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This paper considers a simple distribution-free test for nonnested model selection. The new

test is shown to be asymptotically more efficient than the well-known Vuong test when the

distribution of individual log-likelihood ratios is highly peaked. Monte Carlo results demon-

strate that for many applied research situations, this distribution is indeed highly peaked.

The simulation further demonstrates that the proposed test has greater power than the

Vuong test under these conditions. The substantive application addresses the effect of

domestic political institutions on foreign policy decision making. Do domestic institutions

have effects because they hold political leaders accountable, or do they simply promote

political norms that shape elite bargaining behavior? The results indicate that the latter

model has greater explanatory power.

1 Introduction

How do domestic political institutions affect foreign policy decision making? Huth and
Allee (2002) compare three models corresponding to three different causal mechanisms
that link domestic institutions to foreign policy decisions. Deciding which model best fits
the data requires choosing between nonnested models, which is a problem too rarely
discussed in quantitative political science. Although Bayesian statisticians have made
significant inroads on the problem (Schwarz 1978; Carlin and Chibb 1995; Laud and
Ibrahim 1995; Albert 1996; Berger and Pericchi 1996; Brown, Vannucci, and Fearn
1998; George and Foster 2000; Fernandez, Ley, and Steel 2001), the fact remains that
many statisticians, never mind political scientists, are not Bayesians (Efron 1986).1 Un-
fortunately, non-Bayesian approaches to the problem of nonnested model testing have not
received the same attention.

A notable exception is Vuong (1989), who introduces a directional and symmetric test
for choosing between nonnested models. In a similar vein, this paper considers a direc-
tional and symmetric distribution-free test for nonnested model selection introduced
by Clarke (2003). Although both tests are consistent and unbiased, we show that the
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1An additional problem is that the implementation of many, but not all, Bayesian methods for model selection is
far from straightforward; see Chipman, George, and McCulloch (2001).
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distribution-free test is asymptotically more efficient than the Vuong test when the distri-
bution of the underlying data is highly peaked (relative to the Normal distribution). This
result is important because in many applied research situations where the rival models are
characterized by nonnested design matrices, the underlying distribution is highly peaked.
The distribution-free test significantly outperforms the Vuong test in these situations.

The substantive application demonstrates the point. Whereas the Vuong test cannot
discriminate between Huth and Allee’s (2002) political accountability model and political
norms model, the distribution-free test does distinguish between them. The results suggest
that the political norms model has greater explanatory power than previously thought and
merits further investigation.

The article is organized as follows. Section 2 reviews the Vuong test and the distribution-
free test. Section 3 compares the asymptotic relative efficiency of the tests for Normal
and highly peaked distributions. Section 4 describes the setup of the simulation study and
discusses the results. Section 5 introduces the substantive debate and provides the results.

2 The Vuong and Distribution-Free Tests

The Vuong test (Vuong 1989) and the distribution-free test (Clarke 2003) are based on the
Kullback-Leibler information criteria.2 Consider a model conditioned on some covariates,
Fb 5 f(Yi|Xi;b). As defined by Vuong, the Kullback-Leibler distance is KLIC [ E0[ln
h0(Yi|Xi)] � E0[ln f(Yi|Xi;b*)], where h0(�|�) is the true conditional density of Yi given Xi, E0

is the expectation under the true model, and b* are the pseudo-true values of b (see White
1982). The model that minimizes the KLIC is the one that is closest to the true, but
unknown, specification. The model that is closest to the true specification must therefore
be the model that maximizes E0[ln f(Yi|Xi;b*)].

2.1 The Vuong Test

Consider two models, Fb5 f(Yi|Xi;b) andGc5 g(Yi|Zi;c). The null hypothesis of the test is

H0 : E0 ln
f ðYijXi; b*Þ
gðYijZi; c*Þ

� �
5 0; ð1Þ

which indicates that two rival models are equally close to the true specification. Vuong
proves under general conditions that the expected value given in the null hypothesis can be
consistently estimated by (1/n) times the likelihood ratio statistic,

