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We describe the application of tools from dynamical systems to define and quantify
the unsteady fluid transport that occurs during fluid–structure interactions and in
unsteady recirculating flows. The properties of Lagrangian coherent structures (LCS)
are used to enable analysis of flows with arbitrary time-dependence, thereby extending
previous analytical results for steady and time-periodic flows. The LCS kinematics are
used to formulate a unique, physically motivated definition for fluid exchange surfaces
and transport lobes in the flow. The methods are applied to numerical simulations
of two-dimensional flow past a circular cylinder at a Reynolds number of 200; and
to measurements of a freely swimming organism, the Aurelia aurita jellyfish. The
former flow provides a canonical system in which to compare the present geometrical
analysis with classical, Eulerian (e.g. vortex shedding) perspectives of fluid–structure
interactions. The latter flow is used to deduce the physical coupling that exists
between mass and momentum transport during self-propulsion. In both cases, the
present methods reveal a well-defined, unsteady recirculation zone that is not apparent
in the corresponding velocity or vorticity fields. Transport rates between the ambient
flow and the recirculation zone are computed for both flows. Comparison of fluid
transport geometry for the cylinder crossflow and the self-propelled swimmer within
the context of existing theory for two-dimensional lobe dynamics enables qualitative
localization of flow three-dimensionality based on the planar measurements. Benefits
and limitations of the implemented methods are discussed, and some potential
applications for flow control, unsteady propulsion, and biological fluid dynamics
are proposed.

1. Introduction
It is often of interest in fluid mechanics to quantify the exchange of mass,

momentum, and energy between different regions of a flow. In many cases these
mixing processes can be described in terms of specific kinematic boundaries in
the flow, material surfaces that delineate fluid particles with distinct behaviours.
These surfaces governing the exchange of fluid between different regions of the flow
(hereafter referred to as exchange surfaces) can be identified in steady flows from
inspection of streamlines derived from the Eulerian velocity field. In cases of steady
flow, the exchange surface commonly manifests itself as a closed recirculation bubble
that traps fluid particles over long convective time scales. Examples include the
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γ1

γ2

Figure 1. Schematic of manifolds for the recirculation bubble of a vortex pair. Fluid particle
trajectories (i.e. streamlines in steady flow) that asymptote to the front stagnation point γ1 as
time t → ∞ belong to the stable manifold of γ1, whereas trajectories that asymptote to γ1 as
time t → −∞ belong to the unstable manifold of γ1. The same considerations apply to γ2.

laminar separation bubble over an airfoil at low Reynolds number (e.g. O’Meara &
Mueller 1987) and the cardiovascular recirculation zone caused by an aneurysm
(e.g. Faturaee & Amini 2003).

Knowledge of the geometry and kinematics of the exchange surfaces in a flow can
be used to monitor the performance of a given fluid transport system or to improve its
performance via flow control. Indeed, these flow kinematics can be a useful surrogate
for the fluid dynamics (i.e. forces and moments) when they are difficult to evaluate
directly. However, since the majority of flows of practical interest exhibit unsteadiness
(time-dependence), streamline representations are of limited use for capturing the
kinematics of the exchange surfaces.

The application of dynamical systems tools to fluid mechanics has enabled precise
identification of exchange surfaces in unsteady flows that exhibit a well-defined
temporal periodicity in the fluid motion. The theory governing fluid transport
in time-periodic flows is now well developed and has been demonstrated in a
variety of canonical systems including the oscillating vortex pair, isolated and
leapfrogging vortex rings, and cylinder crossflow (e.g. Aref 1984; Rom-Kedar &
Wiggins 1990; Rom-Kedar, Leonard & Wiggins 1990; Shariff, Leonard & Ferziger
1989, 2006; Shariff, Pulliam & Ottino 1991; Duan & Wiggins 1997; see Wiggins 2005
for an excellent review). In each case, the analysis relies on the identification of stable
and unstable manifolds, which are the collection of fluid particle trajectories that
asymptote to a point in the flow as time moves forward or backward, respectively.
Figure 1 illustrates this concept for the exchange surface that encloses the cores of a
vortex pair. The manifolds of interest for defining the exchange surface are typically
those of the stagnation and/or separation points in the flow, as shown in the figure.

A geometric definition of the governing fluid exchange surface based on the
manifolds in the flow is in general not unique; multiple definitions can be derived from
the same set of stable and unstable manifolds. For simple manifolds in time-periodic
flows there is typically a single definition for the exchange surface that stands out
because of the relative simplicity of the flow geometry that it suggests (Rom-Kedar
et al. 1990). In the case of the steady vortex pair in figure 1, the elliptical boundary
connecting γ1 and γ2 most appropriately defines the exchange surface.

In unsteady flows with arbitrary time-dependence, however, it is often difficult to
distinguish between the many possible definitions of the exchange surface that can be
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constructed from the stable and unstable manifolds (whose definition is appropriately
modified to account for the lack of periodicity in the flow). The level of difficulty in
applying a particular exchange surface definition to the flow can vary substantially
from one definition to the next and even for the same definition evaluated at different
times during the temporal evolution of the flow (Malhotra & Wiggins 1998). Hence,
computing transport rates in aperiodic flows currently relies on the implementation
of ad hoc transport definitions that are specific to the particular flow being
investigated.

The goal of this paper is to propose and demonstrate an unambiguous, robust,
and physically motivated geometric definition of fluid exchange surfaces that can
be easily applied to compute transport rates in arbitrary unsteady aperiodic flows.
The proposed definition has several distinguishing features. First, the evolution of
the defined exchange surfaces qualitatively resembles the processes of entrainment
and detrainment that are observed in flow visualizations using a passive flow marker
(e.g. Sturtevant 1981; Yamada & Matsui 1978). This is not true of alternative
definitions. Second, in the limit of time-periodic flow, the proposed definition is
identical to the definition traditionally selected on the basis of aesthetic merits in
previous studies (e.g. Rom-Kedar et al. 1990). Third, in the limit of steady flow, the
proposed definition is identical to the exchange surface that would be identified in a
streamline plot of the flow (e.g. Milne-Thompson 1968).

