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In this paper we analyse classical Maker–Breaker games played on the edge set of a sparse

random board G ∼ Gn,p. We consider the Hamiltonicity game, the perfect matching game

and the k-connectivity game. We prove that for p(n) � polylog(n)/n the board G ∼ Gn,p

is typically such that Maker can win these games asymptotically as fast as possible, i.e.,

within n + o(n), n/2 + o(n) and kn/2 + o(n) moves respectively.

AMS 2010 Mathematics subject classification: Primary 05C80, 05C57, 91A43, 91A46

1. Introduction

Let X be any finite set and let F ⊆ 2X be a family of subsets. Usually, X is called the

board, whereas F is referred to as the family of winning sets. In the (a : b) Maker–Breaker

game (X,F) (also known as a weak game), two players called Maker and Breaker play

in rounds. In every round Maker claims a previously unclaimed elements of the board X

and Breaker responds by claiming b previously unclaimed elements of the board. Maker

wins as soon as he fully claims all elements of some F ∈ F . If Maker does not fully claim

any winning set by the time all board elements are claimed, then Breaker wins the game.

The most basic case is a = b = 1, the so-called unbiased game. Notice that being the first

player is never a disadvantage in a Maker–Breaker game. Therefore, in order to prove

that Maker can win some Maker–Breaker game as the first or the second player, it is
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enough to prove that he can win this game as a second player. Hence, we will always

assume that Maker is the second player to move.

It is natural to play Maker–Breaker games on the edge set of a graph G = (V , E) with

|V | = n. In this case, X = E. In the connectivity game, Maker wins if and only if his edges

contain a spanning tree. In the perfect matching game Mn(G) the winning sets are all sets

of �n/2� independent edges of G. Note that if n is odd, then such a matching covers all

vertices of G but one. In the Hamiltonicity game Hn(G) the winning sets are all edge sets

of Hamilton cycles of G. Given a positive integer k, in the k-connectivity game Ck
n (G) the

winning sets are all edge sets of k-connected spanning subgraphs of G.

Maker–Breaker games played on the edge set of the complete graph Kn are well studied.

In this case, it is easy to see (and also follows from [16]) that for every n � 4, Maker

can win the unbiased connectivity game in n − 1 moves, which is clearly the best possible.

Hefetz, Krivelevich, Stojaković and Szabó [10] proved that Maker can win the unbiased

perfect matching game on Kn within n/2 + 1 moves (which is clearly the best possible), the

unbiased Hamiltonicity game within n + 2 moves and the unbiased k-connectivity game

within kn/2 + o(n) moves.

Hefetz and Stich [13] showed that Maker can win the unbiased Hamiltonicity game on

Kn within n + 1 moves, which is clearly the best possible, and Ferber and Hefetz recently

proved (see [8]) that Maker can win the unbiased k-connectivity game within kn/2 + 1

moves, which is clearly the best possible.

It follows from all these results that many natural games played on the edge set of the

complete graph Kn are drastically in favour of Maker. Hence, it is natural to try to make

his life a bit harder and to play on different types of boards or to limit his number of

moves. In this paper we are mainly interested in the following two questions.

(i) Given a sparse board G = (V , E), can Maker win the game played on this board?

(ii) How fast can Maker win this game?

Stojaković and Szabó [17] suggested playing Maker–Breaker games on the edge set of

a random graph G ∼ Gn,p, and they examined games such as the perfect matching game,

the Hamiltonicity game, the connectivity game and the k-clique game.

Later, Ben-Shimon, Ferber, Hefetz and Krivelevich [5] proved that the edge set of

G ∼ Gn,p with p = (1 + o(1)) ln n
n

is typically such that Maker has a strategy to win the

unbiased perfect matching game, the Hamiltonicity game and the k-connectivity game.

This is best possible since p = ln n
n

is the threshold probability for the property of Gn,p

having an isolated vertex. Moreover, the proof in [5] is of a ‘hitting time’ type. That

means, in the random graph process, i.e., when adding one new edge randomly every

time, typically at the moment the graph reaches the needed minimum degree for winning

the desired game, Maker can indeed win this game. For example, at the first time the

graph process achieves minimum degree 2 the board is typically such that Maker wins

the perfect matching game.

Another type of game is the following. Let X be any finite set and let F ⊆ 2X be a

family of subsets. In the strong game (X,F), two players, called Red and Blue, take turns

at claiming one previously unclaimed element of X, with Red going first. The winner of

this game is the first player to fully claim all the elements of some F ∈ F . If no one wins
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by the time all the elements of X are claimed, then the game ends in a draw. For example,

the classic Tic-Tac-Toe is such a game. It is well known from classical game theory that,

for every strong game (X,F), either Red has a winning strategy or Blue has a drawing

strategy. For certain games, a hypergraph colouring argument can be used to prove that a

draw is impossible and thus these games are won by Red. However, these arguments are

purely existential. That is, even if it is known that Red has a winning strategy for some

strong game (X,F), it might be very hard to describe such a strategy explicitly.

Using fast strategies for Maker in certain games, explicit strategies for Red have been

given for games such as the perfect matching game, the Hamiltonicity game and the k-

connectivity game played on the edge set of Kn (see [8] and [7]). This provides substantial

motivation for studying fast winning strategies in Maker–Breaker games.

Regarding the strong game played on G ∼ Gn,p, not much is known yet. Hence, as a

first step for finding explicit strategies for Red in the strong game played on a random

board, it is natural to look for fast winning strategies for Maker in the analogous games.

Therefore the following question is quite natural.

Question(s). Given p = p(n), how fast can Maker win the perfect matching, the Hamilton-

icity and the k-connectivity games played on the edge set of a random board G ∼ Gn,p?

In this paper we resolve these questions for a wide range of values of p = p(n). We

prove the following theorems.

Theorem 1.1. Let b � 1 be an integer, let K > 12, p = lnK n
n

, and let G ∼ Gn,p. Then a.a.s.

G is such that in the (1 : b) weak game Mn(G), Maker has a strategy to win within n
2

+ o(n)

moves.

Theorem 1.2. Let b � 1 be an integer, let K > 100, p = lnK n
n

, and let G ∼ Gn,p. Then a.a.s.

G is such that in the (1 : b) weak game Hn(G), Maker has a strategy to win within n + o(n)

moves.

Theorem 1.3. Let b � 1, k � 2 be two integers, let K > 100, p = lnK n
n

, and let G ∼ Gn,p.