1

n
LRnðb̂n; ĉnÞ/

a:s:
E0 ln

f ðYijXi;b*Þ
gðYijZi; c*Þ

� �
; ð2Þ

where b̂n and ĉn are the maximum likelihood estimators of b* and c*. The resulting
likelihood ratio statistic is asymptotically normally distributed,3 and the actual test is
therefore

under H0 :
LRnðb̂n; ĉnÞ
ð

ffiffiffi
n

p
Þx̂n

/
D

Nð0; 1Þ; ð3Þ

2The Kullback-Leibler information criteria (Kullback and Leibler 1951) is a measure of closeness that has been
extensively used in the development of model discrimination procedures due to its analytic tractability and useful
properties. See Pesaran (1987) and Clarke (2001) for further details.
3See Cameron and Trivedi (2005, 146) for the necessary quasi-maximum likelihood result.
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where the numerator is the difference in the summed log-likelihoods for the two models,
LRnðb̂n; ĉnÞ[ Lf

nðb̂nÞ � Lg
nðĉnÞ, and x̂n is the estimated SD calculated in the usual manner,

x̂2
n [

1

n

Xn

i51

ln
f ðYijXi; b̂nÞ
gðYijZi; ĉnÞ

" #2

� 1

n

Xn

i51

ln
f ðYijXi; b̂nÞ
gðYijZi; ĉnÞ

" #2

: ð4Þ

The Vuong statistic is sensitive to the number of estimated coefficients in eachmodel, and
therefore the test must be corrected for the model dimensionality. Vuong (1989) suggests
using a correction that corresponds to eitherAkaike’s (1973) information criteria orSchwarz’s
(1978) Bayesian information criteria. Using the latter, the adjusted statistic becomes

LR̃nðb̂n; ĉnÞ[LRnðb̂n; ĉnÞ �
p

2

� �
ln n � q

2

� �
ln n

h i
; ð5Þ

where p and q are the number of estimated coefficients in models Fb and Gc, respectively.

2.2 The Distribution-Free Test

Clarke’s (2003) distribution-free alternative applies a modified paired sign test to the
differences in the individual log-likelihoods from two nonnested models.4 Using Vuong’s
notation, the null hypothesis of the distribution-free test is

H0 : Pr0 ln
f ðYijXi; b*Þ
gðYijZi; c*Þ

. 0

� �
5 0:5: ð6Þ

Equation (6) states that under the null hypothesis, the log-likelihood ratios should be
evenly distributed around zero. Thus, half the log-likelihood ratios should be greater than
zero and half less than zero. The difference between equation (6) and equation (1) is that
the expectation in equation (1) is replaced with the median in equation (6).5

Letting di 5 ln f ðYijXi; b̂nÞ � ln gðYijZi; ĉnÞ, the test statistic is

B5
Xn

i51

Ið0;þNÞðdiÞ; ð7Þ

where I is the indicator function. Equation (7) is the number of positive differences, and it
is distributed Binomial with parameters n and h 5 0.5.

If model Fb is ‘‘better’’ than model Gc, B will be significantly larger than its expected
value under the null hypothesis (n/2). For an upper tail test, we reject the null hypothesis of
equivalence when B � ca, where ca is chosen to be the smallest integer such thatPn

c5ca

n
c

� �
0:5n � a. For a lower tail test, the inequality is reversed, and the sum goes

from c 5 0 to c 5 ca.
This test, like the Vuong test, is sensitive to the dimensionality of the competing

models. As we are working with the individual log-likelihood ratios, we cannot apply

4For those used to thinking of the paired sign test in terms of treatments, it is straightforward to view rival model
specifications as treatments. See Clarke (2007) for further detail.
5The two assumptions of the test are unsurprising and quite general: the differences, ln [f(Yi|Xi;b*)/g(Yi|Zi;c*)], are
mutually independent, and each ln [f(Yi|Xi;b*)/g(Yi|Zi;c*)] comes from a continuous population (not necessarily
the same) that has a common median h. Proofs of the consistency and unbiasedness of the distribution-free test
are in the supplementary materials available on the Political Analysis Web site.
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the same correction to the ‘‘summed’’ log-likelihood ratio as Vuong did for his test. We
can, however, apply the average correction to the individual log-likelihood ratios. That is,
we correct the individual log-likelihoods for model Fb by a factor of [(p/2n) ln n] and the
individual log-likelihoods for model Gc by a factor of [(q/2n) ln n].

Although we cannot justify any particular correction, we can broadly justify the ap-
proach by appealing to Vuong’s justification for his correction. Vuong notes that as long
as the correction factor, Kn, divided by the square root of n has a stochastic order of 1,
n�1/2Kn(Fb, Gc) 5 op(1), the adjusted statistic has the same asymptotic properties of the
unadjusted statistic. This argument amounts to pointing out that the asymptotic prop-
erties of the adjusted statistic are the same as the asymptotic properties of the un-
adjusted statistic. If we consider the Normal approximation to the distribution-free test
(see the supplementary materials available on the Political Analysis Web site), we see
that the asymptotic properties of the distribution-free test are also unaffected by the
correction.

