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Abstract We investigate the Gibbs–Wilbraham phenomenon for generalized sampling series, and related
interpolation series arising from cardinal functions. We prove the existence of the overshoot characteristic
of the phenomenon for certain cardinal functions, and characterize the existence of an overshoot for
sampling series.
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1. Introduction

It has long been observed that applying some smooth approximation method to func-
tions with jump discontinuities leads to an overshoot phenomenon. This observation for
truncated Fourier series expansions of a periodic function is attributed to J. W. Gibbs
owing to his short notes appearing in Nature in 1898 and 1899 [8,9]. However, as noted
by Hewitt and Hewitt [12], this phenomenon was known to H. Wilbraham in 1848 [21].
The interested reader is urged to consult their article, as it gives a fascinating description
of the history of the phenomenon.

Gibbs’s observation was precisely that despite the fact that the partial sums of the
Fourier series of a periodic function converge pointwise to the function (or to the average
value 1

2 (f(t+) + f(t−)) across a jump discontinuity), the graph of the limit (i.e. of f),
is not the (visual) limit of the graphs (of SN [f ]). Stated another way, the set of limit
points of the convergent partial sums lies outside the interval determined by the jump
discontinuity of the function.

Since then, the phenomenon has been explored for many other approximation methods,
including spline interpolation [7,17] and wavelet expansions [1,2,13,15,20]. For more
examples and a survey of the literature, see [14]. The purpose of this short note is to
examine the existence of a Gibbs–Wilbraham phenomenon for generalized sampling series,
and related interpolation series arising from cardinal interpolants. These are related to
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wavelet expansions, but also to approximants by shifts of positive definite functions, which
include radial basis functions, for example.

2. Generalized sampling series

A function φ : R → R is called a generalized sampling kernel (after Butzer et al., [5])
provided φ ∈ C(R), and the series

∑
n∈Z

|φ(t− n)| is uniformly convergent on [0, 1]. Given
a generalized sampling kernel and a bounded function f : R → R, the sampling expansion
of f is

SφW [f ](t) :=
∑
n∈Z

f
( n

W

)
φ(Wt− n), t ∈ R.

It is well known that if f has a compactly supported Fourier transform and φ is the car-
dinal sine function, sinc(x) = sin(πx)/(πx) when x �= 0 and sinc(0) = 1, then Ssinc

W [f ] = f
for sufficiently large W (this is the content of the Whittaker–Kotel’nikov–Shannon
sampling theorem [19]).

A characterization by Butzer et al. gives the following beautiful theorem.

Theorem 2.1 (see [5, Theorem 1]). Suppose that φ : R → R is a generalized
sampling kernel. Then the following are equivalent.

(i)
∑
n∈Z

φ(t− n) = 1, x ∈ [0, 1).

(ii) For every bounded function f : R → R,

lim
W→∞

SφW [f ](t) = f(t)

for each t ∈ R which is a point of continuity of f .

It should be noted that such sampling expansions are intimately related with the theo-
ries of reproducing kernel Hilbert spaces and shift-invariant spaces, but we will not dwell
on this connection at the present moment.

In what follows, given t ∈ R, we set f(t−) := limx→t− f(x) and f(t+) := limx→t+ f(x).

3. The Gibbs–Wilbraham phenomenon

The Gibbs–Wilbraham phenomenon has been well studied for quite some time, and its
influence is ubiquitous in smooth interpolation and approximation schemes targeting
functions with jump discontinuities or cusps. Its general description may be given as
follows. Suppose that f is the pointwise limit of a convergent process, which we will
denote by TN [f ]. A Gibbs phenomenon is exhibited by this process provided that the set
of its limit points is outside the range of f itself. In particular, suppose that f(t−) <
f(t+); then a Gibbs phenomenon is exhibited at t provided {TN [f ](t+ (ξ/N)) : N ∈
N, ξ �= t} � [f(t−), f(t+)]. As a particular example, if TN [f ] is the trigonometric series∑N
n=−N cne

2πint which best approximates the function f(x) = sgn(x) in L2[−1/2, 1/2],
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then

lim
N→∞

TN [f ]
( ξ

N

)
= 2

∫ ξ

0

sin(πx)
πx

dx.

