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Abstract
In this paper, we revisit the determination of optimal relativities under the linear form of relativities
that is more viable in designing a commercial bonus-malus system. We derive the analytical formulae
for the optimal linear relativities subject to a financial balanced inequality constraint. We also
numerically investigate the impact of different a priori risk classification towards the effectiveness of
transition rules. Our results show that the a priori risk segmentation is not a sensitive factor for the
effectiveness of transition rules. Furthermore, relative to the general relativities, we find that the
restriction of linear relativities only produces a small amount of deterioration towards the numerical
value of the optimised objective function.
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1. Introduction

Traditionally, the motor insurance rate-making process consists of two separate steps. In the a priori
rating (the first step), insurers make use of certain observable risk classification variables to divide a
portfolio of motor vehicle drivers into a number of homogeneous tariff classes. However, these a priori
variables are not able to fully capture the risk characteristics of the insured drivers, so the a posteriori
rating (the second step) – under the framework of credibility premium or bonus-malus system (BMS) – is
needed to tackle the residual heterogeneity. These mechanisms are based on the claims experience
information because it is reasonably believed that the unobservable risk characteristics would be partially
revealed through the drivers’ claims history. In particular, the design of a BMS can be regarded as the
commercial version of the credibility premium (see e.g. Dionne & Vanasse, 1989) framework.

Each BMS is represented by three building blocks: the number of BMS levels that the BMS is
operating in with a pre-specified starting level, the transition rules which govern the transition of
policyholders between BMS levels over time, and the set of optimal relativities that are multiplied
with the base premium to obtain the premium amounts payable. Given the specified number of BMS
levels and the chosen transition rules, Norberg (1976) first determined the optimal relativity associated
with each BMS level through the maximisation of asymptotic predictive accuracy (also known as the
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Norberg’s criterion). However, this original approach does not incorporate the heterogeneity between
different tariff classes, which is equivalent to the absence of a priori rating. To address this problem,
Taylor (1997) developed a simulation procedure (see also Lemaire et al., 2015), whereas Pitrebois et al.
(2003) obtained the analytical expression for the set of optimal relativities.

In practice, however, the optimal relativities are largely determined commercially to ease the
implementation of BMS from the drivers’ perspective. For instance, in Asian countries such as
Singapore and Hong Kong, all the BMS levels have relativities that are below 100%. In other words,
drivers are rewarded a no-claim discount in a claim-free year and are not subject to any relativity
above 100% even if they incur claims. In such systems, the BMS would not be financially balanced
because the bonuses rewarded are not offset by the maluses imposed, making it not optimal and
undesirable for insurers.

Due to the lack of flexibility in the implementation of BMS, Pitrebois et al. (2003) also argued that a
single set of optimal relativities applied to all the policyholders, regardless of their a priori risk
characteristics, would induce unfairness towards the drivers who are perceived to be more risky
relative to the drivers that are less risky on the a priori basis. To alleviate this inadequacy scenario,
Tan et al. (2015) proposed a generalisation of the Norberg’s criterion and analytically derived the
optimal relativities under a financial equilibrium constraint first considered by Coene & Doray (1996).

However, the obtained relativities from these previous studies may not be desirable for commercial
reasons. Specifically, the numerical values of optimal relativities may be of irregular forms due to the
possibility of an abrupt rise or drop for successive BMS levels. For instance, the Japanese BMS is a
practical example of having non-linear relativities, where the varying differences between adjacent
BMS levels may not be appealing for motor vehicle drivers. In light of this issue, Pitrebois et al.
(2004) considered a linear form of optimal relativities first proposed by Gilde & Sundt (1989), in
which a constant amount is imposed as the difference of relativities for any two adjacent BMS levels.

In this paper, we extend the framework of Tan et al. (2015) to accommodate a constrained linear
form of optimal relativities. Moreover, we also discuss how to incorporate further commercial
constraints into the design of a BMS. It follows that the analytical formulae of the optimal linear
relativities can be readily derived by using Lagrangian method with Kuhn–Tucker conditions to
allow for any inequality constraints.

