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Abstract

We investigate the sum of the parts in all the partitions of n into distinct parts and give two infinite families

of linear inequalities involving this sum. The results can be seen as new connections between partitions

and divisors.
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1. Introduction

A partition of a positive integer n is a sequence of positive integers whose sum is n.

The order of the summands is unimportant when writing the partitions of n, but for

consistency the summands will be written in nonincreasing order (see [1]).

A famous theorem of Euler asserts that there are as many partitions of n into distinct

parts as there are partitions into odd parts. As usual, we denote by Q(n) the number

of integer partitions of n into distinct parts. For example, Q(7) = 5 because the five

partitions of 7 into distinct parts are 7, 6 + 1, 5 + 2, 4 + 3, 4 + 2 + 1 and the five

partitions of 7 into odd parts are 7, 5 + 1 + 1, 3 + 3 + 1, 3 + 1 + 1 + 1 + 1, 1 + 1 +

1 + 1 + 1 + 1 + 1. The generating function of Q(n) is given by

∞
∑

n=0

Q(n)qn
=

1

(q; q2)∞
= (−q; q)∞

and the expansion starts

(−q; q)∞ = 1 + q + q2
+ 2q3

+ 2q4
+ 3q5

+ 4q6
+ 5q7

+ 6q8
+ 8q9

+ · · · .

Here and throughout the paper, we use the customary q-series notation:

(a; q)n =















1 for n = 0,

(1 − a)(1 − aq) · · · (1 − aqn−1) for n > 0;

(a; q)∞ = lim
n→∞

(a; q)n.
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Because the infinite product (a; q)∞ diverges when a , 0 and |q| > 1, whenever (a; q)∞
appears in a formula, we shall assume |q| < 1.

We consider the following functions.

DEFINITION 1.1. Let n be a nonnegative integer. We define:

(1) so(n) to be the sum of the odd parts in all the partitions of n into an odd number

of distinct parts;

(2) se(n) to be the sum of the odd parts in all the partitions of n into an even number

of distinct parts;

(3) s(n) = so(n) − se(n).

The partitions of 9 into an odd number of distinct parts are 9, 6 + 2 + 1, 5 + 3 + 1

and 4 + 3 + 2, while the partitions of 9 into an even number of distinct parts are 8 + 1,

7 + 2, 6 + 3 and 5 + 4. So so(9) = 9 + 1 + (5 + 3 + 1) + 3 = 22, se(9) = 1 + 7 + 3 +

5 = 16 and s(9) = 6.

The following result shows that the function s(n) is closely related to nQ(n), the sum

of the parts in all the partitions of n into distinct parts.

THEOREM 1.2. For n > 0,

nQ(n) + 2

∞
∑

j=1

(−1)j(n − j2)Q(n − j2) = s(n).

For example, the case n = 9 of this theorem is

9 · Q(9) − 2 · 8 · Q(8) + 2 · 5 · Q(5) = 72 − 96 + 30 = 6.

By Theorem 1.2, we can easily deduce that s(n) and nQ(n) have the same parity.

In addition, it is known (see [5, Corollary 4.7]) that Q(n) is odd if and only if n is a

generalised pentagonal number. Consequently, s(n) is odd if and only if n is an odd

generalised pentagonal number.

Upon reflection, one expects that there might be a more general result where

Theorem 1.2 is a limiting case. For what follows, we consider the notion of modular

partition which was introduced by MacMahon (see [1, page 13]). For a positive integer

k, any positive integer n can be uniquely written as ka + s with a > 0 and 1 6 s 6 k.

The k-modular partitions are a modification of the Ferrers graph so that n is represented

by a row of a boxes with k in each of them and one box with s in it. For example,

Figure 1 displays the 2-modular Ferrers graph of the partition 9 + 7 + 3 + 3 with shape

5 + 4 + 2 + 2.

The m-rectangle of a partition is defined to be the largest (m + j) × j rectangle

contained in the Ferrers graphs of the partition (see [4]). An m-Durfee rectangle is

referred to as a Durfee square when m = 0. In Figure 1, the 2-Durfee rectangle of the

partition is the rectangle of size 2 × 4.

For a fixed k > 1 and any n > 0, Merca et al. [8] recently defined Mo,k(n) to be

the number of partitions of n into odd parts such that all odd numbers less than or
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FIGURE 1. The 2-modular Ferrers graph of 9 + 7 + 3 + 3.

equal to 2k + 1 occur as parts at least once and the parts below the (k + 2)-Durfee

rectangle in the 2-modular graph are strictly less than the width of the rectangle.

For example, take k = 2. Then the partition 11 + 11 + 7 + 7 + 5 + 3 + 1 is counted

by Mo,2(45). However, the partition 11 + 11 + 11 + 5 + 3 + 3 + 1 is not counted by

Mo,2(41) because its 4-Durfee rectangle is of size 2 × 6 and the third part of length

11 that goes below the Durfee rectangle forms a row of length 6.