In the place of stable and unstable manifolds, which are a valid concept for strictly
time-periodic systems, we identify analogous Lagrangian coherent structures (LCS) in
the flows to be investigated. The LCS share many of the properties of manifolds (see
the following sections for details), but can be computed based on a finite-time record
of the flow, which need not be time-periodic (Haller 2000, 2001, 2002; Shadden,
Lekien & Marsden 2005; Shadden, Dabiri & Marsden 2006; Green, Rowley & Haller
2007). In addition, an important benefit of LCS for flow analysis is its objectivity, or
invariance under linear transformations of frame (Haller 2005). By constructing the
proposed exchange surface definition using LCS, it too is made objective.

We apply the proposed exchange surface analysis to study fluid–structure
interactions. Whereas much of the classical study of mixing has focused on isolated
vortical structures and unbounded flows, most practical flows involve the presence
of solid structures that either bound the flow or are immersed within it. The flow
created by a freely swimming jellyfish provides the main application in this paper.
The selection of this model system is motivated by the fact that it exhibits aperiodic
flow despite the relative simplicity of its body shape and motion, as shown in figures 2
and 3. Muscle contraction reduces the volume of the subumbrellar cavity (i.e. the
region underneath its umbrella-shaped body), resulting in a net downward flux of
fluid. The motion of the lower margin of the bell generates vortex rings of opposite
rotational sense during the contraction and relaxation phases of the swimming cycle
(see figure 2). These vortices act to entrain fluid from above the animal into the
subumbrellar cavity, where the feeding and sensory apparatus of the animal are
located. Despite the approximate periodicity of the swimming motion, inspection of
the flow created by the animal indicates that it is indeed aperiodic in time. Further,
since the animal does not swim at constant velocity, a periodic flow cannot be
constructed by any Galilean transformation of frame.

Instantaneous streamlines of the flow field measured by using digital particle
image velocimetry (DPIV) indicate local entrainment of fluid from above the animal
into the subumbrellar cavity during the entire swimming cycle. Simultaneously, a
net downward momentum flux propels the animal forward (figure 3). Although
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Figure 2. Dye visualization of jellyfish vortex wake (Dabiri et al. 2005). Time series shows
vortices of clockwise and anticlockwise rotational sense generated during the contraction and
relaxation phases of the swimming cycle, respectively. Bell diameter is 10 cm.

(a) (b)

Figure 3. Instantaneous streamlines of flow around a jellyfish as it swims vertically. (a) End
of relaxation phase of swimming cycle. (b) End of contraction phase of swimming cycle. Bell
diameter is 10 cm

the flow features in figure 3 lead one to anticipate the existence of exchange
surfaces surrounding the animal, these surfaces are not apparent in the instantaneous
streamline plots. We will show that the present methods are sufficient to define
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and quantify the exchange surfaces governing fluid transport induced by the animal
swimming motions

Shadden et al. (2006) have previously computed LCS analogous to stable manifolds
for a free-swimming animal, the same species as studied here. However, in that work
the LCS was computed for the purpose of demonstrating that the LCS behave as
material lines as predicted by theory. There is no quantification of the associated fluid
transport therein or elsewhere. Indeed, there could be no discussion of fluid transport
previously because (i) the LCS analogous to unstable manifolds have not previously
been computed for this flow and (ii) as mentioned above, an empirical treatment of
LCS in the context of aperiodic exchange surfaces, the goal of this paper, has not
been addressed previously to our knowledge.

We note that the present study is restricted to planar sections of a three-dimensional
flow. Limitations of the two-dimensional measurements are inferred in this paper
by comparing properties of the measured LCS evolution with previous theoretical
considerations of two-dimensional LCS kinematics. In addition, we apply the methods
of analysis to direct numerical simulations of two-dimensional flow past a circular
cylinder at a Reynolds number of 200. This canonical flow allows comparison between
classical perspectives on fluid–structure interactions (e.g. vortex shedding) and the
geometric viewpoint taken in this paper. In addition, the two-dimensional flow
enables validation of the inferences made in the jellyfish study. Salman et al. (2007)
recently computed LCS for a more complex two-dimensional bluff-body configuration.
Although the mechanism of fluid transport is described in that paper, quantitative
measurements of transport rates are not presented.

The paper is organized as follows: § 2 presents the foundational dynamical systems
concepts, including a review of the mechanism of unsteady fluid transport via
exchange surfaces. This is followed by a presentation of the proposed definition
of exchange surfaces in aperiodic flow and examples of its implementation in a
simple vortex model. We prove that the proposed definition satisfies the classical
manifold-intersection ordering criterion governing time-periodic flows. The utility of
LCS for computing the exchange surfaces in flows with arbitrary time-dependence
is then presented. Finally, the methods used to extract LCS and exchange surfaces
from the jellyfish flow and cylinder crossflow are described in this section. Section 3
reports results obtained from the case study of the freely swimming animals showing
both the measured LCS evolution and the associated transport rates computed
using the proposed exchange surface definition. A sensitivity analysis is conducted to
determine the robustness of the fluid transport measurements to perturbations away
from the specific exchange surface definition selected for study here. In addition, flow
dimensionality inferred from the manifold kinematics is compared with divergence
calculations of the corresponding Eulerian velocity fields. These conclusions are
supported by the results of the numerical study of cylinder crossflow, which is also
presented in this section. The paper concludes with a discussion of the benefits and
limitations of the developed methods and suggestions for potential applications in § 4.