On the other hand, building upon the measure of the interaction between a priori and a posteriori
ratemakings developed by Pitrebois et al. (2003), Tan et al. (2015) suggested to quantify the different
specifications of transition rules using a measure called effectiveness of transition rules. They also
argued that a set of level-varying transition rules that are more flexible1 may be more effective than the
corresponding commonly adopted simple transition rules. This effectiveness metric is dependent on the
a priori rating outcomes in addition to the choices of transition rules. In this paper, we numerically
analyse the impact of a priori risk classification onto the resulting effectiveness of transition rules.
We find that the a priori risk segmentation is not a sensitive factor in evaluating the transition rules.

After the specifications of a priori model and transition rules are chosen, we proceed with the
determination of optimal relativities. In our numerical illustrations, we consider both the general and

1 Relative to simple (level-fixed) transition rules, level-varying transition rules can be used to correct the
likelihoods of drivers to continue occupying certain clusters of BMS levels.
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linear forms of optimal relativities in order to examine the deterioration of the optimisation when the
linear restriction is incorporated. The results indicate that the restricted form of optimal linear
relativities only produces a small amount of deterioration in the optimised objective function as
compared with the optimal general relativities.

The remainder of this paper is structured as follows. We describe an overview of the motor insurance
rate-making framework in Section 2. In Section 3 we study the determination of optimal linear
relativities that takes practical constraints into consideration. The selection criterion of transition
rules in designing an optimal BMS and its dependence on the a priori rating are discussed in Section 4.
Numerical illustrations are presented in Section 5. Section 6 concludes the paper.

2. Motor Insurance Rate-Making Framework

In this section, we provide a methodological overview of the motor insurance rate-making process.
As our aim in this paper mainly focusses on the optimal design of a BMS itself, we shall only briefly
discuss the modelling techniques of claim frequencies and residual heterogeneity that are required in
the later sections for the determination of optimal relativities and the evaluation of transition rules.
We refer interested readers to Lemaire (1995) and Denuit et al. (2007) for more extensive details.

2.1. Modelling of a priori claim frequencies

Suppose we have a portfolio with n policies, where di is the length of exposure period and Yi the
number of claims reported by driver i during the period. The Poisson regression is widely used in the
a priori classification of Yi under the generalised linear models framework (see McCullagh & Nelder,
1989). In particular, we can express the predicted a priori claim frequency for driver i as

λi ¼ di exp β̂0 +
Xq
j¼1

β̂jxij

 !

where β̂0; β̂1; ¼ ; β̂q are the estimated regression coefficients and ðxi1; xi2; ¼ ; xiqÞ represents the
vector of observable risk classification variables for driver i. The purpose of this rate-making step is
to classify the portfolio of drivers into a number of risk classes. However, it is well known that
driving behaviours are influenced by other characteristics that are not observable by the insurer. As a
result, the residual heterogeneity within the risk classes motivates the implementation of a posteriori
rating via the BMS mechanism as the second step in the rate-making process.

2.2. Modelling of residual heterogeneity

Specifically, the residual heterogeneity is modelled by incorporating a random effect Θi into the
conditional distribution of Yi. Conditional on Θi = θ, Yi is Poisson distributed with mean λiθ, that is

Pr Yi ¼ k jΘi ¼ θ½ � ¼ exp �λiθð Þ λiθð Þk
k !

; k ¼ 0; 1; 2; ¼

We further suppose that all the Θi’s are independent and follow a Gamma distribution with para-
meters (a, a). The probability density function for Θi can be written as

f ðθÞ ¼ 1
ΓðaÞ a

aθa�1 exp �aθð Þ; θ 2 R +
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The use of a Poisson-Gamma mixture produces a negative binomial distribution for the number of
claims reported Yi. With these specifications, we have E½Θi� ¼ 1 and E½Yi� ¼ E E½Yi jΘi�½ � ¼ λi. Note
that other specifications of mixed Poisson models can also be used (see e.g. Yip & Yau, 2005).

