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This work investigates the utilisation of Particle Swarm Optimisation (PSO) for the non-
deterministic navigation of Unmanned Aerial Vehicles (UAVs), allowing them to work
cooperatively toward the goal of protecting a wide area against airborne attack. To negate
the PSO’s inherent weakness in dynamic environments, a neighbourhood scheme is proposed
that not only enables the efficient interception of targets several times faster than the UAVs
but also facilitates the maintenance of effective airspace coverage. Empirical results suggest
that these techniques may indeed be of use in autonomous navigation systems for UAVs in
air defence roles.
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1. INTRODUCTION. Automated or remote controlled systems are an at-
tractive option for military combative systems since they remove humans from
dangerous environments. McCarley and Wickens (2004) indicated that remote con-
trol can be problematic for a variety of reasons such as the lack of timely sensory
feedback. Further, the ability of current defence technology and strategies to deal
with the possible use of Unmanned Aerial Vehicles (UAVs) in modern asymmetri-
cal warfare is being questioned (Miasnikov 2005).

We consider the possibility that a ‘swarm’ of UAVs, equipped with RADAR and
missile capability, could be used to defend a large airspace, autonomously, against
aerial attack if strategies could be developed that allowed them to behave co-
operatively. Indeed, a large amount of research has already taken place into auton-
omous control of UAV groups using a variety of paradigms (for example, Chandler
et al. (2002), Alighanbari et al. (2003), Jin et al. (2003), Frew and Lawrence (2005)
and Krishna et al. (2005)). Swarm intelligence explores the emergent properties of
natural cooperative systems, such as bird flocks or ant colonies, and can be applied
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to search problems. From this paradigm we adopt the Particle Swarm Optimisation
(PSO) approach for our investigation.

PSO uses a model of social learning that has been found to reproduce the behav-
iour of naturally occurring swarms. In these swarms each individual is only capable
of simple behaviour but through sharing knowledge they produce complex and
computationally useful emergent group behaviour that can be used to solve both
continuous (Kennedy and Eberhart 1995) and discrete (Kennedy and Eberhart 1997)
non-linear problems. Doctor and Venayagamoorthy (2004) indicated that this
emergence could be harnessed to automate the control of UAVs to attack static
targets. In this work, however, we focus on developing swarms that are able to
defend fixed targets against airborne assault, by way of proof-of-concept, and as a
basis for further explorations of swarm intelligence in this domain.

The remainder of this paper is organised as follows. Section 2 provides a brief
overview of the PSO algorithm and its development. Section 3 describes the abstract
world model, i.e. the simplifications made to the problem domain to facilitate devel-
opment, visualisation and analysis. Section 4 discusses the development of the
PSO algorithm for UAV guidance. Section 5 describes some of the properties of
the simulation environment and section 6 details the parametric study conducted to
explore the performance. Section 7 presents the results of the parametric study and
section 8 comprises a general discussion on the nature of PSO and its utility in this
domain. Section 9 concludes.

2. PARTICLE SWARM OPTIMISATION. The concept of using a col-
lection of autonomous particles that act together to produce an emergent behaviour
was initially developed to solve the problem of rendering natural looking images in
computer animations (Reeves 1983). For some animations it is necessary to render
group behaviour (such as that of a flock of birds) with higher order dynamics than
simple particles. To script the behaviour of each individual is possible, but tedious
and difficult to make lifelike. Reynolds (1987) used Reeves’ particle system as the
basis for his higher order (in terms of objects being modelled) flocking algorithm.
He took the particle movement and added orientation and inter-object communi-
cation. These additional behaviours allowed individual ““Boids” (Bird-oid objects)
to follow some simple flocking rules: Boids should avoid colliding with fellow
Boids, they should attempt to match velocity vectors, and try to stay close to each
other. Adopting this underlying model removed the need for the animator to
specify each individual flight path.

