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Symmetry reduction by the method of slices is applied to pipe flow in order to
obtain a quotient of the streamwise translation and azimuthal rotation symmetries
of turbulent flow states. Within the symmetry-reduced state space, all travelling
wave solutions reduce to equilibria, and all relative periodic orbits reduce to
periodic orbits. Projections of these solutions and their unstable manifolds from their
infinite-dimensional symmetry-reduced state space onto suitably chosen two- or three-
dimensional subspaces reveal their interrelations and the role they play in organizing
turbulence in wall-bounded shear flows. Visualizations of the flow within the slice and
its linearization at equilibria enable us to trace out the unstable manifolds, determine
close recurrences, identify connections between different travelling wave solutions and
find, for the first time for pipe flows, relative periodic orbits that are embedded within
the chaotic saddle, which capture turbulent dynamics at transitional Reynolds numbers.
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1. Introduction
The understanding of chaotic dynamics in high-dimensional systems that has

emerged in the last decade offers a promising dynamical framework to study
turbulence. Here turbulence is viewed as a walk through a forest of exact solutions
in the infinite-dimensional state space of the governing equations. In pipe flow,
the discovery of unstable travelling waves (Faisst & Eckhardt 2003; Wedin &
Kerswell 2004), together with glimpses of them in experiments (Hof et al. 2004),
has spurred interest in obtaining a description of turbulent flow in terms of the
dynamics of a handful of key exact solutions. However, evidence of the relevance
of the dynamical system approach to turbulence has so far been mostly provided by
studies of plane Couette flow (Gibson, Halcrow & Cvitanović 2008, 2009; Halcrow
et al. 2009), with the discovery of periodic (Kawahara & Kida 2001; Cvitanović
& Gibson 2010; Kreilos & Eckhardt 2012) and relative periodic orbits (Viswanath
2007) embedded in turbulence playing the key role. In this approach, the dynamics
of turbulent flows at moderate Reynolds number (Re) is visualized using equilibrium
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solutions of the Navier–Stokes equations to define dynamically invariant, intrinsic
and representation-independent coordinate frames (Gibson et al. 2008). The resulting
visualizations show the role exact solutions play in shaping turbulence: the observed
coherent structures are the physical images of the flow’s least unstable invariant
solutions, with turbulent dynamics arising from a sequence of transitions between
these states. Here the intrinsic low-dimensionality of turbulence stems from the low
number of unstable eigendirections for each state. In this picture periodic orbits are of
particular importance, as they provide the skeleton underpinning the chaotic dynamics
(Cvitanović et al. 2012). In shear flows evidence is emerging that the geometry of
the state space near the onset of turbulence is governed by a chaotic saddle, a set of
unstable solutions and their heteroclinic connections (Mullin & Kerswell 2005). The
long-term goals of this research program are to develop this vision into a quantitative,
predictive description of moderate-Re turbulence and to use this description to control
flows and explain their statistics.

In contrast to plane Couette flow, pipe flow has a non-zero mean axial velocity
and cannot sustain equilibria and periodic orbits with both broken translational
symmetry and zero phase velocity. Hence, in pipes, unstable invariant solutions are
generically streamwise travelling solutions. The dynamical importance of invariant
solutions is specified by periodic orbit theory, in which the contribution of each
solution to any dynamical average over the chaotic component of the flow is quantified
by a deterministic weight (Cvitanović et al. 2012). In the presence of continuous
symmetries periodic orbit theory extends to weighted sums over relative periodic orbits
(Cvitanović 2007). While a large number of unstable travelling waves have been
identified in pipe flow (Faisst & Eckhardt 2003; Wedin & Kerswell 2004; Pringle &
Kerswell 2007; Pringle, Duguet & Kerswell 2009), their neighbourhoods are visited
for only 10–20 % of the time (Kerswell & Tutty 2007; Schneider, Eckhardt & Vollmer
2007; Willis & Kerswell 2008), and so it is expected that relative periodic orbits
capture most of the natural measure of the turbulent flow. Although a few unstable
relative periodic orbits have already been found (Duguet, Pringle & Kerswell 2008a;
Mellibovsky & Eckhardt 2011), these stem from bifurcations of nearby travelling
waves and exhibit only minute deviations about them. More recently, Mellibovsky &
Eckhardt (2012) have identified a new relative periodic orbit appearing at a global
Shilnikov-type bifurcation. All of these solutions, however, lie far from turbulent
dynamics and hence do not provide information about the structure of the chaotic
saddle underlying turbulent flow.

One of the main difficulties in identifying relative periodic orbits embedded in
turbulence is that each of them travels downstream with its own mean phase velocity.
Therefore, there is no single comoving frame that can simultaneously reduce all
relative periodic orbits to periodic orbits and all travelling waves to equilibria. This
problem is addressed here by the method of slices (Rowley & Marsden 2000;
Beyn & Thümmler 2004; Siminos & Cvitanović 2011; Froehlich & Cvitanović
2011; Cvitanović et al. 2012), in which the group orbit of any full-flow structure is
represented by a single point, the group orbit’s intersection with a fixed codimension-
one hypersurface or ‘slice’. Although this is analogous to the way a Poincaré section
reduces a continuous time orbit to a sequence of points, it should be stressed that a
slice is not a Poincaré section. A slice fixes only the group parameters: a continuous-
time full space orbit remains a continuous-time orbit in the symmetry-reduced state
space (see figure 1).

Our goals are twofold. First, we explain what symmetry reduction is and how it can
aid in revealing the geometry of the state space of pipe flow. Second, we demonstrate
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FIGURE 1. (Colour online) Symmetry reduction replaces each full state-space trajectory
a(t) by a simpler reduced state-space trajectory â(t), with continuous group-induced drifts
quotiented out. Here this is illustrated by the relative periodic orbit RPO36.72 (see figure 9b):
(a) traced in the full state space for three T = 36.72 periods, in the frame moving with the
constant axial phase velocity c = 1.274, the average phase velocity of structures estimated
from a long simulation; dots are spaced T apart in time; (b) restricted to the symmetry-
reduced state space. Both are projected onto the three-dimensional frame (2.19). In the full
state space a relative periodic orbit traces out quasi-periodically a highly contorted 2-torus; in
the reduced state space it closes a periodic orbit in one period T .

that this new tool enables us to commence a systematic exploration of the hierarchy
of dynamically important invariant solutions of pipe flow. Symmetry reduction
is here combined with three-dimensional spatial visualization of instantaneous
velocity fields to elucidate the physical processes underlying the formation of
unstable coherent structures. Running concurrently, the ∞-dimensional state-space
representation (Gibson et al. 2008), enables us to track the unstable manifolds of
invariant solutions, the heteroclinic connections between them (Halcrow et al. 2009),
and provides us with new insights into the nonlinear state space geometry and
dynamics of moderate Re wall-bounded flows. Starting in neighbourhoods of the
known travelling waves (Pringle et al. 2009) as initial conditions and then searching
for close recurrences (Auerbach et al. 1987; Cvitanović & Gibson 2010) in the
reduced state space yields educated guesses for locations of relative periodic orbits.
Applying Newton–Krylov methods to these initial guesses leads to the discovery
reported here, the first examples of relative periodic orbits embedded into pipe
turbulence (see figure 9b).

The paper is organized as follows. We review pipe flows, their visualization, and
their symmetries in § 2. (The reader may consider bypassing §§ 2.2–2.4 on the first
reading.) The method of slices is described in § 3, and the computation of invariant
solutions and their stability eigenvalues and eigenvectors in §§ 4 and 5.1. The main
advances reported in this paper are the symmetry-reduced state space visualization of
moderate-Re turbulent pipe flow, revealing the unstable manifolds of travelling waves
and the determination of new relative periodic orbits (§ 5.2). Remaining challenges
are discussed in § 6. The Appendix contains a classification of invariant solutions
according to their symmetries.