Then a.a.s. G is such that in the (1 : b) weak game Ck
n (G), Maker has a strategy to win within

kn
2

+ o(n) moves.

Due to obvious monotonicity the results are valid for any p = p(n) larger than stated

in the theorems above.

For the sake of simplicity and clarity of presentation, we do not make a particular

effort to optimize the constants obtained in our proofs. We do not believe that the order

of magnitude we assume for p in the above theorems is optimal. We also omit floor and

ceiling signs whenever these are not crucial. Most of our results are asymptotic in nature

and whenever necessary we assume that n is sufficiently large.

The remaining part of the paper is organized as follows. First, we introduce the

necessary notation. In Section 2 we assemble several results that we need. We give some

basic results on positional games in Section 2.1, on graph theory in Section 2.2, and
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on Gn,p in Section 2.3. The strategy of Maker (in each of the three games) includes

building a suitable expander on a subgraph, which then contains the desired structure. We

therefore include results on expanders in Section 2.4. We prove Theorem 1.1, 1.2 and 1.3

in Sections 3, 4 and 5, respectively. Finally, in Section 6 we pose some open problems

connected to our results.

1.1. Notation and terminology

Our graph-theoretic notation is standard and follows that of West [18]. In particular, we

use the following.

For a graph G, let V (G) and E(G) denote its sets of vertices and edges, respectively.

Let S, T ⊆ V (G) be subsets. Let G[S] denote the subgraph of G, induced on the vertices

of S , and let EG(S) = E(G[S]). Further, let EG(S, T ) := {st ∈ E(G) : s ∈ S, t ∈ T }, and

let NG(S) := {v ∈ V : ∃s ∈ S s.t. vs ∈ E(G)} denote the neighbourhood of S . Further, for

v ∈ V (G), let dG(v, S) = |EG({v}, S)|, and dG(v) := dG(v, V (G)). For an edge e ∈ E(G) we

denote by G − e the graph with vertex set V (G) and edge set E(G) \ {e}. We omit the

subscript G whenever there is no risk of confusion.

Assume that some Maker–Breaker game, played on the edge set of some graph G, is in

progress. At any given moment during the game, we denote the graph formed by Maker’s

edges by M, and the graph formed by Breaker’s edges by B. At any point during the

game, the edges of F := G \ (M ∪ B) are called free edges.

2. Auxiliary results

In this section we present some auxiliary results that will be used throughout the paper.

First, we will need to employ bounds on large deviations of random variables. We

will mostly use the following well-known bound on the lower and the upper tails of the

binomial distribution due to Chernoff (see [1], [14]).

Lemma 2.1. If X ∼ Bin(n, p), then

• P[X < (1 − a)np] < exp
(
− a2np

2

)
for every a > 0,

• P[X > (1 + a)np] < exp
(
− np

3

)
for every a � 1.

Lemma 2.2. If X ∼ Bin(n, p), µ = E(X) and k � 7µ, then P(X � k) � e−k .

2.1. Basic positional games results

The following fundamental theorem, due to Beck [2], is a useful sufficient condition for

Breaker’s win in the (a : b) game (X,F). It will be used extensively throughout the paper.

Theorem 2.3. Let X be a finite set and let F ⊆ 2X . If

∑
F∈F

(1 + b)−|F |/a <
1

1 + b
,

then Breaker (as the first or second player) has a winning strategy for the (a : b) game

(X,F).
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While Theorem 2.3 is useful in proving that Breaker wins a certain game, it does not

show that he wins this game quickly. The following lemma is helpful in this respect.

Lemma 2.4 (Trick of fake moves). Let X be a finite set and let F ⊆ 2X . Let b′ < b be

positive integers. If Maker has a winning strategy for the (1 : b) game (X,F), then he has

a strategy to win the (1 : b′) game (X,F) within 1 + |X|/(b + 1) moves.

The main idea of the proof of Lemma 2.4 is that, in every move of the (1 : b′)

game (X,F), Maker (in his mind) gives Breaker b − b′ additional board elements. The

straightforward details can be found in Beck [3].

We will also use a variant of the classical Box Game first introduced by Chvátal

and Erdős [6]. The Box Game with resets rBox(m, b), first studied by Ferber, Hefetz and

Krivelevich [9], is played by two players, called BoxMaker and BoxBreaker. They play

on a hypergraph H = {A1, . . . , Am}, where the sets Ai are pairwise disjoint. BoxMaker

claims b elements of
⋃m

i=1 Ai per turn, and then BoxBreaker responds by resetting one

of BoxMaker’s boxes, that is, by deleting all of BoxMaker’s elements from the chosen

hyperedge Ai. Note that the chosen box does not leave the game. At every point during

the game, and for every 1 � i � m, we define the weight of box Ai to be the number of

BoxMaker’s elements that are currently in Ai, that is, the number of elements of Ai that

were claimed by BoxMaker and have not yet been deleted by BoxBreaker.

Theorem 2.5 (Theorem 2.3 in [9]). For every integer k � 1, BoxBreaker has a strategy for

the game rBox(m, b) which ensures that, at any point during the first k rounds of the game,

every box Ai has weight at most b(1 + ln(m + k)).

We will use this theorem to provide Maker with a strategy to obtain some minimum

degree in his graph. To that end, let G = (V , E) be some graph, and let V1, V2 ⊆ V be

arbitrary subsets. By (1 : b) − Deg (V1, V2) we denote the (1 : b) positional game where the

board is E and Maker tries to get a large degree dM(v, V2) for every v ∈ V1. Occasionally,

we shall simply refer to this as the degree game. The following is an immediate conclusion

of Theorem 2.5.

Claim 2.6 (Degree game). Let G = (V , E) be a graph on |V | = n vertices, V1, V2 ⊆ V ,

and let b be an integer. Then, in the (1 : b) − Deg (V1, V2) game, Maker can ensure that

dB(v, V2) � 10b(dM(v, V2) + 1) ln n for every vertex v ∈ V1.

Proof. Maker pretends he is BoxBreaker and that he is playing the rBox(n, 2b) game with

the boxes {vu ∈ E : u ∈ V2}, v ∈ V1. Notice that these boxes are not necessarily disjoint,

since we did not require V1 and V2 to be disjoint. However, any edge belongs to at

most two of these boxes. So BoxBreaker can pretend that the boxes are disjoint and that

BoxMaker claims 2b elements in every move (using the trick of fake moves, Lemma 2.4).