2. Analytical and experimental methods
2.1. Definition and analysis of exchange surfaces

As described by Malhotra & Wiggins (1998), the manifold geometry illustrated in
figure 1 is unique to a limited set of steady or quasi-steady flows. In most situations of
practical relevance, the time-dependent hyperbolic trajectories γ1(t) and γ2(t) will be
perturbed, e.g. due to an external strain field (Rom-Kedar et al. 1990) or ellipticity of
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Figure 4. (a) Schematic of perturbed recirculation bubble analogous to the unperturbed
steady case shown in figure 1. Symmetric right half of flow omitted for clarity. Blue curve,
stable manifold of γ2(τ ); red curve, unstable manifold of γ1(τ ); filled circles, p.i.p.s.; open
circles, non-p.i.p.s.; filled diamond, b.i.p. Solid curves indicate the exchange surface derived
from the stable and unstable manifolds. Fluid is transported through consecutively numbered
lobes as the manifolds evolve in time. Unprimed indices indicate fluid transport into the
recirculation region. Primed indices indicate fluid transport out of the recirculation region.
Segment lengths S−

n , S+
n , U−

n , and U+
n are used to evaluate the b.i.p. criterion in equation (2.1)

and are defined in the text. (b) Resulting flow geometry using adjacent p.i.p. closer to γ1(t) as
the b.i.p. (c) Resulting flow geometry using adjacent p.i.p. closer to γ2(t) as the b.i.p.

the vortex cores (Shariff et al. 1989, 2006). In these cases, the heteroclinic trajectories
connecting γ1(t) and γ2(t) will break and exhibit spatial oscillations, as illustrated
in figure 4(a) for the left-hand side of the symmetric flow. The stable and unstable
manifolds will then intersect, forming lobes. Formally, these lobes are defined as areas
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delimited by segments of the stable and unstable manifolds and by primary intersection
points (p.i.p.s) of the stable and unstable manifolds. Guckenheimer & Holmes (1983)
and Malhotra & Wiggins (1998) define p.i.p.s as follows:

Condition 2.1. At each time instant τ , p.i.p.s p(τ ) are points such that:

p(τ ) ∈ Wu(γ1(τ )) ∩ Ws(γ2(τ )),

and [Wu(γ1(τ )), p(τ )] ∩ [Ws(γ2(τ )), p(τ )] = p(τ ),

where Ws(γ2(τ )) denotes the stable manifold of γ2(τ ) at time τ , Wu(γ1(τ )) denotes
the unstable manifold of γ1(τ ), and the bracketed expressions denote the segments
of these manifolds connecting the respective hyperbolic trajectory, γ1(τ ) or γ2(τ ), to
p(τ ); see figure 4(a). The first statement requires that the p.i.p. lies on both the stable
and the unstable manifold. The second statement requires that a p.i.p. is the only
intersection of the segments [Wu(γ1(τ )), p(τ )] and [Ws(γ2(τ )), p(τ )] that connect the
p.i.p. to γ1(τ ) and γ2(τ ), respectively. For example, the filled circles in figure 4(a)
indicate intersections that define p.i.p.s, whereas the open circles are not p.i.p.s.

The above definition implies that each lobe, defined by the union of two
neighbouring p.i.p.s and the neighbouring segments of the stable and unstable
manifolds, is a region of trapped fluid, because the manifolds are material lines
in the flow. As a consequence, lobe areas of a two-dimensional incompressible flow
must remain constant despite deformation and advection of the manifolds that occurs
due to the time-dependent nature of the flow.

The fact that the manifolds in the flow are material lines implies the following
rules regarding the temporal evolution of the flow (Guckenheimer & Holmes 1983;
Malhotra & Wiggins 1998):

Rule 1: Maintenance of order under time evolution. Wu(γ1(τ )) and Ws(γ2(τ )) are one-
dimensional curves at any time τ . An ordering of points can therefore be defined
on, e.g., Ws(γ2(τ )) as follows: for any two points p(τ ), q(τ ) ∈ Ws(γ2(τ )), p(τ ) <s q(τ )
if p(τ ) is closer to γ2(τ ) along the arclength of the curve Ws(γ2(τ )). As the flow
evolves temporally, p(τ + t) = f τ+t

τ (p(τ )) and q(τ + t) = f τ+t
τ (q(τ )) will still belong

to Ws(γ2(τ + t)), and p(τ + t) <s q(τ + t), where f is an orientation-preserving
diffeomorphism between two points in time. In the present context, f τ+t

τ maps the
flow from time τ to time τ + t .

Rule 2: Invariance of intersections. If at time τ , Wu(γ1(τ )) and Ws(γ2(τ )) intersect,
then they intersect at all times. This follows from the invariance properties of the
manifolds, i.e. the fact that the manifolds behave as material lines in the flow.

The p.i.p.s travel along the stable manifold of γ2(t) as the flow evolves.
Concomitantly, the lobes defined by the p.i.p.s deform and stretch, transporting
the fluid particles trapped in the lobe across a (still undefined) exchange surface
formed by the intersection of the stable and unstable manifolds. Since our goal is to
quantify fluid transport from empirical observations of lobe evolution, we must define
this time-varying exchange surface that will be computed along with the lobe areas.
To this end, the following criterion for the choice of an exchange surface is proposed,
respecting the theoretical p.i.p. ordering Rule 1 and Rule 2.

Following the work of Malhotra & Wiggins (1998, p. 415), let us first consider
the evolution of Wu(γ1(τ )) and Ws(γ2(τ )) over a strictly increasing time sequence
T � {τ1, τ2, . . . , τn−1, τn, τn+1, . . .}, ∀ n ∈ �. As previously noted, at each arbitrary
time τn, points p(τn) on the manifolds are mapped to new points p(τn+1) = fn(p(τn)),
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where for notational simplicity the flow map that advects fluid particles forward in
time will henceforth be denoted as fn.

To define the exchange surface, we want to identify a sequence of boundary
intersection points (b.i.p.s) q(τn). The b.i.p.s will in turn define the exchange surface
(a curve in two dimensions) B(τn), as the union of two segments: [Ws(γ2(τn)), q(τn)],
which is the arclength from the b.i.p. q(τn) to the hyperbolic trajectory γ2(τn) travelling
on the stable manifold; and [Wu(γ1(τn)), q(τn)], which is the arclength from q(τn) to the
γ1(τn) along the unstable manifold. Therefore the desired exchange surface is defined as
B(τn) � [Ws(γ2(τn)), q(τn)]

⋃
[Wu(γ1(τn)), q(τn)]. Flow crossing the exchange surface

defined by this bounding curve from time τn to time τn+1 is identically the fluid
transport that occurs due to the lobe dynamics.

