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Abstract If a locally compact group G acts on a C∗-algebra B, we have both full and reduced crossed
products and each has a coaction of G. We investigate ‘exotic’ coactions in between the two, which are
determined by certain ideals E of the Fourier–Stieltjes algebra B(G); an approach that is inspired by
recent work of Brown and Guentner on new C∗-group algebra completions. We actually carry out the
bulk of our investigation in the general context of coactions on a C∗-algebra A. Buss and Echterhoff have
shown that not every coaction comes from one of these ideals, but nevertheless the ideals do generate
a wide array of exotic coactions. Coactions determined by these ideals E satisfy a certain ‘E-crossed
product duality’, intermediate between full and reduced duality. We give partial results concerning exotic
coactions with the ultimate goal being a classification of which coactions are determined by ideals of
B(G).
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1. Introduction

If α is an action of a non-amenable locally compact group G on a C∗-algebra B, there are
in general numerous crossed product C∗-algebras; the largest is the full crossed product
B�αG and the smallest is the reduced crossed product B�α,rG. But there are frequently
many ‘exotic’ crossed products in between, i.e. quotients (B �α G)/I, where I is an ideal
contained in the kernel of the regular representation

Λ : B �α G → B �α,r G.

A naive question is how to classify these ‘large quotients’ of the crossed product. This is
surely too large a class to seriously contemplate. We are interested in the large quotients
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that carry a ‘dual coaction’ δ, as indicated in the commutative diagram

B �α G
α̂ ��

Λ

��

q

����������� B �α G ⊗ C∗(G)

Λ⊗id

��

q⊗id

���������������

(B �α G)/I
δ ��

�����
��

��
��

(B �α G)/I ⊗ C∗(G)

���������������

B �α,r G
α̂n

�� B �α,r G ⊗ C∗(G)

We ask how to classify these exotic coactions.
Motivated by a recent paper of Brown and Guentner [2], we introduce a tool that

produces many (but not all; see below) of these exotica. To clarify matters, consider the
special case B = C, so that we have a diagram

C∗(G)
δG ��

λ

��

q

���
��

��
��

�
C∗(G) ⊗ C∗(G)

λ⊗id

��

q⊗id

		������������

C∗(G)/I
δ ��



��
��

��
��

C∗(G)/I ⊗ C∗(G)

��												

C∗
r (G)

δn
G

�� C∗
r (G) ⊗ C∗(G)

Then I ⊂ ker λ and in [11, Corollary 3.13] we proved that a large quotient C∗(G)/I

carries a coaction if and only if the annihilator E = I⊥ in the Fourier–Stieltjes algebra
B(G) = C∗(G)∗ is an ideal, which will necessarily be large in the sense that it contains
the reduced Fourier–Stieltjes algebra Br(G) = C∗

r (G)∗.
Thus, large quotients of C∗(G) carrying coactions are classified by large ideals of

B(G). When we began this study we wondered whether these ideals of B(G) could be
used to classify all large quotients of B �α G carrying dual coactions; however, Buss and
Echterhoff have recently found a counterexample [5, Example 5.3].

Nevertheless, it appears that there are lots of these ‘exotic ideals’: it has been attributed
to Okayasu [13] and (independently) to Higson and Ozawa (see [2, Remark 4.5]) that for
2 � p < ∞, the ideals Ep of B(F2) formed by taking the weak* closures of B(F2)∩�p(F2)
are all different.

We use these large ideals E of B(G) to generate intermediate crossed products via
slicing: the dual coaction α̂ of G gives a module action of B(G) on B �α G by

f · a = (id⊗f) ◦ α̂(a).

It turns out that the kernel of the regular representation Λ : B�αG → B�α,rG comprises
the elements that are killed by Br(G). Thus, the ideal Br(G) � B(G) allows us to recover
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the reduced crossed product. For any large quotient q : B �α G → (B �α G)/I carrying a
dual coaction, it is natural to ask whether there exists a large ideal E � B(G) such that

ker q = {a ∈ B �α G : E · a = {0}}.

In any event, § 3 shows that for a large ideal E � B(G) and any coaction δ : A →
M(A ⊗ C∗(G)), the set

J (E) = Jδ(E) := {a ∈ A : E · a = {0}}

is an ideal of A that is invariant in the sense that the quotient AE := A/J (E) carries a
coaction δE . Note that we have replaced the dual coaction (B �α G, α̂) with an arbitrary
coaction (A, δ).

In this more general setting, the replacement for the regular representation Λ : B �α

G → B �α,r G is the normalization

qn : (A, δ) → (An, δn),

and we have a commuting diagram

A
δ ��

qn

��

qE

���
��

��
��

� A ⊗ C∗(G)

qn⊗id

��

qE⊗id

		������������

AE
δE

��



��
��

��
��

AE ⊗ C∗(G)

��											

An
δn

�� An ⊗ C∗(G)

The aforementioned counterexample of [5] shows that not all large quotients of (A, δ)
arise this way; nevertheless, we feel that this tool deserves to become more widely known.

Actually, our original motivation in writing this paper involves crossed-product duality;
everything we need can be found in, for example, [7, Appendix A], [1] and [6], and in
the following few sentences we very briefly recall the essential facts. The Imai–Takai
duality theorem and its modernization due to Raeburn say that if α is an action of a
locally compact group G on a C∗-algebra B, there is a dual coaction α̂ of G such that
B �α G�α̂ G ∼= B ⊗K(L2(G)). Katayama gave a dual version of crossed-product duality,
starting with a coaction δ of G on a C∗-algebra A: there is a dual action δ̂ of G on the
crossed product A�δ G such that A�δ G�δ̂,r G ∼= A⊗K. However, Katayama used what
are nowadays called reduced coactions; more recently, crossed-product duality has been
reworked in terms of Raeburn’s full coactions, and the modern version of Katayama’s
theorem gives the same isomorphism for (full) coactions that are normal, i.e. embed
faithfully into A �δ G. On the other hand, it is known that for some other coactions,
which are called maximal, crossed-product duality uses the full crossed product by the
dual action: A �δ G �δ̂ G ∼= A ⊗ K.
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Thus, non-commutative crossed-product duality has been complicated by the different
choices of action crossed product (i.e. full versus reduced) from the outset. But the
situation is even more complicated: there exist coactions that are neither normal nor
maximal, so that neither the reduced nor the full version of crossed-product duality
holds. This can be understood using the canonical surjection Φ : A �δ G �δ̂ G → A ⊗ K,
which is an isomorphism precisely when the coaction δ is maximal, and which factors
through an isomorphism A �δ G �δ̂,r G ∼= A ⊗ K precisely when δ is normal. Every
(full) coaction (A, δ) has a maximalization and a normalization, meaning that it sits in a
diagram ψ : (Am, δm) → (A, δ) → (An, δn) of equivariant surjections, where the first and
third coactions are maximal and normal, respectively, and all three crossed products are
isomorphic. It follows that the kernel of the canonical surjection Φ is contained in the
kernel of the regular representation Λ : A �δ G �δ̂ G → A �δ G �δ̂,r G, and hence gives
a commuting diagram

A �δ G �δ̂ G Φ ��

Q

��

A ⊗ K

(A �δ G �δ̂ G)/ker Φ

∼=

��














where Q is the quotient map.
Thus the coaction (A, δ) can be regarded to have a ‘type’ determined by how the ideal

ker Φ sits inside ker Λ, with the maximal coactions corresponding to kerΦ = {0} and
the normal coactions corresponding to kerΦ = ker Λ. We would like to have some more
intrinsic way to determine what ‘type’ δ has, namely, the kernel of the maximalization
map Am → A. So, a natural question arises: if we start with a maximal coaction (A, δ),
is there some way to classify the ideals of A that give rise to coactions intermediate
between δ and the normalization δn, and, moreover, what can we say about these ideals
with regard to crossed-product duality?