Now, according to Theorem 2.5, BoxBreaker can ensure that at any point during the first

k rounds of the game, every box has weight at most 2b(1 + ln(n + k)). Hence, at the end of

the game every box has weight at most 2b(1 + ln(n +
(
n
2

)
)) � 10b ln n. So, for every vertex

v ∈ V1, Maker (BoxBreaker) has claimed at least one incident edge of v for every 10b ln n
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incident edges Breaker (BoxMaker) has claimed. Hence dB(v, V2) � 10b(dM(v, V2) + 1)

ln n.

2.2. General graph theory results

We will use the following graph which was introduced by Ferber and Hefetz [8]. Let k � 2

and n � 3(k − 1) be positive integers such that (k − 1) | n. Let m := n
k−1

. Let C1, . . . , Ck−1 be

k − 1 pairwise vertex-disjoint cycles, each of length m. For every 1 � i < j � k − 1 let Pij

be a perfect matching in the bipartite graph (V (Ci) ∪ V (Cj), {uv : u ∈ V (Ci), v ∈ V (Cj)}).

Let Gk be the family of all graphs Gk = (Vk, Ek), where Vk =
⋃k−1

i=1 V (Ci) and

Ek =

(k−1⋃
i=1

E(Ci)

)
∪

( ⋃
1�i<j�k−1

Pij

)
.

We now prove the following lemma.

Lemma 2.7. For all integers k � 2 and n � 3(k − 1) such that (k − 1) | n, every Gk ∈ Gk is

k-regular and k-vertex-connected.

Proof. For k = 2, the lemma is trivial. So assume k � 3. It is obvious that Gk is k-

regular. Let S ⊆ Vk be an arbitrary set of size at most k − 1. We will prove that Gk \ S

is connected. Assume first that there exists some 1 � i � k − 1 for which S ∩ V (Ci) = ∅.

Then (Gk \ S) ∩ Ci = Ci is connected and V (Ci) is a dominating set of Gk \ S . It follows

that Gk \ S is connected. Assume then that |S ∩ V (Ci)| = 1 for every 1 � i � k − 1. Hence,

(Gk \ S) ∩ Ci is a path on k − 1 vertices for every 1 � i � k − 1. Since k − 1 � 2 and

|S ∩ V (Ci)| = 1 for every 1 � i � k − 1 hold by the assumption, it follows that there is

at least one edge between (Gk \ S) ∩ Ci and (Gk \ S) ∩ Cj for every 1 � i < j � k − 1. It

follows that Gk \ S is connected.

The following lemma shows that if a directed graph satisfies some pseudorandom

properties then it contains a long directed path. We will use it in the proof of Theorem 1.2.

Lemma 2.8 (Lemma 4.4 of [4]). Let m be an integer and let D = (V , E) be an oriented

graph with the following property. There exists an edge from S to T between any two disjoint

sets S, T ⊆ V such that |S | = |T | = m. Then D contains a directed path of length at least

|V | − 2m + 1.

The next lemma provides a sufficient (Hall-type) condition for a bipartite graph to

contain a perfect matching.

Lemma 2.9. Let G = (U1 ∪ U2, E) be a bipartite graph with |U1| = |U2| = n. Let r � n/2

be an integer such that:

(B1) for i ∈ {1, 2} and every X ⊂ Ui of size |X| � r, |N(X)| � |X|,
(B2) for every X ⊂ U1 and Y ⊂ U2 with |X| = |Y | = r, |E(X,Y )| > 0.

Then G has a perfect matching.
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Proof. In order to prove that G admits a perfect matching, we will prove that G satisfies

Hall’s condition, that is, |N(X)| � |X| for every X ⊆ Ui (see, e.g., [18]).

We distinguish three cases.

Case 1: If |X| � r, then by (B1) we have that |N(X)| � |X|, and we are done.

Case 2: If r < |X| � n − r, then by (B2) we have that |N(X)| � n − r � |X|.

Case 3: |X| > n − r. Let X ⊆ U1 and assume for a contradiction that |N(X)| � |X| − 1.

Let Y ⊂ U2 be a subset of size n − |X| + 1 for which N(X) ⊆ U2 \ Y . Since |X| > n − r

we get that |Y | � r and by Case 1 we have that |N(Y )| � |Y | = n − |X| + 1. Moreover,

N(X) ⊆ U2 \ Y implies that N(Y ) ⊆ U1 \ X, which is clearly a contradiction since we

have that n − |X| + 1 � |N(Y )| � n − |X|. The case X ⊆ U2 is treated similarly.

2.3. Properties of Gn,p

This subsection specifies properties (A1)–(A3) that a graph G ∼ Gn,p fulfils a.a.s. It turns

out that these properties are all we need to prove our main theorems, so in fact we could

strengthen them to hold for any graph G that has suitable pseudorandom properties.

Lemma 2.10. Let K � 2 and let G ∼ Gn,p with p = lnK n/n. Further, let α ∈ R such that

1 � α < K , and let f = f(n) be some function that satisfies 1 � f = O((ln ln n)3). Then,

a.a.s.

(A1) δ(G) = Θ
(
lnK n

)
and ∆(G) = Θ

(
lnK n

)
,

(A2) for every subset U ⊆ V ,

|E(U)| � max{100 |U| ln n, 100 |U|2p},

(A3) for any two disjoint subsets U,W ⊆ V with |U| = |W | = nf−1 ln−α n,

|E(U,W )| = Ω
(
nf−2 lnK−2α n

)
and |E(U)| = Ω

(
nf−2 lnK−2α n

)
.

Proof. (A1) Let v ∈ V . Since dG(v) ∼ Bin(n − 1, p) we conclude E(dG(v)) = (n − 1)p =

(1 − o(1)) lnK n. Hence, by Lemma 2.1,

P
(
dG(v) � (1 − 1/2) lnK n

)
� exp

(
− lnK n

8
(1 − o(1))

)
= o(1/n).

Now, by the union bound argument we conclude that

P

(
∃ v ∈ V : dG(v) � lnK n

2

)
� n · o(1/n) = o(1).

Similarly, by Lemma 2.1, we obtain

P
(
∃ v ∈ V : dG(v) � 2 lnK n

)
= o(1).

(A2) Let U ⊆ V be a fixed subset of size t := |U|. Then

7 E(|E(U)|) � 7t2p < 100t2p � max{100t ln n, 100t2p}.
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Thus, by Lemma 2.2,

P
(
|E(U)| � max{100t ln n, 100t2p}

)
� exp

(
− max{100t ln n, 100t2p}

)
� exp

(
−100t ln n

)
.