Now suppose that a motor vehicle driver is picked at random from the portfolio that has been
subdivided into h risk classes. The actual expected annual claim frequency for this driver can be
written as ΛΘ, where Λ is the unknown a priori expected annual claim frequency and Θ captures the
random residual heterogeneity. We further denote ng as the number of drivers in the g-th risk class
whose expected claim frequency is λg, so we have the proportion of drivers in the g-th risk class as
wg ¼ Pr½Λ ¼ λg� ¼ ng

n .

As the current level occupied and the number of claims reported in the current period is sufficient to
determine the next level occupied, the mechanism of BMS can be modelled as a Markov chain. Let us
denote the transition probability of moving from level ‘1 to level ‘2 for a driver with expected claim
frequency λθ as p‘1‘2ðλθÞ, then the one-step transition matrix is P λθð Þ ¼ fp‘1‘2ðλθÞg in a BMS with j
levels. The row vector of the stationary distribution π λθð Þ ¼ ðπ1ðλθÞ; π2ðλθÞ; ¼ ; πjðλθÞÞ can be
easily determined by solving the following two conditions:

πðλθÞ ¼ πðλθÞPðλθÞ
πðλθÞ1 ¼ 1

(

where π‘ðλθÞ is the stationary probability for a driver with expected claim frequency λθ to be in level
‘ and 1 is the column vector of 1’s. With these setup, we obtain the following expression for the
probability of drivers staying in level ‘

Pr ½L ¼ ‘� ¼
Xh
g¼1

Pr ½L ¼ ‘ jΛ ¼ λg� Pr ½Λ ¼ λg�

¼
Xh
g¼1

Pr ½Λ ¼ λg�
ð +1

0
Pr½L ¼ ‘ jΛ ¼ λg;Θ ¼ θ�f ðθÞdθ

¼
Xh
g¼1

wg

ð +1

0
π‘ðλgθÞf ðθÞdθ

3. Determining Optimal Relativities of a BMS

In practice, the number of BMS levels is usually set in advance and the transition trajectory of drivers
are governed by the chosen transition rules. Given these two inputs, the optimal relativities are
determined and applied to all drivers independent of their a priori risk characteristics. To partially
alleviate the unfairness towards the a priori more risky drivers, Tan et al. (2015) proposed the
minimisation of the objective function

E ðΛΘ�ΛrLÞ2
h i

(1)

under a financial equilibrium constraint E½rL� ¼ 1. They also derived an analytical formula for
optimal relativity rL that minimises the expected squared difference between the true premium and
the actual premium in absolute terms, which is a generalisation of the asymptotic Norberg’s criterion
(see Pitrebois et al., 2003) by incorporating the a priori base premiums directly into the objective
function.
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However, by allowing a general form for optimal relativity rL in the optimisation, the obtained
numerical values may be subject to irregular patterns from one BMS level to another, as pointed out
by Pitrebois et al. (2004). A more viable solution for commercial BMS in practice is to impose a
linear restriction onto the values of optimal relativities, as proposed by Gilde & Sundt (1989). In
more detail, the linear relativities can be written as rlinearL ¼ α + βL, where it features a difference of a
constant premium amount β for any two adjacent BMS levels.

In this paper, we analyse the determination of optimal relativities for a BMS when the linear
restriction is imposed. As before, we take into account the financial balanced condition recommended
by Coene & Doray (1996) and Baione et al. (2002). Hence we obtain the following constrained
optimisation with an inequality constraint:

minE ðΛΘ�Λα�λβLÞ2
h i

subject to α + βE½L�≥1 (2)

We use the Lagrangian method to solve the optimisation problem in equation (2). In this case, the
Lagrangian is defined as

L α; β; γð Þ ¼ E ðΛΘ�Λα�λβLÞ2
h i

+ γ 1�α�βE½L�ð Þ (3)

We can then derive the following Kuhn–Tucker conditions:

�2 E½Λ2Θ��αE½Λ2��βE½Λ2L�� ��γ ¼ 0 (4a)

�2 E½Λ2ΘL��αE½Λ2L��βE½Λ2L2�� ��γE½L� ¼ 0 (4b)

γ 1�α�βE½L�ð Þ ¼ 0 (4c)