As indicated above, here we investigate ideals of A determined by ‘large’ ideals of
B(G), by which we mean weak* closed G-invariant ideals of B(G) containing Br(G).
In § 2 we review some preliminaries on coactions. In § 3 we show how every large ideal E

of B(G) determines a coaction (AE , δE) on a quotient of A. In § 4 we show that a quotient
coaction (A/J, δJ) of a maximal coaction (A, δ) is of the form (AE , δE) for some large
ideal E of B(G) if and only if it satisfies a sort of E-crossed-product duality, involving
what we call the E-crossed product A �δ G �δ̂,E G. During the last stage of writing this
paper, we learned that Buss and Echterhoff had also proved one direction of this latter
result [5, Theorem 5.1]; our methods are significantly different from theirs. In the case
of the canonical coaction (C∗(G), δG), we show that the above ideals E of B(G) give a
complete classification of the quotient coactions (A, δ) sitting between (C∗(G), δG) and
the normalization (C∗

r (G), δn
G). After the completion of this paper, we learned of a second

paper of Buss and Echterhoff [4] that is also relevant to this work.
We originally wondered whether every coaction satisfies E-crossed-product duality for

some E. In [11, Conjecture 6.12] we even conjectured that this would be true for dual
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coactions. However, the counterexample of Buss and Echterhoff [5, Example 5.3] gives a
negative answer.

From § 6 onward we will restrict ourselves to the case of coactions satisfying a certain
‘slice properness’ condition, which we introduce in § 5. We impose this hypothesis to
make the B(G)-module action on A appropriately continuous. After we submitted this
manuscript, we learned that our definition (see Definition 5.1) of proper coaction is
a special case of [8, Definition 2.4], which concerns actions of Hopf C*-algebras. Our
definition is also closely related to Condition (A1) in [9, § 4.1], which concerns discrete
quantum groups and involves the algebraic tensor product. We are grateful to the referee
for drawing these references to our attention.

In § 6 we give examples of quotient coactions that are not determined by any large
ideal E of B(G). These examples actually turn out to be similar to (and discovered
independently from) those in [5], although they do not do the full job that those of Buss
and Echterhoff do, namely, they do not involve the maximalization.

In § 7 we start with a maximal coaction (A, δ) and two large ideals E1 ⊃ E2 of B(G),
and investigate the question of whether the quotient (AE1 , δE1) → (AE2 , δE2) is deter-
mined by any third ideal E. In the case of the canonical coaction (C∗(G), δG) we give a
list of equivalent conditions, although the general question is still left open. Finally, in § 8
we specialize further to the study of ideals Ep obtained from Lp(G), where, although we
cannot completely answer the question regarding the quotient (AE1 , δE1) → (AE2 , δE2),
we are at least able to learn enough to obtain examples of intermediate quotients between
C∗(G) and C∗

r (G) on which δG descends to a comultiplication (not a coaction!) that fails
to be injective.

2. Preliminaries

For the definitions and basic facts about coactions of locally compact groups on
C∗-algebras and imprimitivity bimodules, we refer the reader to [7]. Here we briefly
summarize the less standard concepts and notation we will need.

If J is an ideal (always closed and two-sided) of A, and Q : A → A/J is the quotient
map, we say that J is δ-invariant if

J ⊂ ker(Q ⊗ id) ◦ δ

or, equivalently (by [11, Lemma 3.11], for example), if Q is δ–δJ equivariant for a unique
coaction δJ on A/J . All quotient coactions arise in essentially this way.

Lemma 2.1. Suppose that (A, δ) and (B, ε) are two coactions of G, X is an A–B

imprimitivity bimodule, ζ is a δ–ε compatible coaction of G on X, K is an ε-invariant
ideal of B, and J = X-IndK is the Rieffel-equivalent ideal of A. Then J is δ-invariant.

Proof. J is densely spanned by elements of the form A〈ξ, η · b〉, where ξ, η ∈ X and
b ∈ K. Let Q : A → A/J and R : B → B/K be the quotient maps. We want to show that

(Q ⊗ id) ◦ δ(A〈ξ, η · b〉) = 0.
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Since X is an A–B imprimitivity bimodule, X ⊗ C∗(G) is an (A ⊗ C∗(G))–(B ⊗ C∗(G))
imprimitivity bimodule. The quotient map S : X → X/X · K is a Q–R compatible
imprimitivity bimodule homomorphism, so

S ⊗ id : (X ⊗ C∗(G)) → (X/X · K ⊗ C∗(G))

is a (Q ⊗ id)–(R ⊗ id) compatible imprimitivity bimodule homomorphism. It suffices to
show that the multiplier

(Q ⊗ id) ◦ δ(A〈ξ, η · b〉) ∈ M(A/J ⊗ C∗(G))

kills every element of the module X/X ·K⊗C∗(G) and we can take this arbitrary element
to be of the form (S ⊗ id)(κ), where κ ∈ X ⊗ C∗(G). We compute

(Q ⊗ id) ◦ δ(A〈ξ, η · b〉) · (S ⊗ id)(κ)

= (S ⊗ id)(M(A⊗C∗(G))〈ζ(ξ), ζ(η · b)〉 · κ)

= (S ⊗ id)(ζ(ξ) · 〈ζ(η) · ε(b), κ〉M(B⊗C∗(G)))

= (S ⊗ id)(ζ(ξ) · ε(b)∗〈ζ(η), κ〉M(B⊗C∗(G)))

= (S ⊗ id) ◦ ζ(ξ) · (R ⊗ id)(ε(b)∗〈ζ(η), κ〉M(B⊗C∗(G)))

= (S ⊗ id) ◦ ζ(ξ) · (R ⊗ id) ◦ ε(b)∗(R ⊗ id)(〈ζ(η), κ〉M(B⊗C∗(G)))

= 0,

since b ∈ ker(R ⊗ id) ◦ ε. �

Adapting the definition from [12, Definition 2.7], where it appears for reduced coac-
tions, we say that a unitary U in M(A ⊗ C∗(G)) is a cocycle for a coaction (A, δ) if

(i) id⊗δG(U) = (U ⊗ 1)(δ ⊗ id(U)) and

(ii) Uδ(A)U∗(1 ⊗ C∗(G)) ⊂ A ⊗ C∗(G).