3 Comparing the Tests

The distribution-free test, unlike the Vuong test, considers only whether an individual log-
likelihood ratio is greater or less than zero, not the degree to which the ratio is greater or
less than zero. Thus, the distribution-free test might appear to sacrifice too much of the
available information. This criticism is a common, but often mistaken, argument against
the use of distribution-free tests, which can be significantly more efficient than their
normal theory competitors when the underlying populations are not normal (Hollander
and Wolfe 1999, 1). An objective criterion for balancing the trade-offs between these tests
is Pitman efficiency, or asymptotic relative efficiency, credited to Pitman in an unpublished
paper with subsequent generalizations by Noether (1955) and Hodges and Lehmann
(1956).

Under certain regularity conditions, the asymptotic relative efficiency of one test with
respect to another test is equal to the limit of the ratio of efficacies. That is, given two tests
T and T*,

A:R:E:ðT ; T*Þ5 lim
n/N

effðTnÞ
effðT*

n Þ
; ð8Þ

where eff(Tn) is the efficacy of the test statistic Tn for the hypothesis h 5 h0,

effðTnÞ5
½dEðTnÞ=dh�2jh5 h0

VarðTnÞjh5 h0

: ð9Þ

Proof of the equivalence between the limiting efficacy ratio and asymptotic relative
efficiency, along with the regularity conditions, is given by Gibbons and Chakraborti
(1992, chap. 14). The conditions are quite general, and both tests under consideration
meet them.

As noted in Section 2.2, the distribution-free test is based on the paired sign test, the
efficacy of which is a standard result given by Noether (1967). For N observations from
any population FD (where D 5 X � Y) with median h, the efficacy is eff(Bn) 5 4Nf2

[F�1(0.5)]. For a Normal distribution, FX ; N(h, r2), fX reduces to fX 5 1=ðr
ffiffiffiffiffiffi
2p

p
Þ, and

the efficacy is eff(Bn) 5 2N/(pr2). For a double exponential (or Laplace) distribution (the
reason for choosing this distribution will become clear), fX reduces to fX 5 1/(2k), and the
efficacy is eff(Bn) 5 N/k2.
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The efficacy of theVuong test is not difficult to calculate.We canwrite the test statistic as

Vn 5
LRnðb̂n; ĉnÞ
ð

ffiffiffiffi
N

p
Þx̂n

5

ffiffiffiffi
N

p
1
n LRnðb̂n; ĉnÞ
h i

x̂n
: ð10Þ

Letting �D5 ð1=nÞLRnðb̂n; ĉnÞ and lD 5E0 ln½ f ðYijXi; b*Þ=gðYijZi; c*Þ�f g, we see
that the above is equal to ffiffiffiffi

N
p

ð �D � lDÞ
x

þ
ffiffiffiffi
N

p
lD

x

� �
x
x̂n

: ð11Þ

Given that limN/Nðx̂n=xÞ5 1 (see Vuong 1989, 351), the expected value and variance
of the Vuong test statistic for large N are

E½Vn�5
ffiffiffiffi
N

p
lD

x
; Var½Vn�5

N Varð �DÞ
x2

5 1:

The efficacy is therefore eff(Vn) 5 N/x2. For a Normal distribution, the efficacy of the
Vuong is N/r2. For the double exponential, the efficacy is eff(V) 5 N/x2 5 N/(2k2).

We are now in a position to make some statements regarding the asymptotic relative
efficiency of the Vuong test versus the distribution-free test. From the discussion above, it
is clear that the difference in the A.R.E. of the two tests depends on the shape of the
distribution. In particular, it is the kurtosis value of the distribution that matters. Kurtosis
measures whether a symmetric distribution has, relative to the Normal, thicker tails and
higher peaks or not (Spanos 1999, 119). The Normal is a mesokurtic distribution and has
a kurtosis of 3. The double exponential has thicker tails and is more peaked than the
Normal, and thus is a leptokurtic distribution with a kurtosis of 6. The Uniform distribution
has no tails and no peak. The Uniform is a platykurtic distribution and has a kurtosis of 9/5.
The difference between these distributions can be seen in Fig. 1.

For normally distributed data, the asymptotic relative efficiency of the tests is

A:R:E:ðB;VÞ5 lim
n/N

effðBnÞ
effðVnÞ

5
2N=ðpr2Þ

N=r2
5

2

p
: ð12Þ

This result means that if the distribution of individual log-likelihood ratios is normal,
the distribution-free test is only 2/p 5 0.637, or 64% as efficient as the Vuong test. The
distribution-free test would be even more inefficient for platykurtic distributions. Under
such conditions, we are better off using the Vuong test, as it provides greater power than
the distribution-free test.

