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Abstract

We perform an analysis of the potential time inhomogeneity in the dependence between
multiple financial time series. To this end, we use the framework of copula theory and
tackle the question of whether dependencies in such a case can be assumed constant
throughout time or rather have to be modeled in a time-inhomogeneous way. We focus
on parametric copula models and suitable inference techniques in the context of a special
copula-based multivariate time series model. A recent result due to Chan et al. (2009) is
used to derive the joint limiting distribution of local maximum-likelihood estimators on
overlapping samples. By restricting the overlap to be fixed, we establish the limiting law
of the maximum of the estimator series. Based on the limiting distributions, we develop
statistical homogeneity tests, and investigate their local power properties. A Monte Carlo
simulation study demonstrates that bootstrapped variance estimates are needed in finite
samples. Empirical analyses on real-world financial data finally confirm that time-varying
parameters are an exception rather than the rule.
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1. Introduction

Our epigraph ‘copulas form a most useful concept for a lot of applied modeling […]’ is
part of a citation in [16, p. 13] in support of a historical perspective when applying copulas.
Recent textbooks such as [9], [27], and [28] contain theoretical background and a multitude
of examples for applications supporting this view. Also, [32] contains a recent overview with
an exhaustive list of references. We are interested in the dependency of multivariate time
series and in particular in possible changes in the dependency structure. In the spirit of [16,
p. 13] we develop our methodology based on some well-known and well-studied mathematical
concepts, while focusing on suitable inference techniques in the context of a special copula-
based multivariate time series model.

Owing to its special structure, the semiparametric copula-based multivariate dynamic
(SCOMDY) model due to [6] directly retains many findings presented in the univariate case.
Although there are more general approaches for multivariate heteroscedasticity, we decided
in favor of the SCOMDY model due to its parsimonious parametrization and its statistical
tractability. In particular, we were able to derive the tail behavior of the finite-dimensional
distribution of the SCOMDY model by embedding it into a class of multivariate models for
which the behavior was recently shown in [17]. A possible time-varying dependence structure
is captured by the parameter of the underlying copula family in the SCOMDY model. Time-
dependent copula models have been used in [8] for analysing equity markets. For multivariate
time series, Bücher et al. [4] developed tests on local nonparametric copula estimates, but
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strong mixing was assumed. For an overview on goodness-of-fit tests for copulas and further
references, we refer the reader to [21].

In Section 2 we start by defining a series of local estimators on overlapping subsamples of
length b = o(T ), and in Section 2.2 we derive the basic joint distributional results as the overall
observation horizon T tends to ∞. Section 3 contains our original contribution in pursuit
of the objective to detect inhomogeneities in the dependence in multivariate time series. In
Section 3.1 a binomial test based on independent subsamples is constructed. We discuss the
notion of statistical size and local power in detail, and show that the binomial test has local
power of order

√
b. The extremal test presented in Section 3.2 is based on subsamples that

overlap by a certain fixed amount of observations. The considerations concerning its local
power of order

√
b log (T /b) entail an extreme-value limit result for asymptotically normal

random variables. A third test that uses the whole of the moving-window estimators and has
local power of order

√
T is presented in Section 4.4 of [30]. A summary of the advantages and

drawbacks of the different homogeneity tests concludes Section 3.
In Section 4 we apply the binomial and extremal tests to real-world financial data. We find

that inhomogeneities in the dependence structure arise with unusual market events and can be
remedied by careful univariate modeling. This is in accordance with the general perception
that changes in the dependency are an exception rather than the rule, and stem from extreme
economic events. In most cases a copula that is constant throughout time is sufficient to capture
the dependence among the components of a multivariate time series model, and there is no
gain in choosing a more complicated and statistically unhandy model with time-varying copula
parameters.

2. The SCOMDY model and its estimators

2.1. Definition of the SCOMDY model

We now define a multivariate time series model which is linked to copula theory. As we
cannot provide every technical detail here, we have to refer on several occasions to [30]. The
model was first introduced in [7], and subsequently used for further statistical developments,
such as value-at-risk calculations in financial portfolios in [25] or local change-point tests of
the copula parameter in [22], among others.

Definition 1. Let {Yt }t≥1 be a vector-valued process such that Yt = �
1/2
t εt with vector-valued

residuals εt = (ε1t , . . . , εdt ) and conditional covariance matrices �t = (σ 2
ij t )i,j=1,...,d .

(i) Let �t = diag(σ 2
1t , . . . , σ

2
dt ) be such that, for every j = 1, …, d, the following univariate

GARCH(p, q) specification holds:

σ 2
j t = αj0 +

p∑
i=1

αjiY
2
j,t−i +

q∑
k=1

βjkσ
2
j,t−k.

Here γj = (αj0, αj1, . . . , αjp, βj1, . . . , βjq) ∈ (0, ∞) × [0, ∞)p+q . Furthermore, let
εt , t ≥ 1, be independent and identically distributed (i.i.d.) according to a d-variate
distribution with distribution function H = C(F1, . . . , Fd; θ), where F1, . . . , Fd are
arbitrary marginal distributions and C(·; θ) belongs to a parametric copula family with
parameter θ ∈ � ⊆ R. Let E(εt ) = 0 and cov εt = Rt = (rij t )i,j=1,...,d such that the
variables are normalized, i.e. for all i = 1, . . . , d,

riit = var εit = 1. (1)
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(ii) Let γ̃j be the quasi-maximum-likelihood estimator defined using finite sums (see [30,
Section 3.1]), and let ε̃j t = Yjt/σ̃j t be the empirical residuals in every component j =
1, . . . , d. With ν = ν(T ) being an offset, set

Ũj t = 1

T − ν + 1

T∑
s=ν

1{ε̃js≤ε̃j t }, (2)

and consider Ũt = (Ũ1t , . . . , Ũdt ) for t = ν, . . . , T as a pseudo-sample from the copula.
As an estimator for the copula parameter θ , consider

θ̂ = argmax
θ∈�

1

T − ν + 1

T∑
t=ν

log c(Ũ1t , . . . , Ũdt ; θ), (3)

a canonical maximum-likelihood estimator offset by ν.

The process {Yt }t≥1 with the time series specification in (i) and the estimation procedure
described in (ii) is called a SCOMDY model.

Remark 1. In Definition 1(i) the parameter of the copula family is univariate so that the testing
procedures can be applied immediately—in case of a multidimensional parameter space, i.e.
θ ∈ � ⊆ R

d with d ≥ 1, joint confidence areas have to be constructed. As usual, the sizes of
the marginal tests have to be adjusted in such a way that the overall size of the multiple tests
meets the theoretical size.

Remark 2. Note that the residuals εt are no longer white noise with identity covariance matrix,
but i.i.d. random vectors with mean zero and covariance matrix R which corresponds to the
correlation matrix, due to (1). Apart from a different covariance matrix, all white noise prop-
erties are preserved, so that we denote the residual process by εt ∼ WN(0, R). Condition (1)
is required for identifiability of the parameters in the univariate GARCH(p, q) models and
can be implemented into the SCOMDY model by re-scaling the components by the respective
variances. For this, consider ε∗

t = (ε∗
1t , . . . , ε

∗
dt ) ∼ H ∗ = C∗(F ∗

1 , . . . , F ∗
d ) with var ε∗

j t = vj ,

and set εt = (ε∗
1t /v1, . . . , ε

∗
dt /vd). Then the joint distribution for all (x1, . . . , xd) ∈ R

d is

H(x1, . . . , xd) = H ∗(F ∗
1 (v1x1), . . . , F

∗
d (vdxd)),

and the marginal distributions and their (generalized) inverses for all xj , yj ∈ R, j = 1, . . . , d,
are

F(xj ) = F ∗
j (vj xj ) and F−

j (yj ) = F ∗
j

−(yj )

vj

.