2. Pipe flows
The flow to be considered is that of an incompressible viscous fluid confined within

a pipe of circular cross-section, driven by a constant mass flux in the axial direction.
The Reynolds number is defined as Re = UD/ν, where U is the mean velocity of the
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flow, D is the pipe diameter and ν is the kinematic viscosity. We scale lengths by
D and velocities by U in the Navier–Stokes equations for u, the deviation from the
laminar Hagen–Poiseuille flow equilibrium U(r)= 2(1− (2r)2)ẑ,

∂u
∂t
+ U ·∇u+ u ·∇U + u ·∇u=−∇p+ 32

β

Re
ẑ+ 1

Re
∇

2u, ∇ ·u= 0. (2.1)

Hereafter all times will be expressed in dimensionless units D/U. Note that the
dimensionless variable β = β(t) is the fractional pressure gradient needed to maintain
a constant mass flux, additional to that required to drive the laminar flow. A Reynolds
number Rep, based on the applied pressure gradient, is given by Rep = Re (1 + β),
whereas the friction Reynolds number is Reτ = uτD/(2ν) =

√
2Rep, using the wall

friction velocity u2
τ = ν ∂yU|y=0, with y being the distance from the wall. The

Navier–Stokes equations are formulated in cylindrical-polar coordinates, where (r, θ, z)
are the radius, azimuthal angle and the streamwise (axial) positions, respectively. The
full fluid velocity field U(r) + u is represented by [u, v,w, p](r, θ, z), with u, v and
w the radial, azimuthal and streamwise velocity components, respectively, and p the
pressure.

In numerical simulations no-slip boundary conditions are imposed at the walls and
the infinite pipe is represented by periodic boundary conditions in the streamwise
z direction. Hence, the deviation velocity field u and the deviation pressure in
the Navier–Stokes equations (2.1) are expanded in Fourier modes in the axial and
azimuthal directions,

u(rn, θ, z)=
∑
|k|<K

∑
|m′|<M

unkm′ei(2αkz+mm′θ), (2.2)

whereas the finite-difference method is used in the radial direction. While m = 1
corresponds to the naturally periodic azimuthal boundary condition, other m implies
that the velocity field repeats itself in θ , e.g. twice for m = 2. The computational cell
is then

Ω = [1/2, 2π/m,π/α] ≡ {(r, θ, z) ∈ [0, 1/2] × [0, 2π/m] × [0,π/α]}, (2.3)

where L= π/α is the length of the pipe. This study is conducted at

Re= 2400, m= 2, α = 1.25, (2.4)
Ω = [1/2,π,π/1.25] ≈ [90, 283, 452] wall units ν/uτ , (2.5)

corresponding to a short L ' 2.5D-periodic pipe in the streamwise direction.
Mellibovsky & Eckhardt (2012, 2011) have also focused on m = 2 and studied cells
with α ∈ [1.1, 1.85]. Furthermore, in this paper we restrict the dynamics to the ‘shift-
and-reflect’ (2.13) invariant subspace: all invariant solutions and turbulence simulations
presented here are restricted to this subspace.

In this computational cell at Re = 2400 the additional pressure fraction required
to support turbulence while keeping constant mass flux is β = 0.70, yielding friction
Reynolds number Reτ = 90.3. Here one pipe radius D/2 corresponds to ∼90 wall
units. At this Reynolds number and geometry turbulence is found to be transient, with
characteristic lifetimes of order t ≈ 103 D/U before the flow finally relaminarizes. It
is worth noting that in long pipes without symmetry restrictions such a characteristic
lifetime is found at Re= 1880 (Hof et al. 2008; Avila, Willis & Hof 2010), where the
flow takes the form of streamwise localized puffs.
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The domain size (2.5) was chosen as a compromise between the computational
preference for small domains versus the need for the pipe to be sufficiently long
to accommodate turbulent dynamics. In addition, restricting the largest wavelength is
very useful in identifying key coherent structures characterizing turbulent dynamics
(Hamilton, Kim & Waleffe 1995). Although the pipes studied in this paper are short,
the three-dimensional states explored here by equilibria and their unstable manifolds
are strikingly similar to typical states in longer pipes.

2.1. State-space visualization of fluid flows
As long as one is focusing on a single solution of the Navier–Stokes equations, there
are many excellent, physically insightful three-dimensional visualizations of the flow:
velocity fields on flow sections, isovorticity surfaces, videos of the flow and so on.
But today dozens of exact equilibrium and travelling wave solutions are known for a
given turbulent flow, and the number is steadily growing. Furthermore, we are now
commencing an exploration of states of turbulent fluids in terms of unstable periodic
orbit solutions, whose number grows exponentially as a function of increasing period.
How are we to visualize the totality of these solutions in one go?

The answer was given by Hopf (1948). He envisioned the function space of
Navier–Stokes velocity fields as an infinite-dimensional state space M in which
each instantaneous state of three-dimensional fluid velocity field u(x) is represented
as a unique point a. In our particular application we can represent a = (unkm)

as a vector whose elements are the primitive discretization variables (2.2). The
three-dimensional velocity field given by uknm(t), obtained from integration of the
Navier–Stokes equations in time, can hence be seen as trajectory a(t) in ≈ 100 000
dimensional space spanned by the free variables of our numerical discretization, with
the Navier–Stokes equations (2.1) rewritten as

ȧ= v(a), a(t)= a(0)+
∫ t

0
dt′v(a(t′)). (2.6)

Here the current state of the fluid a(t) is the time-t forward map of the initial fluid
state a(0). In order to quantify whether two fluid states are close to or far from each
other, one needs a notion of distance between two points in state space, measured here
as

‖a− a′‖2 = 〈a− a′|a− a′〉 = 1
V

∫
Ω

dx(u− u′) · (u− u′). (2.7)

There is no compelling reason to use this ‘energy norm’. What norm one actually
uses depends very much on the application. For example, in the study of ‘optimal
perturbations’ that move a laminar solution to a turbulent one, both energy
(Tempelmann, Hanifi & Henningson 2010) and dissipation (Lombardi et al. 2011)
norms have been used. In our quest for travelling waves and relative periodic
orbits (see § 5.2) we find it advantageous in the search for recurrences to use a
‘compensatory’ norm (4.3) that enhances the weight of cross-stream velocities.

Visualizations of the state-space trajectory (2.6) are by necessity projections onto
two or three dimensions. Flow states can be characterized by the instantaneous
kinetic energy of their velocity field, E = ‖U + u‖2 /2, and energy dissipation rate
D = Re−1 ‖∇ × (U + u)‖2. The dissipation rate is balanced by the energy fed into the
flow as

Ė = I − D, (2.8)
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where I = (1/V) ∮ dS[n · (u + U)]p is the external power required to maintain
constant mass flux. A physically appealing choice is to monitor the flow in terms
of these symmetry-invariant, physical observables (E(t)/Elam,D(t)/Dlam, I(t)/Ilam), as
in figure 11. Note that I(t)/Ilam = 1 + β(t). For travelling waves the kinetic energy is
constant, so that D = I. Such solutions sit on the diagonal in figure 11(a), whereas
for relative periodic orbits the kinetic energy is time periodic, with D = I only for
long-time averages. Whilst this is a good check on correctness of numerical data, such
projections bunch all invariant solutions and turbulent flow along the energy-balance
lines, even though the solutions themselves can be (and often are) very distant from
each other. In fact, if two fluid states are clearly separated in such plot, they are
also separated in the high-dimensional state space. However, the converse is not true;
states of very different topology might have comparable energies, and such plots may
obscure some of the most relevant features of the flow. Furthermore, relations such as
(2.8) depend on detailed type and geometry of a given problem (Greene & Kim 1988;
Cvitanović, Davidchack & Siminos 2009), and further physical observables beyond
(E(t),D(t), I(t)) are difficult to construct.

Recently, Gibson et al. (2008) have shown that with the state space considered
as a high-dimensional vector space, the dynamics can be elucidated more profitably
by computationally straightforward sets of physical coordinates. First, one identifies
several prominent flow states uA, uB, . . . , such as equilibria and their linearized
stability eigenvectors, in whose neighbourhoods it is suspected that the turbulent
flow spends most of the time. From them an orthonormal basis set {e1, e2, . . . , en}
is constructed by Gram–Schmidt and/or (anti)symmetrizations. The evolving fluid state
u(t) is then projected onto this basis using the inner product (2.7),

a(t)= (a1, a2, . . . , an, . . .)(t), an(t)= 〈u(t)|en〉. (2.9)

Finally, low-dimensional projections of the flow can be viewed in any of the two-
dimensional planes (am, an) or in three-dimensional perspective views (a`, am, an). An
example is the figure 1 projection on the three-dimensional frame {e1, e2, e3} defined in
(2.19).

It is worth emphasizing that this method offers a low-dimensional visualization
without dimension reduction or low-dimensional modelling; the dynamics are
computed with fully resolved direct numerical simulations. Although the use of
particular travelling waves to define low-dimensional projections (see § 5.1) may
appear arbitrary, the choice turns out to be very useful when the turbulent flow
is chaperoned by a few invariant solutions and their unstable manifolds, as for
example in low-Reynolds-number plane Couette flow (Gibson et al. 2008). Such
visualizations are essential to uncovering the interrelations between invariant solutions
and constructing symbolic dynamics partitions of state space needed for a systematic
exploration of turbulent dynamics. This is the key challenge we address here for the
case of turbulent pipe flows.