Kennedy and Eberhart (1995) sought to extend Reynolds’ model to reflect human
social behaviours. More importantly, they replaced the simple roost goal developed
by Heppner and Grenander (1990) with a more realistic goal — that of searching for
food. It was this goal that led researchers to use non-trivial mathematical problems as
the fitness function for the particles (no longer called Boids since they had become
more generalised). The resulting algorithm for calculating the position update vector
(v) can be defined as:

V'=vi+c1r1(pi—xi) + cara(pg — X;) (1)

where c¢ is a constant for balancing between group and individual influence, r; and
r, are uniformly distributed random numbers in the range 0-0 to 1-0, p; is the
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previous best position of the i individual, and p, is the previous best position

of the group as a whole. For an n-dimensional space the particle velocity is
calculated for each dimension and then resolved into a final vector for updating
the particle’s position. Thus, individual particles are accelerated toward the best
solutions found, based on a combination of their personal experience and the
experience of the group, hence providing a trade-off between local and global search
behaviour.

Shi and Eberhart (1998) noted that without the velocity memory, the first part of
equation 1, the swarm would simply contract to the global best solution found within
the initial swarm boundary (providing a local search). Conversely with the velocity
memory, the swarm will behave in the opposite sense, expanding to provide a global
search. To assist with the balance between exploration and exploitation a modified
formulation using an inertia term (w) was introduced:

V= vi+c1r(pi—Xi) + cara(pg — Xi) )

A further approach to controlling the behaviour of the swarm was intro-
duced by Clerc and Kennedy (developed 1999, published 2002), where, rather
than applying inertia to the velocity memory, they applied a constriction factor, y,
thus:

V'=yx (vi+cir(pi—Xi) + cars(pg — X)) (3)
2

- ve—ig)

In conjunction with this work, Eberhart and Shi (2000) showed that combining
inertia and constriction by setting the inertia weight (w) to y improved performance
across a wide range of problems.

It is not just particle trajectory that is important to swarm behaviour; the
method by which P, is calculated affects how particles are allowed to explore areas
away from the current swarm best. Through investigations into the impact of a
variety of social networks, Kennedy (1999) focussed on four basic topologies:
rings, wheels, stars and random edges; sociometric network shortcuts for each were
also tested. The research concluded that the topology does affect the swarm’s per-
formance but which is best is objective function dependent; the shortcuts were
found to have very unpredictable effects. An inferred finding from the work was
that networks that slow down communication could help prevent premature con-
vergence in multimodal landscapes. Kennedy and Mendes (2002) supported this,
concluding that the best, on average, configuration is a von Neumann topology.
This is logical since it has connectivity somewhere between that of a ring (using the
local neighbourhood best, which is slow and better in multimodal landscapes) and
totally connected (using whole group best, which is fast and suited to simple
landscapes).

where ¢ =cyry+cars, @ >4 4)

3. ABSTRACT WORLD MODEL. The purpose of this work is to investi-
gate the potential of PSO as a guidance strategy for UAVs deployed in an air
defence role. This is a hugely complex domain, and for initial proof of concept,
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it was therefore necessary to develop a much simplified world model to facilitate
experimentation. The model is based on the following abstractions:

® All aircraft movement is restricted to a two dimensional world.

® Scaled aircraft speeds are increased to make the study feasible. Without this

each simulation would take several hours. The attacking aircraft are given

constant speeds relative to the defending UAV speeds, thus a relative speed of

2 allows them to fly twice as fast as the defending UAVs.

Attacking aircraft do not fight back.

All UAV missile launches are deemed to be successful.

UAVs are given unlimited missiles, each with a range of 5 nautical miles.

UAV RADAR is given a range of 40 nautical miles and a field of view of 40°.

This is much narrower that would be expected from standard aircraft radar

systems but made observational study easier.

® There is no ground based RADAR system.

® Where enemy aircraft are forced out of the search space it is assumed that
their mission would be aborted and a score is given as if the aircraft had been
destroyed. This was implemented because airspace denial was the prime objec-
tive of the UAVs in this simulation.

® To provide a benchmark against which the PSO based system could be judged a
simple deterministic search pattern was implemented, loosely modelling that
of a human controlled UAV group without ground-based or airborne early
warning.