Owing to the invariance principle (scaling invariance), the copula of the distribution of εt is
the same as that of ε∗

t , namely C. This implies that restricting the matrix R to have a unit
diagonal is merely a condition on the marginal distributions (which can easily be accomplished
by re-scaling), and does not impinge on the freedom of choice as to the desired copula.

Remark 3. There are various dependencies in the data (2). First, Ũj t and Ũj,t+h are dependent
for 0 < h < ν, but we take care of that below. That we use pseudo data causes dependencies
and distortion as described in [15]. So the size of the Rosenblatt transformation test does not
correspond to the theoretical size. We are estimating parameters and this is there reflected
by a larger asymptotic variance than with copula data (see [20]), but we still have asymptotic
normality and that is what we need.
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Consistency and an asymptotic normality result due to [6] can be shown. We re-state the
respective theorems in Theorem 1 below; the precise prerequisites and notation can be found
in the appendix of [30], which we silently assume to hold in the sequel. Furthermore, for
x = (x1, . . . , xd) and y = (y1, . . . , yd), let the real-valued Gaussian process U(x) with
EU(x) = 0 and E(U(x)U(y)) = ∏{xi ∧ yi} − ∏

xiyi be given.

Theorem 1. Let {Yt }t≥1 and θ̂ be given as in Definition 1.

(i) Suppose that ν(T )/T → 0 as T → ∞. Then, as T → ∞, we have weak consistency of
θ̂ , i.e.

θ̂
P−→ θ.

(ii) If, as T → ∞, we have ν(T )/ log T → ∞ and ν(T )/T → 0, then
√

T (θ̂ − θ) converges
in distribution to Z distributed as

−
−1(θ)

{ ∫
δ(T −

d (x1, . . . , xd); θ) dU(x1, . . . , xd)

+
d∑

j=1

∫
δj (x1, . . . , xd; θ)U((1, . . . , 1, xj , 1, . . . , 1)�)

× c(x1, . . . , xd; θ) dx1 · · · dxd

}
,

where 
(θ), δj , and Td are given by


(θ) =
(

E

(
∂2

∂θi∂θj

log c(F1(ε1), . . . , Fd(εd); θ)

))
i,j=1,...,m

,

δj (u1, . . . , ud; θ) = ∂

∂uj

c(u1, . . . , ud; θ), (4)

Tj (u1, . . . , uj ) = (C1(u1), C2(u2 | u1), . . . , C(uj | u1, . . . , uj−1)). (5)

Despite the necessity to fall back on bootstrapping as an auxiliary variance estimation, the
SCOMDY model is our model of choice and we assume for all further considerations that we
work on the residual vectors ε̃t . The model is numerically tractable in the sense that quasi-
maximum likelihood for the GARCH parameters and canonical maximum likelihood for the
copula parameters are well established and available in many statistical software implementa-
tions. As the evolution in the single components depends only on the respective component
itself, the stationarity conditions for univariate GARCH(p, q) models transfer directly to the
marginal conditional variance models in SCOMDY. The same is true for the asymptotic results
with respect to the quasi-maximum-likelihood estimators for the respective parameter sets.
As to the finite-dimensional distributions, the SCOMDY model embeds itself in the class
of constant-conditional-correlation GARCH(p, q) models, and therefore the heavy-tailedness
result of [17] transfers across. There the authors showed in Theorem 5 that stationarity and
heavy tailedness of multivariate constant-conditional-correlation GARCH(p, q) models are
guaranteed by analogous assumptions as in the univariate case. A proof can be found in [30,
Theorem 3.1.5] which develops the arguments along the lines of [29, Theorem 2.1].

Assume that Y1, . . . ,YT , T ≥ 1, is a finite sample coming from a SCOMDY process
{Yt }t≥1 as given in Definition 1(i). According to Definition 1(ii), we obtain the empirical resid-
uals ε̃1, . . . , ε̃T as pseudo-realizations of the residual distribution H , and pseudo-realizations
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Ũ1, . . . , ŨT of the copula Cθ through a probability integral transform in every component of
the vectors. As we aim at testing for homogeneity of the copula parameter throughout time,
consider, for the moment,

Ũt ∼ Cθt ,

where θt is the present parameter for every point in time t = 1, . . . , T . For an arbitrary θ0 ∈ �,
the pair of hypotheses we want to test is then

H
∗
0 : {θt ≡ θ0 for all t} versus H

∗
A : {there exists t : θt �= θ0}. (6)

We address this task nonparametrically through a purely data-driven approach in Section 2.2.
Based on the resulting estimators and their asymptotic distribution, three different tests will
be constructed and analyzed with respect to their ability to detect actual deviations from
the homogeneity hypotheses. In Section 3.1 we present a binomial multiple test based on
independent subsamples of the given data, and in Section 3.2 we examine whether the extremes
of a parameter series based on overlapping subsamples exceed certain confidence levels.

2.2. Moving window estimators

In order to assess θt for 1 ≤ t ≤ T , we define maximum-likelihood estimators on certain
subsamples of a bandwidth b in the following.

Definition 2. Let Ũ1, . . . , ŨT , T ≥ 1, be pseudo-realizations of a parametric copula Cθ

according to Definition 1(ii). With a bandwidth 1 ≤ b = b(T ) ≤ T , the local or moving-
window maximum-likelihood estimator θ̂t of θ for every t = b, . . . , T is defined by

θ̂t = argmax
θ∈�

t∑
s=t−b+1

log c(Ũ1s , . . . , Ũds; θ). (7)

In the following proposition the consistency and asymptotical normality result for the copula
estimators in the SCOMDY model are transferred to the local estimators θ̂t in terms of the
bandwidth b = b(T ).

Proposition 1. Under the conditions of Theorem 1, and under the assumption that b = b(T )

is chosen such that b → ∞ and b/T → 0 as T → ∞, in shorthand notation denoted by
b = o(T ), the following statements hold as T → ∞.

(i) θ̂t
P−→ θ .

(ii)
√

b(θ̂t − θ)
D−→ N (0, 
), where 
 is the asymptotic variance in canonical maximum-

likelihood estimation as in [20].

Proof. Statements (i) and (ii) correspond to Theorem 1(i) and (ii), respectively. By imposing
the condition b = o(T ) (T → ∞) on the bandwidth b, the respective offset conditions on ν

are fulfilled. �

Now we consider the joint limiting distribution of (two) moving window estimators and
show that the covariance structure is nondegenerate if the overlap of the subsamples, which
the respective estimators are based on, is asymptotically constant. For points in time 1 ≤ s <

t ≤ T , consider θ̂t and θ̂s based on subsamples of bandwidth b according to (7). Their lag is
defined as l := |s − t |, whereas the overlap of the subjacent subsamples is b − l.
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Proposition 2. Let 1 ≤ s, t ≤ T , and let θ̂t and θ̂s be the respective moving-window estimators.
Let 1 ≤ l := |s − t | < b(T ) be such that l/b(T ) → μl ∈ (0,1) as T → ∞. Under the
conditions of Theorem 1, the following joint limiting law holds:

√
b((θ̂s , θ̂t )

� − (θ, θ)�)
D−→ N (0, 
M̄)

with matrix

M̄ =
(

1 1 − μl

1 − μl 1

)

and 
 the scalar variance as in [20].