2.2. Symmetries of pipe flow
In many physical applications equations such as those of Navier–Stokes retain their
form under symmetry transformations. Consider the Navier–Stokes equations in the
state-space formulation (2.6). A flow ȧ = v(a) is said to be G-equivariant if the form
of evolution equations is left invariant by the set of transformations g that form the
group of symmetries of the dynamics G,

v(a)= g−1v(ga) for all g ∈ G. (2.10)
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On an infinite domain and in the absence of boundary conditions, the Navier–Stokes
equations are equivariant under translations, rotations and x→−x, u→−u inversion
through the origin (Frisch 1996). In pipe flow the cylindrical wall restricts the rotation
symmetry to rotation about the z-axis, and translations along it. Let g(φ, `) be the shift
operator such that g(φ, 0) denotes an azimuthal rotation by φ about the pipe axis and
g(0, `) denotes the streamwise translation by `; let σ denote reflection about the θ = 0
azimuthal angle:

g(φ, `)[u, v,w, p](r, θ, z)= [u, v,w, p](r, θ − φ, z− `) (2.11)
σ [u, v,w, p](r, θ, z)= [u,−v,w, p](r,−θ, z). (2.12)

The Navier–Stokes equations for pipe flow are equivariant under these transformations.
The symmetry group of streamwise periodic pipe flow is thus G = O (2)θ ×SO (2)z =
D1 n SO (2)θ ×SO (2)z, where D1 = {e, σ } denotes azimuthal reflection, n stands for
a semidirect product (in general, reflections and rotations do not commute), and the
subscripts z, θ indicate streamwise translation and azimuthal rotation, respectively. For
an assessment of the discrete symmetries in pipe flow see the Appendix.

Whilst the flow equations are invariant under G, the state of flow typically is not.
Only the laminar Hagen–Poiseuille equilibrium is invariant under all of G, whereas
a generic turbulent state has only the trivial symmetry group {e}. In this paper we
restrict our investigations to dynamics restricted to the ‘shift-and-reflect’ symmetry
subspace (A 3),

S= {e, σgz}, (2.13)

i.e. velocity fields (2.12) that satisfy [u, v,w, p](r, θ, z)= [u,−v,w, p](r,−θ, z − L/2).
In addition, in some of the simulations (e.g. figure 8) we further impose the ‘rotate-
and-reflect’ symmetry

Z2 = {e, σgθ }, (2.14)

which is possessed by the highly symmetric waves found by Pringle et al. (2009).
In this case the velocity field also satisfies [u, v,w, p](r, θ, z) = [u,−v,w, p](r,π/2 −
θ, z).

It is worth emphasizing that by imposing the symmetry S, rotations are prohibited
and, hence, we consider only the simplest example of a continuous group, the
streamwise one-parameter rotation group SO (2)z, omitting the subscript z whenever
that leads to no confusion. In the literature (see, e.g., Recke et al. 2011) such SO(2) is
often referred to as the circle group S1.

2.3. Symmetry-induced coordinate frames
So far we have not offered any advice as to the choice of basis vectors in constructing
state-space coordinates (2.9). In this section we show that the presence of a continuous
symmetry suggests two natural mutually orthogonal basis vectors, the group action
tangent and curvature vectors, suitable to local visualizations of group orbits.

Consider the one-parameter rotation group SO(2) acting on a smooth periodic
function u(θ + 2π) = u(θ) defined on the domain θ ∈ [0, 2π), expanded in the Fourier
basis

u(θ)=
∑

ameimθ . (2.15)

Here u is real, so am = a∗−m. Let us parametrize forward translations by the continuous
parameter φ, g(φ) u(θ) = u(θ − φ), or, in Fourier space, g(φ) a = diag{e−imφ} a. (In
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this section φ is a general SO(2) transformation, not necessarily the pipe azimuthal
rotation of (2.12).) The tangent to the group orbit at point a is then given by the first
derivative with respect to the group parameter, and the direction of curvature by the
second derivative,

t(a)= lim
φ→0

(g(φ) a− a)/φ = diag{−im}a= Ta, (2.16)

κ(a)n(a)= T 2a=−diag{m2}a, (2.17)

where n is a unit vector normal to the tangent, 1/κ is the radius of curvature, and we
may write g= eφT . The pair of unit vectors

{en, en+1} = {t(a)/‖t(a)‖,n(a)} (2.18)

forms a local orthogonal Frenet–Serret frame at state-space point a and can be
useful in constructing the state-space basis vector set (2.9). For example, in figure 1
the symmetry-reduced state-space periodic orbit â(t) is projected onto the three-
dimensional orthogonal frame

{e1, e2, e3} = {t(a′)/‖t(a′)‖, n(a′), (âd − a′)⊥ / ‖âd − a′‖⊥} (2.19)

where a′ = â(0) is a ‘reference’ or ‘template’ point on the relative periodic orbit,
âd is the most distant point on the periodic orbit from â measured in the energy
norm (2.7), and (âd − a′)⊥ is the component of their separation vector, Gram–Schmidt
orthogonalized to {e1, e2}.

In what follows we consider time-dependent group parameters φ(t), and the
associated phase velocity φ̇ along the group tangent evaluated at the state-space point
a is given by

g−1ġa= e−φT
(

d
dt

eφT
)

a= φ̇ · t(a). (2.20)

This formula for the phase velocity is known as the ‘Cartan derivative’; for N-
parameter continuous symmetry the dot product is N-dimensional, as in (2.21).

2.4. Relative invariant solutions
In systems with continuous symmetries there are important classes of invariant
solutions referred to as ‘relative’ or ‘equivariant’ (Huygens 1967; Poincaré 1896).
In pipe flows one expects to find travelling waves and relative periodic orbits (Rand
1982) associated with the translational and rotational symmetries of the flow. Although
these unstable flow-invariant solutions can only be computed numerically, they are
‘exact’ in the sense that they converge to solutions of the Navier–Stokes equations as
the numerical resolution increases.

A ‘relative equilibrium’ (labelled here TW for travelling wave) is a dynamical orbit
whose velocity field (2.6) lies within the group tangent space

v(a)= c · t(a), (2.21)

with a constant phase velocity c= (c1, . . . , cN) and c is equivalent to φ̇ in (2.20). Here
N is the dimension of the continuous symmetry. In pipe flow N = 2 and c = (φ̇, ˙̀),
corresponding to rotations and axial translations, and for a travelling wave, time
evolution is confined to the group orbit

a(t)= g(ct) a(0), a(t) ∈MTW, (2.22)
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where MTW is the N-dimensional group orbit manifold of the travelling wave. As a
travelling wave explores only its group orbit, a travelling wave is not a periodic orbit.
Rather, as all states in a group orbit are physically the same state, this is a generalized
equilibrium. In pipe flow relative equilibria can propagate in the streamwise direction
z (travelling waves), in the azimuthal θ direction (rotating waves), or both. However,
in the shift-and-reflect subspace (2.13) considered here, rotations are precluded. In this
case only streamwise travelling waves are permitted, satisfying (2.22)

f (u(0), t)= g(0,−ct)u(t)− u(0)= 0, (2.23)

where c is the constant streamwise phase velocity c2 = ˙̀ and in what follows we find
it convenient to drop the suffix 2.

A relative periodic orbit p is an orbit in state space M which exactly recurs

a(t)= gpa(t + Tp), a(t) ∈Mp, (2.24)

after a fixed relative period Tp, but shifted by a fixed group action gp that maps
the endpoint a(Tp) back into the initial point cycle point a(0). Here Mp is the
(N + 1)-dimensional manifold swept by the group orbit of the relative periodic orbit.

In pipe flow, a relative periodic orbit p is a time-dependent velocity field

up(r, θ, z, t)= up(r, θ + φp, z+ `p, t + Tp) (2.25)

that recurs after time Tp, rotated and shifted by φp and `p. In our Newton search for a
relative periodic orbit p, we seek the zeros of

f (u(0),T, `)= g(0,−`)u(T)− u(0)= 0, (2.26)

starting with a guess for the initial state of fluid u, period T and shift `.
Continuous symmetry parameters (‘phases’ or ‘shifts’) {φn} = {φp, `p} are real

numbers, so ratios π/φn are almost never rational and relative periodic orbits are
almost never periodic. In pipe flow the time evolution of a relative periodic orbit
sweeps out quasi-periodically the three-dimensional group orbit Mp without ever
closing into a periodic orbit.