Things look quite different, however, when we consider leptokurtic distributions such
as the double exponential. For data that are distributed according to the double exponen-
tial, the asymptotic relative efficiency is

A:R:E:ðB;VÞ5 lim
n/N

effðBnÞ
effðVnÞ

5
N=k2

N=ð2k2Þ
5 2: ð13Þ

This result means that if the individual log-likelihood ratios are distributed double
exponential, the Vuong test is only 50% as efficient as the distribution-free test. Under
these conditions, we are better off using the distribution-free test, as it provides greater
power than the Vuong test.
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4 The Monte Carlo Experiment

Given that we have established that the distribution-free test is asymptotically more
efficient for leptokurtic distributions, the Monte Carlo experiment is designed to answer
two questions. First, is the distribution of individual log-likelihood ratios for rival models
characterized by nonnested design matrices leptokurtic? If so, we should expect the
distribution-free test to have greater power than the Vuong test. Second, does the
distribution-free test actually have greater power in this situation?

The Monte Carlo experiment comprises three models, one of which is the data-
generating process (DGP) and two that vary in distance from each other and the DGP.
This setup reflects the fact that substantive researchers rarely have the luxury of choosing
between two models, one of which is the DGP. It is far more likely that both models being
compared are misspecified in some fashion, and that the true model is unknown. The rival
models in the experiment are nonnested in terms of their design matrices, and a binary
choice model with a probit link function was chosen for its ubiquity in social science
research, as well as its relationship to the Normal distribution.6 (We might expect that if
the distribution of log-likelihood ratios is ever normal, it will be normal for generalized
linear models with normal link functions. The simulation was rerun with other functional
forms and similar or more extreme results were found.)

4.1 Setup of the Experiment

The experiment calls for three models: one true model and two misspecified models. In
each replication, six variables with zero means and unit variances are drawn from a mul-
tivariate normal distribution. The first two variables are used to form the true model along

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Uniform
Double Exponential
Normal

Fig. 1 A platykurtic (the Uniform), a mesokurtic (the Normal), and a leptokurtic (the double
exponential) distribution.

6The objection might be raised that nonnested tests are unnecessary when the models are nonnested solely in term
of their design matrices. This is actually not the case, and we address this issue at greater length in Section 5.
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with a randomly drawn, normally distributed error term with a SD that varies. Each of the
other two sets of variables are used to form the two rival models. The six variables are
drawn with a given correlation matrix that controls the canonical correlations between the
three models as well as the bivariate correlations within the models (see Kaiser and
Dickman 1962). The canonical correlations control how far the misspecified models are
from the true model and each other.

Other than the size of the sample and the signal-to-noise ratio (the variance of the
systematic portion of the model to that of the stochastic portion), the only variation in
the experiment is the distance of the alternative hypothesis from the null hypothesis. Let
the two models that do not serve as the DGP be models F andG. The canonical correlation
between model G and the DGP is set at 0.2. The canonical correlation between model F
and the DGP varies from 0.3 to 0.9. Therefore, the alternative hypothesis is closest to the
null when the canonical correlation between model F and the DGP is at 0.3 and farthest
from the null when the canonical correlation is at 0.9.

The moving parts of the experiment include the sample size (50, 100, 200, 500, 1000),
distance of the alternative from the null (0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9), and the error SD
(1, 2). Thus, 70 variations on the experiment were performed. Each replication in each
variation led to either a rejection or an acceptance of the null hypothesis for both tests. We
can therefore treat each replication as an independent Bernoulli trial and use the obvious
estimator of power, the number of rejections over the number of replications (Davidson
and MacKinnon 1993, 739). A total of 8000 replications of each variation was run to
ensure that the width of the 95% confidence interval around each estimate is approxi-
mately 0.01. All coefficients are set to 1, and the six independent variables, as well as the
error term, were drawn anew for each replication.

4.2 Simulation Results 1: Kurtosis

The experiment reported the kurtosis coefficient for the empirical distribution of the in-
dividual log-likelihood ratios for each replication. Table 1 shows the average kurtosis
value for all sample sizes and alternatives in the experiment.7

The results range from a kurtosis coefficient of 5.2 for a sample size of 50 and an
alternative near the null to a kurtosis coefficient of 6.7 for a sample size of 1000 and an
alternative far from the null. The individual log-likelihood ratios are therefore unlikely to
be distributed normally.

Of course, kurtosis does not fully characterize the shape of a distribution; it is possible
for two distributions with the same kurtosis coefficient to have vastly different shapes. In
this case, however, the distribution does indeed have a higher peak and heavier tails than
the Normal. Figure 2 shows one such representative distribution with the Normal and
double exponential distributions superimposed. The closer match to the double exponen-
tial is clear. (Note that we do not claim that the distribution is a double exponential; we
only claim that the distribution is leptokurtic. It is a good idea to graph and check the
empirical distribution in any substantive application.) Although the functional form of the
rival models can affect the exact shape of this distribution, heavier tails and higher peaks
are characteristic.