Proof. The proof can be done by first-order Taylor expansion of the log-likelihood and the
classical central limit theorem (for details, see Proposition 4.1.3 of [30]). �

The moving-window estimators θ̂t are defined for all t = b, . . . , T and a given realization
Y1, . . . ,YT of a SCOMDY model. For the subsequent sections, we will regard the estimators
as an estimator time series, and proceed in testing the null hypothesis (6) depending on the
index set for the times t . To this end, consider the following definitions.

Definition 3. Let a SCOMDY sample of size T ≥ 1 and the respective moving-window estima-
tors θ̂t with bandwidth b = b(T ) and for all t = b, . . . , T be given. Consider the thinning con-
stant c ∈ [1/b, 1] and the series length n(c) = �(T − b)/(cb)�, where �x� := max{k ∈ Z : k ≤
x} for all x ∈ R. Set the index set as I (c) := {tk = �T − (n(c) − k)cb� : k = 1, . . . , n(c)} and
consider the estimator series {θ̂t }t∈I (c) .

(i) For c = 1, {θ̂t }t∈I (c) is called the independent estimator series. In particular, we set
n := n(1) = �(T − b)/b� and θ̂k := θ̂tk for all tk = T − (n − k)b, k = 1, . . . , n.

(ii) For fixed c with 1/b < c < 1, the estimator series {θ̂t }t∈I (c) is called thinned.

(iii) For c = c(b) = 1/b, we refer to {θ̂t }t∈I (c) as the full estimator series. In this case,
we stress the dependence on the bandwidth by writing n(b) := n(1/b) = T − b and
tk(b) = t

(1/b)
k = k + b.

Along with this three-step definition, we proceed in Section 3.1 by presenting a suitable
approach to test for parameter homogeneity in the independent estimator series.

3. Homogeneity tests

3.1. Binomial test

Let θ̂1, . . . , θ̂n be an independent estimator series as in Definition 3(i). The general null
hypothesis is replaced by a first approximation in order to take advantage of the independence
of the individual estimators θ̂k . We aim at testing

H0 : {θt1 = · · · = θtn = θ0 : tk = T −(n−k)b} versus HA : {there exists tk : θtk �= θ0}. (8)

We clarify the notation and the statistical concepts for one individual estimator in Section 3.1.1.
In Section 3.1.2 we perform a multiple simultaneous test of the partial null hypotheses to arrive
at the hypothesis given in (8).
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3.1.1. Partial tests. Consider an arbitrary k = 1, . . . , n, and set θ̂ = θ̂k as well as θ = θtk in
the following. Furthermore, consider 
 as the asymptotic variance in canonical maximum-
likelihood estimation given in [20]. Note that the copula parameter estimator θ̂ is determined
locally on subsamples preceding the point in time tk . The asymptotically normal test statistic

Tb :=
√

b(θ̂ − θ0)√



D−→ N (0,1) (9)

for b(T ) → ∞ (T → ∞) can be constructed to test the partial null hypothesis H0 : {θ = θ0}. In
applications θ0 is replaced by the global estimate θ̂ (see (3)) without disturbing the asymptotic
results below since

√
b(θ̂ − θ0)

P−→ 0 as T → ∞ under the null hypotheses.
As noted in [26, p. 433], local power considerations for a given test have to be conducted

in every special case of test statistic, asymptotic distribution, and alternative hypothesis. Sub-
sequently, we elaborate the definitions in terms of the test statistic Tb given in (9) and the
partial null hypothesis H0 : {θ = θ0}. For the power calculations, we consider a fixed and a
local alternative hypothesis. On the one hand, we have HA(η) : {θ = θ(η) = θ0 + η} as the
fixed alternative; on the other hand, we have H̄A(η) : {θ = θb(η) = θ0 + η/

√
b} as the local

alternative. Both can be regarded as one sided if η > 0 or η < 0, respectively, and as two sided
if η �= 0.

For the one-sided alternatives, H0 is rejected to the significance level α ∈ (0,1) if Tb > qα

or Tb < q−α , whereas, for the two-sided alternative, rejection occurs if |Tb| > qα/2. Here we
denote by qα the (1 − α)-quantile of the standard normal distribution, i.e. P(Z ≤ qα) = 1 − α

for Z ∼ N (0,1). For the critical region K , this implies that

K(η) =

⎧⎪⎨
⎪⎩

(qα, ∞) for η > 0,

(−∞, −qα) for η < 0,

(−∞, −qα/2) ∪ (qα/2, ∞) for η �= 0.

Depending on whether the alternative is local or fixed, we derive the power of both the one-
and the two-sided tests in the following lemma. Without loss of generality, we assume that
θ0 = 0 and 
 = 1 for notational ease. The results remain unchanged under general θ0 ∈ �

and 
 > 0.

Lemma 1. By setting the null hypothesis as H0 : {θ = 0}, we obtain the fixed alternative
HA(η) : {θ = η} and the local alternative H̄A(η) : {θ = η/

√
b}.

(i) Let the sample size b ≥ 1 be fixed and η ∈ R. Then, for γb(η) = PHA(η)(Tb ∈ K(η)),
we have

PHA(η)(Tb ∈ K(η)) = (1 + o(1))

⎧⎪⎨
⎪⎩

1 − �(qα − √
bη), η > 0,

�(−qα − √
bη), η < 0,

1 − �(qα/2 − √
bη) + �(−qα/2 − √

bη), η �= 0.

Note that the asymptotic equality of the left- and right-hand sides is with respect to
b → ∞.

(ii) For η ∈ R, we asymptotically have

γ̄ (η) = lim
b→∞ PH̄A(η)(Tb ∈ K(η)) =

⎧⎪⎨
⎪⎩

1 − �(qα − η), η > 0,

�(−qα − η), η < 0,

1 − �(qα/2 − η) + �(−qα/2 − η), η �= 0,
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where � is the distribution function of the standard normal law and PHA
denotes probability

under the (alternative) hypothesis HA.

The proof is obvious by plugging the (local) alternatives into γb(η) and γ̄ (η) respectively
(see Lemma 4.2.2 of [30]). Note that, for the fixed alternative, we consider γb, i.e. the power of
the test depending on the sample size b. For b → ∞, we have γb(η) → 1 for any η in either the
one-sided or two-sided testing case. The advantage of local alternatives becomes apparent here
as the power γ̄ is independent of the sample size and the limit for b → ∞ can be established
right away.

Furthermore, we see that γ (0) = α and γ (η) > α if η �= 0. Consequently, the following
theorem formally shows that the test is unbiased, which in the case of the local alternative can
be used for a result concerning the local power and its order.

Theorem 2. Let γb(η) and γ̄ (η) be given as in Lemma 1(i) and (ii), i.e. the fixed and local
power of the test to the level α ∈ (0,1) of H0 : {θ = 0} against HA(η) : {θ = η} and
H̄A(η) : {θ = η/

√
b}, respectively. Then we have, for η �= 0,

γb(η) > α and γ̄ (η) > α,

i.e. the test is asymptotically unbiased against both alternatives HA and H̄A. Furthermore, the
test against H̄A has local power of order

√
b.

We have shown that the asymptotically normal test statistic Tb based on an estimator θ̂ for
the copula parameter θ on a subsample of size b is suitable to test H0 : {θ = θ0}. The test against
the local alternative H̄A(η) : {θ = θb(η) = θ0 + η/

√
b} has been shown to have local power of

order
√

b. We now take advantage of the fact that the estimators θ̂1, . . . , θ̂n as in Definition 3(i)
are established on subsamples that do not overlap, i.e. are independent, to construct a multiple
test.