Note that (ii) implies that

(1 ⊗ C∗(G))Uδ(A)U∗ ⊂ A ⊗ C∗(G).

It is mentioned in [12] that in this case AdU ◦ δ is also a coaction, which is said to
be exterior equivalent to δ. However, there is a disconnect here: in [12], the definition of
coaction on a C∗-algebra did not include the non-degeneracy condition

span{δ(A)(1 ⊗ C∗(G))} = A ⊗ C∗(G), (2.1)

whereas nowadays this condition is built into the definition of coaction. Thus (modulo the
passage from reduced to full coactions; see [1]), ε = AdU ◦δ satisfies all the conditions in
the definition of coaction except, ostensibly, non-degeneracy. In [6, Paragraph preceding
Lemma 2.6] it is stated that non-degeneracy of ε follows from that of δ, the justification
being that exterior equivalent coactions are Morita equivalent, and [10, Proposition 2.3]

https://doi.org/10.1017/S0013091515000164 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091515000164


Exotic coactions 417

shows that Morita equivalence of C∗-coactions preserves non-degeneracy. Somewhat irri-
tatingly, the observation that exterior equivalence implies Morita equivalence for coac-
tions seems not to be readily available in the literature, so for completeness we record
the details here.

Proposition 2.2. Let U be a cocycle for a coaction δ of G on A and let ε = AdU ◦ δ

be the associated exterior equivalent coaction. Let X be the standard A–A imprimitivity
bimodule and define ζ : X → M(X ⊗ C∗(G)) by

ζ(x) = Uδ(x) for x ∈ X = A.

Then ζ is an ε–δ compatible coaction.

Proof. First of all, it is clear that

ζ(X) ⊂ M(X ⊗ C∗(G)) = LA⊗C∗(G)(A ⊗ C∗(G), X ⊗ C∗(G)).

For a ∈ A and x, y ∈ X we have

ζ(a · x) = Uδ(ax) = Uδ(a)δ(x) = ε(a)Uδ(x) = ε(a) · ζ(x)

and

〈ζ(x), ζ(y)〉A⊗C∗(G) = (Uδ(x))∗(Uδ(y)) = δ(x∗)U∗Uδ(y) = δ(x∗y).

By [7, Definition 1.14 and Remark 1.17 (2)], it now follows that ε is a possibly degenerate
coaction. But since δ does satisfy (2.1) by assumption, we can safely appeal to [10,
Proposition 2.3] to conclude that ε is also non-degenerate. �

Remark 2.3. It follows from [6, Lemma 3.8 and its proof] that if we define W =
(M⊗id)(wG) ∈ M(K(L2(G))⊗C∗(G)) and let δ⊗∗id denote the coaction (id⊗Σ)◦(δ⊗id),
where Σ is the flip map on C∗(G) ⊗ C∗(G), then 1 ⊗ W ∗ is a cocycle for δ ⊗∗ id and
the canonical surjection Φ : A �δ G �δ̂ G → A ⊗ K(L2(G)) is ˆ̂

δ–Ad(1 ⊗ W ∗) ◦ (δ ⊗∗ id)
equivariant.

There are several choices for the conventions regarding a Galois correspondence
between partially ordered sets X and Y ; we will take this to mean a pair of order-
reversing functions f : X → Y and g : Y → X such that

idX � g ◦ f and idY � f ◦ g.

These properties have the following well-known consequences:

(i) f ◦ g ◦ f = f and g ◦ f ◦ g = g,

(ii) f(x) � y if and only if x � g(y),

(iii) g ◦ f(x) = g ◦ f(x′) =⇒ f(x) = f(x′),

(iv) f ◦ g(y) = f ◦ g(y′) =⇒ g(y) = g(y′).
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3. E-determined coactions

In this section we show how certain ideals of B(G) produce quotients of coactions,
although we will begin with quite general subsets of B(G).

We recall some notation and results from [11]. For any weak*-closed subspace
E ⊂ B(G), the preannihilator ⊥E in C∗(G) is a (closed two-sided) ideal if and only
if E is invariant under the G-bimodule action if and only if E is invariant under the
C∗(G)-bimodule action. Write C∗

E(G) = C∗(G)/⊥E and let qE : C∗(G) → C∗
E(G) be

the quotient map. The dual map q∗
E : C∗

E(G)∗ → B(G) is an isometric isomorphism onto
E and we identify E with C∗

E(G)∗ and regard q∗
E as the inclusion map. The canonical

coaction δG on C∗(G) descends to a coaction δE
G on C∗

E(G) if and only if E is an ideal of
B(G).

Definition 3.1. We call an ideal of B(G) large if it is weak* closed, G-invariant and
contains Br(G); by [11, Lemma 3.14], the latter containment condition is satisfied as
long as the ideal is non-zero.

Definition 3.2. Let (A, δ) be a coaction. For any weak*-closed subspace E ⊂ B(G),
define

J (E) = Jδ(E) = {a ∈ A : f · a = 0 for all f ∈ E}.

Theorem 3.3. For any weak*-closed G-invariant subspace E of B(G),

J (E) = ker(id⊗qE) ◦ δ.

Proof. We can identify E with C∗
E(G)∗, and the dual map q∗

E : C∗
E(G)∗ → C∗(G)∗

with the inclusion map E ↪→ B(G). Since the slice maps id ⊗f for f ∈ E separate the
points of A ⊗ C∗

E(G), if a ∈ A, then a ∈ ker(id⊗qE) ◦ δ if and only if for all f ∈ E we
have

f · a = (id⊗f) ◦ δ(a) = (id⊗q∗
E)(f) ◦ δ(a)

= (id⊗f) ◦ (id⊗qE) ◦ δ(a)

= 0,

i.e. if and only if a ∈ J (E). �

Corollary 3.4. For every weak*-closed G-invariant subspace E of B(G), J (E) is an
ideal of A.

Lemma 3.5. For every coaction (A, δ) and every weak*-closed G-invariant ideal E of
B(G), the ideal J (E) of A is δ-invariant.

Proof. We first show that J (E) is a B(G)-submodule. If a ∈ J (E), f ∈ B(G) and
g ∈ E, then

g · (f · a) = (gf) · a = 0

because gf ∈ E as E is an ideal. Thus, f · a ∈ J (E).
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Let Q : A → A/J (E) be the quotient map. We must show that if a ∈ ker Q = J (E),
then (Q ⊗ id) ◦ δ(a) = 0, and it suffices to observe that for all ω ∈ (A/J (E))∗ and
f ∈ B(G) we have

(ω ⊗ f) ◦ (Q ⊗ id) ◦ δ(a) = (Q∗ω ⊗ f) ◦ δ(a) = Q∗ω(f · a) = 0,

because Q∗ω ∈ J (E)⊥ and f · a ∈ J (E). �

Notation 3.6. For a weak*-closed G-invariant ideal E of B(G), let AE = A/J (E)
and let δE be the associated quotient coaction on AE , whose existence is ensured by
Lemma 3.5 and [11, Lemma 3.11].