Given that the distribution of individual log-likelihood ratios is more leptokurtic than
mesokurtic, we expect the distribution-free test to have greater power than the Vuong test.
Measuring the power of these tests, however, is not perfectly straightforward. Two issues

7The values were calculated using the kurtosis function of Angelo Mineo’s Normalp library in R.
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must be considered: nominal versus exact or natural significance and the definition of
power.

4.3 A Framework for Comparison

Comparing the two test statistics is complicated by the fact that one is continuous and one
is discrete. The exact significance level of the discrete statistic is unlikely to match the
nominal significance level selected for the simulation (the distribution-free test has at most
n þ 2 available a levels). Absent identical exact significance levels, power comparisons
may be quite misleading (Gibbons and Chakraborti 1992, 21). To solve this problem, we
chose critical values for the Vuong test such that the significance level of the Vuong would
match the natural significance level of the distribution-free test. (A randomized procedure

Table 1 Mean kurtosis coefficients

Distance

Sample size

50 100 200 500 1000

0.3 5.19 5.44 5.49 5.50 5.49
0.4 5.26 5.52 5.58 5.57 5.59
0.5 5.24 5.49 5.62 5.68 5.73
0.6 5.32 5.62 5.81 5.88 5.90
0.7 5.40 5.70 5.89 6.09 6.14
0.8 5.47 5.87 6.10 6.34 6.38
0.9 5.58 5.98 6.35 6.58 6.70

Functional Form: Probit (k=5.8)

D
en

si
ty

2 1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Double Exponential
Normal

Fig. 2 Empirical distribution of individual log-likelihood ratios.
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would have been another possibility, see Lehmann 1986.) The power levels we report,
therefore, are for equivalent exact or natural significance levels.

The concept of power also requires discussion when considering model selection tests.
Power is commonly defined as the probability of rejecting a false null hypothesis. Let X be
the parameter space and x be the part of the parameter space that includes the null
hypothesis. The hypotheses are therefore H0: h ˛ x versus H1: h ˛ X � x, and

Power5 1� bðhÞ5 1� PrðsˇR jh˛X� xÞ; ð14Þ

where R is the rejection region. For both the Vuong test and the distribution-free test,
however, we are interested in the probability of rejecting a false null in a particular
direction. It therefore makes sense to substitute the probability of making a correct de-
cision for the probability of rejecting a false null.

4.4 Simulation Results 2: Covariates

Figure 3 shows the difference (distribution-free minus Vuong) in the ‘‘power’’ functions of
the two tests for an error SD of 1.0 and a significance level of approximately 0.05. What is
immediately obvious is that the power of the distribution-free test is as great or greater than
the power of the Vuong test across all alternatives and sample sizes. For a sample size of
200 and a distance of 0.5, for instance, the Vuong test chose the correct model in only
17.7% of the replications, whereas the distribution-free test chose the correct model in
53.8% of the replications (a point which appears on the graph as 53.8% � 17.7% 5

36.1%). In general, the power differential between the tests decreases as the sample size
increases, reflecting the consistency of both tests.

That being said, the power differential between the tests is a nonlinear interaction
between the size of the sample and the distance of the alternative from the null. Each line

-0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

Distance of the Alternative from the Null

D
iff

er
en

ce
 in

 P
ow

er
 in

 th
e 

C
or

re
ct

 D
ire

ct
io

n

N=50
N=100
N=200
N=500
N=1000

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 3 Difference in the power functions of the tests, r 5 1.0, a ’ 0.05.
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in Fig. 3 is hill shaped, and the location of each hill is determined by the size of the sample.
The larger the sample, the farther to the left the hill is centered. The implication is that for
a large enough sample, there would be no power difference between the tests. The sample,
however, would have to be quite large. When we reran the experiment for a sample size
of 5000 and a distance of 0.3, the distribution-free test chose the correct model in 81% of
the replications, whereas the Vuong test chose the correct model in only 59% of the
replications.

The greater power of the distribution-free test does not come without a price. Figure 4
shows the difference (distribution-free minus Vuong, on the same scale as the previous
graph) in the probability of choosing the wrong model for an error SD of 1.0 and a sig-
nificance level of approximately 0.05. It is immediately obvious that the distribution-free
test chose the wrong model more often than the very conservative Vuong test. In absolute
terms, however, neither test chose the wrong model often, and the probability of either test
choosing the wrong model decreased as the sample size increased. At its worst (N 5 50,
distance5 0.3), the Vuong test chose the incorrect model in only 3.0% of the replications,
whereas the distribution-free test, at its worst (N 5 100, distance 5 0.3), chose the wrong
model in 12.5% of the replications.8

How are we to interpret these results? The Vuong test is far more conservative than the
distribution-free test and therefore does a better job of protecting against rejecting the null
in the wrong direction. Lehmann (1986), however, notes that there is little point in carrying
out a test that has only a small chance of detecting a false null. Interpreting our results
requires finding a balance between these two errors. One option is choosing a test that
minimizes some linear combination of the probability of rejecting a false null in the wrong
direction and the probability of failing to reject a false null.
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Fig. 4 Difference in the probability of choosing the wrong model, r 5 1.0, a ’ 0.05.