We have the following truncated form of Theorem 1.2, where we denote by σo(n)

the sum of the odd positive divisors of n.

THEOREM 1.3. For k, n > 0,

(−1)k
(

nQ(n) + 2

k
∑

j=1

(−1)j(n − j2)Q(n − j2) − s(n)

)

=

n
∑

j=1

σo(j)Mo,k(n − j).

An immediate consequence of this theorem is the following infinite family of linear

inequalities.

COROLLARY 1.4. For any positive integers k and n,

(−1)k
(

nQ(n) + 2

k
∑

j=1

(−1)j(n − j2)Q(n − j2) − s(n)

)

> 0,

with strict inequality if n > (k + 1)2.

For example,

nQ(n) − 2(n − 1)Q(n − 1) 6 s(n),

nQ(n) − 2(n − 1)Q(n − 1) + 2(n − 4)Q(n − 4) > s(n).

When k → ∞, Theorem 1.3 yields Theorem 1.2. Therefore, we will provide a proof

only for Theorem 1.3. Relevant to Theorem 1.3, it would be very appealing to have

combinatorial interpretations of

n
∑

j=1

σo(j)Mo,k(n − j).

2. Proof of Theorem 1.3

Firstly, we provide the following generating function for nQ(n).
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LEMMA 2.1. For |q| < 1,

∞
∑

n=1

nQ(n)qn
=

1

(q; q2)∞

∞
∑

k=1

(2k − 1)q2k−1

1 − q2k−1
.

PROOF. We want the generating function for partitions into odd parts where z keeps

track of the number of parts equal to 2k − 1. This is

1

1 − zq2k−1

∞
∏

n=1
n,k

1

1 − q2n−1
=

1

(q; q2)∞
·

1 − q2k−1

1 − zq2k−1
.

Let t(k, n) be the total number of (2k − 1)s in all the partitions of n into odd parts. Then

∞
∑

n=1

t(k, n)qn
=

d

dz

∣

∣

∣

∣

∣

z=1

(1 − q2k−1)

(q; q2)∞(1 − zq2k−1)
=

q2k−1

1 − q2k−1
·

1

(q; q2)∞
.

Since

nQ(n) =

∞
∑

k=1

(2k − 1)t(k, n),

we can write
∞
∑

n=1

nQ(n)qn
=

∞
∑

n=1

∞
∑

k=1

(2k − 1)t(k, n)qn
=

1

(q; q2)∞

∞
∑

k=1

(2k − 1)q2k−1

1 − q2k−1
,

which completes the proof. �

According to [6, Corollary 4.3],

qk

1 − qk
(q; q)∞ =

∞
∑

n=0

(to(k, n) − te(k, n))qn

where to(k, n) (respectively, te(k, n)) denotes the number of ks in all the partitions of n

into an odd (respectively, even) number of distinct parts. It is clear that

so(n) =

∞
∑

k=1

(2k − 1)to(2k − 1, n)

and

se(n) =

∞
∑

k=1

(2k − 1)te(2k − 1, n).

So we deduce that

(q; q)∞

∞
∑

k=1

(2k − 1)q2k−1

1 − q2k−1
=

∞
∑

k=1

∞
∑

n=0

((2k − 1)to(2k − 1, n) − (2k − 1)te(2k − 1, n))qn

=

∞
∑

n=0

(so(n) − se(n))qn
=

∞
∑

n=0

s(n)qn. (2.1)
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The following theta identity is often attributed to Gauss [1, page 23, Equation

(2.2.13)]:

1 + 2

∞
∑

n=1

(−1)nqn2

=

(q; q)∞

(−q; q)∞
. (2.2)

Recently, Merca et al. considered this identity and provided in [8, Theorem 1.1] the

following result: for k > 0,

(−q; q2)∞

(q; q2)∞

(

1 + 2

k
∑

j=1

(−1)jqj2
)

= 1 + 2

∞
∑

j=1

(−1)jq2j2
+ 2(−1)kq(k+1)2

(−q; q2)∞

∞
∑

j=0

q(2k+2j+3)j

(q2; q2)j(q; q2)k+j+1

,

where (a; q)n = (a; q)∞/(aqn; q)∞. By this identity, considering (2.2), we obtain

1

(q; q2)∞

(

1 + 2

k
∑

j=1

(−1)jqj2
)

=

(q2; q2)∞

(−q, q2)∞(−q2; q2)∞
+ 2(−1)kq(k+1)2

∞
∑

j=0

q(2k+2j+3)j

(q2; q2)j(q; q2)k+j+1

= (q; q)∞ + (−1)k

∞
∑

n=0

Mo,k(n)qn, (2.3)

where we have invoked [8, Theorem 3.1] for the generating function of Mo,k(n).

