the shearing of the mean flow, persist in time and create a swirling
convergent flow which entrains the inertial particles. The generated swirling flow
amplifies the vorticity field, including vortical structures in the spanwise direction
produced by the mean shear. Particles with the smaller Stokes number respond to
these solicitations in the spanwise direction; particles with the higher Stokes number
continue to respond to the longitudinal vortical tube. In other words, particles of
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FIGURE 9. The PDF of the second invariant of the velocity gradient tensor (factor Q)
‘seen’ by the inertial particles in the homogeneous shear flow, St= 0.3 (· · · · · ·) and St=
3.0 (——).

the larger Stokes number are swept preferentially along with more intense vortical
structures. This is in line with the recent theoretical analyses by Tom & Bragg
(2019), in which it was shown that the preferential sweeping mechanism operates
on progressively larger scales as the Stokes number increases. The DNS (Tom &
Bragg 2019) confirmed also the preferential sampling of the flow by particles at
different turbulent scales. In figure 9, the statistics of the second invariant of the
velocity gradient tensor (factor Q) ‘seen’ by the inertial particle is shown for two
Stokes numbers. Here, the factor Q is calculated by S2

− R2, where S2 and R2 are
the second invariant of the fluid strain-rate and rotation-rate tensors, respectively.
It is seen that inertial particles with higher Stokes number interact more with the
high vorticity zone than particles with a lower Stokes number. The non-Gaussian
statistics of the velocity ‘jump’ in the intense vortex structures is discussed in Belin
et al. (1999), Mouri, Hori & Kawashima (2002), Moisy & Jiménez (2004), Goto
(2008) and Elsinga & Marusic (2010), and is also advanced in recent DNS of box
turbulence (Yeung, M.Zhai & Sreenivasan 2015; Iver, Sreenivasan & Yeung 2017;
Yeung, Sreenivasan & Pope 2018). Here, we point out that the alignment of the
particle acceleration to the orientation of vortex structures, stretched by the mean
shear, represents also an important parameter of the intermittency effects. How to
model the response of inertial particles to these intense effects in the framework of
under-resolved homogeneous shear flow is the question addressed in the next chapter.

4. LES-SSAM approach
4.1. Significance of residual scales

Let us first illustrate the important role played by residual scales in the particle
motion equation (2.4) if the velocity in the fluid is under-resolved. As a starting
point, we may represent the instantaneous acceleration of a large particle as the result
of two contributions. One is due to the particle response to the filtered (resolved)
velocity in the fluid ūi; the second one includes the effect of the turbulent dynamics
on residual scales. The latter is controlled by the viscous dissipation rate ε ‘seen’ by
the particle, and the particle response time τp. Thereby, the second contribution we
introduce simply from dimensional analysis as (ε/τp)

1/2. Then, instead of (2.4), the
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model equation of the particle motion may have the following form:

dupi

dt
=

ūi(xpi(t), t)− upi(t)
τp

+ βa
′

pi(xpi(t), t). (4.1)

Here, β = (ρ/ρp)
1/2, and a

′

pi includes the Kolmogorov velocity (εν)1/4 at the particle
position, the particle diameter dp and the component of the instantaneous directional
unit vector ei, i.e. a

′

pi = apei, where ap = (εν)
1/2/dp. For large times (no memory of

the initial velocity of the particle), the solution to (4.1) is

upi(t)=
1
τp

∫ t

0
e−(t−ξ)/τp

(
ūi(xpi(ξ), ξ)

τp
+ βa

′

pi(xpi(ξ), ξ)

)
dξ . (4.2)

This solution leads to the following expression for the particle acceleration:

dupi

dt
=

1
τp

∫ t

0
e−(t−ξ)/τp

(
ūi(xpi(t), t)− ūi(xpi(ξ), ξ)

τp
+ β

[
a
′

pi(xpi(t))− a
′

pi(xpi(ξ))
])

dξ .