3. Reduction of continuous symmetry
For the example at hand, a pipe flow (similarly for a plane Couette flow) with

periodic boundary conditions in z and θ , the symmetry group Γ contains two
commuting continuous SO(2) rotations, i.e. axial and azimuthal shifts. Travelling
waves and relative periodic orbits are then two- and three-dimensional manifolds of
physically equivalent states generated by these shifts. How are we to compare a pair of
states? We start by determining the minimal distance between the manifolds.

The ‘group orbit’ Ma of a state-space point a ∈M is traced out by the set of all
group actions

Ma = {g a | g ∈ G}. (3.1)

Any state in the group orbit set Ma is physically equivalent to any other. The action of
a symmetry group thus foliates the state space into a union of group orbits, figure 2(a).
For pipe flow, each SO(2) subgroup group orbit is (topologically) a circle, see figure 3
and together they sweep out a T2 torus, see figure 4.

The goal of symmetry reduction is to replace each group orbit by a unique
point in a lower-dimensional symmetry-reduced state space M̂ =M /G, as sketched
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(a) (b)

FIGURE 2. (a) The group orbit Ma(0) of state-space point a(0), and the group orbit Ma(t)

reached by the trajectory a(t) time t later. (b) Symmetry reduction M → M̂ replaces each
full state-space group orbit Ma ⊂M by a single point in the reduced state space â ∈ M̂ .
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FIGURE 3. (Colour online) Projections of group orbits of two states a (in ≈100 000-
dimensional state space) onto stationary Frenet–Serret frames given by unit vectors in the
directions {tz(a′), tθ (a′),nz(a′)}, see (2.18). The state in (a) is a very smooth state, the ‘lower-
branch’ travelling wave LB, whereas in (b) it is a snapshot from a turbulent run. The group
orbits are generated by all possible axial shifts g(0, `) a and plotted relative to a template
point a′. In (a) the state a = a′ = aLB(0) belongs to the ‘lower-branch’ travelling wave MLB
described in § 5.1; in (b) a is a ‘typical’ turbulent state shapshot with its group orbit as seen
from the template a′ = aML . Group orbits are only topologically circles; for strongly nonlinear,
turbulent states many Fourier modes are of comparable magnitude, with their sums resulting
in highly convoluted group orbits such as (b).

in figure 2. Several symmetry reduction schemes are reviewed in Siminos &
Cvitanović (2011). Here we shall describe the method of slices (Rowley & Marsden
2000; Beyn & Thümmler 2004; Siminos & Cvitanović 2011; Froehlich & Cvitanović
2011), the only method that we find practical for a symmetry reduction of turbulent
solutions of highly nonlinear flows, see § 5.2.

In the method of slices the symmetry reduction is achieved by cutting the group
orbits with a finite set of hyperplanes, one for each continuous group parameter, with
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FIGURE 4. (Colour online) As figure 3, but with the full two-dimensional SO (2)θ ×SO (2)z
group orbits traced out by shifts in both z and θ . Solid loops correspond to shifts in z and
dashed loops to shifts in θ .

each group orbit of symmetry-equivalent points represented by a single point, its
intersection with the slice. The procedure is akin to (but distinct from) cutting across
continuous-time parametrized trajectories by means of Poincaré sections. As is the
case for Poincaré sections, choosing a ‘good’ slice is a dark art. Our guiding principle
is to chose a slice such that the distance between a ‘template’ state a′ and nearby
group orbits is ‘minimized’, i.e. identify the point â on the group orbit (3.1) of a
nearby state a which is the closest match to the template point a′.

3.1. Method of slices: local charts

After some experimentation and observations of turbulence in a given flow, one can
identify a set of dynamically important unstable recurrent coherent structures. For
example, coherent streaky structures have been observed in pipe flow at transitional Re
(Hof et al. 2004) through to very high Re (Kim & Adrian 1999) where ‘very large-
scale motions’ have length scales comparable with the pipe radius. Streaky structures
are also observed in the buffer layer of turbulent flows with a characteristic spanwise
wavelength of approximately 100 wall units (Kline et al. 1967).

We shall refer to this catalogue of n representative snapshots or ‘reference states’,
either precomputed or experimentally measured, as ‘templates’ (Rowley & Marsden
2000), each an instantaneous state of the three-dimensional fluid flow represented by
a ‘point’ a′(j), j = 1, 2, . . . , n, in the state space M of the system. Symmetries of the
flow (i.e. the g ∈ G) are then used to shift and rotate the template a′ until it overlies, as
well as possible, the coherent structure of interest a, by minimizing the distance

‖a− g(φ)a′‖. (3.2)

At every instant in time, the entire group orbit of a is then replaced by the closest
match on the group orbit to the template pattern, given by â = g−1a, as shifting does
not affect the norm, ‖a − g a′‖ = ‖â − a′‖. The symmetry-reduced state space M̂
(hereafter referred to as the ‘slice’), of dimension (d − 1), consists of the set of closest
matches â, one element for each full state space M group orbit; the hat on â indicates
the unique point on the group orbit of a closest to the template a′.
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(a) (b)

FIGURE 5. (Colour online) The method of slices, a state-space visualization. (a) Slice
M̂ ⊃M /G lies in the (d − N)-dimensional hyperplane (3.4) normal to t ′, where t ′j span
the N-dimensional space tangent to the group orbit g a′ (lower dotted loop) evaluated at the
template point a′. The hyperplane intersects all full state-space group orbits (dotted loops,
shown in green online). The full state-space trajectory a(t) (black lines, shown in blue online)
and the reduced state-space trajectory â(t) (grey lines, shown in green online) are equivalent
up to a ‘moving frame’ rotation a(t) = g(t) â(t), where g(t) is a shorthand for g(φ(t)). (b) In
the full state space M a relative periodic orbit a(0)→ a(t)→ a(T) returns to the group orbit
of a(0) after time T and a rotation by g, a(0) = g a(T). For flows with continuous symmetry
a generic relative periodic orbit fills out quasi-periodically what is topologically a torus. In
the slice M̂ the symmetry-reduced orbit is periodic, â(0) = â(T). This is a highly idealized
sketch: a group orbit is a N-dimensional manifold and even for SO(2) it is usually only
topologically a circle (see figure 3), and can intersect a hyperplane any number of times (see
figure 6a).

For the azimuthal SO (2)θ rotations (and likewise for the periodic pipe SO (2)z
streamwise translations), the minimal distance satisfies the extremum condition

∂

∂φ
‖a− g(φ)a′‖2 = 2〈a− ga′|T θga′〉 = 2〈â− a′|T θa

′〉 = 0, (3.3)

given that group orbits are smooth differentiable manifolds. As ‖g(φ)a′‖ is a constant,
the group tangent vector T θa′ evaluated at a′ (2.16) is normal to a′, and the term
〈a′|T θ a′〉 vanishes (shifts of a′ do not alter its norm, hence the group tangent must
be orthogonal to a′). Therefore, the point â on the group orbit that lands in the slice,
satisfies the ‘slice condition’

〈â|t ′θ 〉 = 0, t ′θ = T θa
′. (3.4)

The slice so defined is thus a hyperplane that includes the origin, normal to the
template group tangent evaluated at the template.

When a varies in time, ȧ = v(a), the template a′ tracks the motion using the slice
condition (3.4) to minimize ‖a(t)− g(φ(t))a′‖ and the full-space trajectory a(t) is thus
rotated into the reduced state space, â(t) = g−1 a(t), by appropriate ‘moving frame’
(Cartan 1935; Fels & Olver 1998, 1999; Olver 1999) angles {φ (t)n}, as depicted
in figure 5(a). Specializing to SO(2), one can write the equations for the reduced
state-space flow, â(t) ∈ M̂ confined to the slice, ˙̂a= v̂(â), as

v̂(â)= v(â)− φ̇(â)t(â) (3.5)
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FIGURE 6. (Colour online) (a) Every slice hyperplane cuts every group orbit at least twice
(see figure 5). An SO(2) relative periodic orbit is topologically a torus, so the two cuts are the
two periodic orbit images of the same relative periodic orbit: the good close one with a dot,
and the bad distant one on the other side of slice border and thus not in the slice. Here this is
illustrated by close cut (blue) of the relative periodic orbit RPO36.72 torus, figure 1(b), plotted
together with the most distant cut (red), in the same slice hyperplane, but not in the slice.
(b) Deviation from the mean shift, s = `(t) − c t, where c ' 1.274, is estimated from a long-
time simulation. The two s(t) are calculated for the same trajectory, first symmetry-reduced
using a single template ML and, second, symmetry-reduced using the travelling waves in
table 1 as templates indexed by j(t) (j= 1 laminar; 2 LB; 3 ML; 4 MU; 5 UB; 6 S2U; 7 S2L).
Both begin with the same template and initially experience the same jumps in the shift at
t ≈ 40. By switching the template at t ≈ 60, further jumps (seen for s(ML)) are avoided in s(j).