Multiplying both sides of (2.3) by

∞
∑

n=1

(2n − 1)q2n−1

1 − q2n−1
,

we obtain

( ∞
∑

n=1

nQ(n)qn
)(

1 + 2

k
∑

n=1

(−1)nqn2
)

= (q; q)∞

∞
∑

n=1

(2n − 1)q2n−1

1 − q2n−1
+ (−1)k

( ∞
∑

n=1

(2n − 1)q2n−1

1 − q2n−1

)( ∞
∑

n=0

Mo,k(n)qn
)

=

∞
∑

n=1

s(n)qn
+ (−1)k

( ∞
∑

n=1

σo(n)qn
)( ∞
∑

n=0

Mo,k(n)qn
)

,

where we have invoked the Lambert series expansion (see [7]),

∞
∑

n=1

(2n − 1)q2n−1

1 − q2n−1
=

∞
∑

n=1

σo(n)qn, |q| < 1.

The proof follows easily by considering Cauchy’s multiplication of two power series.
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3. Partitions into distinct parts and odd divisors

Taking into account Euler’s pentagonal number theorem

(q; q)∞ =

∞
∑

n=−∞

(−1)nqn(3n−1)/2 (3.1)

and relation (2.1), we deduce that the partition function s(n) is closely related to the

sum of odd positive divisors function σo(n), that is,

s(n) =

∞
∑

j=−∞

(−1)jσo(n − j(3j − 1)/2).

Thus, this relation and Theorem 1.2 can be seen as connections between partitions into

distinct parts and odd positive divisors, that is,

nQ(n) + 2

∞
∑

j=1

(−1)j(n − j2)Q(n − j2) =

∞
∑

j=−∞

(−1)jσo(n − j(3j − 1)/2).

DEFINITION 3.1. Let n be a positive integer. We define

S(n) :=

∞
∑

j=0

σo(n − j(j + 1)/2),

where σo(k) = 0 when k is a nonpositive integer.

For example, for n = 6,

S(6) = σo(6) + σo(5) + σo(3) = (1 + 3) + (1 + 5) + (1 + 3) = 14.

The following result provides another connection between partitions into distinct parts

and odd positive divisors.

THEOREM 3.2. For n > 0,

∞
∑

j=−∞

(−1)j(n − j(3j − 1))Q(n − j(3j − 1)) = S(n).

The case n = 6 of this theorem reads as follows

6 · Q(6) − 4 · Q(4) − 2 · Q(2) = 24 − 8 − 2 = 14.

In [2], while investigating the truncated Euler’s pentagonal number theorem (3.1),

Andrews and Merca introduced the partition function Mk(n), which counts the number

of partitions of n where k is the least positive integer that is not a part and there are

more parts greater than k than there are parts less than k. For example, M3(18) = 3

because the three partitions in question are 5 + 5 + 5 + 2 + 1, 6 + 5 + 4 + 2 + 1, 7 + 4 +

4 + 2 + 1.

There is a more general result where Theorem 3.2 is the limiting case k → ∞.
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THEOREM 3.3. For k, n > 0,

(−1)k−1
( k
∑

j=−(k−1)

(−1)j(n − j(3j − 1))Q(n − j(3j − 1)) − S(n)

)

=

⌊n/2⌋
∑

j=0

Mk(j)S(n − 2j).

PROOF. In [2], Andrews and Merca proved a truncated form of (3.1): for any k > 1,

(−1)k−1

(q; q)∞

k
∑

n=−(k−1)

(−1)nqn(3n−1)/2
= (−1)k−1

+

∞
∑

n=k

q(k
2)+(k+1)n

(q; q)n

[

n − 1

k − 1

]

, (3.2)

where

[

n

k

]

=



















(q; q)n

(q; q)k(q; q)n−k

if 0 6 k 6 n,

0 otherwise.

The series on the right-hand side of (3.2) is the generating function for Mk(n), that is,

∞
∑

n=0

Mk(n)qn
=

∞
∑

n=k

q(k
2)+(k+1)n

(q; q)n

[

n − 1

k − 1

]

. (3.3)

By (3.2), with q replaced by q2,

(−1)k−1
( k
∑

n=−(k−1)

(−1)nqn(3n−1) − (q2; q2)∞

)

= (q2; q2)∞

∞
∑

n=0

Mk(n)q2n. (3.4)

Multiplying both sides of this identity by

∞
∑

n=1

nQ(n)qn
=

1

(q; q2)∞

∞
∑

n=1

σo(n)qn,

we obtain

(−1)k−1
(( ∞
∑

n=1

nQ(n)qn
)( k
∑

n=−(k−1)

(−1)nqn(3n−1)
)