8If we change the error SD from 1.0 to 2.0, both tests perform worse in an absolute sense, although the relative
advantage of the distribution-free test increases. Otherwise, the conclusions drawn from the previous two graphs
still hold.
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Let a(d) be the probability of failing to reject a false null, and let b(d) be the probability
of rejecting a false null in the wrong direction. Given positive constants a and b, we want to
choose the test, d*, such that the linear combination of the two errors is the smallest,
aa(d*) þ bb(d*) � aa(d) þ bb(d). The question is how much weight to give each of these
errors. In most circumstances, scholars are more concerned about choosing the wrong
model than choosing neither model.

Figure 5 is a representative (n 5 200, r 5 1.0) scatter plot of the linear combination
under fiveweighting schemes. A curve, or any part of a curve, that lies below the 45-degree
line indicates that the linear combination of errors for the distribution-free test is less than
that of the linear combination of errors for the Vuong test. If, following Pesaran (1974), we
assume that two errors are equally important (a 5 b 5 0.5), then it follows that the
distribution-free test is preferable to the Vuong test. This is the rightmost curve in Fig. 5.
The distribution-free test remains unambiguously preferred even if the probability of
choosing the wrong model is given twice as much weight (a 5 0.333, b 5 0.667), or even
five times the weight (a 5 0.167, b 5 0.833), of the probability of choosing neither model.

If the probability of choosing the wrong model is given 10 (a 5 0.09, b 5 0.91) or 15
(a 5 0.0625, b 5 0.9375) times the weight of the probability of choosing neither model,
then the linear combination turns in favor of the Vuong test for the two alternatives nearest
the null (distances 0.3 and 0.4). The reason is simple. For a sample size of 200 and
alternatives near the null, the distribution-free test chose the wrong model more often than
the Vuong, as shown in Fig. 4. If we then put extraordinary weight on the probability of
choosing the wrong model, the linear combination turns in favor of the Vuong. Of course,
as the sample size increases past 1000, these leftmost curves approach and then pass the
45-degree line. Therefore, even if we consider choosing the wrong model to be the more
serious error, under most circumstances the distribution-free test outperforms the Vuong.

Finally, as power is affected by significance level, we need to assess the probability
of both tests choosing the correct model under different levels of a (Davidson and
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MacKinnon 1993, 405). Figure 6 is a representative graph showing the effect of signifi-
cance level for an alternative that is mid-distance from the null. The distribution-free test
has greater power for all reasonable values of a.

5 Application

How do domestic political institutions affect foreign policy decision making? Huth and
Allee (2002) compare three models corresponding to three different causal mechanisms
that link domestic institutions to foreign policy decisions.9 In general, they find that
the empirical evidence supports what they call the political accountability model [286].
Although their models are nonnested, Huth and Allee rely on informal methods of model
comparison. The application of nonnested tests to their models, however, calls into ques-
tion some of their findings.

In the political accountability model, ‘‘competitive elections, independent legislative
powers, and the threat of military coups are the sources of accountability for leadership
decisions in foreign policy’’ (Huth and Allee 2002, 101). The model comprises four key
assumptions: the critical goal of incumbent leaders is the retention of their office; political
opponents challenge incumbents at strategic junctures; political accountability varies
across different domestic political institutions; and the greater the political vulnerability
of leaders, the more risk-averse leaders are in their foreign policy.10
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Fig. 6 Probability of choosing the correct model by significance, n 5 200, r5 1.0, alternative5 0.5.

9Although Huth and Allee compare three models, we focus on the two models with the greatest direct support.
10Huth and Allee (2002) operationalize the political accountability model using six variables: a measure of how
democratic the challenger and target are, whether the dispute is at a stalemate, whether the dispute is part of an
enduring rivalry, whether ethnic co-nationals are involved in the dispute, whether the situation is one of high
military risk or uncertainty, and the resolve of the target. Each of the last five variables is interacted with
democracy in order to understand how the greater accountability of democratic leaders affects the decision to
escalate a crisis.