φ̇(â)= 〈v(â)|t ′〉/〈t(â)|t ′〉. (3.6)

In other words, v, the velocity in the full state space, can be written as the sum
of v̂, the velocity component in the slice, and φ̇ t, the Cartan derivative (2.20) or
the velocity component along the group tangent directions. The φ̇ equation is the
‘reconstruction equation’: its integral keeps track of the group shifts in the full state
space. In particular, if â is a point on a travelling wave (2.21), the full state-space
velocity equals the phase velocity and v̂(â) = 0, i.e. travelling waves are always
reduced to equilibria in the slice. It should be emphasized that we never integrate the
reduced equations (3.5); numerical simulations are always carried out in the full state
space. Slicing is implemented as postprocessing of numerical or experimental data, by
rotating full state-space trajectories into the slice, as in figure 5.

3.2. Charting the reduced state space: a global atlas
The method of slices as implemented here associates a slice (3.4) to a template. Our
slice is locally a hyperplane, expected to be a good description of solutions similar to
a given template only in its neighbourhood. Nevertheless, as every group orbit has a
point closest to a given template, and a slice is the set of all such group-orbit points, it
slices the group orbits of all full state-space points. The variational distance condition
(3.4) is an extremum condition and as the group orbits of highly nonlinear states
are highly contorted (see figure 4b), the distance function can have many extrema
and multiple sections by a slice hyperplane. For example, a relative periodic orbit
sweeps out a torus and is always intersected by a slice hyperplane in two or more
periodic orbit sections, once at the orbit’s closest passage to the template, with positive
curvature (2.17) and another time at the most distant passage, also satisfying the slice
condition (4.2), but with negative curvature (see figure 6a).
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As explained in Froehlich & Cvitanović (2011) and Cvitanović et al. (2012), a slice
hyperplane captures faithfully neighbouring group orbits as long as it slices them well;
it does so until it reaches the chart border, the set of points â∗ sufficiently far from
the template, whose group orbits are grazed tangentially rather than sliced transversely.
For such a grazing group orbit the group tangent vector lies in the slice and is thus
orthogonal to the slice tangent,

〈t(â∗)|t ′〉 = 0. (3.7)

The phase velocity φ̇(â∗) in (3.6) then diverges. While such divergence is an avoidable
nuisance, an artifact of the symmetry reduction to a particular slice hyperplane, it is a
numerical nuisance nevertheless.

For points beyond the chart border (3.7) the group orbits have more than one
intersection with the slice. It is clear what the trouble with any single slice hyperplane
is: the nonlinear flow of interest is taking place on a highly contorted curved manifold
embedded in the ∞-dimensional state space, so a single template cannot be a good
match globally. It is as good as a projection of the whole Earth onto a single flat map
centred on the North Pole. The physical task is to, in order to chart the state space of
a turbulent flow, pick a set of qualitatively distinct templates a′(j) whose slices M (j)

span across neighbourhoods of the qualitatively most important coherent structures,
and which together capture all of the asymptotic dynamics and provide a global atlas
of the dimensionally reduced state space M̂ =M /G. The choice of templates should
reflect the dynamically dominant patterns seen in the solutions of nonlinear partial
differential equations (PDEs), one typical of, let us say, 2-roll states, one for 4-roll
states and so on. Each slice hyperplane comes with its chart border hyperplane of
points â∗, defined by the grazing condition (3.7), beyond which it should not be
deployed as a chart. Together they ‘Voronoi’ tessellate the curved manifold in which
the symmetry-reduced strange attractor is embedded by a finite set of hyperplane tiles.

For example, in reducing turbulent trajectories of § 5.2, we deploy a set of travelling
waves as our templates. Each associated slice M (j), provides a local chart at a′(j)

for a neighbourhood of an important, qualitatively distinct class of solutions. In
our simulations we keep checking the distance to the template of the symmetry-
reduced trajectory and switch to the next template neighbourhood before the trajectory
encounters the chart border (3.7) of the current one, as illustrated by figure 6(b). Initial
jumps, observed before switching commences, can occur due to the choice of initial
template. If jumps continue, the set of templates may not represent the observed states
well.

4. How to slice a pipe
Slicing is independent of numerical representation. We describe our implementation,

however, using the convenient discretization for pipe flow of (2.2). The deviation
velocity field u and deviation pressure in the Navier–Stokes equations (2.1) are
discretized as in (2.2), using Fourier modes in the axial and azimuthal directions and
finite differences in the radial direction, with coefficients unkm. The radial points, rn

for n= 1, 2, . . . ,N, are non-uniformly spaced, with higher resolution towards the wall.
Flow variables being real implies that the coefficients satisfy unkm = u∗n,−k,−m. Time
stepping has been performed using a second-order predictor–corrector method with a
time step of 1t = 0.0025. To ensure dealiasing in the evaluation of nonlinear terms,
Fourier series were evaluated on 3K and 3M spatial points in z and θ , respectively.
For the calculations presented, a resolution of (N,K,M) = (64, 16, 16) has been used,
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corresponding to 64 × 48 × 48 grid points, or 1z+ ≈ 9 and (1θD/2)+ ≈ 6, similar to
that used in the minimal box (Jiménez & Moin 1991). The resolution was tested by
increasing it until well-converged results were obtained.

4.1. Rotation into the slice
In this paper we consider only shifts ` in the streamwise direction (2.12). Denoting our
state by a= (unkm), the group tangent t(a)= T z a to a in the direction of axial shifts is
given by (2.16),

t (u)nkm =−2αkiunkm, (4.1)

and the shift `(t) of state-space trajectory a(t) into the slice is determined by the slice
condition (3.4),

f (`(t))= 〈g(0,−`(t))a(t)|t ′〉 = 0, (4.2)

where t ′ is the group orbit tangent evaluated at a template state a′. As long as the
norm is discretization independent, the slice condition (4.2) is independent of the
numerical representation of the flow u, be it finite difference, spectral and so on. The
slice condition is solved for `(t) every few time steps using Newton’s method, where a
good initial guess for `(t) is obtained from the previous value and ˙̀(t).

When â(t) is close to a′, the function f (`) has only one root. When a(t) is far from
a′, however, f (`) may have many roots, pairs of which may disappear with time. This
would lead to a discontinuity in `(t). As explained in § 3.2, in order to avoid this, a
global atlas has to be pieced together from local slice charts, fixed by a well-chosen
set of templates a′(j). Shifts `j(t) are tracked for each local slice chart M (j) and the
next slice hyperplane M (j+1) with `j+1(t) is selected whenever the distance to the next
template minimizes ‖â(t)− a′(j+1)‖.

4.2. Dynamically important solutions and Newton’s method
For pipe flows many streamwise travelling waves satisfying (2.23) are known, and
can be used as the starting points for our relative periodic orbit searches. Most
solutions exhibit no azimuthal rotation. This is usually imposed by symmetry, but one
could argue that it is the strong streamwise advection that favours structures with
very weak azimuthal rotation speed, empirically |cθ | 6 O(10−3). Streamwise travelling
waves evolve in time along their group orbit, generated by g(0, `(t)). They therefore
satisfy the slice condition (4.2) for `(t)= `0 + czt.

The few pipe flow relative periodic orbits that have been found prior to this study
were located via tracking a Hopf bifurcation off a travelling wave solution (Duguet
et al. 2008a; Mellibovsky & Eckhardt 2011). These ‘modulated travelling waves’
stick close to their mother orbits and explore little of the state space, with temporal
dynamics barely distinguishable from parental travelling waves. In contrast, in our
Newton searches for relative periodic orbits, we seek the zeros of relative periodic
orbit condition (2.26) deep in the turbulent sea. The way in which the method of
slices enables one to find initial guesses for (u(0),T, `) is the main difference between
this study and the previous searches for relative periodic orbits in pipe flows.