(4.3)
Here, for a very large Reynolds number, the second term on the right-hand side
becomes important. Indeed, in terms of the classical Kolmogorov scaling, the first
term is of the order of 〈ε〉1/3∆1/3/τp, where ∆ is the filter width, while the second
term is of the order of d−1

p 〈ε
1/2
〉ν1/2(ρ/ρp)

1/2, and the ratio of the latter to the former
gives the following estimate:

d−1
p 〈ε〉

1/2ν1/2(ρ/ρp)
1/2

〈ε〉1/3∆1/3/τp
=

dp

Lint

(
Lint

∆

)1/3 (
ρp

ρ

)1/2

Re1/2
tur , (4.4)

where Lint = ηRe3/4
tur was used. Therefore, for a very large Reynolds number, equation

(4.2) may be reduced to

dupi

dt
= β3

(
η

dp

)2 ∫ t

0
e−(t−ξ)/τp

a
′

pi(xpi(t))− a
′

pi(xpi(ξ))

τη
dξ . (4.5)

In the framework of the model assumption (4.1), equation (4.5) emphasizes the crucial
role of intense velocity increment events in the fluid along the particle trajectory,
which are not resolved in LES simulations. It is seen that, with increasing particle
inertia, these effects are filtered in the particle acceleration, but with increasing
Reynolds number, the effect of inertial filtering on the particle acceleration is seen
to decrease, in agreement with the results (Ireland et al. 2016a). It is also seen
that the Kolmogorov length η and the Kolmogorov time τη are two significant
parameters in the particle response to the eventual occurrence of intense acceleration
events of the particle. In Bourgoin (2012), a similar conclusion is drawn from
experimental observations of large particles in a strongly intermittent flow. The
question is how to account for the strong velocity gradients in the fluid if the
turbulence in the simulations is under-resolved. One approach is to apply directly
the particle motion equation (4.1) by coupling it with the stochastic properties of
the viscous dissipation field ‘seen’ by the particle. Such an approach is developed in
Gorokhovski & Zamansky (2018). Another approach is to provide in the simulations
an access of equation (2.4) to the acceleration in the fluid on residual scales. One such
approach is mentioned in § 1 as LES-SSAM (Sabelnikov et al. 2019). This approach
is retained in our work. In LES-SSAM (Sabelnikov et al. 2019), the instantaneous
total acceleration is decomposed into two parts, resolved and residual, and both parts
are modelled. Hereafter, we recall the main steps of this approach for the case of
homogeneous shear.
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4.2. Outline of main steps in LES-SSAM
The filtering operation applied to (2.1)–(2.2), gives the equations for the resolved
velocity

d∆ūi

dt
+
∂(uiuk − ūiūk)

∂xk
+ Sū2δi1 =−

1
ρ

p̄
∂xi
+ ν

∂2ūi

∂xk∂xk
, (4.6)

where d∆/dt= ∂/∂t+ ūk(∂/∂xk), and

∂ ūk

∂xk
= 0. (4.7)

The set of equations for residual scales is

∂u
′

i

∂t
+
∂(uiuk − uiuk)

∂xk
+ Su

′

2δi1 =−
1
ρ

p
′

∂xi
+ ν

∂2u
′

i

∂xk∂xk
, (4.8)

∂u
′

k

∂xk
= 0. (4.9)

The sum of (4.6)–(4.9) gives exactly the Navier–Stokes equations (2.1)–(2.2).
The classical LES strategies are based on the equations (4.6)–(4.7), providing the
estimate of the unfiltered velocity with closure models for the residual-stress tensor
τij = uiuk − ūiūk. These approaches are well described in Ghosal (1999), Scotti
& Meneveau (1999), Pope (2000), Sagaut (2001), Domaradzki & Adams (2002)
and Pope (2004). It is essential that they customarily disregard the contribution
of intermittency effects on residual scales to the large-scale velocity field. Another
approach is to complete the LES velocity by simulations of the subfilter-scale velocity
field (Ghate & Lele 2017; Johnson & Meneveau 2018). This leads to substantially
improved energy spectra. In Johnson & Meneveau (2018), the large-scale simulations
are supplemented by the simulation of stochastic Lagrangian trajectories of fluid
particles. In this approach, the velocity gradient tensor is simulated by the developed
Lagrangian model. The latter is not invariant to the local Reynolds number (through
the Kolmogorov time scale), but the velocity gradient given by this model does not
impact the resolved large-scale dynamics. In Ghate & Lele (2017) the large-scale
velocity is also subjected to the subfiltered velocity field. The latter is simulated
in the framework of kinematic simulation on the supplementary sub-mesh. In this
simulation, the velocity is defined by a finite number of Fourier–Gabor modes, as
relevant interacting scales evolving with time, and the model equations for their
dynamics address the renormalization group approach for the spectral eddy viscosity,
and the RDT-closure accounting for the straining of small scales in the moving
frame. The superposed velocity fields give energy spectra very closely to DNS, but
the coarse mesh component of the velocity field remains mainly independent from
the intermittency structures on residual scales. The LES-SSAM approach is much
simpler. The idea is to formulate on a coarse mesh a surrogate flow, in which the
dependency of the resolved velocity field on the local Reynolds number is explicitly
introduced. The main assumptions of LES-SSAM are as follows. The first assumption
of LES-SSAM is to replace the exact non-closed equation (4.8) by the following
expression: (