3.1.2. Multiple test. Our aim is to simultaneously test the following pairs of hypotheses:

H0k : {θtk = θ0} versus H̄Ak(η) : {θtk = θb(η)}
for all tk = T −(n−k)b, n = �(T −b)/b�. This notation also implies that we limit the following
considerations to the local alternatives θb(t) = θ0 + η/

√
b, η �= 0. For every k = 1, . . . , n,

construct the partial test statistics

Tbk :=
√

b(θ̂k − θ0)√



.

Consider the random variables Yk = 1{Tbk∈K(η)} that indicate whether the kth partial test rejects
the null hypothesis H0k to the level α ∈ (0,1). Summing them up, we obtain

Sn =
n∑

k=1

Yk ∼ Bin(n, α) (10)

under the null hypothesis of parameter constancy. Note that, since the partial tests are asymp-
totical tests, the size of the above binomial distribution is only approximately α. The binomial
test statistic Sn is now suitable to test the simultaneous null hypothesis H0 = ⋂n

k=1 H0k of all
the partial null hypotheses being true. The alternatives might range from one false hypothesis
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up to all hypotheses being false. Formally, we specify the alternative hypothesis for 1 ≤ m ≤ n

by HA,m(η) = ⋂m
k=1 H̄Ak(η) ∩ ⋂n

k=m+1 H0k , that is,

HA,m(η) : {θtk = θb(η) for k ≤ m, θtk = θ0 for k > m}.
Note that in this setup all the partial alternatives have to be of the same absolute value with
respect to η.

The null hypothesis H0 is rejected to the significance level α∗ ∈ (0,1) if Sn > cα∗ , where
cα∗ is the (1 − α∗)-quantile of the binomial distribution with size n and probability α. The
critical region has the form K = {cα∗ +1, cα∗ +2, . . . , n}. Note that, with fixed α, α∗ ∈ (0, 1),
the rejection probability under the null hypothesis H0 is in general

PH0(Sn > cα∗) =
n∑

j=cα∗+1

(
n

j

)
αj (1 − α)n−j ≤ α∗, (11)

i.e. the size of the test is less than the desired significance level α∗ most of the time. This is
usually the case when the distribution of the test statistic is discrete. In order to actually attain
the proper size, binomial tests of such kind have to be randomized. The existence of p in the
following modification of the sample function ϕ is due to the fundamental lemma of Neyman
and Pearson (see Theorem 3.2.1 of [26]). The lemma basically states that, for every given
significance level α ∈ (0, 1), a test that exactly attains this level can be constructed.

Definition 4. Let the pair of hypotheses H0 versus HA and the significance level α ∈ (0, 1) be
given. Denote by ∂K the boundary of the respective critical region K and by K̄ its closure,
and set

ϕ̃(x1, . . . , xb) =

⎧⎪⎨
⎪⎩

1, (x1, . . . , xb) ∈ K,

R, (x1, . . . , xb) ∈ ∂K,

0, (x1, . . . , xb) /∈ K̄,

where R ∼ Bin(1, p), and the value p ∈ (0,1) can be chosen such that PH0(ϕ̃ = 1) = α and
PHA

(ϕ̃ = 0) ≥ α. This test is called a randomized test to the level α.

In the case of the binomial test statistic Sn in (10) we set

ϕ̃(s) =

⎧⎪⎨
⎪⎩

1, cα∗ ≤ s − 1,

R, s − 1 < cα∗ ≤ s,

0, s < cα∗ ,

for a realization 0 ≤ s ≤ n of S ∼ Bin(n, α), and choose p ∈ (0,1) such that

1 · P(S ≥ cα∗ + 1) + p · P(S = cα∗) = α∗, (12)

i.e. p = (α∗ − P(S ≥ cα∗ + 1))/P(S = cα∗). Practically, we sample r from R ∼ Bin(1, p)

whenever the specific realization s of Sn is equal to cα∗ , and reject H0 if s + r = cα∗ + 1.
It is highly recommended to avoid randomized tests, as the outcome for a specific sample

with a fixed significance level is not deterministic, and hence not reproducible (see [26, p. 75]).
Since we sum over integer-valued j in (11), it is possible to fix κ := cα∗ + 1 ∈ N and then
solve

n∑
j=κ

(
n

j

)
αj (1 − α)n−j = α∗ (13)
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for the partial level α ∈ (0,1). With this α, it holds that κ − 1 = cα∗ and that

PH0(Sn > cα∗) = α∗.

No clear advice can be given on how to choose κ . Its choice depends very much on the number
n of partial hypotheses and on the alternative. We discuss this further at the end of this section.
Formula (13) is also given in [35] (note that there is an error in the lower bound of the second
sum due to a misprint of 1 for l = n − m). The authors compared the binomial multiple test to
other testing procedures for multiple comparisons, such as the [33] or the [18] test.

Now we turn to the local power PHA,m(η)(Sn > cα∗) of the multiple test and show that the
local power of order

√
b transfers to the multiple test regardless of the number m of false partial

alternatives.

Theorem 3. The binomial test Sn > cα∗ against the alternative HA,m(η) is asymptotically
unbiased for η �= 0, and, thus, has local power of order

√
b for all m = 1, . . . , n.

For the proof, see [30].
Summarizing, we have constructed a multiple binomial test with proper size and local power

of order
√

b. The multiple null hypothesis is composed of n independent partial null hypotheses
and is rejected when there are at least κ partial rejections. We are free to choose 1 ≤ κ ≤ �n/2�,
and arrive at a test that attains the significance level α∗ under the null hypothesis. In order to
maximize the local power, we should take into account the number of false partial hypotheses
in our choice of κ .

In the next subsection we turn to another approximation of the global null hypothesis given
in (6) that allows us to test against a more general alternative. The test we construct makes
use of a greater portion of the estimator series {θ̂t } by allowing the underlying subsamples to
overlap.

3.2. Extremal test

The null hypothesis H
∗
0 : {θt ≡ θ0 for all t} means that the copula parameter is constant

for all points in time t . A consequence of this is that in particular maxt θt = θ0. Thus, we
subsequently test the following hypothesis and its one-sided alternative:

H
′
0 :

{
max

t
θt = θ0

}
versus H

′
A :

{
max

t
θt > θ0

}
(14)

for an arbitrary θ0 ∈ �. As the basis for our test statistic, consider a fixed constant c with 1/b <

c < 1 and the thinned estimator series {θ̂tk } for tk = T − (n(c) − k)cb, k = 1, . . . , n(c) =
�(T − b)/cb� (cf. Definition 3(ii)).

For notational convenience, we use a centered and scaled version of θ̂tk for all k = 1, . . . , n(c)

such that, under H
∗
0, we have

ξk := √
b(θ̂tk − θ0)

D−→ N (0, 
) as b → ∞

due to Proposition 1(ii).
In order to test the pair of hypotheses in (14), a test statistic based on the vector ξ =

(ξ1, . . . , ξn(c) ) is suitable. For assessing the statistic’s distribution, we first need the joint
distribution of the vector ξ , and secondly, extreme value theory for asymptotically normal
variables.
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3.2.1. Multivariate central limit theorem. We trace back the structure of ξ = (ξ1, . . . , ξn(c) ) to
the summands in the likelihood estimation, and then establish its asymptotic distribution. To
this end, we work on a random quantity Sb exhibiting a special structure that we need to obtain
our results. Although the subsample size b grows with the overall observation horizon T , the
overlap proportion remains fixed. A reordering of the original summation enables us to apply
a recent result [3] on convergence rates in the multivariate central limit theorem that depends
on the involved dimension. Together with bounds on the elements in the square-root inverse of
the occurring covariance matrices (a result given in [12]), this finally leads to conditions on b

and T that guarantee distributional convergence of Sb to a Gaussian distribution (the relevant
covariance structure is discussed in [30]).