It follows that

P
(
∃ U ⊆ V : |E(U)| > max{100|U| ln n, 100|U|2p}

)

�
n∑

t=1

(
n

t

)
exp(−100t ln n)

�
n∑

t=1

exp(t ln n − 100t ln n)

�
n∑

t=1

exp(−99 ln n)

= exp(−98 ln n) = o(1).

(A3) Let U,W ⊆ V be two disjoint subsets such that |U| = |W | = nf−1 ln−α n. Note that

|E(U,W )| is binomially distributed with expectation µn := nf−2 lnK−2α n. So by Lemma 2.1

we have that P
(
|E(U,W )| � µn

2

)
� exp

(
− µn

8

)
. Applying the union bound we get that

P

(
∃ disjoint U,W ⊆ V : |U| = |W | =

n

f lnα n
and |E(U,W )| � µn

2

)

�
(

n
n

f lnα n

)2

exp

(
−µn

8

)

� exp

(
2n

f lnα n
(α ln ln n + 1 + ln f) − n lnK−2α n

8f2

)

= o(1),

since K > α. Finally, since |E(U)| ∼ Bin
((|U|

2

)
, p

)
, it follows analogously that a.a.s. |E(U)| =

Ω
(
nf−2 lnK−2α n

)
for all U with |U| = nf−1 ln−α n.

2.4. Expanders

Definition. Let G = (V , E) be a graph with |V | = n. Let R := R(n) and c := c(n) be two

positive integers. We say that the graph G is an (R, c)-expander if it satisfies the following

two properties:

(E1) for every subset X ⊆ V with |X| � R, |N(X) \ X| � c|X|,
(E2) |E(X,Y )| > 0 for every two disjoint subsets X,Y ⊆ V of size |X| = |Y | = R.

Recall that a graph G = (V , E) is called Hamilton-connected if, for every x, y ∈ V , the

graph G contains a Hamilton path with x and y as its endpoints. The following sufficient

condition for a graph to be Hamilton-connected was introduced by Hefetz, Krivelevich

and Szabó [11].
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Theorem 2.11. Let n be sufficiently large, and let G = (V , E) be an (n/ ln n, ln ln n)-expander

on n vertices. Then G is Hamilton-connected.

That is, by ensuring expander properties (locally), we can enforce a Hamilton cycle

(global property).

The following theorem lies at the heart of all our proofs. It says that in a subgraph

of G of sublinear order where certain properties hold, Maker is able to build a suitable

expander fast, that is, in o(n) moves.

Theorem 2.12. Let b be an integer, let K > 12, let n be a sufficiently large integer and let

p = lnK n/n. Let H = (VH, EH ) be a graph on |VH | = Θ(n/ ln4 n) vertices and let M and F

be two edge-disjoint subgraphs of H , where EM already belongs to Maker and F consists of

free edges. Assume that the following properties hold.

(a) EM ∪ EF = EH .

(b) There exist a constant c1 > 0 and a partition VH = A1 ∪ (VH \ A1) such that

dM(v) � c1 lnK−6 n for every v ∈ A1,

dF (v) � c1 lnK−4 n for every v /∈ A1

and |A1| = O(n · ln6−K n).

(c) For any two disjoint subsets U,W ⊆ VH of size

|U| = |W | =
n

(ln n)5 (ln ln n)3
,

we have

|EH (U,W )| = Ω

(
n lnK−10 n

(ln ln n)6

)
.

(d) For every subset U ⊆ VH , |EH (U)| � max{100 |U| ln n, 100 |U|2p}.
Then, for every c � ln ln |VH | and R = |VH |/ ln |VH |, in the (1 : b) Maker–Breaker game

played on EH , Maker has a strategy to build an (R, c)-expander within o(n) moves.

Before we prove this theorem we need an auxiliary result. Consider a graph H with

(edge-disjoint) subgraphs M and F such that the assumptions of Theorem 2.12 hold.

Given a subgraph H1 = (VH, E1) of H , we denote M1 and F1 to be the restrictions of

M and F , respectively, to the subgraph H1. The following lemma says that in H we can

find a sparse subgraph with suitable properties that will guarantee Maker’s win in the

expander game.

Lemma 2.13. Under the assumptions of Theorem 2.12 there exists a subgraph H1 = (VH, E1)

of H with the following properties.

(i) For every v /∈ A1, dF1
(v) = Ω(ln3 n).

(ii) For any two disjoint subsets U,W ⊆ VH such that

|U| = |W | =
n

(ln n)5 (ln ln n)3
,
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we have

|E1(U,W )| = Ω

(
n

(ln n)3 (ln ln n)6

)
.

(iii) For every U ⊆ VH , |E1(U)| � max{1000|U| ln n, 1000|U|2 ln7 n/n}.
(iv) |E1| = o(n).

Note that all size parameters in this lemma no longer depend on K . We want to stress

that this is crucial for obtaining |E1| = o(n).

Proof. Let ρ = ln7−K (n). Pick every edge of H to be an edge of H1 with probability ρ

independently of all other choices. Let

s(n) :=
n

(ln n)5 (ln ln n)3
.

Properties (i)–(iv) will all be proved by identifying the correct binomial distribution and

by applying Chernoff- and union-bound-type arguments.

(i) Notice that for every v /∈ A1 the degree of v in F1 is binomially distributed, that is,

dF1
(v) ∼ Bin(dF (v), ρ) with mean E(dF1

(v)) � c1 ln3 n.

Therefore, by Lemma 2.1 we have

P

(
dF1

(v) � 1

2
c1 ln3 n

)
� exp

(
−1

8
c1 ln3 n

)
.

Hence, by the union bound we conclude that

P

(
∃ v ∈ VH \ A1 : dF1

(v) � 1

2
c1 ln3 n

)
= o(1).

(ii) Let c2 > 0 be such that |EH (U,W )| � c2n lnK−10 n/(ln ln n)6 for every two disjoint

subsets U,W ⊆ VH with |U| = |W | = s(n). This c2 clearly exists by Theorem 2.12(c). Let

U,W be such subsets. Since |E1(U,W )| ∼ Bin(EH (U,W ), ρ) with mean

E(|E1(U,W )|) � c2n

(ln n)3 (ln ln n)6
,

by Lemma 2.1,

P

(
|E1(U,W )| � c2n

2(ln n)3 (ln ln n)6

)
� exp

(
− c2n

8(ln n)3 (ln ln n)6

)
.