du
′

i

dt

)∣∣∣∣
mod

+ Su
′

2δi1 =−
1
ρ

∂p∗

∂xi
+ a∗i , (4.10)
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where a∗i is the stochastic term, which might represent the stochastic properties of
acceleration on residual scales, and p∗ is thought of as a ‘pseudo-pressure’ to maintain
the continuity of the velocity field. The second assumption is to introduce the eddy
viscosity into equation (4.6)

d∆ūi

dt
+ Sū2δi1 −

∂(2νtS̄ik)

∂xk
=−

1
ρ

∂ p̄
∂xi
+
∂(2νS̄ik)

∂xk
, (4.11)

where S̄ik = 1/2(∂ ūi/∂xk)+ (∂ ūk/∂xi). Then, the sum of the two equations, (4.10) and
(4.11) leads to

d∆ūi

dt
+

(
du
′

i

dt

)∣∣∣∣
mod

+ S(ū2 + u
′

2)δi1 =−
1
ρ

∂( p̄+ p∗)
∂xi

+
∂(ν + νt)2S̄ik

∂xk
+ a∗i . (4.12)

The third assumption in LES-SSAM is to consider the sum (d∆ūi)/dt + (du
′

i/dt)|mod
as the total acceleration of a surrogate velocity field ûi, i.e.

d∆ūi

dt
+

(
du
′

i

dt

)∣∣∣∣
mod

=
∂ ûi

∂t
+ ûk

∂ ûi

∂xk
, (4.13)

which, instead of (4.12), is governed by the following model equation:

∂ ûi

∂t
+ ûk

∂ ûi

∂xk
+ Sû2δij =−

1
ρ

∂ p̂
∂xi
+
∂(ν + νt)2Ŝik

∂xk
+ a∗i , (4.14)

∂ ûk

∂xk
= 0. (4.15)

Here, Ŝik=1/2((∂ ûi/∂xk)+ (∂ ûk/∂xi)), the pressure p̂ maintains the solenoidality of the
instantaneous velocity field ûi and νt is the Smagorinsky eddy viscosity. The role of
the stochastic term a∗i (t) is to force equation (4.14) on residual scales in the framework
of the stochastic model, which gives statistical properties of acceleration similar to
those reported in the literature. So, this source term is introduced as a product of two
independent stochastic variables, the norm of acceleration a∗(t) and the ith component
of the unit directional vector ei:

a∗i = a∗(t)ei(t); eiei = 1. (4.16)

These two stochastic variables are simulated in the framework of the Ornstein–
Uhlenbeck process. The acceleration norm is simulated by the log-normal process

da∗ =−a∗
(

ln
(

a∗

|aη|

)
−

3
16
σ 2

)
dt
T
+

3
4

a∗

√
2σ 2

T
dW(t), (4.17)

where dW(t) is the increment of a standard Brownian process, 〈dW〉=0, 〈(dW)2〉=dt,
aη = ε̂3/4ν1/4 is the Kolmogorov acceleration calculated by the resolved velocity field
û, d〈a∗〉 = 0, d〈(a∗)2〉 = 0. The dispersion σ 2 depends on the local Reynolds number
Re∆ = νt/ν through the Kolmogorov length η= (ν3/ε̂)1/4, as σ 2