Setting ξ = 1 gives the absolute maximum of this function, which is approximately
1.17898, and similarly setting ξ = −1 gives the absolute minimum. Notice then that the
set of limit points of TN [f ] is the interval [−1.17898, 1.17898] which is strictly larger than
the range of the jump discontinuity of f at 0, which is [−1, 1]. One fascinating aspect
of this phenomenon is that indeed this overshoot turns out to be dependent only on the
magnitude of the jump discontinuity, but otherwise independent of the function f .

For least-squares approximation as is described here, the pointwise values of f are not
so important, but if we consider generalized sampling series as above, evidently changing
the values of f could drastically alter the behaviour of the sampling series. To illustrate
the Gibbs–Wilbraham phenomenon, we will suppose that f has a jump discontinuity
at 0, and that f(0) = f(0+). One does get different behaviour if one allows f(0) to be
some arbitrary number (e.g. [2]), but our assumptions are sufficient to demonstrate the
existence of the Gibbs–Wilbraham phenomenon, and we do not intend to discuss how to
mitigate its effects here.

4. The general Gibbs–Wilbraham function

Given a generalized sampling kernel and a bounded function f with a jump discontinuity
at 0, satisfying f(0) = f(0+), define the Gibbs–Wilbraham function associated with f via

Gφ[f ](t) := f(0+)
∑
n≥0

φ(t− n) + f(0−)
∑
n<0

φ(t− n). (4.1)

The reason for the terminology is that this is precisely the function which will classify
the overshoot which is the characteristic feature of the Gibbs–Wilbraham phenomenon.
Indeed, considering the observation made in the previous section, we must consider the
limit points of the sampling series, and hence for t in a neighbourhood of the origin, we
are forced to consider

SφN [f ]
( t

N

)
=

∑
n∈Z

f
( n
N

)
φ(t− n),

which as N → ∞, converges pointwise and indeed uniformly to Gφ[f ](t) as defined above
(this follows from the boundedness of f , the fact that

∑
n∈Z

|φ(t− n)| is uniformly
convergent, and the monotone convergence theorem, for example).

4.1. Properties of the Gibbs–Wilbraham function

Before proceeding, we pause to collect some basic facts about the Gibbs–Wilbraham
functions.

Proposition 4.1. Suppose φ is a generalized sampling kernel which satisfies one of
the equivalent conditions of Theorem 2.1, f and g are bounded functions on R, and c ∈ R.
Then the following hold:

(i) Gφ[f ± g] = Gφ[f ] ±Gφ[g];
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(ii) Gφ[c] = c;

(iii) Gφ[f + c] = Gφ[f ] + c.

The proof of the above proposition is evident from the definition in (4.1) and the fact
that

∑
n∈Z

φ(x− n) = 1.

4.2. Gibbs–Wilbraham phenomenon

With these considerations in mind, we make the following evident definition (cf. [1]).

Definition 4.2. Suppose φ is a generalized sampling kernel which satisfies one of the
equivalent conditions of Theorem 2.1.

• If f is a bounded function such that f(0−) < f(0+), then φ exhibits a left
(respectively, right) Gibbs–Wilbraham phenomenon for f provided there exists a
y < 0 (respectively, an x > 0) such that Gφ[f ](y) < f(0−) (respectively, Gφ[f ](x) >
f(0+)).

• The kernel φ exhibits a strong Gibbs–Wilbraham phenomenon for f provided it
exhibits both a left and a right Gibbs–Wilbraham phenomenon for f .

• The kernel φ exhibits a left (respectively, right; respectively strong) Gibbs–
Wilbraham phenomenon provided it exhibits a left (respectively, right; respectively
strong) Gibbs–Wilbraham phenomenon for all bounded functions f .

Firstly, we note that the restriction that f(0−) < f(0+) is no restriction at all. Indeed,
if f(0−) > f(0+), we say that φ exhibits a left (respectively, right) Gibbs–Wilbraham
phenomenon for f if and only if φ exhibits a left (respectively, right) Gibbs–Wilbraham
phenomenon for −f .