Therefore, by the union bound we conclude that

P

(
∃ U,W ⊆ VH : |U| = |W | = s(n) and |E1(U,W )| � c2n

2(ln n)3 (ln ln n)6

)

�
(

n
n

ln5 n

)2

exp

(
− c2n

8(ln n)3 (ln ln n)6

)

� exp

(
2n

ln4 n
− c2n

8(ln n)3 (ln ln n)6

)
= o(1).
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(iii) Note that |E1(U)| ∼ Bin(EH (U), ρ) with expectation

E(|E1(U)|) � max{100 |U| ln n, 100 |U|2 ln7 n/n}.

Again, by Lemma 2.2 and the union bound we get that

P
(
∃ U ⊆ VH : |E1(U)| � max{1000 |U| ln n, 1000 |U|2 ln7 n/n}

)

�
|VH |∑
t=1

(
|VH |
t

)
exp

(
− max{1000t ln n, 1000t2 ln7 n/n}

)

�
n∑

t=1

exp
(
t ln n − 1000t ln n

)

� n exp(−999 ln n) = o(1).

(iv) Notice that |E1| ∼ Bin(|EH |, ρ). By Theorem 2.12(d), and since |VH | = Θ(n/ ln4 n), we

have |EH | = O(n lnK−8 n). So the expected size of E1 is

µ = O(nρ lnK−8 n) = o(n).

Hence, again, by Lemma 2.1 we conclude that |E1| = o(n) with probability tending to 1.

We have shown that in the randomly chosen subgraph properties (i)–(iv) hold a.a.s. In

particular, there exists an instance where all hold.

Now, we are ready to prove Theorem 2.12.

Proof of Theorem 2.12. Let H1 = (VH, E1) be a subgraph of H as given by Lemma 2.13.

To achieve his goal, Maker will play two games in parallel on E1. In the odd moves

Maker plays the (1 : 2b) degree game on F1 and in the even moves he plays as F-Breaker

the (2b : 1) game (E1,F), where the winning sets are

F =

{
E1(U,W ) : U,W ⊆ VH, U ∩ W = ∅ and |U| = |W | =

n

(ln n)5 (ln ln n)3

}
.

Combining Claim 2.6 and Lemma 2.13, Maker can ensure with his odd moves that

for every v ∈ VH \ A1 : dM∩H1
(v) = Ω(ln2 n). (2.1)

Also, by Lemma 2.13(ii),

∑
F∈F

2−|F |/2b �
(

n
n

ln5 n

)2

2−Ω(n/((ln n)3 (ln ln n)6))

� exp

(
2n

ln4 n
− Ω

(
n

(ln n)3 (ln ln n)6

))
= o(1).

So by Theorem 2.3, Maker (as F-Breaker) wins the game (E1,F). That is, for any two

disjoint subsets U,W ⊆ VH of size

|U| = |W | =
|VH |

ln |VH | = Θ

(
n

ln5 n

)
= ω

(
n

(ln n)5 (ln ln n)3

)
,
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Maker can claim an edge between U and W . Note that this gives condition (E2) of the

expander definition, with R = |VH |/ ln |VH |. Furthermore, by Lemma 2.13(iv), the game

lasts |E1| = o(n) moves.

To prove that by the end of this game Maker’s graph is indeed a (|VH |/ ln |VH |, ln ln |VH |)-
expander, it remains to check condition (E1).

Assume for a contradiction that there exists a set X ⊆ VH such that

|X| � |VH |/ ln |VH | and |X ∪ NM(X)| � 2|X| ln ln |VH |. (2.2)

We distinguish three cases.

Case 1: |X ∩ A1| � |X|/2. Then |X| = O(n · ln6−K n) by Theorem 2.12(b). Hence, and by

Theorem 2.12(d) and (2.2),

|EH (X,NM(X))| � |EH (X ∪ NM(X))|
� max{100 |X ∪ NM(X)| ln n, 100 |X ∪ NM(X)|2p}
= O

(
max{|X|(ln ln |VH |) ln n, |X|(ln ln |VH |)2 ln6 n}

)
.

But this implies |EH (X,NM(X))| = o(|X| lnK−6 n) since K > 12. However, since every vertex

v ∈ A1 has Maker degree at least c1 · lnK−6 n, we also conclude that |EM(X,NM(X))| =

Ω(|X| lnK−6 n), a contradiction.

Case 2: |X \ A1| � |X|/2 and

|X| < n

(ln n)5 (ln ln n)3
.

By (2.1), for every v ∈ X \ A1, dM∩H1
(v) = Ω(ln2 n). Hence, |EM∩H1

(X,NM(X))| = Ω(|X| ln2 n).

On the other hand, by Lemma 2.13,

|EH1
(X,NM(X))| � max{1000 |X ∪ NM(X)| ln n, 1000 |X ∪ NM(X)|2 ln7 n/n}

= O
(
max{|X|(ln ln |VH |) ln n, |X|2(ln ln |VH |)2 ln7 n/n}

)
= o(|X| ln2 n),

where the first equality follows from (2.2). But this, again, is a contradiction.

Case 3:

n

(ln n)5 (ln ln n)3
� |X| � |VH |

ln |VH | .

Since Maker wins (as F-Breaker) the game (E1,F) we conclude that

|NM(X)| � |VH | − n

(ln n)5 (ln ln n)3
= Ω

(
n

ln4 n

)
= ω(|X| ln ln n),

which contradicts (2.2). This completes the proof.

3. The perfect matching game

In this section we prove Theorem 1.1 and a variant for random bipartite graphs.
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Proof of Theorem 1.1. First we describe a strategy for Maker and then we prove it is

a winning strategy. At any point during the game, if Maker cannot follow the proposed

strategy (including the time limits) then he forfeits the game. Before the game starts, Maker

picks a subset U0 ⊆ V of size |U0| = n

ln4 n
such that for every v ∈ V , d(v, U0) = Ω(lnK−4 n).

Such a subset exists because a randomly chosen subset of size n

ln4 n
has this property by a

Chernoff-type argument a.a.s. Now, we divide Maker’s strategy into two main stages.

Stage I. At this stage, Maker builds a matching M0 of size n/2 − n/ ln4 n which does not

touch U0. Moreover, Maker wants to ensure that by the end of this stage, for every v ∈ V ,

dF (v, U0) = Ω
(
lnK−4 n

)
, or dM(v, U0) = Ω

(
lnK−6 n

)
. (3.1)

Initially, set M0 = ∅. For i � n, as long as |M0| < n/2 − n/ ln4 n, Maker plays his ith move

as follows.

(1) If there exists an integer j such that i = j�ln n�, then Maker plays the degree game

(1 : b ln n) − Deg (V ,U0).