Now we can proceed to the distributional convergence of Sb as the sample size increases
to ∞. In [3], Lyapunov-type Berry–Esseen bounds in the multivariate central limit theorem are
given, inheriting a dimensional dependence. A version of this result suitable for our purposes
is stated below.

Theorem 4. Let Y (1), . . . ,Y (n) ∈ R
d be independent random vectors with EY (k) = 0 for all k.

Let S = Y (1) + · · · + Y (n), and let C2 = cov S. Denote by �d,C2 the distribution function
of the d-variate centered Gaussian distribution with covariance matrix C2.

Then there exists a positive constant C2 such that

� := sup
x∈Rd

|FS(x) − �d,C2(x)| ≤ C2d
1/4β, (15)

where FS is the d-variate distribution function of S and β = β1 + · · · + βn with βk =
E|C−1Y (k)|3.

Proof. See Theorem 1.1 of [3]. �

Besides this convergence result, the special structure of the covariance matrix will now be
exploited to derive the limiting distribution of the target variable Sb as well as a convergence
rate depending on the sample sizes T and b.

The vector Sb can now be seen as the sum of the i.i.d. vectors Y (k) (with a special structure
as defined in Section 4.3.1 of [30]), i.e.

Sb = 1√
b

(Y (1) + · · · + Y (cb)),

with covariance matrix
C2 = cov Sb = c
M, (16)

where c is the thinning constant. We now have the following result (see Theorem 4.3.5 of [30]).

Theorem 5. For b = T δ, δ ∈ (0, 1), and n(c) = O (T /b) , let �b be defined in analogy to
(15), namely,

�b = sup
x∈Rn(c)

|FSb
(x) − �n(c),C2(x)|.

If δ > 7
9 then �b → 0 as T → ∞.

To see that �b actually converges to 0 as T → ∞, we apply Theorem 4 to �b and show that
β is bounded from above by (const) n(c)3/2b−1/2 by applying Hölder’s inequality two times
and the result in [12] to the Cholesky square root of M .
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Note that this specific ratio of the subsample size b to the overall sample size T ensures that
the vector of normalized subsample sums is asymptotically jointly normal, even if the samples
overlap by a certain fixed amount of b.

3.2.2. Asymptotic extreme value theory. We show that the maximal component of the asymp-
totically Gaussian target vector Sb converges in law. To this end, recall that the kth component
of Sb is

Sbk = 1√
b

Sk = 1√
b

tk∑
τ=tk−b+1

Xτ .

Furthermore, the covariance matrix is denoted by C2 = cov(Sb1, . . . , SbN) = cov Sb = c
M ,
as in (16).

Theorem 6. If T 7/9/b = o(1) and n(c) = (T − b)/(cb), then

P

(
max

k=1,...,n(c)
Sbk ≤ zn(c)

)
→ e−e−z

as T → ∞

with zn(c) = an(c)z + dn(c) for suitable z ∈ R, where

an(c) =
√




2 log n(c)
, dn(c) = √




(√
2 log n(c) − log log n(c) + log 4π√

2 log n(c)

)
. (17)

Proof. Let n(c) = n(c)(T ) = (T − b)/(cb) = O(T /b), and recall that c = 1/K, K ∈ N.
For C2 = (c2

ij ), it holds that

c2
ij = γ|i−j | =

⎧⎨
⎩


(
1 − |i − j |

K

)
, 0 ≤ |i − j | ≤ K,

0, |i − j | > K.

This means that {Sbk}k≥1 is a K-dependent sequence. In particular, we have

lim
h→∞ γh log h = 0.

Moreover, it is stationary, i.e. Sbk ∼ Fb for all k, since the summation extends over i.i.d. vari-
ables Xi . Define zn(c) = (zn(c) , . . . , zn(c) ) as the n(c)-dimensional vector with all components
being zn(c) , as above. According to Theorem 4, it holds that

P

(
max

k=1,...,n(c)
Sbk ≤ zn(c)

)
= P(Sb1 ≤ zn(c) , . . . , Sbn(c) ≤ zn(c) )

= FSb
(zn(c) )

≤ �n(c),C2(zn(c) ) + �b

= P(Z1 ≤ zn(c) , . . . , Zn(c) ≤ zn(c) ) + �b,

where the vector (Z1, . . . , Zn(c) ) is n(c)-variate Gaussian with mean vector 0 and covariance
matrix C2.

Theorem 5 and the assumption that T 7/9/b = o(1) ensure that the second summand �b

converges to 0 as T → ∞. For the first summand, a standard argument on the maximum
of random variables can be applied. Since n(c) tends to ∞ as T → ∞ and, owing to the
appropriate covariance structure (see (16)), it holds that

P(Z1 ≤ zn(c) , . . . , Zn(c) ≤ zn(c) ) = P(Mn(c) ≤ an(c)z + dn(c) ) → e−e−z

as T → ∞.

This concludes the proof. �
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3.2.3. Local power. Now we are ready to state an asymptotic distributional result for the
extremes of ξk as an application of Theorem 6.

Theorem 7. Let an(c) and dn(c) be as in (17). If T 7/9/b = o(1), we have

P

(
max

k=1,...,n(c)
ξk ≤ an(c)z + dn(c)

)
−→ e−e−z

as T → ∞ (18)

for all z ∈ R.

Proof. Proposition 2 can be extended beyond the bivariate case to show that the n(c)-variate
vector (ξ1, . . . , ξn(c) ) is asymptotically normally distributed with mean 0 and covariance matrix
c
M . To be precise, we know that

(ξ1, . . . , ξn(c) )
D−→ (Z1, . . . , Zn(c) ) ∼ N (0, c 
M).

By assumption, δ > 7
9 , so, by setting Sbk = ξk , Theorem 6 is directly applicable to establish

(18). �

This result can now be exploited to construct a global test of parameter constancy over the
observation horizon T . Define Mn(c) := maxk=1,...,n(c) ξk , and consider the test statistic

T ′
n(c) = Mn(c) − dn(c)

an(c)

D−→ � as n(c) → ∞, (19)

where � denotes the Gumbel extremal distribution. The extremal test rejects the null hypothesis
H

′
0 against the alternative that the maximal value of the thinned parameter series exceeds a

fixed value θ0 ∈ �, to the confidence level α ∈ (0,1), if Tn(c) > λα , where λα denotes the
(1 − α)-quantile of the Gumbel extremal distribution. The critical region of the test is then
K ′ = (λα, ∞). We are again interested in the local power of the test, and, thus, consider the
following local hypothesis for η > 0:

H
′
A(η) :

{
θtk = θ ′(η) = θ0 + η

√



b log n(c)

}
.

The extremal test’s properties with respect to its statistical power are summarized in the
following theorem.

Theorem 8. Let T ′
n(c) be given as in (19), i.e. the centered and normalized maximum of the

thinned and re-scaled estimator series {ξk}k=1,...,n(c) . Under the conditions of Theorem 7,
especially under the assumption that T 7/9/b = o(1), and under the local alternative H

′
A(η)

for η ≥ 0, consider the extremal test to the level α ∈ (0,1) as T ′
n(c) > λα .