Secondly, we note that in reality it suffices to consider the case when f(0−) =
−1 and f(0+) = 1, and thus in principle the case when f is the unit step func-
tion −χ(−∞,0) + χ[0,∞). Indeed, suppose that f(0−) < f(0+), let c ∈ R be such that
f(0−) + c = −[f(0+) + c], and let d ∈ R be such that df(0−) + dc = −1, and hence
−d[f(0+) + c] = 1. Then, by Proposition 4.1, φ exhibits a Gibbs–Wilbraham phenomenon
for f if and only if it exhibits the phenomenon for df + c. Thus we content ourselves with
considering the general Gibbs–Wilbraham function

Gφ(t) :=
∑
n≥0

φ(t− n) −
∑
n<0

φ(t− n). (4.2)

With these notions in hand, we may characterize the existence of a Gibbs–Wilbraham
phenomenon for sampling series (we note that this theorem is essentially contained in
[1,20], but our assumptions on φ above are more relaxed than in the latter, and we do
not require φ to be the sampling function arising from a wavelet scaling function as in
the former – examples of this will be given in § 5).
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Theorem 4.3. Suppose φ is a generalized sampling kernel which satisfies one of the
equivalent conditions of Theorem 2.1. Then:

(i) φ exhibits a left Gibbs–Wilbraham phenomenon if and only if there exists a y < 0
such that

∑
n≥0 φ(y − n) < 0;

(ii) φ exhibits a right Gibbs–Wilbraham phenomenon if and only if there exists an
x > 0 such that

∑
n<0 φ(x− n) < 0;

(iii) φ exhibits a strong Gibbs–Wilbraham phenomenon if and only if there exists y < 0
and x > 0 such that

∑
n≥0 φ(y − n) < 0 and

∑
n<0 φ(x− n) < 0.

Proof. For the proof of (i), note that φ exhibits a left Gibbs–Wilbraham phenomenon
if and only if there exists a y < 0 such that Gφ(y) < −1. By (4.2), this is equivalent to∑

n≥0

φ(y − n) −
∑
n<0

φ(y − n) < −1

which is equivalent to

∑
n≥0

φ(y − n) −
[ ∑
n<0

−
∑
n∈Z

]
φ(y − n) < 0.

Finally, this is equivalent to 2
∑
n≥0 φ(y − n) < 0, which yields the desired conclusion.

The proof of (ii) follows by very similar reasoning, and so is omitted. Item (iii) follows
via combining (i) and (ii). �

Corollary 4.4. Suppose φ is a generalized sampling kernel which satisfies one of
the equivalent conditions in Theorem 2.1, and that φ is even. Then the following are
equivalent:

(i) φ exhibits a left Gibbs–Wilbraham phenomenon;

(ii) φ exhibits a right Gibbs–Wilbraham phenomenon;

(iii) φ exhibits a strong Gibbs–Wilbraham phenomenon.

Proof. (ii)⇒(i): Suppose x > 0 is the point exhibiting the right Gibbs–Wilbraham
phenomenon. Then, letting y = −x− 1 < 0, we have∑

n≥0

φ(y − n) =
∑
n≥0

φ(−x− n− 1) =
∑
n≥0

φ(x+ n+ 1) =
∑
n<0

φ(x− n) < 0,

where the final inequality comes from Theorem 4.3. Consequently, the point y = −x− 1
exhibits the left Gibbs–Wilbraham phenomenon.

Note that since (ii) implies (i), it follows that (ii) implies (iii) since (iii) is equivalent
to (i)+(ii). Finally, (iii) implies (ii) by definition, hence the proof is complete. �

To conclude, let us remark that if φ is even, and either for every x > 0,
∑
n≥0 φ(x− n) =

1, or for every y < 0,
∑
n<0 φ(y − n) = 1, then φ does not exhibit a Gibbs–Wilbraham
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phenomenon (see Theorem 4.3). One simple example of this is the B-spline of order 2 given
by M2 := χ[−1/2,1/2] ∗ χ[−1/2,1/2]. Its compact support is what forces the condition that
for all x > 0,

∑
n≥0 φ(x− n) = 1, and hence no Gibbs–Wilbraham phenomenon exists for

this function (see also [20, Example 1]). On the other hand, it does provide a convergent
sampling expansion as in Theorem 2.1 [5, Corollary 3].