We are quite interested in coactions that arise in this way. Slightly more generally, we
are interested in equivariant surjections ϕ : A → B for which kerϕ = J (E), so that there
is an isomorphism θ making the diagram

(A, δ)

Q

��

ϕ

�����������

(AE , δE)
θ

∼= �� (B, ε)

commute, where Q is the quotient map.

Definition 3.7. For a large ideal E of B(G) and an equivariant surjection ϕ : (A, δ) →
(B, ε), we say that (B, ε) is E-determined from (A, δ), or just E-determined when (A, δ)
is understood, if kerϕ = Jδ(E).

Example 3.8. Standard coaction theory guarantees that the normalization (An, δn) is
Br(G)-determined from (A, δ), and (A, δ) is B(G)-determined from itself, because qB(G)

is the identity map.

Theorem 6.10 gives examples showing that not every quotient of a coaction (A, δ)
is necessarily E-determined by some large ideal E of B(G). Example 5.4 in [5] gives
examples where the coaction (A, δ) is maximal.

Definition 3.9. Let (A, δ) be a coaction. A δ-invariant ideal of A is small if it is
contained in ker jA, and a quotient (B, ε) of (A, δ) is large if the kernel of the quotient
map A → B is small.

Observation 3.10. Let (A, δ) be a coaction, and let E be a large ideal of B(G). Then
J (E) is small.

Remark 3.11. Note that every coaction (A, δ) is a large quotient of its maximalization
(Am, δm). Also, the small ideals of C∗(G) are precisely the preannihilators of the large
ideals of B(G).
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4. E-crossed product duality

Let (A, δ) be a coaction and let

Φ : A �δ G �δ̂ G → A ⊗ K

be the canonical surjection, where K = K(L2(G)).

Lemma 4.1. The ideal ker Φ is small.

Proof. By [6, Lemmas 3.6 and 3.8], the surjection Φ is equivariant for two coactions,
where the coaction on A�δ G�δ̂ G, denoted by δ̃ in [6], is exterior equivalent, and hence
Morita equivalent, to the double-dual coaction ˆ̂

δ. Since Φ transports δ̃ to some coaction
on A ⊗ K, by [11, Lemma 3.11] the ideal ker Φ is δ̃-invariant. So, by Lemma 2.1, kerΦ is
also ˆ̂

δ-invariant.
For the other part, by [6, Proposition 2.2] there is a surjection Ψ making the diagram

A �δ G �δ̂ G Φ ��

Λ

��

A ⊗ K(L2(G))

Ψ��













A �δ G �δ̂,r G

commute, where
Λ = Λδ : A �δ G �δ̂ G → A �δ G �δ̂,r G

is the regular representation. Thus, kerΦ is small, since A�δ G�δ̂,rG is the normalization
of A �δ G �δ̂ G. �

Example 4.2. By Lemma 4.1, the extremes for the ideal ker Φ are

(i) δ is maximal if and only if kerΦ = {0},

(ii) δ is normal if and only if kerΦ = ker Λ.

Definition 4.3. A coaction (A, δ) satisfies E-crossed-product duality if

ker Φ = Jˆ̂
δ
(E).

Remark 4.4. This is called ‘E-duality’ in [5].

Thus, (A, δ) satisfies E-crossed-product duality exactly when there is an isomorphism
Ψ making the diagram

A � G � G
Φ ��

Qˆ̂
δ,E

��

A ⊗ K

(A � G � G)E

Ψ

∼=
������

commute, where
(A � G � G)E = (A � G � G)/Jˆ̂

δ
(E)

and Qˆ̂
δ,E

is the quotient map.
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Example 4.5. (A, δ) is maximal if and only if it satisfies B(G)-crossed-product duality,
and normal if and only if it satisfies Br(G)-crossed-product duality.

Now, (A, δ) is a large quotient of its maximalization (Am, δm); let ψ : Am → A be the
associated δm–δ equivariant surjection. Recall that if E is a large ideal of B(G), we say
that (A, δ) is E-determined from its maximalization if kerψ = Jδm(E).

The following theorem shows that the above two properties on (A, δ) are equivalent.
In the final stage of writing this paper we learned of a paper by Buss and Echterhoff [5],
and their Theorem 5.1 gives a proof of the converse direction using significantly different
techniques.

Theorem 4.6. (A, δ) satisfies E-crossed-product duality if and only if it is E-deter-
mined from its maximalization.

Proof. We must show that

ker ψ = Jδm(E)

if and only if

ker Φ = Jˆ̂
δ
(E).

Since (Am, δm) is maximal, the canonical surjection

Φm : Am
� G � G → Am ⊗ K

is an isomorphism. Since (A, δ) is a large quotient of (Am, δm), the double crossed-product
map

ψ × G × G : Am
� G � G → A � G � G

is an isomorphism, by Lemma 4.7. By functoriality of the constructions, the diagram

Am
� G � G

Φm

∼=
��

ψ×G×G ∼=
��

Am ⊗ K
ψ⊗id

��
A � G � G

Φ
�� A ⊗ K

commutes. Thus,
Φm ◦ (ψ × G × G)−1(ker Φ) = kerψ ⊗ K.

Our strategy is to show that

Φm ◦ (ψ × G × G)−1(Jˆ̂
δ
(E)) = Jδm(E) ⊗ K. (4.1)

Since Φm◦(ψ×G×G)−1 is an isomorphism, and for ideals I, J of Am we have I⊗K = J⊗K
if and only if I = J , this will suffice. Since ψ ×G×G is a ˆ̂

δm–ˆ̂
δ equivariant isomorphism,

ψ × G × G(J ˆ̂
δm

(E)) = Jˆ̂
δ
(E).
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Thus, it suffices to show that

Φm(J ˆ̂
δm

(E)) = Jδm(E) ⊗ K. (4.2)

Here are the steps:

Φm(J ˆ̂
δm

(E)) = JAd(1⊗W ∗)◦(δm⊗∗id)(E) (4.3)

= Jδm⊗∗id(E) (4.4)

= Jδm(E) ⊗ K. (4.5)

Equation (4.3) follows from ˆ̂
δm–Ad(1⊗W ∗)◦ (δm ⊗∗ id) equivariance of Φm, (4.4) follows

because 1⊗W ∗ is a δm⊗∗ id-cocycle (as in Remark 2.3)—see the elementary Lemma 4.8—
and (4.5) follows from a routine computation with tensor products:

Jδm⊗∗id(E) = ker((id⊗ id⊗qE) ◦ (δm ⊗∗ id))

= ker((id⊗ id⊗qE) ◦ (id⊗Σ) ◦ (δm ⊗ id))

= ker((id⊗Σ) ◦ (id⊗qE ⊗ id) ◦ (δm ⊗ id))

= ker((id⊗qE ⊗ id) ◦ (δm ⊗ id)) (since id⊗Σ is injective)

= ker(((id⊗qE) ◦ δm) ⊗ id)

= ker((id⊗qE) ◦ δm) ⊗ K (since K is exact)

= Jδm(E) ⊗ K.