1�α�βE½L�≤0 (4d)

γ ≥ 0 (4e)

For brevity, let us define

A ¼ E Λ2� � ¼Xh
g¼1

λ2g
Xj
‘¼1

Pr Λ ¼ λg jL ¼ ‘
� �

Pr L ¼ ‘½ �

¼
Xh
g¼1

λ2g
Xj
‘¼1

Pr L ¼ ‘ jΛ ¼ λg
� �

Pr Λ ¼ λg
� �

¼
Xh
g¼1

wgλ
2
g

Xj
‘¼1

ð +1

0
Pr L ¼ ‘ jΛ ¼ λg; Θ ¼ θ
� �

f ðθÞdθ

¼
Xj
‘¼1

Xh
g¼1

wgλ
2
g

ð +1

0
π‘ðλgθÞf ðθÞdθ ð5Þ

Similarly, we define the following notations:

B ¼ E½Λ2Θ� ¼
Xj
‘¼1

Xh
g¼1

wgλ
2
g

ð +1

0
θπ‘ðλgθÞf ðθÞdθ (6)
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C ¼ E½Λ2L� ¼
Xj
‘¼1

‘
Xh
g¼1

wgλ
2
g

ð +1

0
π‘ðλgθÞf ðθÞdθ (7)

D ¼ E½Λ2L2� ¼
Xj
‘¼1

‘2
Xh
g¼1

wgλ
2
g

ð +1

0
π‘ðλgθÞf ðθÞdθ (8)

E ¼ E½Λ2ΘL� ¼
Xj
‘¼1

‘
Xh
g¼1

wgλ
2
g

ð +1

0
θπ‘ðλgθÞf ðθÞdθ (9)

F ¼ E½L� ¼
Xj
‘¼1

‘
Xh
g¼1

wg

ð +1

0
π‘ðλgθÞf ðθÞdθ (10)

The solution set (α, β, γ) is analysed as follows:

Case A1: γ = 0 and if condition (4d) holds with the following solution set

α ¼ B�CE
D

A�C2

D

(11a)

β ¼ E�CB
A

D�C2

A

(11b)

Otherwise, we have to select

Case A2: if γ>0 based on the following expression

γ ¼
A� C2

D

� �
D� C2

A

� �
� A� C2

D

� �
EF� BCF

A

� �� D� C2

A

� �
B� EC

D

� �
A� C2

D

� �
F2
2 � CF

2A

� �
+ D� C2

A

� �
1
2� CF

2D

� � (12a)

α ¼ B� C E + γ
2Fð Þ

D + γ
2

A� C2

D

(12b)

β ¼ E� C B + γ
2ð Þ

A + γ
2F

D� C2

A

(12c)

If we relax the financial balanced inequality constraint, we have γunconstrained ¼ 0 and the solution set
as shown in expressions (11a) and (11b) except that the condition (4d) may not be satisfied. In other
words, the resulting unconstrained premium relativity may have an average of less than 100%,
which may cause the insurer to be insolvent in the long run. Otherwise, the fulfilment of condition
(4d) implies that it is not a binding constraint, such that solution set for the constrained optimisation
is identical to that of the unconstrained optimisation.

Further constraints for a commercial BMS can be easily incorporated into the minimisation of (2).
For instance, the insurer may want to set α = 0 such that the drivers in the first BMS level are subject
to a premium relativity of β instead of α + β. In this case, the Kuhn–Tucker condition (4a) is not
required and the conditions (4b)–(4e) can be simplified by substituting α = 0, where we obtain the
following two cases:
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Case B1: γ = 0 and if condition (4d) holds with the following solution set

α ¼ 0 (13a)

β ¼ E
D

(13b)

If Case B1 does not hold, we need to consider

Case B2: if γ> 0 based on the following expression

γ ¼ 2ðD�EFÞ
F2 (14a)

α ¼ 0 (14b)

β ¼ E + γ
2 F

D
¼ 1

F
(14c)

Alternatively, the insurer may wish to establish a minimum premium relativity of cmin, so we need to
impose an additional inequality constraint of α + β≥ cmin for the BMS level ‘ = 1. The insurer
may also want to impose a maximum relativity of cmax that introduces an extra constraint of
α + βj≤ cmax for the BMS level ‘ = j. The resulting set of optimal linear relativities can be derived
accordingly to satisfy these commercial considerations. However, it should be noted that the
minimised value of the objective function would increase with each additional constraint.