= ln(∆/η), where ∆
is the filter width, and ε̂ is also calculated from the resolved velocity field ûi, thereby
determining the Kolmogorov acceleration. The relaxation time T is given by the
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integral time calculated in the spanwise direction. The unit vector of the acceleration
direction evolves according to the Ornstein–Uhlenbeck process on the unit sphere.
Different to the previous versions of the LES-SSAM, this process is governed by
the stochastic equation directly written for the components of this vector (Sabelnikov
et al. 2019)

dei =−h⊥,iT−1
rel dt− 2τ−1

η ei dt+ (δij − eiej)

√
2τ−1

η dWj; 〈dWi dWj〉 = δij dt. (4.18)

Here, the first term represents the stochastic relaxation to the presumed direction
with its components hi and its projection form h⊥,i = hi − (hjej)ei, Trel denotes the
typical time of such relaxation. According to the discussions in the previous chapter,
the presumed direction in this paper is defined by the components of the vorticity
vector direction eω,i = ω̂i/|ω|, where the vorticity components are ω̂i = εijk(∂ ûk/∂xj),
εijk is the Levi-Civita symbol. The relaxation time is determined by the homogeneous
shear, T−1

rel = S. The second and the third terms in (4.18) represent the Ito form of the
diffusion process on the unit sphere with the given correlation time scale. According
to the DNS in § 3, the latter is attributed to the Kolmogorov time τη. Here, δij is
the Kronecker delta and Wj = (1, 2, 3) represents independent components of the
Brownian vector process. Equation (4.18) preserves the norm ei(t)ei(t) = 1 at any
instant, if initially that norm is equal to unity, ei(0)ei(0) = 1. In Sabelnikov et al.
(2019), this equation was rewritten in the form of the Stratonovich calculus, and the
midpoint method was applied for its integration. Denoting Stratonovich calculus by
◦, and with assumptions adapted in our study, the Stratonovich form of (4.18) is

dei =−(eω,i − (eω,jej)ei)S dt+
√

2τ−1
η εijk dWj ◦ ek; ei(t)ei(t)= 1. (4.19)

The details of the midpoint scheme for the integration of (4.19) can be found in
Sabelnikov et al. (2019).

5. Assessment of the LES-SSAM approach

We compare the statistics of inertial particles in two underlying flows. One is
the flow simulated by LES-SSAM (4.14)–(4.19) on a coarse mesh of 323 points,
another is resolved by DNS on a mesh of 5123 points. First, without the addition of
inertial particles, the capacity of the LES-SSAM to capture a pseudo-cyclic history of
turbulent kinetic energy is illustrated in figure 10 for two values of the homogeneous
shear rate, S = 3.2 s−1 and S = 28 s−1. Results from the LES-SSAM and DNS are
completed by results from the LES with the Smagorinsky eddy viscosity (denoted
in this figure as LES), and from the LES with the Germano subgrid-scale closure
method (denoted in this figure as LESD). For all those simulations, we used the
same initial condition as described in § 2 for the DNS. It is seen that, due to the
enhanced rate of energy dissipation, the standard Smagorinsky model does not allow
us to reproduce spikes in the kinetic energy evolution. For S = 28 s−1, this problem
remains in the case of LESD, up to S · t= 250 as well. The difficulty of reproducing
the homogeneous shear flow in the framework of the Smagorinsky and Germano
models is noted also in Baggett, Jimenez & Kravchenko (1997) and Wang, Jacobitz &
Rutland (2006). As already mentioned in the introduction, the deconvolution methods
in LES of the homogeneous shear flow (Gualtieri et al. 2007) give consistent results
(including the statistics of small-scale dynamics) if the shear length scale is resolved,
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FIGURE 10. (a) Comparison of the energy k = 〈uiui〉/2 evolution in the homogeneous
shear flow between DNS (——), LES (�), LESD (· · · · · ·), LES-SSAM (– – –) for S =
3.2 s−1 and DNS filtered down to 323 grid points (— · · —). (b) Same for S= 28.0 s−1.
The results are normalized by the averaged-in-time kinetic energy 〈k〉t, the averaging
begins when the statistically stationary state is reached. If this is not the case, the
averaging in time is done on the complete simulation. At early times, k is very low
(but not zero) due to the high value of the energy in the statistically stationary state
in comparison with the initial condition. The difference between the DNS and the DNS
filtered down to 323 grid points is small since the kinetic energy is contained mainly
in very large scales (Pumir 1996; Mamatsashvili et al. 2016). (c) Energy spectra in the
homogeneous shear flow with S = 3.2 s−1 for the DNS (——), LES (— · · —), LESD
(· · ·) and LES-SSAM (– – –). The κ−5/3 law is also plotted (q). (d) Same for S= 28 s−1.