�

In the above proof we invoked the following two general lemmas. The first, which
is folklore, relies upon the fact that the normalization map A → An gives isomorphic
crossed products A �δ G ∼= An

�δn G, while the second shows that exterior equivalent
coactions have the same J map from large ideals of B(G) to small ideals of A.

Lemma 4.7. Let (A, δ) be a coaction, let J be an invariant ideal, let Q : A → A/J be
the quotient map and let δJ be the associated coaction on A/J . Then J is small if and
only if the crossed-product homomorphism

Q × G : A �δ G → A/J �δJ
G

is an isomorphism.

Proof. Q×G is always a surjection, so the issue is whether it is injective. First suppose
that J is small. Then there is a unique surjection ζ making the diagram

A
Q ��

jA ��





 A/J

ζ

���
�
�

jA(A)
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commute, and moreover ζ is δJ–Ad jG equivariant, where Ad jG is the inner coaction on
jA(A) implemented by the canonical homomorphism jG : C0(G) → M(A ×δ G). Thus,
we have

jA × G = (ζ × G) ◦ (Q × G),

which is injective, and hence Q × G is injective.
For the other direction, note that

(Q × G) ◦ jA = jA/J ◦ Q,

so, assuming that Q × G is injective, we have

J = ker Q ⊂ ker jA.

�

Lemma 4.8. Let (A, δ) be a coaction, let U be a δ-cocycle and let E be a large ideal
of B(G). Then

Jδ(E) = JAd U◦δ(E).

Proof. We have

JAd U◦δ(E) = ker(id⊗qE) ◦ AdU ◦ δ

= ker(Ad(id⊗qE)(U)) ◦ (id⊗qE) ◦ δ

= ker(id⊗qE) ◦ δ (since (id ⊗qE)(U) is unitary)

= Jδ(E).

�

We can now settle [11, Conjecture 6.14] affirmatively (again, see [5, Theorem 5.1] for
an alternative proof).

Corollary 4.9. For any large ideal E of B(G), the coaction (C∗
E(G), δE

G) satisfies
E-crossed-product duality and, more generally, so does the dual coaction of G on an
E-crossed product B �α,E G for any action (B, G, α).

5. Slice proper coactions

Definition 5.1. A coaction (A, δ) is proper if

(A ⊗ 1)δ(A) ⊂ A ⊗ C∗(G), (5.1)

and is slice proper if

(ω ⊗ id) ◦ δ(A) ⊂ C∗(G) for all ω ∈ A∗. (5.2)
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Note that proper coactions are always slice proper since, by the Cohen–Hewitt factor-
ization theorem, every functional in A∗ can be expressed in the form ω · a, where

ω · a(b) = ω(ab) for ω ∈ A∗ and a, b ∈ A.

On the other hand, elementary examples show that a coaction can be slice proper without
being proper.

Just as every action of a compact group is proper (in the classical sense), every coaction
of a discrete group is proper, because then we in fact have δ(A) ⊂ A ⊗ C∗(G). In this
paper we will only require the weaker notion of slice properness. We intend to study
proper coactions more thoroughly in upcoming work.

Our primary interest in slice-proper coactions is the following weak* continuity
property.

Lemma 5.2. A coaction (A, δ) is slice proper if and only if for all a ∈ A the map
f �→ f · a is continuous from the weak* topology of B(G) to the weak topology of A.

Proof. First assume that δ is slice proper. Let fi → 0 weak* in B(G). We must show
that fi · a → 0 weakly in A, so we let ω ∈ A∗, and compute that

ω(fi · a) = ω((id⊗fi) ◦ δ(a)) = fi((ω ⊗ id) ◦ δ(a)) → 0

because (ω ⊗ id) ◦ δ(a) ∈ C∗(G) by hypothesis.
Conversely, if f �→ f · a is weak*-to-weakly continuous and fi → 0 weak* in B(G),

then for all ω ∈ A∗ we have

fi((ω ⊗ id) ◦ δ(a)) = ω(fi · a) → 0,

and so (ω ⊗ id) ◦ δ(a) ∈ C∗(G). �

The next result shows that slice properness is preserved by morphisms.

Proposition 5.3. Let φ : A → M(B) be a non-degenerate homomorphism that is
equivariant for coactions δ and ε. If δ is slice proper, then ε is also slice proper.

Proof. Let b ∈ B. We must show that (ω ⊗ id) ◦ ε(b) ∈ C∗(G) for all ω ∈ B∗, and it
suffices to do it for positive ω. We have

(ω ⊗ id) ◦ ε(b) ∈ M(C∗(G)),

so it suffices to show that for every ψ ∈ M(C∗(G))∗ that is in the annihilator of C∗(G)
we have

0 = ψ((ω ⊗ id) ◦ ε(b)) = (ω ⊗ ψ)(ε(b)).

Again, it suffices to do this for positive ψ. Since φ is non-degenerate, we can factor
b = φ(a∗)c with a ∈ A and c ∈ B. By the Cauchy–Schwarz inequality for positive
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functionals on C∗-algebras, we have

|(ω ⊗ ψ) ◦ ε(b)|2 = |(ω ⊗ ψ) ◦ ε(φ(a∗)c)|2

= |(ω ⊗ ψ)((φ ⊗ id) ◦ δ(a)∗ε(c))|2

� (ω ⊗ ψ)((φ ⊗ id) ◦ δ(a∗a))(ω ⊗ ψ)(ε(c∗c))

= ψ((φ∗(ω) ⊗ id) ◦ δ(a∗a))(ω ⊗ ψ)(ε(c∗c))

= 0

because (φ∗(ω) ⊗ id) ◦ δ(a∗a) ∈ C∗(G). �

6. Counterexamples

In [5, Example 5.4], Buss and Echterhoff give examples of coactions that are not
E-determined from their maximalizations for any large ideal E of B(G). In Theorem 6.10
we give related, but different, examples involving quotients of not necessarily maximal
coactions.

Definition 6.1. Let (A, δ) be a slice-proper coaction. For any small ideal J of A define

E(J) = Eδ(J) = {f ∈ B(G) : (x · f · y) · J = {0} for all x, y ∈ G}.