The sequence of b.i.p.s used to define the exchange surface should satisfy the
following ordering (Malhotra & Wiggins 1998):

Condition 2.2. At each time instant τn, the chosen b.i.p. q(τn) must satisfy:

q(τn) <s f −1
n (q(τn+1)), ∀ n ∈ �

where the notation <s indicates the ordering on the stable manifold of γ2(t), using
the arclength distance of the candidate points from γ2(t), as defined by Rule 1.

By itself, this condition does not specify a unique b.i.p. among the multiplicity
of p.i.p.s; it merely constrains the direction of the sequence of b.i.p.s, such that the
location of the current b.i.p. should be closer to γ2(τn) than the current location of
the next b.i.p. This prevents the b.i.p.s from approaching γ2 as n → ∞. Since the b.i.p.
is not uniquely defined by this criterion, the exchange surface is also not uniquely
defined. For example, the b.i.p. selected in figure 4(a) (filled diamond) results in an
exchange surface given by the union of the solid red and blue curves. However, one
could also select the p.i.p above (figure 4b), or below (figure 4c) this intersection
point, and that new b.i.p could also satisfy Condition 2.2 while producing a different
geometry for the exchange surface. For the exchange surface defined in figure 4(b),
fluid enters the recirculation region as lobe 1 evolves into lobe 2, instead of during
the 2 → 3 lobe evolution as in figure 4(a). However, fluid exits the recirculation
region during the same 1′ → 2′ lobe evolution as in the exchange surface defined in
figure 4(a). Conversely, the exchange surface in figure 4(c) differs from figure 4(a) in
the process of fluid detrainment from the recirculation region, but has an identical
entrainment process.

Current practice is to select the p.i.p. giving the exchange surface that most closely
resembles an equivalent unperturbed flow (e.g. Rom-Kedar et al. 1990); in the present
case, comparison of figure 4(a) with figure 1 shows that the point denoted by the
filled diamond is most appropriate from this perspective. Yet, for the majority of
unsteady flows, there is no unperturbed reference state with which one can compare
in order to determine an appropriate definition for the exchange surface (e.g. Salman
et al. 2007). This ambiguity limits comparisons of unsteady fluid transport between
systems, or even in the same system examined at different times during its temporal
evolution.

We propose the following criterion for the b.i.p. sequence:

Criterion for boundary intersection points. At each time instant τn, choose as a
boundary intersection point the intersection q(τn) for which

S+
n < U+

n ,

S−
n > U−

n ,

}
(2.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

78
72

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007007872


Geometry of unsteady fluid transport 133

where we define S+
n � [q(τn), fn−1(q(τn−1))], which is the segment on the stable

manifold of γ2(τn) connecting q(τn) and fn−1(q(τn−1)) (in words, the latter
term represents the current location of the previous b.i.p.). Similarly, U+

n �
[q(τn), fn−1(q(τn−1))], i.e. the segment with identical endpoints but on the unstable
manifold of γ1(τn). The definitions of S−

n and U−
n follow as: S−

n � [f −1
n (q(τn+1)), q(τn)]

taking the segment on Ws(γ2(τn)), and U−
n � [f −1

n (q(τn+1)), q(τn)] on Wu(γ1(τn)). In
words, the term f −1

n (q(τn+1)) represents the current location of the next b.i.p.
Qualitatively speaking, this criterion identifies the b.i.p. as the p.i.p. connecting

the segments of the stable and unstable manifolds with least deformation from an
equivalent unperturbed state. In other words, we define fluid transport according to
evaluation of the length relationships in equation (2.1). An ancillary benefit of the
exchange surface defined by this choice of b.i.p. is that it presents the smallest temporal
shape oscillation. Since the stable manifold of γ2(τn) becomes increasingly deformed
as it approaches γ1(τn) and the unstable manifold of γ1(τn) becomes increasingly
deformed as it approaches γ2(τn), the b.i.p. will be located away from both γ1(τn)
and γ2(τn). In the case of the vortex model in figure 4(a), the b.i.p. defined by the
present criterion is in fact equidistant from both hyperbolic trajectories. Furthermore,
this choice of b.i.p. coincides with the one that would be chosen in order to define
an exchange surface that most closely resembles the bounding streamline of the
analogous unperturbed steady flow in figure 1 (cf. Rom-Kedar et al. 1990). The
benefit of the proposed criterion is that it can be applied to flows with arbitrary
unsteadiness where there does not exist an analogous steady flow for comparison.

Using the vortex model in figure 4(a), let us consider the qualitative evolution of
the exchange surface defined by the present b.i.p criterion. Although the criterion
is evaluated on the discrete time sequence τn, the real flow is continuous in time.
Hence, for closely spaced time sequences, the choice of b.i.p may not change at each
τn. In this case, the b.i.p. will be advected along Ws(γ2(τn)) while maintaining its
identity over successive time instants τn, and the corresponding exchange surface (i.e.
the curve [Ws(γ2(τn)), q(τn)]

⋃
[Wu(γ1(τn)), q(τn)]) will deform. This deformation will

continue until the current b.i.p. no longer satisfies the aforementioned criterion in
equation (2.1). At this time, a p.i.p. (i.e. a different fluid particle) closer to γ1(τn) will
become the new b.i.p. and the exchange surface will be redefined accordingly. The
pictorial evolution suggested by the present b.i.p. criterion will be shown in detail in
the following section.

The described b.i.p. criterion is objective (i.e. frame-invariant) and has a practical
relevance: given an empirical set of lobes evolving in time, it facilitates the definition
of the exchange surface directly from observations of segment lengths along the
stable and unstable manifolds. It also guarantees that the aforementioned theoretical
requirements (i.e. Guckenheimer & Holmes 1983; Malhotra & Wiggins 1998) are fully
satisfied.

It is straightforward to prove the following Lemma:

Lemma 2.1. The criterion defined above for the choice of b.i.p. sequence satisfies
Condition 2.2.