(i) As n(c) → ∞ with b → ∞, the asymptotic local power of the extremal test is

PH′
A(η)(T

′
n(c) > λα) → �′(η) = 1 − �(λα − η

√
2),

where �(·) is the distribution function of the Gumbel extremal distribution.

(ii) For η = 0, we have �′(η) = α, and, for η > 0, we have �′(η) > α. Thus, the extremal
test has local power of order

√
b log n(c).
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Proof. For notational convenience, we set P = PH′
A

, n = n(c), and θ0 = 0, and consider the
rejection probability under the alternative, i.e.

P(T ′
n > λα) = P(ξ1 > anλα + dn, . . . , ξn > anλα + dn)

= P(
√

b(θ̂t1 − θ ′(η)) > anλα + dn − √
b θ ′(η), . . . ,√

b(θ̂tn − θ ′(η)) > anλα + dn − √
b θ ′(η))

= P(ξ̃1 > an(λα − η
√

2) + dn, . . . , ξ̃n > an(λα − η
√

2) + dn)

= P(M̃n > an(λα − η
√

2) + dn) → 1 − �(λα − η
√

2),

where an = √

/(2 log n) in the case of centered Gaussian variables with variance 
, and

Theorem 7 was applied. �
Note that, for any sequence {zn}n∈N, we have min{zn} = − max{−zn}, and, furthermore, we

know that, for X ∼ N (0,1), it holds that X
D= −X. Therefore, a similar result for the minimal

limiting law of the estimator series {ξk} holds, namely, for all z ∈ R, we have

P

(
min

k=1,...,n(c)
ξk > −an(c)z − dn(c)

)
→ e−e−z

with an(c) and dn(c) as in Theorem 7. This can be used to test H
′
0 against the alternative

H
′′
A : {mint θt < θ0} with the test statistic T ′′

n(c) = −(mn(c) + dn(c) )/an(c) , where mn(c) =
mink=1,...,n(c) ξk . Rejecting the null hypothesis upon T ′′

n(c) < λ1−α yields an asymptotically
unbiased test with local power of the same order as in the maximum case.

Furthermore, as the sequence {ξk}k=1,...,n(c) is K-dependent, we have asymptotic inde-
pendence of Mn(c) and mn(c) , so we can also test against the alternative H

′′′
A : {mint θt <

θ0 or maxt θt > θ0}, i.e. that the extrema of the parameter series exceed some confidence
band. The null hypothesis is then rejected if either T ′

n(c) > λα/2 or T ′′
n(c) < λ1−α/2. This testing

procedure results in a symmetric simultaneous test with proper asymptotic size and local power
of the same order as in the preceding cases.

3.3. Discussion

To conclude, we discuss the two types of test from the previous sections with respect to
their ability to detect the presence and type of deviations from the null hypothesis of parameter
homogeneity.

In Section 3.1 we presented a binomial test with local power of order
√

b, where b = o(T )

as T → ∞. The facts that the test does not achieve the usual local power of order
√

T , as might
be expected when a sample of size T is available, and that the local estimates are restricted to
be independent may seem to be a disadvantage at first sight. At the same time, take into account
the fact that in using moving-window estimation we implicitly presume a locally homogeneous
structure in the copula parameter anyway. Under this perspective, a rejection of one (or more)
of the partial hypotheses hints at one (or more) regime changes in the parameter series. In order
to avoid multiple testing, the multiple approach can be used. We again refer to Section 4 for an
empirical application of the binomial test on real-world data.

The extremal test presented in Section 3.2 has local power of order
√

b log n(c), where
n(c) = �(T − b)/(cb)� and T 7/9/b = o(1) with respect to the overall observation horizon T .
This local power is not least among the considered tests, but the speed of the approximation in
the limit law is low. Furthermore, the applicability of the procedure is limited in finite samples
due to the restriction T 7/9/b = o(1). This bandwidth condition is practically only fulfilled in
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samples over a long observation horizon, say for T of the order of decades if we consider daily
price data. Nevertheless, the test is suitable to test against the most general alternative in our
setup, namely whether there is an exceedance from a long-term constant parameter value at all,
and if the deviation is in a sense extreme, i.e. the maximal (or minimal) parameter value peaks
high above (or below) an assumed average level. Motivated by the empirical observations in
real-world data where the estimated parameter series sometimes exhibit high peaks (mostly
above the average parameter level), this test was developed as an omnibus test that allows us to
judge if peaks in the parameter value lie within a predefined confidence region. In the course
of the data description and empirical analyses in Section 4, we also present what the rejection
of the extremal null hypothesis H

′
A could be used for after that.

Summarizing, each of the presented tests has certain pros and cons, and on its own is able
to detect only the special alternatives that were outlined in the respective sections. We can
though combine the testing of the respective null hypotheses in the same order as they were
presented in this discussion: first, the extremal test lends itself to decide whether there is an
extremal deviation of an average copula parameter; second, the binomial test provides evidence
for moderate deviation and/or the location of possible change points. Finally, a suspected fixed
regime change can be verified through a so-called forecast regression based test; see, e.g. [30]
and [36].

4. Empirical results

4.1. Empirical size of the binomial test

Under the null hypothesis of parameter constancy, we simulate copula data of different
dimensions and with different parameter values. Then the binomial test is run with various
types of base data in order to investigate the test’s empirical size. Within this scope, the proper
determination of the involved estimation variance proves vital for a correct testing procedure.
The main outcome is that bootstrapping the variance cannot be avoided in our finite-sample
setup notwithstanding the theoretical results. We refer the reader to [30] for details.

4.2. Commodity contracts

In recent years the so-called financialisation of commodities, which implies a growing
interaction of commodity markets with classical equity and fixed income markets, has been
investigated in a number of studies. We contribute to this discussion by investigating the
dependency structure of typical commodity contracts.

4.2.1. Data description. We have chosen to work on so-called second front-month forward
prices for different types of commodities, such as coal, natural gas, crude oil, and electricity.
We have decided to consider the second front month as these are the contracts that are traded
most liquidly. Further information on these contracts can be found in [5].

The historical time series data for our analysis were retrieved from Bloomberg’s business
database. We consider the following contracts identified by their Bloomberg ticker.

API22MON index: coal, price per metric ton (based on all published indices (API)), deliv-
ered to the Amsterdam, Rotterdam and Antwerp region (ARA) in Northwest Europe.

API42MON index: coal, same as above, but the delivery takes place to Richards Bay, South
Africa. The pricing source was not Bloomberg, but Credit Suisse.

TTFG2MON index: natural gas, price per megawatt-hour, based on the virtual gas hub
covering all entry and exit points in the Netherlands.
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NBPG2MON index: natural gas, price per megawatt-hour, based on the market movements
at the virtual gas hub covering mainland Britain.

CO2 comdty: Brent crude oil, price per barrel, supplied at SullomVoe on Shetland, Scotland.

BRSWMO2 index: Brent crude oil, price per barrel, calculated by Bloomberg based on the
Intercontinental Exchange (ICE) futures prices.

EL{U,G,B}B2MON index: price per megawatt-hour of base-load electricity in the United
Kingdom (U), Germany (G) and Belgium (B), respectively.

EL{U,G}P2MON index: price per megawatt-hour of peak-load electricity in the United
Kingdom and Germany, respectively.

After cleaning the data (described in Section 5.2.1 of [30]) the transformed series of log-
returns

R
(j)
t = log

(
S

(j)
t

S
(j)
t−1

)

for all j = 1, . . . , 11, t ≥ 1, forms the basis of all further considerations.
In the subsequent subsection we describe the univariate GARCH models for the log-return

series, how we proceeded to decide on goodness-of-fit of the different copula classes, and the
test results of the binomial and extremal tests.