5. Cardinal functions and interpolation

It was shown in [5] that recovery of average values of functions at jump discontinuities
by their generalized sampling series is incompatible with enforcing an interpolation con-
dition. That is, if one requires that SφW [f ](t) → αf(t+) + (1 − α)f(t−) for some α ∈ R

whenever f has a jump discontinuity at t �= 0, then it follows that φ(0) must be 0, and
hence that SφW [f ](k/W ) �= f(k/W ) for all k ∈ Z. However, this need not be true if we
allow t = 0. In this case, if φ satisfies the interpolatory condition φ(k) = δ0,k, k ∈ Z, then
we evidently have SφW [f ](k/W ) = f(k/W ) for all W > 0 and all k ∈ Z.

If φ satisfies the integer interpolatory condition above, then it is often called a cardinal
function. One particular method of manufacturing cardinal functions is to define them
via their Fourier transforms in the following manner. Suppose ψ is given, and let

L̂ψ(ξ) :=
ψ̂(ξ)∑

k∈Z
ψ̂(ξ − k)

.

If, for instance, the series in the denominator is bounded away from zero on [0, 1],
and ψ̂ ∈ L1(R), then Lψ defined by the Fourier inversion formula is indeed a cardinal
function [4].

We now turn to explore the Gibbs–Wilbraham phenomenon for certain cardinal func-
tions which have been studied, for instance, in the radial basis function interpolation
literature. We will assume that Lψ, for a given choice of ψ, is a generalized sampling
kernel which is additionally a partition of unity as in Theorem 2.1(i). Some examples
include the cardinal function associated with the Hardy multiquadric

√
x2 + 1, and the

Poisson kernel (x2 + 1)−1 [4]. It also follows from [10, § 4] that the cardinal functions for
generalized multiquadrics, (x2 + 1)α for any α ∈ (−∞,−1] ∪ [1/2,∞), satisfy these con-
ditions. The impetus for analysing such cardinal functions was Schoenberg’s analysis of
cardinal B-splines [18]. Other examples are the radial powers |x|2k+1 for any k ∈ N ∪ {0}
and the thin-plate splines |x|2k ln |x|, for k ∈ N [4].

Many of these examples stem from radial basis functions, but the construction is more
general. Some numerical evidence for the existence of the Gibbs–Wilbraham phenomenon
for radial basis function interpolation was given in [6].

Let us note first that if ψ̂ is even, then so is L̂ψ, and consequently Lψ. In this case,
Corollary 4.4 implies that a strong Gibbs–Wilbraham phenomenon is exhibited by the
given cardinal function provided either a left or right one can be shown.

In many instances, families of generating functions indexed by a given parameter
are considered (i.e. (ψα)α∈A). For example, the nth-order B-spline given by Mn :=
χ[−1/2,1/2] ∗ · · · ∗ χ[−1/2,1/2], where there are n terms in the convolution. Additionally,
families of multiquadrics have been used: φc(x) = (x2 + c2)α, c > 0, for a fixed α in the
range prescribed above. It is known in many cases that asymptotically in the parameter
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(e.g. as n→ ∞, c→ ∞, or α→ −∞) the cardinal functions converge uniformly to the
classical sinc function. In fact, Ledford [16] gives sufficient conditions on a one-parameter
family of functions (φα)α∈A, which he calls regular families of cardinal interpolators, for
which the associated cardinal functions Lφα converge uniformly to sinc (where the param-
eter α has a natural limiting value, which is typically forced to be ∞ by convention). Let
us now discuss the Gibbs–Wilbraham phenomenon for such families, beginning with the
following proposition.

Proposition 5.1. Suppose φ is even. Then the associated Gibbs–Wilbraham function
satisfies

Gφ( 1
2 ) = 2φ( 1

2 ).

Proof. Putting t = 1/2 into (4.2) yields

Gφ

(1
2

)
= φ

(1
2

)
+

∞∑
n=1

φ
(1

2
− n

)
−

∞∑
n=1

φ
(1

2
+ n

)

= φ
(1

2

)
+ φ

(
− 1

2

)
+

∞∑
n=1

φ
(1

2
− (n+ 1)

)
−

∞∑
n=1

φ
(1

2
+ n

)

= 2φ
(1

2

)
,

where the evenness of φ was used in the final step. �

Corollary 5.2. Suppose that (φα)α∈A is a regular family of cardinal interpolators
such that φα is even for every α, and is a generalized sampling kernel satisfying one of
the equivalent conditions of Theorem 2.1. Then, for sufficiently large α, Lφα exhibits a
strong Gibbs–Wilbraham phenomenon.