Remark 6.2. When δ is the dual coaction α̂ on an action crossed product B �α G,
we have a simpler definition:

E(J) = {f ∈ B(G) : f · J = {0}},

since the right-hand side is automatically G-invariant in this case. For x ∈ G, a ∈ J and
f ∈ B(G), if f · a = 0, then

(x · f) · a = (id⊗x · f)(α̂(a))

= (id⊗f)(α̂(a)(1 ⊗ x))

= (id⊗f)(α̂(a)(iG(x) ⊗ x))iG(x)−1

= (id⊗f)(α̂(aiG(x)))iG(x)−1

= 0

because J is an ideal of B �α G, and hence is an ideal of M(B �α G). This shows
left G-invariance, and similarly for right invariance. Note that we could have shown
invariance under slightly weaker hypotheses on the coaction (A, δ): it suffices to have,
for every x ∈ G, a unitary element ux ∈ M(A) such that δ(ux) = ux ⊗ x, or, for another
sufficient condition, when G is discrete it is enough that the coaction (A, δ) be determined
by a saturated Fell bundle A → G, i.e. A is the closed span of the fibres {Ax}x∈G of the
bundle, span{AxA∗

x} = Ae for all x ∈ G, and δ(ax) = ax ⊗ x for all ax ∈ Ax.

Question 6.3. For a slice-proper coaction (A, δ) and a small ideal J of A, is the set

{f ∈ B(G) : f · J = {0}}

G-invariant in B(G)? Presumably not, but we do not know of a counterexample.
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Lemma 6.4. For any slice-proper coaction (A, δ), Jδ and Eδ form a Galois correspon-
dence between the large ideals of B(G) and the small ideals of A.

Proof. We already know that if E is a large ideal of B(G), then J (E) is a small
ideal of A, so it suffices to show that if J is a small ideal of A, then E(J) is a non-zero
weak*-closed G-invariant ideal of B(G), because it is obvious that J and E are inclusion-
reversing, E(J (E)) ⊃ E and J (E(J)) ⊃ J . E(J) is obviously an ideal of B(G) and it is
G-invariant by definition. Since the coaction (A, δ) is slice proper, for every a ∈ A the
map f �→ f · a is weak*-to-weakly continuous by Lemma 5.2, so E(J) is weak* closed.
Since J ⊂ ker jA, we have

E(J) ⊃ E(ker jA) ⊃ Br(G),

so E(J) is non-zero. �

Example 6.5. In the case of the coaction (C∗(G), δG), we have

• J (E) = ⊥E,

• E(J) = J⊥,

• E(J (E)) = E,

• J (E(J)) = J .

Corollary 6.6. Let (A, δ) be a slice-proper coaction, let J be a small ideal of A and
let E be a large ideal of B(G). Suppose that E(J) = E(J (E)) and that J = J (E′) for
some large ideal E′. Then J = J (E).

Proof. This follows from the properties of Galois correspondences. �

Lemma 6.7. Let (A, δ) and (C, ε) be slice-proper coactions of G, let ϕ : A → M(C)
be a δ–ε equivariant non-degenerate homomorphism, let J be a small ideal of A and let
E be a large ideal of B(G). Then the following hold.

(i) The ideal
ϕ∗(J) := span{Cϕ(J)C}

of C is small.

(ii) ϕ∗(Jδ(E)) ⊂ Jε(E).

(iii) Suppose that

• ϕ is faithful,

• E(Jδ(E)) = E,

• C = span{Dϕ(A)} for a non-degenerate C∗-subalgebra D of M(C) such that
ε̄(d) = d ⊗ 1 for all d ∈ D, and

• ϕ∗(Jδ(E)) = Jε(E′) for some E′.

Then ϕ∗(Jδ(E)) = Jε(E).
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Remarks 6.8.

(1) Note that (iii) does not say that E′ = E, even when both are large ideals of
B(G). The hypotheses in (iii) might seem artificial, but we will see several naturally
occurring situations where they are all satisfied.

(2) Item (ii) can be used to show that the assignment (A, δ) �→ (AE , δE) can be parlayed
into a functor (as in [5, § 6]), but we have no need for this in the current paper.

Proof. (i) Let Q : A → A/J and let R : C → C/ϕ∗(J) be the quotient maps. The
hypotheses imply that J ⊂ ker R̄◦ϕ, so there is a homomorphism ψ making the diagram

A
ϕ ��

Q

��

M(C)

R̄

��
A/J

ψ
����� M(C/ϕ∗(J))

commute.
We must show that ϕ∗(J) ⊂ ker(R ⊗ id) ◦ ε, and it suffices to show that J ⊂ ker(R ⊗

id) ◦ ε̄ ◦ ϕ: for j ∈ J we have

(R ⊗ id) ◦ ε̄ ◦ ϕ(j) = (R ⊗ id) ◦ (ϕ ⊗ id) ◦ δ(j)

= (R̄ ◦ ϕ ⊗ id) ◦ δ(j)

= (ψ ◦ Q ⊗ id) ◦ δ(j)

= (ψ ⊗ id) ◦ (Q ⊗ id) ◦ δ(j)

= 0

because J ⊂ ker(Q ⊗ id) ◦ δ.
To see that ϕ∗(J) is small, we have

J ⊂ ker jA ⊂ ker(ϕ × G) ◦ jA = ker(jC) ◦ ϕ,

and it follows that
ϕ∗(J) ⊂ ker jC .

(ii) If a ∈ Jδ(E), then for all b, c ∈ C we have

(id⊗qE) ◦ ε(bϕ(a)c) = (id⊗qE) ◦ ε(b)(id⊗qE) ◦ ε̄ ◦ ϕ(a)(id⊗qE) ◦ ε(c) = 0

because

(id⊗qE) ◦ ε̄ ◦ ϕ(a) = (id⊗qE) ◦ (ϕ ⊗ id) ◦ δ(a)

= (ϕ ⊗ id) ◦ (id⊗qE) ◦ δ(a)

= (ϕ ⊗ id)(0).

Thus, bϕ(a)c ∈ Jε(E).
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(iii) By Corollary 6.6, it suffices to show that E(ϕ∗(Jδ(E))) = E(Jε(E)), and since E ⊂
E(Jε(E)), it furthermore suffices to show that E(ϕ∗(Jδ(E))) ⊂ E: if f ∈ E(ϕ∗(Jδ(E))),
then for all d, d′ ∈ D and a ∈ Jδ(E) we have

0 = f · (dϕ(a)d′)

= df · (ϕ(a))d′ (since ε̄ is trivial on D)

= dϕ(f · a)d′ (since ϕ is equivariant),

and hence f · a = 0 since ϕ is faithful and D is non-degenerate in M(C). Thus, f ∈
E(Jδ(E)) = E. �

Lemma 6.9. Let (A, δ) be a coaction, let E be a large ideal of B(G) such that
E(Jδ(E)) = E, let D be a C∗-algebra and let id⊗δ be the tensor-product coaction on
D ⊗ A. Then:

(i) the ideal D ⊗ Jδ(E) of D ⊗ A is small, and is contained in Jid ⊗δ(E);

(ii) if D ⊗ Jδ(E) = Jid ⊗δ(E′) for some large ideal E′, then D ⊗ Jδ(E) = Jid ⊗δ(E);

(iii) Jid ⊗δ(E) = ker(idD ⊗QE), where QE : A → AE is the quotient map, so D ⊗
Jδ(E) = Jid ⊗δ(E) if and only if the sequence

0 → D ⊗ Jδ(E) → D ⊗ A → D ⊗ AE → 0

is exact.