Here we take as initial guesses samples of nearly recurrent velocity fields generated
by long-time simulations of turbulent dynamics (Auerbach et al. 1987; Cvitanović &
Gibson 2010). The intent is to find the ‘dynamically most important’ solutions, by
sampling the turbulent flow’s natural measure. In practice, sufficiently good full state-
space initial guesses for (u(0),T, `) would be almost impossible to find. Checking
correlations between u(t) and g(0, `)u(t − T) for each T, and more problematically,
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for all possible shifts (φ, `), is an unrealistic task. The method of slices, however,
enables us to determine close recurrences from the symmetry-reduced time series
and locates the dynamically most important solutions, i.e. those trajectories that are
most likely to be observed in a long-time turbulent simulation. The relative periodic
orbits are reduced to periodic orbits, whose unstable manifolds are much easier to
track in the reduced state space. The relative periodic orbit shift ` is given by the
reconstruction equation (3.6) or, in practice, by phase shift `(T) − `(0), where `(t) is
quickly calculated by intermediate Newton steps.

With a good initial guess for (u(0),T, `), such a system can be solved using
a Newton scheme. Two conditions in addition to (2.26) need to be enforced: the
Newton update should have no component along the group orbit, 〈δu|t(u)〉 = 0, and
no component tangent to trajectory, 〈δu|u̇〉 = 0. To solve this system a ‘hookstep’
trust-region variation to the Newton–Krylov method has been implemented, similar to
that of Viswanath (2007). This method greatly increases the tolerance in the starting
(u(0),T, `) required for convergence to an exact solution.

The radial and azimuthal components of the flow are typically smaller than the
streamwise component by a factor of approximately 3–10. The components u and
v, however, can be associated with ‘rolls’ in the flow that are as important to the
self-sustaining mechanism of turbulence as ‘streaks’, associated with deviations in the
w component. This observation motivated an empirical ‘compensatory norm’, which
was found to be useful for the calculation of recurrences and to assist convergence in
our Newton scheme,

‖u‖2
c = 〈u|u〉c =

1
2

∫
V
(9u · u+ 9v · v + w ·w) dV. (4.3)

Whilst the usual energy norm has continued to be used for the slicing, use of other
norms is compatible with the method.

5. The sliced pipe
For our first exploration of the state space of pipe flow, we have chosen a cell

size and Reynolds number combination (2.5) empirically balanced so that Re is just
sufficient to sustain long periods of turbulence. Among the many travelling waves
already known, we have chosen to focus on the family of solutions classed as N2
by Pringle et al. (2009). At the parameter values (2.5), the N2 family has the upper
and lower branches (UB and LB), as well as two middle states (MU and ML), where
‘upper’ and ‘lower’ refers to the friction or dissipation (2.8), associated with each state.
The middle states should not be confused with the M branch of solutions documented
by Pringle et al. (2009), for which the M2 branch does not appear to exhibit solutions
at these particular parameters. States of the S class do exist at these parameter values,
however. figure 7 shows all travelling waves considered in this work.

5.1. Sliced travelling waves

For the sake of simplicity we consider first the dynamics restricted to the (S,Z2)

symmetry subspace of the N2 states. A convenient property of the ML state at our
parameter values (2.5) is that it has only one complex unstable eigenvalue within this
symmetry subspace. The trajectories of small perturbations therefore spiral away from
ML as they follow its unstable manifold. With ML drifting in the axial direction, this
local spiral would be difficult or impossible to detect. Within the slice, however, the
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LB ML MU

UB S2U S2L

FIGURE 7. (Colour online) Travelling waves for the cell (2.5), reduced to equilibria by
the method of slices. Colour map of the streamwise velocity relative to the laminar flow,
lighter (darker) indicating positive (negative) w. The N2 states (LB, ML, MU and UB) have
symmetries (S,Z2), where the symmetry C2,θ is implied. The S2 states originate from a
symmetry-breaking bifurcation off the N2 branch and have symmetries S and C2,θ only.
Shown is one fixed pipe section for each of the solutions. As the choice of the streamwise
position of such section is arbitrary, only meaningful comparison of different solutions is by
their distance in the symmetry-reduced state space.

ML state is reduced to an equilibrium and the local spiral structure is clear, as shown
in figure 8(a).

To project onto the two dimensions of the page, deviations from the ML state have
been projected as in (2.9), against the real and imaginary components of its complex
stability eigenvector, ê1 and ê2, respectively,

âi(t)= 〈â(t)− âML |êi〉. (5.1)

Projection using the ML state and its eigenvector also proved to be well suited
for projections beyond its immediate neighbourhood, as the other travelling wave
states are well spread out in the projection. Unfortunately, this is not true in general.
Experiments using the S2U state, for example, found that the leading eigenvector is
approximately orthogonal to the directions from S2U to the other travelling wave
states.

Once trajectories escape the neighbourhood of ML they are attracted to another
state-space region where the UB solution is to be found. Applying the same projection
to all N2 travelling waves, figure 8(b) shows trajectories along their most unstable
directions. Shooting in opposite directions along the most unstable, one-dimensional
manifold of the MU state, one direction goes directly towards the UB state, the other
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FIGURE 8. (Colour online) (a) Projection of the dynamics local to the ML travelling wave
which has been reduced to the equilibrium at (0, 0) within the slice. The local spiral of
unstable trajectories is now clearly revealed, the ML state having only a single complex
unstable eigenvalue within its (S,Z2) symmetry subspace. (b) All N2 equilibria, perturbations
restricted to the (S,Z2) symmetry subspace. The inset shows an expanded view near the
UB state. The dark loop (blue online) to the right of the dot is a tiny relative periodic
orbit (modulated travelling wave) with period T = 4.934. Axes as in (5.1).

spirals around the ML state first. All trajectories within the (S,Z2) symmetry subspace
are attracted towards a region close to the UB state, where the dynamics is mildly
chaotic. In this region we have found a weakly unstable modulated travelling wave
of period T = 4.934, shown in the inset to figure 8(b), that appears to dominate
the long-time dynamics within the (S,Z2)-invariant subspace. Shooting in opposite
directions from the LB state, trajectories proceed directly to either the upper region or
the laminar state, suggesting that LB travelling wave lies within the laminar–turbulent
boundary or ‘edge’ (see also Duguet, Willis & Kerswell 2008b).

Without restriction of dynamics to the (S,Z2)-invariant subspace, trajectories stray
much further from ML and show turbulent behaviour. In order to track such
trajectories, all travelling waves states listed in table 1 were deployed as templates,
a′(j), j = 1, 2, . . . , 6, whereas the single template point a′ = aML(0) sufficed for the
symmetry reductions within the (S,Z2) subspace. If the shift for symmetry reduction
with the current template matches that for another template, and the other template is
closer to the current state than the current template, then switching from the current
local slice to that based on the other template close by (see § 3.2) keeps the phase
velocity (3.6) finite (see figure 6b) and enables tracking of turbulent trajectories in the
reduced state space.

A typical trajectory is shown in figure 9(a). Within the (S, Z2)-invariant subspace
trajectories hover near the UB state; but when Z2 symmetry is relaxed and only S
symmetry is enforced, the trajectories explore a far greater region of state space and
appear to be representative of turbulence in the full state space. The neighbourhood of
the S2U state is visited frequently and excursions to other states are occasionally
seen. Interestingly, an excursion is observed towards the LB state. Its attracting
manifold therefore appears to penetrate into the chaotic region and, as it lies on
the laminar–turbulent boundary, attraction towards this manifold may be responsible
for the observed sudden relaminarization events.
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FIGURE 9. (Colour online) (a) Removal of the Z2 symmetry opens the system to far more
chaotic, or ‘turbulent’, transients (grey ‘cloud’). (Compare with the same symmetry-reduced
state-space projection of figure 8(b).) Within the S symmetry space, trajectories appear to
frequently visit the travelling wave S2U, while the travelling wave S2L appears to be
embedded in the laminar–turbulent boundary. The turbulent trajectory exhibits excursions
to other states as well, most frequently ML and LB. (b) Two relative periodic orbits embedded
within turbulence. Crosses are spaced every 1t = 2D/U on relative periodic orbit RPO10.96
and pluses are spaced 4D/U on relative periodic orbit RPO36.72. On this scale the modulated
travelling wave RPO4.934 (figure 8b, inset) only explores a region about the size of the plot
dots and plays no role in turbulent dynamics.