∆6 LS. Consequently, for a small shear length scale, the computational requirement
may be comparable with the cost of a DNS. In our work, the homogeneous shear
rate S= 3.2 s−1 corresponds to LS/∆= 3.5, while the case of S= 28 s−1 corresponds
to LS/∆ = 0.65, i.e. the shear length scale is not resolved. Nevertheless, it is seen
in figure 10 that, in both cases, the LES-SSAM reproduces the large-scale variations
in the kinetic energy evolution, even in the case where the condition from Gualtieri
et al. (2007) is not fulfilled, i.e. ∆ > LS. Figures 10(c) and 10(d) for S = 3.2 s−1

and S = 28 s−1, respectively, show the energy spectra on the coarse mesh 323 in
comparison with DNS (5123) and with the −5/3 law. It is seen that, while LES
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can fail in the prediction of spectra in both cases, two approaches, LES-SSAM and
LESD, represent very similar spectra for the case when the shear scale is resolved.
However, when this scale is not resolved (S = 28−1), LES-SSAM is characterized
by an energy spectrum which follows a −5/3 law, which is not the case for LESD.
Obviously, the improvement of spectrum prediction in the case of LES-SSAM without
simulation of the velocity distribution on a supplementary subfilter mesh is attributed
only to coarsely resolved scales. Although it is clear that the velocity in the fluid at
the particle position can be sensitive to numerical interpolation of coarse resolution
LES data, see Bassenne et al. (2019) for example, we applied the same interpolation
method (Cottet et al. 2014; Lagaert et al. 2014) as in DNS. Another illustration of the
efficiency of the LES-SSAM (4.14)–(4.19) in prediction of homogeneous shear flow
is presented in figure 11(a). Here, PDFs of the Lagrangian velocity increments of the
tracer in the velocity field of the LES-SSAM are compared with those obtained with
the DNS. It is seen that the effects of intermittency are well predicted. Being close
to the results from DNS, the velocity increment of the LES-SSAM tracer exhibits a
non-Gaussian distribution with stretched tails at small times – the way in which the
intermittency is manifested. At large time lags, this increment is normally distributed,
conforming to the central limit theorem for the velocity statistics. The capacity of
the LES-SSAM in prediction of the inertial particle velocity increment at different
time lags, from a non-Gaussian to Gaussian shape, is shown in figure 11(b,c). It is
also seen that, for increased Stokes number, the filtering effect at small time lags
is captured correctly. It is worth underlining again that, similar to the results from
figure 10, the application of LESD gives statistics close to those from LES-SSAM in
the case when the shear scale LS is resolved on a coarse mesh, and fails completely
in its predictions when this scale is not resolved. This is illustrated in figure 12
for different homogeneous shears S = 3.2 s−1 and S = 28 s−1 for fluid and inertial
(St= 0.3) particles. It is seen that, when LS >∆, the distributions from LESD develop
stretched tails at small time lags similar to DNS, but not as close as distributions
from LES-SSAM in figure 11(a,b). At the same time, when LS < ∆ (figure 12(b,d),
LESD (at the times considered here, S · t = 200) is incapable of yielding the correct
behaviour of velocity increments at different time lags in comparison with LES-SSAM.
Therefore, since for the considered times (S · t = 200) and two homogeneous shear
rates, the pseudo-cyclic large-scale evolution, spectra and statistical distributions are
correctly reproduced by LES-SSAM, and not by LES and LESD, we retain only
the LES-SSAM approach for further comparison of the inertial particle statistics
with those when DNS was employed as a background flow. Concerning the particle
acceleration, figure 13 shows PDFs of the acceleration and their directional ‘latitude’
angle θ for S = 3.2 s−1. Here, for the tracer and for two Stokes numbers, St = 0.3
and St= 3.0, the results from the LES-SSAM with 323 grid points are compared with
the DNS flow with 5123 grid points. Although we realize that, in LES-SSAM, the
acceleration of the tracer is not the acceleration of the fluid particle, it is interesting
to compare this acceleration with the fluid particle acceleration in DNS. It is seen
that the use of the LES-SSAM on a coarse mesh allows us to reproduce fairly well
the acceleration distribution and the preferential direction of this acceleration. From
both approaches, LES-SSAM and DNS, it is also seen that, with increasing particle
inertia, the stretched tails in the particle acceleration distribution are reduced, and the
effect of the preferential direction of the particle acceleration becomes stronger. The
autocorrelation functions of the acceleration norm and the longitudinal component a1