4. Choosing Effective Transition Rules for a BMS

In this section, we describe the measures of the interaction between the two rate-making steps and
discuss how the varying extent of the a priori risk segmentation may affect the effectiveness of
transition rules.

First, after the a priori rating step is carried out, the mean and variance of Λ can be expressed as

E½Λ� ¼
Xh
g¼1

wgλg

V½Λ� ¼E½Λ2�� E½Λ�½ �2¼
Xh
g¼1

wgλ
2
g�

Xh
g¼1

ωgλg

 !2

Note that the value of E½Λ� for a portfolio of drivers is fixed, regardless of the choices of variables
used to obtain the predicted claim frequencies λg’s. This is because of the following necessary
condition in the estimation procedure:

X
i

λi ¼
X
i

yi
di

!
Ph

g¼1 ngλg
n

¼
P

i
yi
di

n

so we have
Ph

g¼1 wgλg equals to the average number of claims reported per unit exposure
P

i

yi
di

n in all
circumstances. On the other hand, the value ofV½Λ� would change according to the use of different a
priori variables.
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Pitrebois et al. (2003) proposed to measure the interaction extent of the two rating mechanisms by

E½Λ jL ¼ ‘� ¼
Ph

g¼1 wg
Ð +1
0 λgπ‘ðλgθÞf ðθÞdθPh

g¼1 wg
Ð +1
0 π‘ðλgθÞf ðθÞdθ

(15)

Apart from conditional on the predicted claim frequencies λg’s, this measure is dependent on the
stationary distribution of drivers in level ‘ – which in turn is reliant on the transition rules – therefore
its value reflects how the two rate-making steps interact with one another. However, there are
j values of E½Λ jL ¼ ‘� for ‘ ¼ 1; 2; ¼ ; j, making them difficult to be used as a standard measure in
the design of a BMS.

To address this problem, Tan et al. (2015) suggested the following metric called effectiveness of
transition rules

τrule ¼
E V½Λ jL�½ �

V½Λ� ¼ 1�V E½Λ jL�½ �
V½Λ�

¼ 1�
Pj

‘¼1 E½Λ jL ¼ ‘��E½Λ�ð Þ2 Pr ½L ¼ ‘�
E½Λ�2� E½Λ�½ �2 ð16Þ

to compare the different sets of transition rules. Other things being equal, a larger value of τrule is
preferred in designing an optimal BMS.

Nonetheless, although the measure of τrule utilises its denominator to normalise the impact of a priori
rating in order to quantify the effectiveness of transition rules, we note that its numerical value would
change based on the varying extent of risk classification. In particular, the value of E½Λ2� (and hence
V½Λ�) is expected to increase due to a finer risk segmentation if we include more observable variables
in the Poisson regression. However, it is not clear analytically how this increment would be
attributed to either of the two components E V½Λ jL�½ � and V E½Λ jL�½ �, respectively. Consequently, we
may have to select different candidates of transition rules subject to the choices of risk segmentation
variables. In this paper, we examine the sensitivity of the τrule with respect to the use of a priori rating
variables using numerical illustrations in section 5.

5. Numerical Illustrations

For our illustrations, we use the motor vehicle claims data as documented in De Jong & Heller
(2008). The data set contains the information of 67,856 1-year motor insurance policies of a
portfolio in the period of 2004/2005. The distribution of the number of claims reported is shown in
Table 1, whereby its mean and variance are 0.0728 and 0.0774, respectively.