5.2. Relative periodic orbits in pipe flow

Without symmetry reduction, the detection of a recurrence, i.e. that current state is
close in structure to an earlier state on the same trajectory, requires calculating the
minimum distance between their group orbits, i.e. minimum over all possible shifts.
Within the symmetry-reduced state space the determination of recurrences is simple;
by construction, a slice is the set of all nearby group orbit states closest to a given
template, with symmetry shifts quotiented out, hence all group orbits are reduced to
points, and all relative periodic orbits to periodic orbits. The shifts `p are determined
by the slice condition (4.2). Figure 10 shows a recurrence plot used to detect the
signal of a turbulent trajectory that shadows a nearby relative periodic orbit. The
indicated minimum at 1t ≈ 11 and its repeats are seen for a while as the relative
periodic orbit RPO10.96 is shadowed for a rather long time. States from this minimum,
along with the relative streamwise shift for the candidate trajectory, `(t) − `(t − 1t),
were passed to our Newton–Krylov code. This led to the discovery of the relative
periodic orbit that we label RPO10.96, and another recurrence plot led to the relative
periodic orbit RPO36.72, both plotted in figure 9(b). (In the absence of a systematic
symbolic dynamics, we label RPOT by its period T.) The residual of the Newton
scheme, ‖g(0,−`)u(T) − u(0)‖/‖u(0)‖, is approximately 10−4 for the longest orbit,
and considerably less for the others.

Several two-dimensional projections of relative periodic orbits RPO36.72, RPO10.96

and the modulated travelling wave RPO4.934 are given in figure 11, along with the N2
and S2 states used in this paper (same colour coding as in previous plots). Figure 12
(see the online movie available at http://dx.doi.org/10.1017jfm.2013.75) shows flow
snapshots of RPO36.72 at a fixed axial cross-section. The movie has been taken after
reducing the continuous symmetry with the method of the slices and, hence, shows
how the orbit closes after one period. The orbit consists of a slow nearly quiescent
phase, during which the neighbourhood of S2U is visited, followed by a period of
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E

Elam

D

Dlam
c ` T #

unstable
µ(max) ± iω(max)

Symmetry (S,Z2)
LB 0.94330 1.2127 1.551 1r 0.07906

S +0 0.07906
ML 0.88662 1.6970 1.421 1c 0.02490± i0.07323

S +1r+ 2c 0.2704± i1.515
MU 0.87725 1.8310 1.394 1r 0.05617

S +1r+ 2c 0.3267± i1.543
UB 0.85273 2.5102 1.298 3c 0.2179± i1.983

S +6c 0.4231± i1.660
RPO4.934 0.85137 2.4451 1.302 6.423 4.934 1c 0.1242± i0.3819

S +6c 0.4417± i0.3284

Symmetry S
S2U 0.89383 1.4695 1.296 1c 0.05592± i0.5215
S2L 0.96159 1.1191 1.522 1r 0.1090
RPO10.96 0.88845 1.5205 1.265 13.868 10.96 1r+ 2c 0.06051± i0.15383
RPO36.72 0.89515 1.4865 1.291 47.417 36.72 2r+ 5c 0.08636± i0.0900
Ergodic 0.8787 1.671 1.274 ≈0.11

TABLE 1. All travelling waves and relative periodic orbits studied in this paper for
pipe (2.5), split by solution symmetry: (mean) kinetic energy E; (mean) dissipation D,
both in laminar solution units; travelling wave downstream phase velocity c or relative
periodic orbit mean phase velocity cp = `p/Tp; accumulated relative periodic orbit shift `p

(not modulo the periodic cell length L = 5.0265 . . .); period Tp; the number of unstable
eigendirections within the solution’s symmetry subspace, r= real, c= complex; the leading
Floquet exponent λ(j) = µ(j) ± iω(j). For the upper part of the table, numbers in S rows
are for symmetry-breaking eigenvalues when Z2 is removed. ‘Ergodic’ refers to a long-
time average computed from the evolution of a typical turbulent state, for over 10 000
non-dimensional time units.

intense turbulent bursting. This behaviour suggests that the orbit RPO36.72 may be
related to a global homoclinic bifurcation off S2U.

5.3. Discussion
Symmetry reduction by the method of slices in a high-dimensional flow thus reveals
dynamics around recently discovered travelling waves, both local and global, and
leads to the discovery of first relative periodic orbits in pipe flow that, as they
have been extracted from turbulent trajectories, can be expected to be dynamically
important. While the modulated travelling wave RPO4.934 appears to originate from
a Hopf bifurcation off a travelling wave very nearby (Duguet et al. (2008a) and
Mellibovsky & Eckhardt (2011) have also found similar local relative periodic orbits)
RPO10.96 and RPO36.72 exhibit temporal variation typical of the turbulence found in our
computational domain (2.5).

Visualizations of physical quantities, such as in figure 11, are often used in the
literature to infer the importance of coherent solutions (e.g. travelling waves and
relative periodic orbits in pipe flow) in turbulent flow. Here the dissipation D and input
I of figure 11(a), for example, clearly show that states S2L, LB and UB are far from
the turbulent flow. However, the converse is usually not true. As the energy balance
(2.8) forces all travelling waves and the averages over all relative periodic orbits, and
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FIGURE 10. (Colour online) Search for recurrences within the slice. Each state is
compared with the state at earlier times 1t before, shading indicates the relative distance
‖â(t)− â(t −1t)‖c / ‖â(t −1t)‖c. The minima indicated by the horizonal lines suggest that
an orbit of period T ≈ 11 is shadowed for t 6 40 (all times are expressed in units of D/U).
Newton search indeed confirms this, by finding there the weakly unstable RPO10.96. Note
that the modulated travelling wave RPO4.934 from figure 11(a) lies far from the high-friction
region and thus does not show up in recurrence plots.
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FIGURE 11. (Colour online) Rate of the energy input from the background pressure gradient
I versus (a) the dissipation rate D and (b) the energy E, see (2.8). Plotted are all of the
invariant solutions of table 1, together with a typical turbulent orbit. The modulated travelling
wave RPO4.934 is visible as a little twiddle just below UB travelling wave. On the scale of
these plots, the relative periodic orbit of Duguet et al. (2008a) would be indistinguishable
from its mother travelling wave.

turbulent flow, to lie on the diagonal I = D, travelling waves that feature frictions close
to the turbulent average may appear to be in core of the turbulent region. For example,
figure 11 suggests that the ML and MU states may be representative of the turbulent
dynamics. The projection within the slice (see figure 9) reveals that in fact these two
states, despite having the ‘right friction’, are far from the turbulent dynamics in phase
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FIGURE 12. (Colour online) Four snapshots of relative periodic orbit RPO36.72 at the same
fixed pipe section as in figure 7, reduced by the method of slices into a periodic orbit solution
(see the online movie). A colourmap of streamwise velocity is shown, with white (black)
indicating positive w= 0.6U (negative w=−0.7U) velocity with respect to laminar flow. The
t = 0 state has been chosen to be the closest passage (in the energy norm) to travelling wave
S2U, see figure 7.

space. Our results show that the neighbourhoods of known travelling waves (table 1),
with the exception of S2U, are visited only for a small fraction of time, in agreement
with earlier estimates (Kerswell & Tutty 2007; Schneider et al. 2007; Willis &
Kerswell 2008). It is only the reduced state-space projections that make it quite
clear that only RPO10.96, RPO36.72 and S2U are embedded in the region associated with
turbulence. To sum up, phase portraits using physically motivated quantities such as
dissipation, input and kinetic energy may be used to rule out the relevance of coherent
states in turbulent flow but not to confirm their relevance.

Another important point is that determination of travelling waves by bifurcations
and continuation is often physically misleading. Almost all of the previously found
travelling waves and nearby modulated travelling waves are highly unstable to
perturbations out of their symmetry subspace, highly repelling and not participants
in the asymptotic dynamics (see table 1). The exception to this are the nearly laminar
lower-branch states, which play a key role organizing the dynamics of the turbulent-
laminar boundary or edge. Instead, recurrences in turbulent flow used as initial guesses
for Newton–Krylov methods allow it to find solutions that are relevant to the turbulent
dynamics. Note that the new relative periodic orbits revealed here are associated with
the lower dissipation region of turbulent flow; but is expected that application of the
method slices together with a systematic study of recurrences in the upper region will
yield new ‘turbulent’ relative periodic orbits and travelling waves.