−
(q2; q2)∞

(q; q2)∞

∞
∑

n=1

σo(n)qn
)

=

(

(q2; q2)∞

(q; q2)∞

∞
∑

n=1

σo(n)qn
)( ∞
∑

n=0

Mk(n)q2n
)

which yields

(−1)k−1
(( ∞
∑

n=1

nQ(n)qn
)( k
∑

n=−(k−1)

(−1)nqn(3n−1)
)

−

∞
∑

n=1

S(n)qn
)

=

( ∞
∑

n=1

S(n)qn
)( ∞
∑

n=0

Mk(n)q2n
)

,
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taking into account the following theta identity of Gauss [1, page 23, Equation

(2.2.13)],

(q2; q2)∞

(q; q2)∞
=

∞
∑

n=0

qn(n+1)/2. (3.5)

The proof follows easily by considering Cauchy’s multiplication of two power

series. �

An immediate consequence of Theorem 3.3 is the following infinite family of linear

inequalities.

COROLLARY 3.4. For k, n > 0,

(−1)k−1
( k
∑

j=−(k−1)

(−1)j(n − j(3j − 1))Q(n − j(3j − 1)) − S(n)

)

> 0,

with strict inequality if n > k(3k + 1)/2.

For example,

nQ(n) − (n − 2)Q(n − 2) > S(n),

nQ(n) − (n − 2)Q(n − 2) − (n − 4)Q(n − 4) + (n − 10)Q(n − 10) 6 S(n).

4. Concluding remarks and open problems

Considering an interplay between two classical theta identities of Gauss and a

special case of the generalised Lambert series, we obtain decompositions of s(n) and

S(n) in terms of the partition function nQ(n). Our proofs of Theorems 1.3 and 3.3

rely on generating functions. Combinatorial proofs of these theorems would be very

interesting.

Inspired by Theorem 3.2, we can consider another sum involving the odd positive

divisors function σo(n), namely,

T(n) :=

∞
∑

j=−∞

(−1)jσ0(n − 2j(3j − 1)).

The generating function of T(n) is given by

∞
∑

n=0

T(n)qn
= (q4; q4)∞

∞
∑

n=1

(2n − 1)q2n−1

1 − q2n−1

and the expansion starts

∞
∑

n=0

T(n)qn
= q + q2

+ 4q3
+ q4
+ 5q5

+ 3q6
+ 4q7

+ 6q9
+ q10

+ 2q12 − 5q13 − 2q14
+ · · · .
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Taking into account Lemma 2.1 and the theta series (3.5), it is not difficult to obtain

the identity

(q2; q2)∞

(−q; q2)∞

∞
∑

n=1

nQ(n)qn
=

∞
∑

n=0

T(n)qn, |q| < 1. (4.1)

In [3], Andrews and Merca introduced the partition function MPk(n), which counts the

number of partitions of n in which the first part larger than 2k − 1 is odd and appears

exactly k times and all other odd parts appear at most once. For example, MP2(19) = 10

because the partitions in question are 9 + 9 + 1, 9 + 5 + 5, 8 + 5 + 5 + 1, 7 + 7 + 3 + 2,

7 + 7 + 2 + 2 + 1, 7 + 5 + 5 + 2, 6 + 5 + 5 + 3, 6 + 5 + 5 + 2 + 1, 5 + 5 + 3 + 2 + 2 +

2, 5 + 5 + 2 + 2 + 2 + 2 + 1. According to [3, Theorem 9], for k > 1,

(−1)k−1
(

(−q; q2)∞

(q2; q2)∞

2k−1
∑

j=0

(−q)j(j+1)/2 − 1

)

=

∞
∑

n=0

MPk(n)qn.

Multiplying both sides of this identity by (4.1), we obtain

(−1)k−1
(( ∞
∑

n=1

nQ(n)qn
)( 2k−1
∑

j=0

(−q)j(j+1)/2
)

−

∞
∑

n=0

T(n)qn
)

=

( ∞
∑

n=0

T(n)qn
)( ∞
∑

n=0

MPk(n)qn
)

.

In this way, for k > 1, there is a substantial amount of numerical evidence to conjecture

that

( ∞
∑

n=0

T(n)qn
)( ∞
∑

n=0

MPk(n)qn
)

has nonnegative coefficients. We have the following equivalent form of this conjecture.

CONJECTURE 4.1. For k, n > 0,

(−1)k−1
( 2k−1
∑

j=0

(−1)j(j+1)/2(n − j(j + 1)/2)Q(n − j(j + 1)/2) − T(n)

)

> 0.

For example,

nQ(n) − (n − 1)Q(n − 1) > T(n),

nQ(n) − (n − 1)Q(n − 1) − (n − 3)Q(n − 3) + (n − 6)Q(n − 6) 6 T(n).
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