358 Kevin A. Clarke

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/p

an
/m

pm
00

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/pan/mpm004


In the political norms model, ‘‘attention shifts to the principles that shape political elite
beliefs about how to bargain and resolve political conflicts,’’ and leaders from democratic
and nondemocratic states have ‘‘different beliefs about the acceptability of compromising
with and coercing political adversaries’’ (Huth and Allee 2002, 101). The model comprises
three key assumptions: norms influence decisions made by political actors in political
conflict, domestic political institutions structure political conflict, and the bargaining
strategies used by leaders in international disputes are influenced by the norms of bargain-
ing those same leaders use with domestic political opponents.11

The models are completed by including a set of straightforward realist variables com-
prising military balance, local balance of forces advantage, the strategic value of the
territory, alliance behavior, and whether or not the target or challenger are involved in
another militarized dispute.12 The models are tested on 374 territorial disputes where the
challenger has opted for military pressure over calling for negotiations. The challenger and
the target both choose to either escalate the dispute or not (the dependent variable);
consequently, the models are estimated by bivariate probit. The results in Tables 2 and 3
replicate the results of Huth and Allee’s Tables 9.4 [240] and 9.13 [256], respectively.

A question that arises is how informative the Monte Carlo results are in regard to this
application. There are five points of convergence. First, the Monte Carlo experiment
comprises two models, neither of which is the DGP. Neither of the two Huth and Allee

Table 2 The political accountability model, n 5 374

Variable

Challenger Target

Coefficient SE Coefficient SE

Challenger level of democracy �0.004 0.017
Target level of democracy 0.006 0.017
Democracy � stalemate �0.030 0.023 �0.008 0.019
Control for stalemate �0.418 0.192 �0.421 0.160
Democracy � enduring rivalry 0.000 0.018 �0.016 0.014
Control for enduring rivalry 0.106 0.172 0.233 0.159
Democracy � ethnic ties �0.014 0.018 0.005 0.016
Control for ethnic ties 0.400 0.143 0.053 0.121
Democracy � military risk 0.010 0.022 �0.026 0.016
Control for military risk �0.141 0.198 0.066 0.229
Target resolve � target democracy �0.036 0.014
Target signal of resolve �0.052 0.118
Military balance 0.931 0.301 �0.062 0.443
Local balance of forces 0.440 0.144 0.026 0.186
Strategic value 0.559 0.148 0.334 0.142
Common security interests �0.432 0.184 �0.128 0.175
Target other dispute 0.300 0.169 0.360 0.162
Challenger other dispute 0.351 0.164 0.135 0.164
Constant �1.916 0.265 �1.237 0.230
q 0.956 0.021
Log-likelihood �243.063

11Huth and Allee (2002) operationalize the political norms model with four variables: the strength of nonviolent
norms in the state, whether the dispute is at a stalemate, nonviolent norms interacted with stalemate, and
nonviolent norms interacted with a measure of whether or not the state has a military advantage.

12See Huth and Allee (2002) for information on how these variables are operationalized.
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models is likely to be the DGP. Second, the models in the Monte Carlo experiment range
from both being quite far from the DGP to one being far from the DGP and one quite close
to the DGP. The two models in our application are some unknown distance away from the
DGP. Third, the sample sizes in the Monte Carlo experiment range from 50 to 1000. The
sample size in the application is 374. Fourth, and perhaps most importantly, the log-
likelihood ratios in the experiment are leptokurtic, with kurtosis values ranging between
5.19 and 6.70. The log-likelihood ratios in the application are similarly leptokurtic, with
a kurtosis value of 5.80. Fifth, the log-likelihood ratios in the experiment exhibit almost no
skew. The same is true of the empirical log-likelihood ratios, which have a skewness of
0.028.13 Thus, our empirical application is right in line with the experiment reported in
Section 4.

Another question that might arise is the necessity of using a nonnested test in this
situation. Given that the rival models are nonnested solely in terms of their design matri-
ces, it might appear that neither the Vuong test nor the distribution-free test is necessary to
discriminate between them. Conventional practice would suggest nesting the two models
and employing a likelihood ratio test. As both Kmenta (1986, 596) and Greene (2003, 154)
make clear with a simple example, the likelihood ratio test approach is not the appropriate
method.

Consider two linear and additive models:

Model 1 : y5Xb þ e;

Model 2 : y5Zc þ e:

Let X̃ be the variables in X, but not in Z, Z̃ be the variables in Z, but not in X, and
finally, letW be the variables that are in both X and Z. If we were to nest these models, the
result would be y5 X̃b̃þ Z̃c̃þWdþ e.