Finally, it is worth emphasizing that restriction of dynamics to flow-invariant
subspaces can potentially be very misleading. For example, figures 8 and 9 exhibit
completely different dynamics. In this case, imposing the rotate-and-reflect symmetry,
in addition to shift-and-reflect, even results in the absence of turbulent dynamics.
Hence, despite the similarity of the dynamics of full-space and shift-and-reflect
turbulence, our choice may also be problematic.

6. Conclusion and perspectives
As a turbulent flow evolves, every so often we catch a glimpse of a familiar

structure. For any finite spatial resolution, the flow stays for a finite time in the
neighbourhood of a coherent structure belonging to an alphabet of admissible fluid
states, represented here by a set of travelling wave and relative periodic orbit solutions
of Navier–Stokes. These are not the ‘modes’ of the fluid; they do not provide a
decomposition of the flow into a sum of components at different wavelengths, or
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a basis for low-dimensional modelling. Each such solution has energy in the whole
range of physical scales of the turbulent fluid, from the outer wall-to-wall scale, down
to the viscous dissipation scale. Numerical computations require sufficient resolution
to cover all of these scales, so no global dimension reduction is likely. The role of
invariant solutions of Navier–Stokes is, instead, to partition the ∞-dimensional state
space into a finite set of neighbourhoods visited by a typical long-time turbulent fluid
state.

Motivated by the recent observations of recurrent coherent structures in experimental
and numerical turbulent flows, we initiated here an exploration of the hierarchy of
travelling waves and relative periodic orbits of fully resolved transitionally turbulent
pipe flow in order to describe its spatiotemporally chaotic dynamics. For pipe flow
travelling waves and relative periodic orbits embody a vision of turbulence as
a repertoire of recurrent spatiotemporal coherent structures explored by turbulent
dynamics. The new relative periodic orbits that we present here are a part of the
backbone of this repertoire. Given a set of invariant solutions, the next step is
to understand how the dynamics interconnects the neighbourhoods of the invariant
solutions discovered so far. Currently, a taxonomy of these myriad states eludes
us, but emboldened by successes in applying periodic orbit theory to the simpler
Kuramoto–Sivashinsky problem (Christiansen, Cvitanović & Putkaradze 1997; Lan &
Cvitanović 2008; Cvitanović et al. 2009), we are optimistic.

The reader might rightfully wonder what the short pipe periodic cells studied
here and in plane Couette flow (Kawahara, Uhlmann & van Veen 2012) have to
do with physical, wall-bounded shear flows in general, with large aspect ratios and
physical boundary conditions? The three-dimensional fluid states captured by the short
pipe invariant solutions and their unstable manifolds are strikingly similar to states
observed both in experiments and in numerical simulations of longer pipes (Hof et al.
2004), while the turbulent dynamics visualized in state space appears to be pieced
together from close visitations to coherent structures connected by transient interludes.
Nevertheless, one of the outstanding issues that must be addressed in future work
is the small-aspect cell periodicities imposed for computational efficiency. In case of
the pipe flow, most computations of invariant solutions have focused on streamwise
periodic cells barely long enough to allow for sustained turbulence. Such small cells
introduce dynamical artifacts such as lack of structural stability and streamwise cell-
size dependence of the sustained turbulence states. Here we can draw inspiration from
pattern-formation theory, where the most unstable wavelengths from a continuum of
unstable solutions set the scales observed in simulations, with recent progress reported
both from the ‘microscopic scales’ (Schneider, Gibson & Burke 2010), as well as long
pipe experiments and phenomenology (Avila et al. 2011).

The main message of this paper is that if a problem has a continuous symmetry,
the symmetry must be used to simplify it, and it can be done without loss of
information on the system. Ignore it at your own peril, as has been done earlier in
Kuramoto–Sivashinsky (Christiansen et al. 1997) and plane Couette flow (Gibson et al.
2008); the invariant solutions found by restricting searches to the discrete-symmetry
invariant subspaces (by, e.g., spatial pinning via the symmetry subspace) may have
little if anything to do with the full state space explored by turbulence, no more than
the equilibrium points of the Lorenz flow have to do with its strange attractor. Note
also that the shift of a pipe flow into a slice is not a streamwise average over the
three-dimensional pipe flow. It is the full flow snapshot, embedded in the infinite-
dimensional state space. Symmetry reduction is not a dimensional-reduction scheme,
or flow modelling by fewer degrees of freedom: the reduced state space is also
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infinite-dimensional and no information is lost, one can go freely between solutions in
the full and reduced state spaces by integrating the associated reconstruction equations.

Symmetry reduction by method of slices is numerically efficient. Coupled with our
state-space visualizations, it allows for explorations of high-dimensional flows that
were hitherto unthinkable. Symmetry reduction is achieved here and now all pipe
flow solutions can be plotted together, as one happy family: all points equivalent by
symmetries are represented by a single point, families of solutions are mapped to a
single solution, travelling waves become equilibria and relative periodic orbits become
periodic orbits. We have applied the method to a pipe flow, but it is equally applicable
to a plane Couette flow, a triply periodic three-dimensional box, a two-dimensional
Kolmogorov flow, a baroclinic instability or cardiac dynamics in the spherical heart
idealization. Without symmetry reduction, no full understanding of pipe flow, plane
Couette flow or any flow with a symmetry is possible.
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Appendix. Discrete symmetries
In addition to azimuthal reflection, invariant solutions can exhibit further discrete

symmetries that derive from azimuthal and streamwise periodicities over the
computational cell (2.3).

Periodicity in the azimuthal direction allows for solutions with discrete cyclic
symmetry g(2π/m, 0), defined for integer m. Velocity fields invariant under such
rational azimuthal shifts are said to be invariant under the discrete cyclic group Cm,θ .
Note that all solutions are invariant under C1,θ , and given the assumed streamwise
periodicity, under C1,z as well. This permits the study of states in the reduced
computational cells Ω = [0, 1/2] × [0, 2π/m] × [0,π/α], where L= π/α. Calculations
in larger domains are required to determine subharmonic bifurcations.

Consider states invariant under Cm,θ and C1,z, and denote half-shifts within our
reduced cell, in θ and z, respectively, by gθ = g(π/m, 0) and gz = g(0,L/2). For the
special case of a half-shift in azimuth, σ and gθ commute so that

G= D1 × Cm,θ × C1,z ⊂ Γ (A 1)

is abelian and of order eight,

G= {e, gθ , gz, gθgz, σ, σgθ , σgz, σgθgz}. (A 2)
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Focus lies on the following subgroups:

Z = {e, σ }, S= {e, σgz}, Ωm = {e, gθgz}. (A 3)

The first is the ‘reflectional’ or ‘mirror’ symmetry, the second is the ‘shift-and-
reflect’ symmetry and the third is the ‘shift-and-rotate’ symmetry. States invariant
under gθ or gz are invariant under C2m,θ or C2,z and hence become redundant upon
redefinition m := 2m or α := 2α (i.e. they reduce to half-cells). It can also be
shown that σgθ = g−1/2

θ σg1/2
θ , where g1/2

θ is the half-half-shift, and therefore that
σgθgz = g−1/2

θ σgz g1/2
θ . Invariance under these combinations is conjugate to Z and S.

We use, however, the ‘rotate-and-reflect’ subgroup, denoted by

Zm = {e, σgθ } (A 4)

which has mirror reflection planes located at θ = ±π/(2m) (see figure 7 for the case
m= 2).

The first travelling waves found for pipe flow were invariant under S and Cm,θ for
m = 2, 3, 4, . . . (Faisst & Eckhardt 2003; Wedin & Kerswell 2004). More recently
the ‘missing’ m = 1 state has been located (Pringle & Kerswell 2007) and many
more states invariant under more than one of the above classes (Pringle et al. 2009).
States invariant under (S,Z) imply invariance under σσgz = gz, and hence under C2,z,
reducing to the half-length pipe. Invariance under (S,Ωm) is permissible, however, and
using the combinations above it can be calculated that (S,Ωm) = (S,Zm) = (Zm,Ωm).
Such states have been termed ‘highly symmetric’ by Pringle et al. (2009). As
reflection is arguably easier to visualize than shift-and-rotate, we use the notation
(S,Zm) for these states.
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BEYN, W.-J. & THÜMMLER, V. 2004 Freezing solutions of equivariant evolution equations. SIAM J.
Appl. Dyn. Syst. 3, 85–116.
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GIBSON, J. F., HALCROW, J. & CVITANOVIĆ, P. 2008 Visualizing the geometry of state space in

plane Couette flow. J. Fluid Mech. 611, 107–130.
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