4.2.2. SCOMDY modeling and testing. After data retrieval and preparation, the focus is on fit-
ting appropriate time series models and finding a proper copula family to capture the dependence
structure.

In a first analysis we use one year of historical data in the period from 18-03-2008 to
18-03-2009 and consider all of the possible pairwise combinations, resulting in 55 bivariate
series vectors. Subsequently, we fit several of the copula families presented in Appendix A of
[30] to the rank-transformed log-returns, i.e. we do not deGARCH the series first, but directly
investigate the present pairwise dependence structure. According to the maximum-likelihood
logic, we choose the minimal value of the negative log-likelihood function of the whole series
for t = 1, . . . , T as the goodness-of-fit criterion, i.e. we select a copula family as ‘best fit’ for
a log-return pair when the respective negative log-likelihood function is minimal compared to
the other families. The result is that the Clayton copula family with a positive parameter (see
Section A.5 of [30]) emerges most frequently as ‘best fit’.

The second step is taken with regard to suitable univariate GARCH models. As argued in
Section 3.1 of [30] with reference to [24], it suffices in most cases to set up the parsimonious
GARCH(1, 1) model. Therefore, we assume that, for the log-returns, we have

R
(j)
t = μj + Yjt , Yjt = σjt εjt , σ 2

j t = ωj + αjY
2
j,t−1 + βjσ

2
j,t−1,

with parameters μj , ωj , αj , and βj , and univariate white-noise residuals εjt ∼ WN(0,1) with
respect to t for all j = 1, . . . , 11. This time, we take as basis for the estimation two years’
time series data from 19-11-2007 to 19-11-2009 and obtain the following parameter estimates
in the univariate models. In Table 1 the respective estimates are given together with the sum
α̂j + β̂j . A value greater than or equal to 1 indicates that the respective model is not covariance
stationary; note, however, that this does not affect the consistency of the quasi-maximum-
likelihood estimates.
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Table 1: Estimated parameters for univariate commodity GARCH(1, 1) models.

j μ̂j ω̂j α̂j β̂j α̂j + β̂j

1 API2 8.7409e−04 6.4357e−06 0.146 726 0.860 399 60 1.007 13
2 API4 1.8548e−03 1.3157e−05 0.350 214 0.703 033 20 1.053 25
3 TTFG 5.7206e−04 1.8513e−05 0.135 967 0.876 727 40 1.012 69
4 NBPG 7.1524e−04 2.9631e−05 0.077 660 0.913 061 80 0.990 72
5 CO2 9.5303e−04 8.7841e−06 0.071 987 0.914 766 80 0.986 75
6 BRSW 9.2096e−04 8.2616e−06 0.063 581 0.922 852 10 0.986 43
7 ELUB 2.1332e−04 8.9599e−05 0.321 522 0.621 478 20 0.943 00
8 ELGB 3.5195e−05 8.0567e−04 0.211 854 0.000 000 01 0.211 85
9 ELBB 2.4977e−04 1.0554e−03 0.160 923 0.036 532 76 0.197 46

10 ELUP −8.6258e−05 1.3132e−04 0.231 266 0.630 506 10 0.861 77
11 ELGP 2.1356e−04 8.9710e−04 0.358 092 0.000 000 01 0.358 09

Note that we abbreviated the tickers. After deGARCHing the original log-return series,
we obtain 11 univariate series of empirical residuals which are rank transformed before the
further investigation. All bivariate combinations result in

(11
2

) = 55 possible pairs. The pairwise
dependence is captured by a bivariate Clayton copula. In Table 2 the global parameter estimates
θ̂ are given in the lower-left triangle, and the respective variance estimates 
̂ obtained by the
bootstrap procedure described in Section 5.1.2 of [30] are given in the upper-right triangle.

The two considered trading years sum up to the observation horizon T = 539, the bandwidth
is chosen as one tenth of T , namely b = 54 (which accounts for merely n = 9 independent
estimators), and the thinning constant is c = 1

4 (which accounts for N = 37 weakly dependent
estimators in the thinned series). With a significance level of α = α∗ = 5% and the number
of local exceedances less than qα∗ = 2, the null hypothesis of parameter constancy cannot be
rejected. On the other hand, if the number of exceedances is greater than or equal to 3 then
the null hypothesis is rejected. For exactly two local exceedances, a randomization has to be
conducted, i.e. by generating r as a realization of a Bernoulli random variable with size p as
in (12), the null is rejected if r = 1 and cannot be rejected if r = 0. Furthermore, the extremal
test is conducted in its min-max version, i.e. we test for both deviations of the maximum above

Table 2: Estimated global parameter (lower left) and bootstrapped variance estimate (upper right) for
bivariate SCOMDY models.

3.4427 1.5737 1.5563 2.2915 2.3264 1.4272 1.6389 1.4685 1.3076 1.5001 API2
1.2703 1.5303 1.4775 2.0483 2.1947 1.6920 1.7098 1.7401 1.5123 1.5528 API4
0.1407 0.1635 8.2404 1.6686 1.6423 2.2104 2.1753 1.6393 2.0779 2.4668 TTFG
0.1881 0.1702 1.6905 1.8589 1.7635 2.4607 2.8032 1.8740 1.9904 2.5159 NBPG
0.3345 0.3159 0.1743 0.1895 78.7038 1.8754 1.8699 1.5593 1.6921 1.5389 CO2
0.3095 0.3081 0.1151 0.1514 6.0296 1.7605 1.8124 1.5718 1.5494 1.5377 BRSW
0.2659 0.1791 0.6536 0.8289 0.2813 0.2536 3.0064 2.0581 2.4142 2.4250 ELUB
0.3125 0.2288 0.4261 0.4527 0.1774 0.1587 0.6175 4.4794 3.9574 7.2225 ELGB
0.2395 0.1776 0.4166 0.3651 0.2070 0.1873 0.5471 1.2602 2.4444 2.5953 ELBB
0.1943 0.1685 0.6918 0.7331 0.2387 0.2068 1.6195 0.7405 0.7813 4.6296 ELUP
0.1739 0.1172 0.4409 0.4247 0.1221 0.1088 0.6480 1.6319 1.1894 0.9103 ELGP

API2 API4 TTFG NBPG CO2 BRSW ELUB ELGB ELBB ELUP ELGP
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Figure 1: Global exceedance and absence of exceedances.

the upper global confidence level (CL), as well as deviations of the minimum below the lower
global CL. The test results can be visualized in a very intuitive way (see Figure 1); by giving
two examples in the case of the two-year data we demonstrate on the one hand so-called global
exceedances which are deviations of the extremal values of the estimator series, and that they
possibly may come along with extreme real-world events. On the other hand, we will explain
the different occurring elements of the graphics.

The horizontal dashed lines depict the global parameter estimate θ̂ ; the whole time-varying
parameter series {θ̂t } is displayed in grey. The solid circles mark the independent estimators θ̂k ,
whereas the open circles mark the thinned series θ̂tk . The marked estimators are grey whenever
they lie within the local bands (depicted as solid lines) or global bands (depicted as dash–
dot lines); otherwise, they are black. The observation horizon is given on the time axis, the
parameter values on the y-axis. In particular, we see the following.