(2) Otherwise, Maker claims an arbitrary free edge ei ∈ E such that ei ∩ e = ∅ for every

e ∈ M0 and ei ∩ U0 = ∅. Then, Maker updates M0 to M0 ∪ {ei}.

When Stage I is over, i.e., |M0| = n/2 − n/ ln4 n, Maker proceeds to Stage II.

Stage II. Let VH = V \ V (M0) with |VH | = 2n/ ln4 n, and let H := (G − B)[VH ]. We will

show that H together with the subgraphs M consisting of Maker’s edges and F consisting

of the free edges satisfies the conditions of Theorem 2.12. That is, Maker can play on H

according to the strategy suggested by the theorem and build a suitable expander in o(n)

moves.

Indeed, Stages I and II constitute a winning strategy, i.e., if Maker can follow the

proposed strategy, he will get a perfect matching of G. By Theorem 2.12, Maker’s

subgraph of H will be an (R, c)-expander with R = |VH |/ ln |VH | and c = ln ln |VH |, for

large n. By Theorem 2.11, this subgraph will be Hamilton-connected, and that is why it

will contain a perfect matching M1. Together with M0 this forms a perfect matching of G.

Furthermore, Maker will win in n/2 + o(n) moves, since Stage I lasts at most n/2 + o(n)

rounds, whereas in Stage II Maker needs only o(n) moves. Thus, we only need to guarantee

that Maker can follow the strategy.

By Lemma 2.10, properties (A1), (A2) and (A3) hold a.a.s. for G. We condition on these,

and henceforth assume that G satisfies (A1), (A2) and (A3), where f ∈ {1, (ln ln n)3}. We

consider each stage separately.

Stage I. First, consider part (2), that is, when Maker tries to build the matching M0

greedily. Assume that Maker has to play his ith move in Stage I and i 
= j�ln n� for any

j ∈ N. Furthermore, assume that still |M0| < n/2 − n/ ln4 n. Let T := V \ (V (M0) ∪ U0).

Then |T | > n/ ln4 n. Thus, by (A3) (f = 1), |E(T )| = ω(n). Since i � n, Maker and Breaker

have claimed O(n) edges so far. In particular, Maker can find a free edge in T to be

added to M0. Thus, he can follow part (2) of Stage I.

Second, consider part (1). It is clear that Maker can play the degree game. Thus, we

only need to prove that the desired degree condition (3.1) will hold. We already know
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that there exists a constant c1 > 0 with d(v, U0) � c1 lnK−4 n for every v ∈ V . If at the end

of Stage I Breaker has dB(v, U0) � 0.5c1 lnK−4 n for some v ∈ V , then (3.1) holds trivially

for this v. Thus, we can assume that dB(v, U0) � 0.5c1 lnK−4 n. In this case, Claim 2.6 gives

dM(v, U0) � 0.04c1 lnK−6 n/b.

Stage II. We only need to check if the conditions of Theorem 2.12 hold for H =

(VH, E(H)). First, |VH | = 2n/ ln4 n. Also, condition (a) holds trivially by the definition

of H .

For condition (b), note that because of the degree condition (3.1) we can find a constant

c2 such that VH = A1 ∪ (V \ A1), where dM(v) � c2 lnK−6 n for every v ∈ A1 and dF (v) �
c2 lnK−4 n for every v /∈ A1. Since Stage I took at most n rounds, |A1| = O(n · ln6−K n).

Towards condition (c), note that by (A3) (f = (ln ln n)3) for every disjoint U,W ⊆ V of

size

n

(ln n)5 (ln ln n)3
,

we have

|E(U,W )| = Ω

(
n lnK−10 n

(ln ln n)6

)
.

Since Stage I took at most n rounds, Breaker has claimed O(n) edges. Hence, in the

reduced graph (where Breaker’s edges are deleted), condition (c) is satisfied.

Condition (d) follows by (A2) and since H ⊆ G.

In the light of Theorem 1.3, i.e., the k-connectivity game, we would like to get a similar

result for a random bipartite graph. That is, for even n we denote by Bn,p a bipartite

graph with two vertex classes of size n/2, where every possible edge is inserted with

probability p. We show that Maker can win the perfect matching game on Bn,p fast. The

main difference from the proof of Theorem 1.1 is that Maker will not build an expander,

but will rather fulfil the conditions of Lemma 2.9.

Theorem 3.1. Let b � 1 be an integer, let K > 12, p = lnK (n)
n

, and let G ∼ Bn,p. Then a.a.s.

Maker wins the (1 : b) perfect matching game played on G within n
2

+ o(n) moves.

Proof. The proof is analogous to the proof of Theorem 1.1, so we just sketch it here.

For G = (U1 ∪ U2, E(G)) ∼ Bn,p, first choose a subset U0 ⊂ U1 ∪ U2 such that

|U0 ∩ U1| = |U0 ∩ U2| =
n

2 ln4 n
,

and d(v, U0) = Ω(lnK−4 n) for every v ∈ U1 ∪ U2.

Then Maker divides the game into two stages.

Stage I. Maker again builds greedily a matching M0 of size n/2 − n/ ln4 n which does

not touch U0. Furthermore, Maker ensures that by the end of this stage for some c1 > 0,

dF (v, U0) � c1 lnK−4 n or dM(v, U0) � c1 lnK−6 n for every v ∈ U1 ∪ U2.
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Stage II. Let VH = V \ V (M0) with |VH ∩ Ui| = n

ln4 n
and let H = (G − B)[VH ]. Maker

plays similarly to the strategy given in the proof of Theorem 2.12. This time, he will not

build an expander like before. But he will ensure that after o(n) rounds his subgraph of

H will satisfy conditions (B1) and (B2) of Lemma 2.9 with r = |VH |/ ln(|VH |).
As in Lemma 2.13, we find a sparser subgraph H1 ⊆ H with the analogous properties

for bipartite graphs. As in the proof of Theorem 2.12, Maker plays in every even move

the (2b : 1) game (E1,F) as F-Breaker, where E1 is the edge set of H1, and where

F =

{
E1(U,W ) : U ⊆ U1, W ⊆ U2 and |U| = |W | =

n

(ln n)5 (ln ln n)3

}
.

Winning this game, he will ensure (B2) with r = |VH |/ ln |VH |.
To obtain (B1), Maker plays in each odd move the (1 : 2b) degree game.

4. The Hamiltonicity game

In this section we prove Theorem 1.2.

Proof. First we describe a strategy for Maker and then we prove it is a winning strategy.