Table 3 The political norms model, n 5 374

Variable

Challenger Target

Coefficient SE Coefficient SE

Strength of nonviolent norms �0.009 0.021 �0.020 0.018
Nonviolent norms � military advantage �0.017 0.018 �0.016 0.014
Nonviolent norms � stalemate 0.005 0.036 0.007 0.043
Control for stalemate �0.345 0.429 �0.425 0.509
Military balance 1.201 0.377 0.057 0.387
Local balance of forces 0.535 0.152 0.085 0.176
Strategic value 0.485 0.144 0.353 0.144
Common security interests �0.404 0.190 �0.136 0.176
Target other dispute 0.404 0.167 0.408 0.163
Challenger other dispute 0.273 0.166 0.099 0.166
Constant �1.714 0.328 �0.917 0.300
q 0.924 0.027
Log-likelihood �255.782

13We also bootstrapped the kurtosis and skewness of the empirical log-likelihoods. The bootstrap bias for kurtosis
is �0.06, and the SE is 0.8. The bootstrap bias for skewness is �0.017, and the SE is 0.3.
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Notice that we cannot discriminate between model 1 and model 2 on the basis of
a likelihood ratio test of either b̃5 0 or c̃5 0 because these tests leave out d, which is
a mix of b and c. Thus, the likelihood ratio test does not discriminate between model 1 and
model 2, but rather, it discriminates between model 1 or model 2 and a hybrid model
comprising the alternative and the null hypothesis. Just as in this simple example, the Huth
and Allee models share a set of variables. Nesting them and using a likelihood ratio test,
therefore, does not provide the answer for which we are looking.14

The results of the Vuong test for the Huth and Allee models are in Table 4.15 The test
returns a statistic of �22.83 and a confidence interval comfortably bracketing zero. We
therefore fail to reject the null hypothesis of ‘‘no difference’’ at conventional significance
levels and conclude that the models explain equally well. The direction of the coefficient,
however, favors the political norms model.

The results of the distribution-free test for the Huth and Allee models are in Table 5.
Where the Vuong test could not distinguish between the models, the distribution-free test
readily distinguishes between them. We reject the null hypothesis of ‘‘no difference’’ in
favor of the political norms model at conventional significance levels. Thus, the two tests
are in the same direction, but only the distribution-free test actually rejects the null
hypothesis. The fact that the distribution-free procedure can distinguish between these
models given the complex nature of the estimator, the demands bivariate probit makes on
the data, and the relatively small sample size make a strong statement about the utility of
the procedure. In addition, the finding that a political norms explanation has greater
explanatory power than a political structure explanation corroborates earlier work on
the effect of domestic politics on foreign policy decision making (see Maoz and Russett
1993). Although this result does not overturn Huth and Allee’s conclusions, which are
based in part on empirical work on other stages besides escalation in international dis-
putes, our result does suggest that more formal model testing could prove invaluable.

6 Conclusion

This paper considers a distribution-free alternative to the well-known Vuong test for
nonnested model selection. Although both tests are consistent and unbiased, the distribu-
tion-free test is asymptotically more efficient for leptokurtic distributions. The Monte
Carlo results demonstrate that in common research situations, such as choosing between
competing models with nonnested design matrices, the distribution of individual log-
likelihood ratios is actually leptokurtic. The results also confirm, as expected, that the
distribution-free test has greater power than the Vuong test under these conditions. Thus,

Table 4 Results of the Vuong test for the Huth/Allee models

Vuong SE Z statistics Significance 95% confidence interval

�22.83 22.76 �1.00 0.316 �45.62 43.61

14Even in the case of simple linear regression with no shared variables, the comprehensive approach is not
recommended. No major econometrics text—Greene (2003), Kmenta (1986), Judge et al. (1985), Johnston
and DiNardo (1997), Davidson and MacKinnon (1993)—presents it as a viable option. Other arguments against
the comprehensive approach include low power (McAleer 1987), collinearity (Greene 2003), and the fact that
the comprehensive model is atheoretical (Clarke 2001).

15Stata code for replicating the Huth and Allee tests is available in the supplementary material on the Political
Analysis Web site. R code is available from the author.
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the new test is simple to perform, easy to interpret, and provides good power under difficult
conditions.

As Vuong (1989, 326) noted, ‘‘much work remains to be done.’’ First, although our
results regarding the distribution of the individual log-likelihood ratios are highly sugges-
tive, a full characterization of this distribution would prove invaluable. Second, the Monte
Carlo experiment reported here should be extended to models that are nonnested in terms
of their functional forms as is being done by Clarke and Signorino (2006). Third, given
that no particular correction for the number of parameters in the rival models can be
justified, it would be useful to compare the adjustments suggested here and by Vuong
to bootstrapped version of both tests. The results could help indicate which adjustments
work best under what conditions. Fourth, comparisons to model selection criteria and the
many Bayesian approaches to the problem would be enlightening. Finally, the extension of
the distribution-free test to situations in which there are many competing models would be
a greatly anticipated development.
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