Proof. It is sufficient to first notice that all points on Ws(γ2(τn))
⋂

Wu(γ1(τn)) at
time τn+1 will have moved closer to γ2(τn+1) in the arclength sense; intersection points
travelling toward γ2 will therefore decrease their distance from the neighbouring
intersection points on the stable manifold. Conversely, lobe area preservation imposes
stretching of the corresponding arclength segments on the unstable manifold (i.e. a
filamentation process).
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Now at time τn+1, we choose q(τn+1) such that S−
n+1 > U−

n+1 and S+
n+1 < U+

n+1, as the
criterion requires. By definition, S+

n+1 = [q(τn+1), fn(q(τn))] = fn(S
−
n ), and fn(S

−
n ) < S−

n

since segments are shrinking on the stable manifold. Therefore we have that q(τn) <s

f −1
n q(τn+1).
It is worth noting that the behaviour of q(τn) given by the proposed criterion is

not compatible with any other ordering than the one imposed by Condition 2.2. Ab
absurdo, let us assume that our criterion is applied:

S−
n+1 = fn(S

+
n ) > fn(U

+
n ) = U−

n+1, (2.2)

where now q(τn) >s f −1
n (q(τn+1)). Always by the chosen criterion, we have

S+
n < U+

n ,

fn(S
+
n ) < S+

n ,

fn(U
+
n ) > U+

n ,

⎫⎪⎬
⎪⎭ (2.3)

and therefore fn(S
+
n ) < S+

n < U+
n < fn(U

+
n ), which contradicts (2.2).

This Lemma could also be proved using the orientation-preserving property of
flow maps. There exist other b.i.p. criteria that will satisfy Condition 2.2, producing
exchange surfaces such as the alternatives illustrated in figure 4(b, c). The present
criterion however, based on comparison of segment lengths, is intuitive and easily
applicable to experimentally determined manifolds with very irregular shapes, where
lobes are not always clearly discernible to the observer. Furthermore, the present b.i.p.
criterion can be implemented in the cases of finite or infinitely many p.i.p.s, as long
as there exists a sufficient number of p.i.p.s to evaluate the b.i.p. criterion stated in
equation (2.1).

2.2. Definition and properties of Lagrangian coherent structures

Given the preceding developments, we are left with the task of extracting the stable
and unstable manifolds from measurements or computations of the flow. In steady
and time-periodic flows, it may suffice to examine streamlines or a Poincaré map,
respectively, in order to determine the manifold geometry. However, these tools are of
limited use in flows with arbitrary time-dependence, e.g. aperiodicity. Here, we make
use of the finite-time Lyapunov exponents (FTLE; also referred to as direct Lyapunov
exponents in the literature) of the velocity field.

The Lyapunov exponent describes the rate of extension of a line element advected
in the flow. The line elements that experience the most rapid extension are proposed
to straddle (i.e. possess endpoints on opposite sides of) a material line that acts as a
barrier to fluid particle transport (Haller 2000, 2002; Shadden et al. 2005).

Restricting our attention to a two-dimensional domain D, consider the following
system that describes the flow:

ẋ(t; x0, t0) = u(x(t; x0, t0), t),

x(t0; x0, t0) = x0,

}
(2.4)

where x0 ∈ D is the initial position and t0 is the initial time of the fluid particle
trajectory. We will assume that the Eulerian velocity field u(x, t) is at least C0 in
time and C2 in space. The flow map satisfying equation (2.4) will be denoted as
f t

t0
(x0) = x(t; x0, t0). This solution satisfies existence and uniqueness properties, and is

C1 in time and C3 in space.
The Cauchy–Green deformation tensor C generated by the flow map f t

t0
(x0) can be

evaluated over a finite time interval T , giving a measure of how particles are advected
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under the action of the flow:

C � [∇f t0+T
t0

(x)]∗∇f t0+T
t0

(x), (2.5)

where C depends on x0, t0 and T ; [ ]∗ denotes the adjoint (transpose) of [ ]. As shown
previously (Haller 2000, 2002; Shadden et al. 2005), denoting the largest eigenvalue
of C as λmax(C), the FTLE is defined as

σT
t0

=
1

|T | ln
√

λmax(C). (2.6)

The aforementioned assumptions on the vector field imply that the field σT
t0

is C1 in

time and C2 in space.
LCS can be defined as a ridge line of the function σ . Intuitively, a ridge line is

a curve normal to which the topography is a local maximum. There are two precise
definitions of a ridge line introduced by Shadden et al. (2005); here we adopt the
second of these, called the second-derivative ridge.

Definition 1. A second-derivative ridge of σ is a curve c(s) whose tangent vector
dc/ds is parallel to ∇σ ((c(s)) and whose Hessian Σ(n, n) < 0, where n is the unit
vector normal to c(s).

At every time t , the LCS is defined as a second derivative ridge of σT
t0
(x), x ∈ D.

When fluid particle trajectories are integrated forward in time (i.e. T > 0), repelling
LCS are revealed. These LCS are said to be repelling because as fluid particles
approach the hyperbolic trajectory (e.g. γ2) along the repelling LCS, particles on
either side of the LCS are strongly repelled. Hence, repelling LCS can indicate the
geometry of stable manifolds. Conversely, backward-time integration of fluid particle
trajectories (T < 0) reveals attracting LCS, along which fluid particles on either side
of the LCS are repelled as they move toward the hyperbolic trajectory (e.g. γ1) in
backward time. Attracting LCS can indicate the geometry of unstable manifolds.
Physically, both attracting and repelling LCS are material lines separating regions
of flow that exhibit different dynamics, such as the recirculation regions that are of
present interest.

2.3. Empirical evaluation of the exchange surface definition

To demonstrate the utility of the methods described in the previous section, the
unsteady, aperiodic flow generated by a free-swimming Aurelia aurita jellyfish was
analysed. The flow map of the fluid advection around the animal is clearly not
available in closed form, providing an opportunity to investigate the proposed
methods in a relatively simple geometry that exhibits complex, coupled fluid–structure
interactions.