Proof. For the first two parts, we verify the hypotheses of Lemma 6.7, including those
of part (iii), with (C, ε) = (D ⊗ A, id⊗δ), ϕ = 1 ⊗ idA, and D in Lemma 6.7 replaced
by D ⊗ 1. The map 1 ⊗ idA : A → M(D ⊗ A) is δ–(id⊗δ) equivariant, non-degenerate
and faithful, D ⊗ A = span{(D ⊗ 1)(1 ⊗ A)}, D ⊗ 1 is a non-degenerate C∗-subalgebra
of M(D ⊗ A), and (id⊗δ)(d ⊗ 1) = d ⊗ 1 ⊗ 1 for all d ∈ D.

For (iii), note that

Jid ⊗δ(E) = ker(idD ⊗ idA ⊗qE) ◦ (idD ⊗δ).

Since
ker(idA ⊗qE) ◦ δ = Jδ(E) = kerQE ,

there is an injective homomorphism δ̃ making the diagram

D ⊗ A
id ⊗δ ��

id ⊗QE

��

D ⊗ A ⊗ C∗(G)

id ⊗ id ⊗qE

��
D ⊗ AE

id ⊗δ̃

������� D ⊗ A ⊗ C∗
E(G)

commute. Therefore, Jid ⊗δ(E) = ker(idD ⊗QE). �
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Theorem 6.10. Let G be non-amenable and residually finite (for example, F2) and
consider the tensor product coaction (C∗(G) ⊗ C∗(G), id⊗δG). Then the ideal C∗(G) ⊗
ker λ is small, but is not of the form J (E), and hence the associated quotient coaction
is not E-determined for any large ideal E of B(G).

Proof. By [3, Proposition 3.7.10], the sequence

0 → C∗(G) ⊗ ker λ → C∗(G) ⊗ C∗(G) → C∗(G) ⊗ C∗
r (G) → 0

is not exact. We have

ker λ = JδG
(Br(G)) and E(JδG

(Br(G))) = Br(G),

so the result follows from Corollary 6.9. �

Remarks 6.11.

(1) It follows from [14, Lemma 1.16 (a)] that the coaction (D⊗maxA, id ⊗̃δ) is maximal.
For the case (A, δ) = (C∗(G), δG), Buss and Echterhoff [5, Example 5.4] have shown
that whenever the canonical map D ⊗max C∗(G) → D ⊗ C∗(G) is not faithful, the
coaction (D ⊗C∗(G), id⊗δG) is not E-determined from its maximalization for any
large ideal E of B(G).

(2) Theorem 6.10 shows that the map J from large ideals of B(G) to small ideals
of A is not surjective in general. It is easy to see that J is also not injective in
general. For the most extreme source of examples of this, let δ be a coaction that is
both maximal and normal, and let G be non-amenable. Then {0} is the only small
ideal of A, but there can be many large ideals of B(G); indeed, it follows from a
result of [13] that B(Fn) has a continuum of such ideals whenever n � 2. See the
discussion preceding Proposition 8.4 for further discussion of this.

(3) Similarly to Corollary 6.9, if (B, α) is an action, then the ideal

(iG)∗(⊥E) = span{(B �α G)iG(⊥E)(B �α G)}

of B �α G is small, is contained in Jα̂(E), and is of the form Jα̂(E′) for some
coaction ideal E′ if and only if it in fact equals Jα̂(E). Since we have no application
of this result in mind, we omit the proof; it follows from Proposition 6.7 similarly
to Corollary 6.9. This result is not quite a generalization of Corollary 6.9 because
B �ι G ∼= B ⊗max C∗(G), not B ⊗ C∗(G) (where ι denotes the trivial action).

7. E-determined twice

Suppose that (A, δ) is a slice-proper maximal coaction for which every small ideal is of
the form J (E) for some large ideal E of B(G). Let J1 ⊂ J2 be two small ideals of A so
that by assumption we have Ji = Jδ(Ei) for some E1, E2. By our general theory, we can
assume without loss of generality that

Ei = E(Ji) := {f ∈ B(G) : (x · f · y) · Ji = {0} for all x, y ∈ G}.
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Then E1 ⊃ E2, and there exist

(i) coactions δi of G on the quotients Ai = A/Ji,

(ii) δ–δi equivariant surjections Qi : A → Ai, and

(iii) a δ1–δ2 equivariant surjection Q12 making the diagram

A
Q1 ��

Q2 ���
��

��
��

� A1

Q12

��
A2

commute.

Question 7.1. With the above notation, is the coaction (A2, δ2) E-determined from
(A1, δ1) for some large ideal E of B(G)? Equivalently, is the ideal kerQ12 of A1 of the
form Jδ1(E) for some E?

It seems difficult to answer Question 7.1; if we think that the answer is yes, then we
should presumably find an appropriate E. What could it be? Certainly it could not be
E1, because this has nothing to do with E2. On the other hand, in general it is not E2

either, as we will show in Proposition 8.2.

Notation 7.2. In the following lemma and corollary, we denote the weak*-closed span
of a subset S ⊂ B(G) by [S].

Lemma 7.3. With the above notation, for any large ideal E of B(G) we have

Jδ1(E) = Q1(Jδ([E1E])), (7.1)

ker Q12 = Q1(Jδ(E2)) ⊂ Jδ1(E2). (7.2)

Proof. For (7.1), since Q1 is a surjective linear map, it suffices to observe that for
a ∈ A we have

Q1(a) ∈ Jδ1(E) ⇐⇒ 0 = E · Q1(a) = Q1(E · a) (by equivariance)

⇐⇒ E · a ⊂ ker Q1 = Jδ(E1)

⇐⇒ 0 = E1 · E · a = [E1E] · a

⇐⇒ a ∈ Jδ([E1E]).

For (7.2), we first consider the equality: since Q1 is surjective and Q2 = Q12 ◦ Q1,

ker Q12 = Q1(ker Q2) = Q1(Jδ(E2)).

For the other part, as [E1E2] ⊂ E2, we have Jδ(E2) ⊂ Jδ([E1E2]), and so the inclusion
Q1(Jδ(E2)) ⊂ Jδ1(E2) now follows from (7.1) with E = E2. �
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Corollary 7.4. For a large ideal E of B(G), if E1E has weak* dense span in E2,
then ker Q12 = Jδ1(E), and hence the quotient (A2, δ2) of (A1, δ1) is E-determined from
(A1, δ1).