We make use of the following risk classification variables: driver’s age (“Age”, six categories),
driver’s area of residence (“Area”, six categories) and vehicle’s age (“Vehicle”, four categories). For
categorical variable s with vs categories, we create vs− 1 dummy variables. To investigate the impact
of different a priori variables towards the effectiveness of transition rules, we consider all the possible
subsets of the above three categorical variables except the case of not using any variables. In more
detail, the seven subsets of variables are as follows: single categorical variable (three cases),
combination of two categorical variables (three cases) and all three categorical variables (one case).
For instance, the model with only driver’s age contains vAge = 5 dummy variables, whereas the

Optimal linear relativities in a BMS

59

https://doi.org/10.1017/S1748499515000111 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499515000111


model with driver’s area of residence and vehicle’s age consists of vArea + vVehicle = 5 +3 = 8 dummy
variables. The resulting number of risk classes is

Q
s� υs� , where s∗ denotes the categorical variable

included in the model. For example, the model that considers all three categorical variables has
6× 6× 4 = 144 risk classes. We can then evaluate the mean and variance of Λ from the predicted a
priori claim frequencies.

For each of these models, we estimate the parameter a of the Gamma distribution for Θ accordingly
via the following expression:

α ¼
Pn

i¼1 diexp β̂0 +
Pq

j¼1 β̂jxij
� �� �2

Pn
i¼1 yi�diexp β̂0 +

Pq
j¼1 β̂jxij

� �� �2
�yi

� 	

Similar to the BMS analysed by Taylor (1997), we consider a BMS that comprises of j = 9 levels with
two sets of level-fixed rules of −1/ + 2 and −1/ + 4. We also examine the concept of level-varying rules
as proposed by Tan et al. (2015). In more detail, let t‘;k be the level transition imposed on the drivers
staying in level ‘ and making k claims in the current year, the proposed level-varying rules2 can be
represented as follows:

t‘;0 ¼

0; for l ¼ 1

�1; for 2≤ ‘≤ j
2

l m
+ 1

�2; for ‘> j
2

l m
+ 1

8>>>>><
>>>>>:

t‘;k ¼
min j�‘; max k; j�‘

p ´ k
l m� �� �

; for k≥1; ‘< j

0; for k≥1; ‘ ¼ j

8<
: ð17Þ

where [x] is the ceiling function of x and the pre-specified parameter p is the smallest number of
claims required for the drivers to move from level ‘ to level j. The specifications of the transition rules
are illustrated in Table 2, where the level-fixed rules of −1/ + 2 are compared against the
level-varying rules based on expression (17) with p = 4. In particular, the basis of comparison is the
smallest number of claims required for all drivers to move to the highest BMS level j. For instance,
the rules of −1/ + 2 require p = 4 claims for the drivers in level 1 to move to level 9. Similarly, the
level-fixed rules of −1/ + 4 are compared against the level-varying rules with p = 2. Note that the

Table 1. Distribution of the number of claims reported in the portfolio.

Number of claims Observed number of policies

0 63,232
1 4,333
2 271
3 18
4 2
≥5 0

2 The proposed functional form is not unique. Any appropriate form of varying transition rules can be
considered as long as it satisfies the conditions as detailed in Tan et al. (2015).
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functional form of the level-varying transition rules in expression (17) may not be straightforward
for motor vehicle drivers, but the representation in Table 2 should be much easier for their references.
Hence, for a practical BMS, insurers should specify the specifications of transition rules using a table
representation.

Table 2. Specifications of the four sets of transition rules under consideration.

Next level occupied if Next level occupied if

0 1 2 3 ≥4 0 1 2 3 ≥4

Current level claims are reported Current level claims are reported

(a) Level-fixed −1/ + 2 (b) Level-varying with p = 4
9 8 9 9 9 9 9 7 9 9 9 9
8 7 9 9 9 9 8 6 9 9 9 9
7 6 9 9 9 9 7 5 8 9 9 9
6 5 8 9 9 9 6 5 7 8 9 9
5 4 7 9 9 9 5 4 6 7 8 9
4 3 6 8 9 9 4 3 6 7 8 9
3 2 5 7 9 9 3 2 5 6 8 9
2 1 4 6 8 9 2 1 4 6 8 9
1 1 3 5 7 9 1 1 3 5 7 9

Next level occupied if Next level occupied if

0 1 ≥2 0 1 ≥2

Current level claims are reported Current level claims are reported

(c) Level-fixed −1/ + 4 (d) Level-varying with p = 2
9 8 9 9 9 7 9 9
8 7 9 9 8 6 9 9
7 6 9 9 7 5 8 9
6 5 9 9 6 5 8 9
5 4 9 9 5 4 7 9
4 3 8 9 4 3 7 9
3 2 7 9 3 2 6 9
2 1 6 9 2 1 6 9
1 1 5 9 1 1 5 9

Table 3. Effectiveness of transition rules for different combinations of a priori model and transition rules.