for the LES-SSAM tracer and the inertial particle are shown on figure 14.
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FIGURE 11. Particle velocity increments at different time lags in homogeneous shear
turbulence, S = 3.2 s−1, DNS (——), LES-SSAM (u), Gaussian fit (4). PDFs are
shifted towards upper part with decreasing of time lag. From top to bottom: ∆τ =

τη/2, τη, 5τη, 30τη: (a) tracer, (b) inertial particle with St = 0.3, (c) inertial particle with
St= 3.0.

It is seen that the time separation in the autocorrelations for the norm and the
direction is well predicted by the LES-SSAM. The autocorrelations from the LES-
SSAM follow relatively well the autocorrelations from the DNS. The acceleration
statistics of the inertial particle represent its small-scale dynamics. A correct prediction
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FIGURE 12. Particle velocity increments at different time lags and different homogeneous
shear. The PDFs are shifted towards the upper part with decreasing of time lag. From top
to bottom: ∆τ = τη/2, τη, 5τη, 30τη. Gaussian fit (4): (a) DNS (——) and LESD (u) for
fluid tracers and S= 3, 2 s−1, (b) same for inertial particle with St= 0.3, (c) LES-SSAM
(u) and LESD (· · · · · ·) for fluid tracers and S= 28 s−1, (d) same for inertial particle with
St= 0.3.
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FIGURE 13. Comparison of PDFs of (a) the particle acceleration and (b) the ‘latitude’
angle θ in the resolved homogeneous shear flow from DNS with 5123 grid points (tracer,
– – –; St = 0.3, · · · · · ·; St = 3.0, ——) and the under-resolved homogeneous shear flow
from LES-SSAM with 323 grid points (tracer, p; St = 0.3, 5; St = 3.0, u). In (b),
the distributions for St= 0.3 and St= 3.0 are shifted down for better visibility.

of this dynamics in the flow simulated by the LES-SSAM (figures 11–14) does not
warrant a correct prediction of the large-scale dynamics of the inertial particle, i.e.
its velocity statistics. Nevertheless, since a pseudo-cyclic history of turbulent kinetic
energy is well reproduced by the LES-SSAM (figure 10b), even for ∆> LS, one may
expect that this is the case. The distributions of the longitudinal and normal velocities
of the tracer and the inertial particle (St= 3.0) are shown on figure 15.
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FIGURE 14. Comparison of the autocorrelation functions of the norm (grey curves) and
the longitudinal component a1 (black curves) of the particle acceleration vector; (a) tracer
from DNS (——) and LES-SSAM (u), (b) inertial particle from DNS with 5123 grid
points (St = 0.3, · · · · · ·; St = 3.0, ——) and LES-SSAM with 323 grid points (St = 0.3,
�; St= 3.0,u).