Details of the experimental methods were similar to a recent study involving the
same species of animal (Shadden et al. 2006). DPIV measurements of the symmetry
plane of the animal were collected for several consecutive swimming cycles executed
in a large tank. The animal swam vertically in a rectilinear fashion away from the
tank walls; hence, all of the observed flow phenomena were induced by the swimming
motions of the animal.

To support the jellyfish studies, the fluid transport analysis methods were also
applied to direct numerical simulations of two-dimensional flow past a circular
cylinder at Reynolds number Re = 200 based on the free-stream velocity and cylinder
diameter (Taira & Colonius 2007). Unlike the jellyfish flow, the cylinder crossflow is
time-periodic. In addition, the well-known kinematics of that flow field (e.g. vortex
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shedding) should provide a useful comparison with the present perspective based on
exchange surfaces.

The measured or computed time series of Eulerian velocity fields was input to an
in-house code (Peng & Dabiri 2007) in order to compute the LCS. The integration
duration T was ±13 s for the jellyfish flows (a shorter backward-time duration was
required toward the beginning of the measurements due to limited backward-time data
initially) and ±1.5 vortex shedding cycles for the cylinder crossflow. A second in-house
code analysed the LCS curves in order to identify p.i.p.s, b.i.p.s, and the corresponding
exchange surfaces. Our approach toward these calculations is as follows:

(i) The repelling (i.e. forward time) and attracting (i.e. backward time) LCS are
both broken into several short, linear segments that approximate the LCS curves.

(ii) For each segment of the repelling LCS, a rectangular neighbourhood of interest
is defined, centred at the midpoint of the segment and enclosing the segment.

(iii) Linear segments of the attracting LCS that possess an endpoint within the
neighbourhood of interest are isolated. The size of rectangular neighbourhood relative
to the length of each segment is sufficiently large that it is impossible for any segment
of the attracting LCS without an endpoint inside the rectangular neighbourhood to
intersect the repelling LCS segment in question.

(iv) For each of the attracting LCS segments with an endpoint inside the rectangular
neighbourhood, the intersection point of the line containing it and the line containing
the repelling LCS segment in question is calculated. In the case of parallel segments,
this intersection point does not exist.

(v) A Boolean check is performed to determine if the coordinates of the intersection
point lie on both the repelling and attracting LCS segments. If so, this point is in fact
an intersection of the two LCS.

The algorithm was verified manually for the data presented in this paper and was
shown to function correctly. Upon proper identification of the set of intersection points
between the attracting and repelling LCS, p.i.p.s and b.i.p.s were determined based
on their respective definitions given in the previous section. The lobe structure of the
jellyfish flow was such that for every time instant considered, every LCS intersection
point satisfied the p.i.p. criteria. This was not the case for the cylinder crossflow. In
both cases, the b.i.p. criterion in equation (2.1) was evaluated unambiguously at each
time step.

With the p.i.p.s and b.i.p.s recorded, the LCS arclengths that define the lobes and
exchange surface were isolated from the full set of LCS data. The area of the ith
lobe was calculated with the following formula for the area of a polygon, based on
Green’s Theorem in the plane:

A(Li)(t) =
1

2

n−1∑
j=0

[xj (t)yj+1(t) − xj+1(t)yj (t)], (2.7)

where xj and yj are the first and second components respectively for the beginning
and ending points of the j th segment defining lobe Li .

3. Results
Figure 5 plots the results of the transport analysis at four instants during the

jellyfish swimming cycle. The LCS curves analogous stable and unstable manifolds
are shown in yellow and green respectively. The p.i.p.s are denoted by open red
circles, whereas the b.i.p.s are denoted by filled red circles. Based on these b.i.p.s,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

78
72

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007007872


Geometry of unsteady fluid transport 137

(a) (b)

(c) (d)

Figure 5. Forward- and backward-time LCS surrounding a freely swimming jellyfish at four
instants during a swimming cycle. (a) t = 0, (b) t =1.07 s, (c) t = 2.13 s, and (d) t = 3.27 s;
yellow, forward-time LCS; green, backward-time LCS; open red circles, p.i.p.s; filled red
circles, b.i.p.s; segments of the stable and unstable manifolds that constitute the exchange
surface are indicated in solid lines, the remainder of the manifolds in dashed lines. Lobes are
numbered consecutively. Light blue, lobe inside recirculation region; dark blue, lobe outside
recirculation region.

the exchange surface is defined as the union of the solid portions of the yellow
and green curves. The lobes formed by the p.i.p.s and adjacent segments of the
LCS are numbered sequentially from lobe 1 upstream of the animal to lobes 5
and 6 in the wake. Based on the exchange surface definition, lobe 4 (light blue) is
initially located inside the recirculation region, whereas lobe 5 (dark blue) is located
outside. The temporal evolution of the flow illustrates the transport of fluid across the
exchange surface by the lobes during the swimming cycle. We note that although the
existence of transversely intersecting LCS is suggested by previous theoretical work
(e.g. Guckenheimer & Holmes 1983; Malhotra & Wiggins 1998), these interesting
flow kinematics are impossible to detect from inspection of the velocity field.

Equally interesting are the exchange surfaces observed in the canonical cylinder
crossflow (figure 6). This flow, previously studied by using Poincaré maps (Shariff et al.
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1

lobe 1

lobe 2

(a)

(c)

(e)

(b)

(d)
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Figure 6. Forward- and backward-time LCS surrounding a circular cylinder at six instants
during a vortex shedding cycle. Red, forward-time LCS; blue, backward-time LCS; filled black
circles, b.i.p.s; segments of the stable and unstable manifolds that constitute the exchange
surface are shown in solid lines, the remainder of the manifolds in dashed lines. Fluid
inside two lobes is shown: green, lobe outside recirculation region; light blue, lobe inside the
recirculation region. The circular cylinder is shown in grey.