τrule

V½Λ� −1/ + 2 Level-varying with p = 4 −1/ + 4 Level-varying with p = 2

Vehicle 0.00052 98.75% 99.05% 98.99% 99.20%
Age 0.00291 93.81% 94.76% 96.28% 96.45%
Area 0.00079 98.11% 98.56% 98.52% 98.80%
Vehicle +Age 0.00349 92.88% 93.97% 95.47% 95.77%
Vehicle +Area 0.00132 96.94% 97.64% 97.58% 98.03%
Age+Area 0.00374 92.51% 93.65% 95.14% 95.48%
All 0.00433 91.61% 92.87% 94.38% 94.82%
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With these details, we calculate the effectiveness of transition rules for each combination of a priori
model and transition rules. The results are tabulated in Table 3. As expected, we observe that
including additional variables into the model lead to an increase in the variability of Λ. In other
words, using a richer set of a priori variables cause a higher variance in the predicted claim frequency
relative to the reduced model. The values of τrule are all highly satisfactory above 90% independent
of the underlying a priori risk classification model.

For each set of transition rules, the value of τrule reduces with a larger variance of Λ, which indicates
that the transition rules become less effective with a finer risk classification model. Moreover, the
level-varying transition rules are more effective than the corresponding simple transition rules for
each risk segmentation model, suggesting that the level-varying transition rules perform better,
regardless of how the insurer specifies its risk classification model. In addition, it can be seen that the
most effective transition rules are the level-varying rules with p = 2, whereas the least effective rules
are the level-fixed rules with −1/ +2 consistently for all the models under consideration, implying that
the varying extent of a priori risk segmentation is not a sensitive factor towards the ranking of the
effectiveness of transition rules. More importantly, these results provide further empirical justifications
for introducing the idea of level-varying transition rules into the design of BMS in practice.

In deciding the most suitable combination of a priori model and transition rules, we should take into
account both the significance of a priori model as well as the effectiveness of transition rules instead
of merely picking the combination that produces the highest value of τrule. On the basis of the
χ2 likelihood ratio test statistic based for nested models in Table 4, we find that the best model is the
model that includes all three categorical variables. Hence, in our subsequent analysis we choose to
design the BMS based on this model and the level-varying transition rules with p = 2, where its
estimated parameter a of the Gamma distribution for Θ is 2.7859.

In our next step, we determine the optimal linear relativities for the BMS based on the analytical
formulae presented in section 3. The results are shown in Table 5, where the corresponding value of E½rL�
is also displayed. For comparison purpose, the optimal general relativities r‘ (i.e. without the constraint of
linear form) and the optimised value of the objective function (1) are also provided to examine the extent
of the deterioration in E½ðΛΘ�ΛrLÞ2� when the linear restriction is imposed onto the BMS design.

Note that r
constrained

‘ and r
unconstrained

‘ correspond to the optimal relativities with and without the financial
balanced inequality constraint, respectively. We see that the values of r‘ are higher than r

unconstrained

‘ for

Table 4. χ2 likelihood ratio test statistic for nested models.