NBPG2MON versus ELUB2MON. The dependence structure between the natural gas and the
United Kingdom base-load electricity contract is rather unstable—nevertheless, the
binomial test on independent samples does not detect the time inhomogeneity, whereas
the extremal test leads to the detection of three exceedances beyond the upper global
confidence band. Let us summarize the special features of this pair which might help us
to understand this behavior. The global dependence which stems from a parameter value
of θ̂ = 0.83 is rather high and peaks beyond a value of θ = 2 in its extremes. Lastly, the
so-called subprime mortgage crisis in September 2008 falls into the observation horizon,
and precisely in this period the dependence exhibits a peak which exceeds the global
bands.

API42MON versus BRSWMO2. The coal contract versus the oil contract depicted here is an
example of a parameter series which fluctuates around the global parameter in a very
quiet way. Adding the local and global bands confirms the hypothesis of parameter
constancy since there are no exceedances at all.

The numerical results that have been described so far represent the first experiments and a
preliminary data survey that we conducted to get a sense for the specific features of the data.
Now we report on a comprehensive numerical analysis that was conducted in consequence.
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Table 3: Summary statistics for Clayton copula estimation with five-year commodity data.

θ̂ 
̂ 
̂(BS) τ̂ = θ̂/(θ̂ + 2) λ̂L = 2−1/θ̂

∅ 0.414 03 0.003 36 0.070 40 0.171 51 0.187 47
min 0.009 98 0.000 67 0.004 05 0.004 97 0.000 00
max 7.309 08 0.101 48 2.711 64 0.785 16 0.909 52

We use five years of historical data from 19-12-2006 to 19-12-2011. After preliminary data
preparation, we have chosen to apply more sophisticated univariate GARCH models for the log-
return series. We proceed along the lines of [11] and use an exponential GARCH(1, 1) model
due to [31]. We add an autoregressive part and arrive at

R
(j)
t = μj + ρjR

(j)
t−1 + Yjt , (20a)

Yjt = σjt εjt , (20b)

log(σ 2
j t ) = ωj + αjεj,t−1 + γj (|εj,t−1| − E(εj,t−1)) + βj log(σ 2

j,t−1), (20c)

with real parameters μj , ρj , ωj , αj , γj , and βj , and univariate white-noise residuals εjt ∼
WN(0,1) with respect to t for all j = 1, . . . , 11. Furthermore, in accordance with the ideas
presented in [10], univariate structural-break analyses are performed using the fluctuation tests
due to [2]. Furthermore, the asymptotic properties of estimators of the break dates are derived.
The empirical residuals of the AR(1)–eGARCH(1, 1) model given in (20) are subsequently
the basis of a pairwise dependence analysis, i.e. the bivariate vectors of empirical residuals are
assumed to be distributed according to a copula-based multivariate distribution. We condense
the results we obtained for the parameter estimate of bivariate Clayton copulas in Table 3.

In Table 3 we only give the average (∅), the minimal (min), and the maximal (max) value of
the global parameter estimate θ̂ based on the whole sample of about T = 1300 observations, as
well as of the variance estimate 
̂ stemming from the canonical maximum-likelihood estimation
and the bootstrapped variance estimate 
̂(BS). The bootstrapped version of the variance
estimator was obtained nonparametrically as based on B = 200 estimations on a bootstrap
sample of the same length as the bandwidth of the moving-window estimates, i.e. b = T/10.
Furthermore, we give the respective range of the estimator of Kendall’s tau and the lower tail
dependence. The estimation of θ̂ does actually work for 47 of the 55 possible pairs, so we can
conduct the binomial and extremal tests for these commodity pairs. This results in 25 local
rejections (53%), i.e. rejections of the null hypothesis H0 as in (8) based on the binomial test,
and 27 global rejections (60%), i.e. rejections of H

′
0 as in (14) based on the extremal test for the

maximum of the parameter series. After re-estimation for the potential breakpoints indicated
by the local exceedances, the ratio of rejections shrinks to 22 (42%) in the binomial and 21
(44%) in the extremal test, respectively.

In Figure 2 we present a graphical display of an example test result on the five-year historical
data similar to Figure 1. In Figure 2(a) we depict the estimator series θ̂t together with the
local confidence regions due to the binomial test and the global confidence bands due to the
extremal test. The empirical residuals that form the basis for the copula estimation stem from
a SCOMDY model over the whole observation horizon t = 1, . . . , T = 1296.

The binomial test leads to the rejection of the null hypothesis of parameter constancy as there
is one exceedance beyond the local confidence band at time τ = 1037, which corresponds to
the date 22-12-2010. With this knowledge, we re-estimate the univariate GARCH models
with two different regimes: first for t = 1, . . . , τ and then for t = τ + 1, . . . , T . Then the
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Figure 2: Binomial test with proper size for API22MON versus ELGP2MON.

empirical residuals are concatenated and again used as pseudo-realizations of the residual
copula-based distribution. Canonical maximum-likelihood estimation of the global copula
parameter θ̂ and the estimator series θ̂t , as well as bootstrapping a variance estimate 
̂(BS)

based on this concatenated series, then results in a binomial test that does not reject the null
hypothesis, as Figure 2(b) shows.

This approach is advantageous compared to another attempt to remedy time variation in the
copula parameter: the respective regimes are detected separately in the univariate models in
order to re-estimate the GARCH parameters on different regimes.

We conclude this section with an additional discussion of the possible economic interpreta-
tion of our results.

4.2.3. Discussion. Concerning the empirical data, let us note the following: in shorter time
series we observed fewer exceedances in sum, but also some extreme exceedances that finally
gave the motivation for the extremal test. This happened especially with pairs which have the
same underlying commodity. In the five-year time series data, the binomial test gave more
overall rejections, but we had fewer rejections when applying the extremal test.

In our subsequent analyses, we found that there are cases when exceedances hint at some
regime changes in the univariate models. Taking times of local (or global) exceedances as
change points in the GARCH parameters, re-estimating the univariate models, and using
the concatenated empirical residuals as basis for a repeated canonical maximum-likelihood
estimation of the global and local copula parameters, we found that the dependency represented
by the copula parameter series exhibited a time-homogeneous structure at least in some of the
investigated cases. However, there were also cases where regime-changed GARCH models
did not have any effect on the heterogeneity in the copula parameter. With a merely graphical
valuation of the results, the estimator series seemed to have either different regimes themselves,
or exhibited an autoregressive structure.

From the economic point of view, our observations and test results are in line with similar
econometric findings. For example, Gaisser et al. [19] measured a portfolio’s dependence
structure through Spearman’s ρ and found that significant deviations from the hypothesis of
constancy come along with unusual economic events (their procedure actually detects the
volatility peaks that the financial markets exhibited in 2002 and the beginning of 2004).
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Also, Dias and Embrechts [13] modeled the conditional dependence structure using copulas
and so were able to detect changes in the dependence structure of bivariate time series, such as
changes in the tail of the joint distribution. A time-varying copula approach has already been
used in [14], which detected changes in the dependence structure of exchange rates.

A very recent example regarding the assessment of time-dynamic dependencies with the help
of copulas is [34]. There a pair copula construction, also called vine copula, was used to model
the empirical residuals of high-dimensional financial data. By applying Bayesian estimation
techniques to determine Markov-switching parameters, the authors found that different regimes
in the dependency parameters are often implied by exceptional economic events (such as the
2008 subprime crisis).

Moreover, Almeida et al. [1] investigated the dependence between the DAX 30 constituents
with vine copulas and incorporated time dynamics by the stochastic autoregression due to
[23]. They found that, according to the BIC model selection criterion, nondynamic models
outperform the time-varying models in most of the levels of the vine construction.
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