A slight dissymmetry is seen from the LES-SSAM in the particle longitudinal
velocity distributions. From our experience with the homogeneous isotropic turbulence
in which this dissymmetry is absent (Sabelnikov et al. 2019), we suppose that it is
due to numerical errors on the coarse grid, in particular in representation of the
large-scale forcing term Sû2δi1 in (4.14)–(4.15). However, the difference between the
distributions from the LES-SSAM and the DNS is not significant, especially for the
inertial particle with St = 3.0. As to the normal velocity distributions, it is seen that
the LES-SSAM fits closely the Gaussian distribution, and deviates slightly in the
tails from the distributions in DNS. This discrepancy may be attributed either again
to numerical errors in prediction of large fluctuations of the particle velocity on the
coarse grid, or to the noise of statistical distributions in tails. At the same time, the
autocorrelation functions for the particle longitudinal and normal velocity components
in the homogeneous shear flow are fairly well predicted by the LES-SSAM for both
tracer and inertial particles, as shown in figure 16. It is also seen that, for the tracer,
the exponential function with the homogeneous shear rate fits well the autocorrelation
function of its normal component, while the exponential function with the integral
time fits well the autocorrelation function of its longitudinal component. Despite
the correct prediction of the autocorrelation functions for the particle velocity, we
realize that the locality of the stochastic models introduced in LES-SSAM represents
a certain deficiency of this approach in the prediction of large-scale characteristics
of the inertial particle dynamics. It is then interesting to see how the effect of
the preferential concentration may be captured in the case of LES-SSAM flow.
For example, Voronoï tessellations (Monchaux, Bourgoin & Cartellier 2010, 2012),
which characterize the particle clustering (smaller volumes of the Voronoï cells) in
contrast to voids in the particle distribution (bigger volumes of the Voronoï cells),
are shown in figure 17 for two Stokes numbers St = 0.3, 3.0 and are compared
with the random distribution obtained by the random Poisson process. Although the
normalized Voronoï volumes PDF from the LES-SSAM follows exactly the PDF
from the DNS for particles with St = 3.0, the clustering of smaller particles with
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FIGURE 15. Comparison of the longitudinal and normal Lagrangian velocity distributions
in the homogeneous shear flow; DNS with 5123 grid points (——), LES-SSAM with 323

grid points (u), Gaussian distribution (– – –): (a,b) tracer (c,d) inertial particle with St=
3.0. Results for St= 0.3 are practically identical to (a,b).

St= 0.3 is seen overestimated in the LES-SSAM in comparison with the DNS. Such
a tendency to overestimate the clustering effects has also been observed in the case
of HIT simulated on a coarse mesh in Fede & Simonin (2006), Gin, He & Wang
(2010). This motivates the further development of the stochastic models (4.16)–(4.19).

6. Closing remarks
This study is focused on the characterization and modelling of common properties

in acceleration of small heavy particles in homogeneous turbulent shear flow. Of
particular interest is the response of those particles to the organized intense vortical
structures in the flow. To this end, the Lagrangian statistics are performed in the
5123 grid points DNS of the homogeneous shear with inertial particles. As expected,
and as is shown here for fluid particles, inertial particle with a moderate Stokes
number may also respond vigorously to strong fluid solicitations in the homogeneous
shear flow. This is manifested by highly stretched tails in PDFs of the particle
acceleration, and by the high level of fluctuations of the norm of this acceleration,
which is of the order of the mean particle acceleration. Thereby, the shape of the
acceleration norm PDF of the fluid and small inertial particles follows fairly well the
log-normal distribution. Also, as is observed in HIT, the direction and the norm of
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FIGURE 16. Autocorrelation functions for the particle longitudinal (grey curves)
and normal (black curves) velocity components in the homogeneous shear flow;
(a) distributions for tracer from DNS (——) and LES-SSAM (u), completed by
exponential fits (e−τS, · · · · · ·; e−τ/Tint , −·−); (b) inertial particle from DNS with 5123 grid
points (St = 0.3, · · · · · ·; St = 3.0, ——) and LES-SSAM with 323 grid points (St = 0.3,
�; St= 3.0,u).
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FIGURE 17. Voronoï cells for the inertial particles in the homogeneous shear flow;
(a) St = 0.3; (b) St = 3.0. The DNS with 5123 grid points (——); LES-SSAM with 323

grid points (u); the random distribution is obtained by the random Poisson process (– – –).