The nature of this work is a comparative examination of the performance improve-
ments possible when using a PSO guidance strategy rather than a deterministic search
pattern. Therefore, although some aspects of the abstract model may give rise to
perceived advantages to the defending force, the results hold —i.e. that PSO is useful
in this context since it performs better than a deterministic search pattern.

4. ALGORITHM DEVELOPMENT. This section provides an insight into
how the swarm algorithm was developed and some of the design decisions that were
made to improve its performance. After providing the UAVs with the basic ability
to move about the airspace and communicate with each other, the swarm algorithm
could be developed. The constricted algorithm (equations 3 and 4) proposed by
Clerc and Kennedy (2002) was used because the increased particle stability it offers
is more suitable for aircraft flight, where constant changes of direction are in-
efficient. In Eberhart and Shi (2000) the optimal value for ¢ is given as 4-1, yielding
a value for y of 0-729. This is functionally equivalent as using the modified PSO
algorithm and setting w =0-729 and ¢;=c,=149445. To simplify the implemen-
tation this equivalent formulation was used.

The swarm stability provided by the use of this variant of the PSO algorithm was
augmented by the addition of a flight path stabiliser algorithm that forces a UAV
to maintain a flight trajectory for a randomised period of time (i.e. it will not try to
change direction on every iteration of the algorithm); the periodicity of this ranged
from 1 to 20 UAV moves.

Further modifications were required to the constricted algorithm to make it suit-
able for the control of aircraft flight. The UAV velocity was set to a conservative
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maximum UAYV speed and the change of direction limited by a maximum turn
rate. To prevent swarm members flying away from the search area a feature inspired
by Heppner and Grenander’s (1990) roosting algorithm was introduced. Each
UAYV was assigned a ground position to defend (the roost); within the search area
they flew a stochastic search pattern looking for intruders, but if they exited the
defined search area their target became the roost, drawing them back into the search
space, whereupon stochastic search is resumed. At all times, detected targets took
priority.

With the introduction of multiple targets, it was observed that when a UAV was
tracking one target and another target was discovered by another swarm member,
the UAV would be drawn away from the target it was tracking. This was because
the ‘full” PSO algorithm produces a velocity vector that is a balance between indi-
vidual and group best positions. Where the strength of these influences is the result of
a fitness function and the optimal positions remain static this is not problematic.
In the air defence application the target is dynamic and if the UAV is drawn away,
there is a possibility that RADAR lock will be lost prematurely. To overcome this,
inspiration was taken from Kennedy’s (1997) social models. Initially, the swarm
operated in search mode with no swarming behaviour taking place. When in search
mode, if a UAV receives information from another swarm member regarding a
detected target it enters swarm mode (using the ““social-only”” model). Upon detecting
its own target, it enters engage mode and removes influences from other UAVs
through switching to the ““cognition-only” model. In Kennedy’s work this model
suffered because individuals failed to find optimal regions. In this implementation
there is no such problem since the UAV is already in an optimal region (i.e. it was
detecting a target). Switching modes in this way is not only viable within the human
metaphor, it produces behaviour in keeping with animal based teams (Anderson and
Franks, 2001).

A further problem presented by multiple targets occurred when a UAV detected
more than one target simultancously. With targets of equal perceived value a human
operator might be expected to target the aircraft that they had the highest probability
of destroying with the missile type fitted to the aircraft. This rationale was employed
in a missile dependent fitness function (in this scenario: 1+ the cosine of the UAV
heading with respect to the reciprocal of the target heading) that allowed the UAV to
discriminate between simultaneously detected targets. In addition, the problem of
maintaining search coverage (swarm diversity) after the initial target detection must
be addressed. One could also argue for maintenance of diversity on the grounds of
efficiency, since there is no point in a UAV joining in a swarming action against
a target it cannot possibly reach. To support diversity, a dynamic neighbourhood
was developed based on the UAVs ability to position itself such that it would be
able to launch a missile attack. This was termed the Launch Success Zone (LSZ)
neighbourhood. A UAV is considered a member of an LSZ neighbourhood if its
bearing from target is +£40° and the target distance is less than the RADAR range
multiplied by the relative target speed. The application of the LSZ neighbourhood is
illustrated in Figure 1. In the scenario shown, UAV 1 detects the hostile aircraft,
calculates the velocity vector and transmits this to the other UAVs. UAV 4 is not able
to manoeuvre into a suitable position to engage the hostile aircraft and so does not
waste resources attempting to do so. UAVs 1, 2 and 3 are in the LSZ and are able
to manoeuvre into a firing position.
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Figure 1. LSZ neighbourhood scenario.
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Figure 2. The simulation environment.