At any point during the game, if Maker cannot follow the proposed strategy (including

the time limits) then he forfeits the game. As in the perfect matching game, Maker picks

a subset U0 ⊆ V of size |U0| = n

10 ln4 n
such that for every v ∈ V , d(v, U0) = Ω(lnK−4 n).

We divide Maker’s strategy into the following four main stages.

Stage I. At this stage, Maker builds a matching M0 of size n/2 − n/(9 ln4 n) which

does not touch U0. Moreover, Maker wants to ensure that by the end of this stage

dF (v, U0) = Ω
(
lnK−4 n

)
or dM(v, U0) = Ω

(
lnK−6 n

)
for every v ∈ V . As soon as this stage

is over, Maker proceeds to Stage II.

Stage II. For a path P let End(P ) denote the set of its endpoints. Throughout this

stage, Maker maintains a set M1 of vertex-disjoint paths, a subset M2 ⊆ M1 and a set

End := {v ∈ V : ∃P ∈ M1 \ M2 such that v ∈ End(P )}. Initially, M1 := M0 and M2 = ∅.

Let r be the number of rounds Stage I lasted. For every i > r, Maker will play his ith

move of this stage as follows.

(1) If there exists an integer j such that i = j�ln n�, then Maker plays the degree game

(1 : b ln n) − Deg (V ,U0).

(2) Otherwise, Maker claims a free edge xy between two vertices from End which are

endpoints of two disjoint paths. Also, Maker updates M1 by replacing the two old

paths merged through xy by a new one. Note that this new path is not deleted from

M1. Maker also updates End accordingly.

(3) If there is any path P of length at least 10 lnK/3 n then Maker updates M2 := M2 ∪ {P }.

This stage ends when |M1| = �n/ lnK/3 n�. Thus, Stage II lasts no more than n/2 + o(n)

rounds. When this stage ends, Maker proceeds to Stage III.

Stage III. In this stage Maker ensures that his graph on V \ U0 will contain a path P

of length at least n − n/ ln4 n. Moreover, Maker does so within o(n) moves. Let s be the
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number of rounds Stages I and II lasted. For every i > s, Maker plays his ith move of

this stage as follows.

(1) If there exists an integer j such that i = j�ln n�, then Maker plays the degree game

(1 : b ln n) − Deg (V ,U0).

(2) Otherwise, consider the paths in M1 of length at least 3 lnK/4 n. Maker tries to connect

these paths, not necessarily through their endpoints, but through points close to their

ends. The full details of this partial game will be given in the proof below.

Stage IV. Let x, y be the endpoints of P , the long path created in Stage III. Let VH =

(V \ V (P )) ∪ {x, y}. At this stage Maker builds a Hamilton path on (G − B)[VH ] with x, y

as its endpoints. Moreover, Maker does so within o(n) moves.

It is evident that if Maker can follow the proposed strategy then he wins the

Hamiltonicity game within n + o(n) moves. It thus remains to prove that Maker can

indeed follow the proposed strategy without forfeiting the game.

By Lemma 2.10, properties (A1), (A2) and (A3) hold a.a.s. for G. We condition on these,

and henceforth assume that G satisfies (A1), (A2) and (A3), where f ∈ {1, (ln ln n)3}. We

consider each stage separately.

Stage I. The proof that Maker can follow the proposed strategy for this stage is analogous

to the proof that Maker can follow Stage I of the proposed strategy in the proof of

Theorem 1.1.

Stage II. Assume i 
= j�ln n�. If |M1| > n/ lnK/3 n, then |M1 \ M2| = Ω(n/ lnK/3 n), since

there can be at most n/(10 lnK/3 n) disjoint paths of length at least 10 lnK/3 n. Hence,

| End | = Ω(n/ lnK/3 n) and by (A3) (f = 1), we have that the number of edges of G

spanned by End is Ω(n lnK/3 n) = ω(n). Therefore, we conclude that Maker can indeed

claim a free edge in G[End].

Stage III. Let U ′ = {v ∈ V : v belongs to a path of length � 3 lnK/4 n in M1} and up-

date M1 := M1 \ {P : P is of length � 3 lnK/4 n}. Notice that

|U ′| � 3 lnK/4 n · n

lnK/3 n
= o

(
n

ln4 n

)
.

So the sum of the lengths of all paths in M1 is at least

|V (M0) \ U ′| − |M1| � n − n/(4 ln4 n). (4.1)

For every path P ∈ M1, define L(P ) and R(P ) to be the first and last lnK/4 n vertices of

P (according to some fixed orientation of the path). Notice that since |V (P )| > 3 lnK/4 n

it follows that L(P ) ∩ R(P ) = ∅ for every P ∈ M1. Now, let m = n/ lnK/2 n and let H =

(X,F) be the hypergraph whose vertices are all edges of G − B with both endpoints in⋃
P∈M1

(L(P ) ∪ R(P )) and whose hyperedges are

F =

{
EG−B(S, T ) : ∃ distinct P1, . . . , P2m ∈ M1 s.t S =

m⋃
i=1

L(Pi), T =

2m⋃
i=m+1

R(Pi)

}
.
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Note that for EG−B(S, T ) ∈ F , |S | = |T | = m lnK/4 n = n/ lnK/4 n holds. Thus, by (A3)

(f = 1), we have for an element of F that

|EG−B(S, T )| � |EG(S, T )| − (1 + o(1))bn = Ω(n lnK/2 n).

Moreover, by (A2), we get that |X| = O
(
(lnK/4 n|M1|)2p

)
= O(n ln5K/6 n).

Now, ∑
F∈F

2−|F |/ ln0.9K n =
∑
F∈F

2−Ω(n ln−0.4K n)

�
(

|M1|
m

)2

2−Ω(n ln−0.4K n)

� (e lnK/6 n)2n/ lnK/2 n2−Ω(n ln−0.4K n)

� exp

(
2n

lnK/2 n
(1 + K ln ln n/6) − Ω

(
n

ln0.4K n

))
= o(1).

Thus, by Theorem 2.3 Maker as F-Breaker can win the (ln0.9K n, 1) game (X,F). Lemma

2.4 therefore tells us that Maker can claim at least one element in every F ∈ F within

1 + |X|/(ln0.9K n + 1) = o(n) moves.

To complete Stage III, let us define the auxiliary directed graph D = (VD, ED) whose

vertices are {P : P ∈ M1} and whose directed edges are {(P ,Q) : EM(R(P ), L(Q)) 
= ∅}.