Proof. By Lemma 7.3, we have ker Q12 = Jδ1(E) if and only if Q1(Jδ(E2)) =
Q1(Jδ([E1E])). Since E1 contains both E2 and [E1E], and since the map J is inclusion-
reversing, we see that ker Q1 = Jδ(E1) is contained in both Jδ(E2) and Jδ([E1E]), and
hence Q1(Jδ(E2)) = Q1(Jδ([E1E])) if and only if Jδ(E2) = Jδ([E1E]). �

The above lemma leads us to another question.

Question 7.5. For large ideals E1 ⊃ E2 of B(G), does there exist a large ideal E of
B(G) such that E1E has weak* dense span in E2?

By Corollary 7.4, an affirmative answer to Question 7.5 would imply one for Ques-
tion 7.1.

Note that, even with all our restrictions on the ideals E, the map J from the large
ideals of B(G) to the small ideals of A is not injective, and so we are led to suspect that
the converse of Corollary 7.4 does not hold. That being said, let us consider the special
case (A, δ) = (C∗(G), δG). Since for this maximal coaction the map J from large ideals
of B(G) to small ideals is injective (is bijective, in fact), we can draw as a conclusion the
following corollary.

Corollary 7.6. With the above notation, the quotient (C∗
E2

(G), δE2
G ) of (C∗

E1
(G), δE1

G )
is E-determined from (C∗

E1
(G), δE1

G ) if and only if E1E has weak* dense span in E2.

It is interesting to consider the special case E = E1 = E2, since it makes a connection
with the C∗-bialgebra structure.

But first, another definition.

Definition 7.7. A coaction (A, δ) is E-normal if (id⊗qE) ◦ δ is faithful.

Example 7.8. A coaction is normal in the usual sense if and only if it is Br(G)-normal
in the above sense. At the other extreme, every coaction is B(G)-normal, because qB(G)

is the identity map. Note that every normal coaction is Br(G)-determined from its max-
imalization, and every maximal coaction is B(G)-determined from itself. However, we
will show in Proposition 8.4 that in general a coaction that is E-determined from its
maximalization need not be E-normal.

Recall that the ‘canonical’ comultiplication ΔE
G on C∗

E(G) is defined as the unique
homomorphism making the diagram

C∗
E(G)

δE
G ��

ΔE
G ��������������

M(C∗
E(G) ⊗ C∗(G))

id ⊗qE

��
M(C∗

E(G) ⊗ C∗
E(G))

commute.
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Corollary 7.9. If E is a large ideal of B(G), then the following are equivalent:

(i) (C∗
E(G), δE

G) is E-determined from (C∗
E(G), δE

G);

(ii) E2 has weak* dense span in E;

(iii) the canonical comultiplication ΔE
G on C∗

E(G) is faithful;

(iv) (C∗
E(G), δE

G) is E-normal in the sense of Definition 7.7.

Proof. (i)⇐⇒ (ii) by Corollary 7.6 with E = E1 = E2. Since E is the dual of C∗
E(G),

E2 has weak* dense span in E if and only if the preannihilator ⊥(E2) in C∗
E(G) is {0};

equivalently, there is no non-zero c ∈ C∗
E(G) with (fg)(c) = 0 for all f, g ∈ E. Since

(fg)(c) = (f ⊗ g) ◦ ΔE
G(c) for f, g ∈ E

and the elementary tensors f ⊗g separate points in C∗
E(G)⊗C∗

E(G), we conclude (ii)⇐⇒
(iii). Finally, (iii)⇐⇒ (iv) follows immediately from the definition of E-normality. �

8. Lp

In this section we illustrate the preceding discussion in the case of ideals of B(G) deter-
mined by the Lp spaces. Note that for 1 � p < ∞ the intersection Lp(G) ∩ B(G) is a
G-invariant ideal of B(G).

Definition 8.1. For 1 � p < ∞ we let Ep = Ep(G) denote the weak* closure of
Lp(G) ∩ B(G).

Since Lp(G)∩B(G) is a G-invariant ideal of B(G), so is Ep. Since Cc(G) ⊂ Lp(G), Ep

contains Cc(G) ∩ B(G), so Ep is a large ideal of B(G), i.e. contains Br(G).
Consider the maximal coaction (C∗(G), δG). Our general theory shows that every large

quotient coaction of (C∗(G), δG) is E-determined for some large ideal E of B(G). We
do not know the answer to Question 7.1 even in this setting, but we can at least obtain
some information when we restrict the ideals of B(G) to be of the form Ep.

Proposition 8.2. Let ∞ > p > q � 1 so that Ep ⊃ Eq, where the ideals Ep are
defined in Definition 8.1. Then the weak* closed span of EpEr is contained in Eq, where

1
r

+
1
p

=
1
q
.

Proof. Since multiplication in B(G) is separately weak* continuous, it suffices to
observe that, by a routine application of Hölder’s inequality,

Lp(G)Lr(G) ⊂ Lq(G).

�

Remark 8.3. We cannot conclude from the above proof that EpEr has weak* dense
span in Eq, because we cannot take roots in B(G); more precisely, we do not see how to
prove that the span of EpEr in B(G) is weak* dense in Eq.
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It has been attributed to independent work of Higson, Ozawa and Okayasu (see [3,
Remark 4.5] and [13, Corollary 3.7]) that (in our notation) for 2 � d < ∞ and ∞ > p >

q � 2 the canonical quotient map of C∗
Ep

(Fd) onto C∗
Eq

(Fd) is not faithful; equivalently,
Ep �= Eq. On the other hand, [3, Proposition 2.11] (see also [11, Proposition 4.2]) implies
that Ep = Eq for all 2 � p > q � 1. This leads to the following proposition.

Proposition 8.4. For 2 � d < ∞ and ∞ > p > 2, the canonical comultiplication ΔEp

Fd

on C∗
Ep

(Fd) is not faithful, and the coaction (C∗
Ep

(Fd), δ
Ep

Fd
), although it is Ep-determined

from its maximalization, is not Ep-normal in the sense of Definition 7.7.

Proof. It follows from Proposition 8.2 that the weak*-closed span of E2
p is contained

in Ep/2, and hence is different from Ep by the discussion preceding Corollary 8.4. Thus,
the result follows from Corollary 7.9. �

Question 8.5. The above discussion of the conditions listed in Corollary 7.9 as they
relate to the ideals Ep(G) should be carried out for some other well-known large ideals
of B(G), namely, the weak* closure E0(G) of C0(G) ∩ B(G) and the ideal E orthogonal
to the almost periodic functions AP(G) (see [11, Remark 4.3 (3)]). For example, it would
be interesting to know whether, in each of these cases, the square of the ideal is weak*
dense in the ideal itself.
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