Proof. From [16, Proposition 2], Lφα → sinc uniformly, so, appealing to Proposition
5.1, it suffices to notice that 2sinc(1/2) = 4/π > 1. �

Some examples of families satisfying the conditions of Corollary 5.2 are the generalized
multiquadrics (φc)c≥1 for a fixed α ∈ (−∞,−3/2] ∪ [1/2,∞) \ N (however, if one appeals
to the more specific analysis of [10], one finds that the permissible range of α may
be extended to (−∞,−1] ∪ [1/2,∞) \ N). Additionally, if one considers multiquadrics
φα(x) = (x2 + 1)α and allows α to vary, then (φα)α≤−1 and (φαj )j∈N, where (αj) ⊂
[1/2,∞) is unbounded with dist({αj},N) > 0, yield cardinal functions which exhibit a
strong Gibbs–Wilbraham phenomenon for large parameter.

Moreover, the B-splines of order n, with n tending towards ∞, provide another example
of a family exhibiting a strong Gibbs–Wilbraham phenomenon. That LMn

satisfies con-
dition (i) of Theorem 2.1 is known (it follows easily from the fact that M̂n(ξ) = sincn(ξ)
and the Poisson summation formula). Additionally, we find from [18, Lecture 9] that
LMn

→ sinc uniformly as n→ ∞.
While the above corollary only demonstrates the overshoot phenomenon for large

parameter, numerical experiments reveal that even for small shape parameter c ≥ 1 in
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the multiquadrics, for example, the cardinal function is quite close to the corresponding
value of sinc. See also [6] for illustrations of this fact.

Let us mention that one important family used in cardinal interpolation is not covered
here: namely, the Gaussians (e−|x/α|2)α≥1. The family of cardinal functions associated
with the Gaussian is well known to provide recovery of Paley–Wiener (or bandlimited)
functions (e.g. [3, Theorem 3.7]). However, the cardinal functions do not satisfy condition
(i) of Theorem 2.1; see [4]. Thus, the sampling expansion related to the Gaussian does
not give convergence at all points of continuity of bounded functions, and hence speaking
of a Gibbs–Wilbraham phenomenon in this case does not precisely make sense (cf. our
remarks in § 3).

To conclude, we note that in some instances if the function ψ decays sufficiently fast
and the symbol

∑
k∈Z

ψ̂(ξ − k) and its reciprocal are in the Wiener algebra of functions
whose Fourier coefficients are summable, then the cardinal interpolant may be written in
a different form. Specifically, there are unique 	∞ coefficients (an) such that

S
Lψ
W [f ](t) =

∑
n∈Z

f
( n

W

)
Lψ(Wt− n) =

∑
n∈Z

anψ(Wt− n),

where the equality and convergence of the series are in L∞. The condition on the decay of
ψ is that

∑
n∈Z

‖ψ(· − n)‖L∞[0,1] <∞, which is often written ψ ∈W (L∞, 	1), where the
space thus defined is Wiener’s space. The proof of this fact follows from the argument
in [11, Theorem 3.2], and the multiquadrics for negative exponent α are examples of
functions satisfying these criteria.

6. Summary

In this brief note, we have discussed the characterization of a Gibbs–Wilbraham phe-
nomenon for generalized sampling series. For generalized sampling kernels, the existence
of this phenomenon may be reduced to considering the canonical case of approximating
the function f(x) = sgn(x) with the convention that sgn(0) = 1. Moreover, existence of
the phenomenon is purely determined by a series of translates of the sampling kernel
φ (Theorem 4.3). In contrast to previous works analysing the Gibbs–Wilbraham phe-
nomenon for wavelet sampling series, we have not required the sampling kernel to be the
scaling function of a wavelet system. Moreover, our considerations for cardinal functions
arising from radial basis functions provide a different proof than that indicated by the
numerical observations of [6]. Additionally, we found that Ledford’s conditions for regular
families of cardinal interpolators yield a variety of examples of sampling kernels whose
cardinal functions exhibit a Gibbs–Wilbraham phenomenon.
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