Notice that for every pair of disjoint subsets S, T ⊆ VD such that |S | = |T | = m, there

exists an edge in D from S to T , since Maker wins the game (X,F). Now, we claim

that Maker has a path of the desired length in his graph. By Lemma 2.8, D contains

a directed path P = P0 . . . Pt of length t � |VD| − 2m + 1. Further, note that any path

in M1 has length at most 20 lnK/3 n. Combining this with (4.1), removing paths P ∈ M1

which do not appear in P and deleting unnecessary parts of L(P ) and R(P ) from paths

P ∈ P , we conclude that Maker has thus created a path of length at least n − n/(4 ln4 n) −
2|M1| lnK/4 n − 2m · 20 lnK/3 n � n − n/ ln4 n.

Stage IV. Let P be the long path Maker has created in Stage III, and let x, y be its

endpoints. Denote VH = (V \ V (P )) ∪ {x, y}. In analogy with the perfect matching game,

we can use Theorem 2.12 and Theorem 2.11 on H := (G − B)[VH ]. That is, Maker can

build an expander on a sparse subgraph, and thus obtains a Hamilton path in H with

x, y as its endpoints in o(n) moves. This completes the proof.

5. The k-connectivity game

In this section we prove Theorem 1.3. It is a simple application of the Hamiltonicity game,

the perfect matching game on random bipartite graphs, and the degree game.

Proof. Let G∼Gn,p, and arbitrarily partition the vertex set into k disjoint sets V1, . . . , Vk−1,

W , where each Vi has size � n
k−1

� (W might be empty). For every 1 � i � k − 1, let

Gi = G[Vi], and for every 1 � i < j � k − 1 let Gij be the bipartite subgraph of G with

parts Vi and Vj . From the definition it is clear that Gi ∼ G� n
k−1 �,p for every 1 � i � k − 1

and Gij ∼ B2� n
k−1 �,p for every 1 � i < j � k − 1.
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Now, Maker’s strategy is to play the Hamiltonicity game on every Gi, the perfect

matching game on every Gij , and for every w ∈ W , Maker wants to claim k distinct

edges ww′ with w′ ∈ V \ W (recall that G is typically such that d(v) = Θ(lnK n) for every

vertex v ∈ V (G)). Thus, in total Maker plays on t � k − 1 +
(
k−1

2

)
+ k − 2 =

(
k
2

)
+ k � k2

boards. Enumerate all boards arbitrarily, and let Maker play on board i mod t in his

ith move. Between any two moves on a particular board, Breaker has claimed at most

bk2 new edges on this board. Using the trick of fake moves (Lemma 2.4) we can assume

that Maker plays the (1 : bk2) Hamiltonicity game on every Gi, the (1 : bk2) perfect

matching game on every Gij , and the degree game (1 : bk2) − Deg ({w}, V \ W ) for every

w ∈ W . By Theorem 1.2 and Theorem 3.1, every Hamiltonicity game and every perfect

matching game lasts � n
k−1

� + o(n) moves, whereas the games Deg({w}, V \ W ) last in total

at most k|W | = O(1) moves. If Maker succeeds on some board (that is, he formed either

a Hamilton cycle on some Gj , or a perfect matching on some Gj1j2 , or dM(w, V \ W )) � k

for w ∈ W ), then he quits playing on that particular board. That is, he ignores this board

and plays on another one where he has not yet won.

By Lemma 2.7 Maker is thus able to build a k-connected graph on G[V1 ∪ . . . ∪ Vk−1].

Also, since for every w ∈ W , dM(w, V \ W ) � k, Maker’s final graph will be k-connected.

In total, Maker plays at most

(k − 1)

(⌊
n

k − 1

⌋
+ o(n)

)
+

(
k − 1

2

)(⌊
n

k − 1

⌋
+ o(n)

)
+ O(1) � kn

2
+ o(n)

moves, as claimed.

6. Open problems

We conclude with a list of several open problems directly relevant to the results of this

paper.

Sparser graphs. For the three games considered in this paper, we would like to find fast

winning strategies for Maker when the games are played on G ∼ Gn,p, where p = (1 + ε) ln n
n

for a constant ε > 0. Our proofs depend heavily on the ability of Maker to build an

expander fast (cf. Theorem 2.12), which does not seem possible for such small p. We

were not able to prove an analogue to Lemma 2.13 for smaller p, mainly because of

property (iv) in this lemma. Therefore, we find it very interesting to either find fast

strategies for Maker substantially different from ours, or alternatively provide Breaker

with a strategy for delaying Maker’s win by a linear number of moves.

Faster winning strategies for Maker. In this paper we have proved that Maker can win

the perfect matching game, the Hamiltonicity game and the k-connectivity game played

on G ∼ Gn,p within n/2 + o(n), n + o(n) and kn/2 + o(n) moves, respectively. Although this

is asymptotically tight, it could be that the error term does not depend on n. It would be

interesting to find the error term explicitly, or at least to provide tighter estimates for it.

Fast winning strategies for other games. It would be very interesting to prove similar

results, i.e., fast winning strategies for Maker, for other games played on G ∼ Gn,p. We

suggest the fixed spanning tree game. To be precise, let ∆ ∈ N be fixed, and let (Tn)n∈N be
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a sequence of trees on n vertices with bounded maximum degree ∆(Tn) � ∆. Maker’s goal

is to build a copy of Tn within n + o(n) moves. Notice that this problem might be much

harder than the one we proved, since even the problem of embedding spanning trees into

G ∼ Gn,p is still not completely settled (for more details see, e.g., [15], [12]).

Winning strategies for Red. The problems considered in this paper were initially motivated

by finding winning strategies for Red in the strong games via fast winning strategies for

Maker (see [8], [7]). It would be very interesting to prove that Red can indeed typically

win the analogous strong games played on G ∼ Gn,p.
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[12] Hefetz, D., Krivelevich, M. and Szabó, T. Sharp threshold for the appearance of certain

spanning trees in random graphs. Random Struct. Alg., to appear.

[13] Hefetz, D. and Stich, S. (2009) On two problems regarding the Hamilton cycle game. Electron.

J. Combin. 16 R28.

[14] Janson, S., �Luczak, T. and Ruciński, A. (2000) Random Graphs, Wiley.

[15] Krivelevich, M. (2010) Embedding spanning trees in random graphs. SIAM J. Discrete Math.

24 1495–1500.

[16] Lehman, A. (1964) A solution to the Shannon switching game. J. Soc. Indust. Appl. Math. 12

687–725.
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