Model1 (M1) Model2 (M2) Δ ¼ 2ðLL M1ð Þ�LLðM2ÞÞ d:f: ¼ d:f:M1�d:f:M2 Prðχ2d:f:>ΔÞ

Vehicle +Age Vehicle 805.5217 5 <0.0001
Vehicle +Age Age 172.7151 3 <0.0001
Vehicle +Area Vehicle 255.7550 5 <0.0001
Vehicle +Area Area 169.1066 3 <0.0001
Age +Area Age 250.3631 5 <0.0001
Age +Area Area 796.5213 5 <0.0001
All Vehicle +Age 251.9487 5 <0.0001
All Vehicle +Area 801.7154 5 <0.0001
All Age +Area 174.3007 3 <0.0001

Note: LL, value of log-likelihood; d.f., degrees of freedom.
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each BMS level ‘ under each form of optimal relativities. This finding can be explained by the values
of E½rL� that are all below 100% for unconstrained optimal relativities. Put it differently, higher
optimal relativities are needed such that the binding constraint of the financial balanced condition
can be fulfilled.

Nonetheless, the constrained optimal relativities for both the values of rlinear‘ ¼α + β‘ and rgeneral‘ are
very close to that of their unconstrained versions, as further supported by the small difference
between their values of E½ðΛΘ�ΛrLÞ2�. More crucially, the optimised value of the objective function
(1) for the optimal linear relativities is only about 0.7% higher relative to that of the optimal general
relativities. These findings suggest that imposing a linear restriction to the numerical relativities do
not cause a significant deterioration in the optimisation and hence optimal linear relativities should
be preferred in designing a commercial BMS. However, the constrained linear relativities of the form
rlinear‘ ¼ β‘ produce much larger differences in the optimised E½ðΛΘ�ΛrLÞ2� as compared with its
unconstrained values as well as to the optimal general relativities. In summary, the numerical results
in this section suggest that the insurer should consider using optimal linear relativities that are more
viable in the practical implementation of BMS with a set of level-varying transition rules after a
proper a priori risk classification model has been selected.

6. Concluding Remarks

In this paper, we study the determination of optimal relativities for a BMS when the set of relativities
is a linear form of the BMS level. The analytical formulae for the optimal linear relativities are
derived under the financial balanced inequality constraint. Moreover, it follows that further practical
constraints can be easily taken into account in the optimisation procedure.

Our results indicate that imposing a set of linear relativities do not cause a significant change in the
minimised objective function. This finding provides supporting justification for insurers in designing
an optimal BMS that is both sufficiently optimal on a theoretical basis and commercially viable from
a practical perspective. We also find that the varying extent of the a priori risk segmentation is not a
sensitive factor towards the resulting effectiveness of transition rules. Furthermore, the numerical
results also suggest that the level-varying transition rules are more effective than the level-fixed

Table 5. Optimal relativities for the bonus-malus system.

rlinear‘ ¼ α + β‘ rlinear‘ ¼ β‘ rgeneral‘

Level ‘ rconstrained‘ runconstrained‘ rconstrained‘ runconstrained‘ rconstrained‘ runconstrained‘

9 163.04% 160.16% 278.94% 198.72% 169.01% 166.18%
8 152.12% 149.00% 247.95% 176.64% 148.05% 144.79%
7 141.20% 137.84% 216.95% 154.56% 140.12% 136.68%
6 130.29% 126.69% 185.96% 132.48% 127.38% 123.65%
5 119.37% 115.53% 154.97% 110.40% 115.44% 111.44%
4 108.45% 104.38% 123.97% 88.32% 108.73% 104.58%
3 97.53% 93.22% 92.98% 66.24% 102.99% 98.71%
2 86.61% 82.06% 61.99% 44.16% 97.98% 93.59%
1 75.69% 70.91% 30.99% 22.08% 74.12% 69.21%

E½rL� 100% 95.75% 100% 71.24% 100% 95.66%
E½ðΛΘ�ΛrLÞ2� 0.01391 0.01382 0.02780 0.01993 0.01382 0.01373
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rules, regardless of the a priori risk classification model, hence insurers should definitely consider
incorporating this idea into the design of an optimal BMS.

Throughout our analysis, we assume that the number of BMS levels is fixed in advance by the
insurer. It is possible to relax this assumption by adding the number of BMS levels j as a parameter
into the optimisation of (1). In future research, it is warranted to numerically examine the marginal
improvement of incorporating j as an extra parameter into the optimal design of a BMS.
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