1991), consists of two long, narrow lobes defined primarily by the repelling LCS (red
curve) that propagate from upstream toward the rear of the cylinder. The fluid carried
by these lobes crosses the exchange surface determined by the b.i.p.s (solid red/blue
curves and filled black circles, respectively) and enters a well-defined recirculation
region behind the cylinder. The lower lobe crosses the exchange surface first, as
indicated by its colour change from green to light blue. This fluid will eventually
cross the exchange surface again as it is detrained downstream via interaction with
the attracting LCS (blue curve). As in the jellyfish flow, inspection of the velocity or
vorticity field would not reveal this mass transport geometry. However, one does get
a sense for the locations where vortex shedding occurs by examining the kinematics
of the attracting LCS, especially where the this curve folds back onto itself. This is
not by coincidence: passive scalars, such as a dye used to visualize the flow, will tend
to align with the attracting LCS (Shariff et al. 1989; Voth, Haller & Gollub 2002).

Previous analytical studies of time-periodic flows have demonstrated that the rate
of fluid transport into the region bounded by the exchange surface is directly
proportional to the area of the lobes (in two dimensions; Rom-Kedar et al. 1990
and Shariff et al. 2006). Figure 7 plots the temporal evolution of the area of each
of the lobes identified in figure 5. In addition to the direct area measurement, we
also present calculations of an equivalent lobe volume based on an assumption
of axisymmetry in the flow. These calculations were made by assigning an axis of
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Figure 7. Temporal evolution of normalized lobe area (solid lines) and lobe volume (dashed
lines) during a cycle of jellyfish swimming. Normalized values represent the instantaneous lobe
area (volume) divided by the time-averaged area (volume) of that lobe over the swimming
cycle. (a) Lobes 1–3. (b) Lobes 4–6.

symmetry that coincides with the symmetry axis of the animal. To compare these
calculations with the lobe area measurements, we plot both quantities normalized by
the average value of that quantity over the swimming cycle. The average value is
taken separately for each lobe. Differences between the behaviour of the lobe area
and lobe volume are small for lobes above the animal and become more severe for
lobes near the lower margin. This is a direct consequence of the radial lobe motion
that occurs near the lower margin, which appears in the additional O(r) dependence
of the volume calculation relative to the area calculation.

Since the number of lobes that can be extracted from the flow is dependent on the
integration time T used to compute the LCS (i.e. more of the manifold is revealed as
the integration is carried out for longer times; cf. Haller 2000, 2002; Shadden et al.
2005), it is useful to consider the average lobe area as opposed to the total area of all
of the lobes in order to study fluid transport. In a two-dimensional flow, lobe area
preservation requires that the ratio of the total area of all of the lobes to the area of
any individual lobe is exactly equal to the number of lobes in the flow (Rom-Kedar
et al. 1990; Malhotra & Wiggins 1998). Hence, in this case the behaviour of the
average lobe area is sufficient to characterize all of the lobe dynamics. Figure 8(a)
plots the ratio of the average lobe area (volume) to the area (volume) of the circulation
region. The average lobe area is approximately 2 % of the recirculation region area;
the average lobe volume is approximately 13 % of the recirculation region volume.
One of these lobe volumes (in three dimensions) or two of these lobe areas (one per
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Figure 8. (a) Temporal evolution of the area (volume) of the average lobe and the recirculation
region for the jellyfish flow. Normalized values represent the instantaneous area (volume)
divided by the time-averaged area (volume) of the recirculation region over the swimming
cycle. Solid lines, area; dashed lines, volume; lines with dots, average lobe; lines without dots,
recirculation region. (b) Temporal evolution of the area of each lobe and the recirculation
region for the cylinder crossflow. Normalized values represent the instantaneous area divided
by the time-averaged area of the recirculation region over a vortex shedding cycle of duration
TC . Filled circles, recirculation region; filled squares, lobe 1; filled triangles, lobe 2.

side of the animal in two dimensions) is added and removed from the recirculation
region per swimming cycle. Since the total recirculation region does not change
appreciably in size over time (figure 8a), the lobe dynamics give an indication of the
fluid turnover rate within the recirculation region. For the jellyfish flow this turnover
rate is on the order of 10% per swimming cycle. A similar analysis can be performed
for the cylinder crossflow, as shown in figure 8(b). In this case, two lobes (one above
and one below the cylinder centreline) are added and removed from the recirculation
region during each vortex shedding cycle of duration TC . The corresponding fluid
turnover rate is approximately 14% per vortex shedding cycle.

We now examine the sensitivity of the results to the choice of the b.i.p. that defines
the exchange surface and associated recirculation region for the jellyfish flow. Figure 9
compares the temporal evolution of the area bounded by the current exchange surface
definition to the corresponding areas enclosed by modified exchange surfaces. These
modified surfaces are defined using the adjacent p.i.p.s that are either directly above
or below the current b.i.p. (cf. figure 4b, c). In cases where the current b.i.p. has no
adjacent p.i.p. below it (e.g. figure 5a), the current b.i.p. is used in the comparison.
The data are shown for the four time instants in figure 5. The results indicate
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Figure 9. Ratio of the area bounded by modified exchange surfaces defined using adjacent
p.i.p. above (filled triangles) or below (filled squares) the actual b.i.p., respectively, to the area
bounded by the original exchange surface. Data points correspond to the images in figure 5.

that the measurements are relatively robust to changes of the b.i.p. to its nearest
neighbour p.i.p. The use of the adjacent p.i.p. below the current b.i.p. results in a
slight underestimate of the area enclosed by the exchange surface. Conversely the
use of the adjacent p.i.p. above the current b.i.p. results in a slight overestimate. This
relative insensitivity suggests that despite the discontinuous shifts in b.i.p. that occur
as the b.i.p. criterion is evaluated on the temporally evolving LCS curves, physically
consistent results can be obtained and used for quantitative comparison of fluid
transport systems.