the fluctuating part of the particle acceleration behave as two statistically independent
variables. These variables are correlated on significantly separate times. The former,
responding to the events of strong velocity gradients in the fluid, is correlated shortly,
on times of the order of the Kolmogorov time, whereas the latter, as a signature of
the energy transfer from energetic turbulent structures, is correlated on large times.
Consequently, the pseudo-cyclic history of the particle acceleration norm reflects the
large-scale regeneration dynamics, with spikes which are observed earlier in the total
kinetic energy evolution. The results from the Kadanoff block pictures, statistical
analysis of the direction of the particle acceleration vector and the autocorrelation
functions for different components of the acceleration vector suggest that the particle
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acceleration is linked to the geometry of intense vortical structures, which may last for
dozen Kolmogorov length scales. The effective stretching of these structures induce
the inertial particle acceleration along their orientation. The acceleration of particles
along the longitudinal vortical tubes, strongly stretched in the direction of expansive
strain, represents a typical example observed in the present DNS. With a larger
Stokes number, an inertial particle responds to larger vortical structures. Therefore,
the number of particles accelerated in the direction of the longitudinal vortical tubes
is larger if the particle inertia is increased. Obviously, the relaxation of the particle
acceleration towards the vorticity direction of stretched vortical structures is opposite
to the preferential sampling due to the ‘Maxey centrifuge’ mechanism (Maxey 1987)
and reflects the tendency of particles to respond to turbulent structures according to
their Stokes number: a higher Stokes number particle samples the flow with more
energetic vortical structures. Along with the propensity for the particle acceleration
alignment to the main axis of strain, the contribution of the uniform shearing motion
is characterized by quasi-periodic bursts in the particle acceleration norm, and by the
free from parameters log-normal distribution of the acceleration norm, i.e. with the
acceleration variance equal to its mean.

From the DNS part of this work, we emphasize two main contributions to the
non-Gaussian statistics of the inertial particle acceleration to take into account for
simulations on the coarse mesh: the occurrence of the velocity jumps in the fluid,
and the alignment of the particle acceleration with the direction of the vorticity
in intense effectively stretched vortical structures. The statistical properties of such
solicitations in the fluid are introduced as a stochastic forcing on residual scales in
the form of stochastic equations, which are simulated along with the integration of
the filtered Navier–Stokes and continuity equations. An inertial particle, moving in
the under-resolved turbulence, responds to such stochastic solicitations in dependency
on the local Reynolds number. This approach, in which the stochastic forcing of
filtered momentum equations, is called a stochastic subgrid acceleration model,
LES-SSAM. The stochastic model of the direction of the subgrid acceleration contains
two characteristic times: (i) the homogeneous strain rate gives the typical time of
relaxation of this direction to the resolved vorticity direction, and (ii) the Kolmogorov
time is presumed as the typical time of the Ornstein–Uhlenbeck diffusion process
on the unit sphere. The third time scale, the integral time, concerns the log-normal
process for the norm of the subgrid acceleration.

The application of the LES-SSAM approach with 323 grid points shows its
surprising efficiency. It predicts the pseudo-cyclic evolution of the global turbulent
parameters closely to the DNS, even if the shear length scale is not resolved. The
intermittency effects in the flow on the particle motion with a moderate Stokes
number (such as the heavy tails in the distributions of the particle velocity increment
at small time lags) are represented very correctly in comparison with statistics from
the DNS. As to statistics of the particle velocity and its velocity increment at large
time lags, the distributions are typically Gaussian. There is a slight dissymmetry
in the particle longitudinal velocity distributions, issuing perhaps from a coarse
mesh representation of the mean shear forcing term. This is obviously one of the
shortcomings of the LES-SSAM. At the same time, the effect of the preferential
orientation of the inertial particle acceleration along the vortex tubes, stretched in the
direction of maximal expansion of the linear mean shear, is well represented by the
LES-SSAM. Simulations show also that with the higher Stokes number, the relative
number of particles, accelerated in this direction, is increased. The autocorrelation
functions of the acceleration and its norm for the inertial particle, predicted by the
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LES-SSAM, follow also the results from the DNS. The conceptual shortcoming of the
LES-SSAM is its locality: the spatial correlation of the stochastic forcing is defined
by the filter width. So, the Voronoï diagrams show that, although the clustering of
the particles may be well predicted for the large Stokes number, the clustering for
the small Stokes numbers is overestimated. This motivates the further development
of the LES-SSAM.
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