The temporal variation of the lobe areas in figure 7 is in violation of the known
behaviour of two-dimensional lobes in incompressible flow. A major source of this
spurious result is the three-dimensionality of the flow, which is not captured by the
two-dimensional DPIV measurements. In principle, the amount of time-dependence
exhibited by each lobe area can therefore be used as a measure of the local flow
three-dimensionality. For example, it can be inferred from the relatively constant
area of lobes 1 and 2 that the flow in their vicinity (upstream of the animal) is
nearly two-dimensional. By contrast, the flow near lobes 5 and 6 (in the vortical
wake) exhibits three-dimensionality that appears in the transient behaviour of the
corresponding lobe areas. As would be expected, the spatial transition between two-
and three-dimensionality is gradual, given the even spatial distribution of lobes in the
streamwise direction from lobe 1 to lobes 5 and 6.

Quantitatively, figure 10 shows that the standard deviation of the normalized lobe
areas plotted in figure 7 increases from approximately 10% upstream of the animal to
over 30% in the wake. The locations of two- and three-dimensionality in the flow, i.e.
upstream and in the wake, respectively, match physical intuition for the flow around
a self-propelled animal in quiescent surroundings. These locations are also consistent
with previous dye visualizations of flow generated by the same animal species (Dabiri
et al. (2005)).

Some of the area variation is due to error in determining the position of the
LCS from the FTLE field. The numerical simulations of cylinder crossflow enable
us to quantify this error, since that flow is two-dimensional by definition. As seen
in figures 8(b) and 10, the lobes in this purely two-dimensional flow exhibit an area
variation of approximately 4% over a vortex shedding cycle. This area variation
is wholly attributable to error in LCS identification since no three-dimensionality
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Figure 10. Standard deviation of normalized lobe area as a function of lobe number. Solid
line, lobe area; dashed line, lobe volume. Standard deviation of two-dimensional cylinder
crossflow lobes is included for reference.

exists. These results suggest that the flow upstream of the animal may be closer to
two-dimensional than the magnitude of the standard deviation in lobe area implies.

Finally, figure 11 plots the divergence of the velocity field shown in figure 5(a).
Deviations from zero divergence suggest three-dimensionality in the flow. The
locations of highest velocity field divergence (i.e. in the downstream wake) are
consistent with the regions of maximum lobe area variation, supporting the notion
that lobe area evolution can be examined as a metric for flow three-dimensionality.
The divergence calculation has the added benefit of point-wise evaluation of flow
dimensionality, whereas the lobe examination only gives information regarding
average behaviour within a lobe. However, in cases where lobe evolution has already
been computed for transport measurements, the area variation can complement
existing metrics with no added computational effort.

4. Discussion
The geometry of flow elucidated by these methods shows some striking differences

from conventional Eulerian perspectives such as velocity and vorticity fields. Indeed,
much of the fluid transport geometry is hidden when one examines the flows studied
in this paper using those metrics. As suggested by Shariff et al. (1989), the attracting
(backward-time) LCS shows qualitative similarity to what would be observed in the
flow using a passive scalar such as dye to mark the fluid particles. However, there
appears to be no analogous visualization to produce the repelling (forward-time) LCS
structure. The repelling LCS structure revealed in the cylinder crossflow provides an
interesting and unconventional perspective on that canonical flow. The transport
role of the upstream lobes may be a useful target for manipulation in various flow
control applications. Notably, despite the fact that the Reynolds number (Re = 200)
is in the regime of periodic vortex shedding, there exists a well-defined, time-varying
recirculation region at the base of the cylinder that is revealed by the present methods.
The role of such regions in external flows of this kind should receive greater attention
in the future. We hypothesize that similar structures will exist in other bluff body
flows as well as in structures of importance in aero- and hydrodynamics. The recent
results of Salman et al. (2007) support this conclusion.

The case study of jellyfish swimming provided a test of the methods in a flow with
more complex fluid–structure interactions and temporal aperiodicity. Despite the
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Figure 11. Divergence of DPIV velocity field surrounding a freely swimming jellyfish at
t =0, cf. figure 5(a). Locations of non-zero divergence indicate three-dimensional flow. Animal
position is shown in dashed outline.

increased complexity, the lobe dynamics predicted in the simple model vortex system
appeared in this flow as well. By extracting the geometry of fluid transport, it was
possible to quantify the mass transport that occurs concomitantly with momentum
transport during self-propulsion. This mass transport has biological significance
because local environmental sensing is a vital capability for many self-propelled
organisms like the jellyfish. By increasing the rate of fluid turnover within the
recirculation region, the animal is able to more effectively deduce the properties
(e.g. chemical cues) of the surrounding fluid.

The fluid turnover metric can be similarly useful for identifying the precise effect
of various flow control strategies (e.g. blowing and suction) on the surrounding
fluid. For example, the upstream lobes observed in figure 6 indicate exactly which
fluid incident on the body in the flow is actually affected by the control strategies.
Moreover, the magnitude of the fluid turnover rate can indicate the duration of the
interaction between that fluid and the body, when coupled with statistical methods
(e.g. Rom-Kedar et al. 1990; Shariff et al. 1991; Duan & Wiggins 1997).

Measurements of unsteady propulsion can benefit from the present methods, as they
suggest the possibility of computing unsteady mass flux induced by the propulsor. The
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present tools can be especially useful where the propulsors generate an external flow
(e.g. flapping foils or undulating bodies), in which case the mass flux can be difficult
to estimate. Krueger (2006) has shown that measurements of this unsteady mass flux
combined with an estimate of the mechanical power expended by a system can be
used to compute propulsive efficiency without making an assumption of quasi-steady
flow, as must be done to compute an equivalent Froude efficiency. Hence, the concepts
described here can enable comparison of propulsive performance in swimming and
flying organisms or in engineered propulsion systems that are unsteady.

Finally, although three-dimensional LCS and lobe structure is beyond the scope of
the present work, three-dimensional flows are fully amenable to the present treatment.
In those cases, the intersection points are replaced by intersection lines, and lobe areas
become lobe volumes. The resulting exchange surfaces will then become truly three-
dimensional. That development will provide valuable new insight into many of the
flows under investigation in fluid dynamics.

The authors acknowledge insightful discussions with S. C. Shadden, J. E. Marsden,
K. Shariff, very helpful suggestions from the manuscript referees, and funding from
the NSF Biological Oceanography Program (OCE-0623475 to J.O.D.).
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