5. SIMULATION ENVIRONMENT. To enable observational and para-
metric studies, a simulation environment (illustrated in Figure 2) was constructed
in Ada 95 using the John English Windows Library (JEWL) (English, 2000) and
AdaCore’s Gnat Programming System (AdaCore, 2005).
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Figure 3. Coverage map arising from fixed search pattern.

The environment offered the following features:

® A two dimensional representation of an area of airspace measuring 400 miles
by 300 miles. Each pixel on the display represents a 0-25 square mile. Within the
airspace the defended positions are shown by a “ +’ symbol and the UAVs
as small dots with a °V representing the UAV’s RADAR Field Of View (FOV),
aligned with the direction of travel. Targets are shown as small discs.

® The ability to launch attack profiles supporting the parametric study. The targets
have simple behaviour, but they do have some ability to attempt to avoid being
destroyed. This behaviour is made possible through a simulation of a Radar
Warning Receiver. In response, the targets turn away from their preset flight
path, continuing until they are twice the UAV missile range away, then attempt
to fly around the tracking UAVs and outpace them®.

® Variable swarm configuration, where any size of swarm can be modelled and
their performance explored based on either a deterministic search and rescue
grid pattern or stochastic search provided by the PSO algorithm.

® A graphical representation of the frequency of occupancy (coverage) by the
UAVs of each 25 mile? can be produced to aid the visualisation of search
and intercept behaviour. Figure 3 illustrates the coverage map following the
deterministic search. Frequency of occupancy is indicated by the level of shading
(note that this is not RADAR coverage).

! This was found to be an effective strategy and, in a sample trial using 4 targets travelling at twice UAV
speed against 40 defending UAVs, the defended positions were hit on average more than twice as often
(2-85000E-01 against 1-02000E-01).
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® Three performance metrics are provided:
O Score. This is the average score for that particular experiment. Each time
an enemy aircraft is destroyed it is given a score based on the following
pseudocode:

if not bomb_released then

score: = (distance_to_defended_position — bomb_range)/5.0
else

score: =intrinsic_value_of _aircraft_ to_enemy

end if

Note: the score is scaled to avoid aircraft being destroyed a long way from
the defended position dominating ones that are destroyed closer. The intrinsic
value of the aircraft for this project was set to 0-75, which attaches less
importance to destroying the aircraft than airspace denial.

O Losses. The average number of times the defended positions have been
bombed during the experiment. This is considered the most important
indicator of swarm efficacy.

O Coverage. This is a count of the number of map squares that have not been
entered by a UAV during the last simulation run.

6. PARAMETRIC STUDY. To ascertain the potential performance of a
PSO controlled UAV air defence system a parametric study was performed using
the default PSO settings as advised by Eberhart and Shi (2000). This section
describes the setup of the study, with results presented in section 7.

6.1. Experiment Configurations. Four attack profile experiments were designed
to measure the performance of swarm sizes of 20, 40 and 60 against intruder speeds
of 1, 2 and 4 times that of the UAV. The profiles were as follows (refer to Figure 4
for illustration of routes):

® Single Target. A single attacking aircraft following route 1. This was devised to
test against an opportunistic attack such as might be launched by a terrorist
organisation (Miasnikov 2005).

® Two Targets, Two Attackers. Two aircraft attack two separate targets following
routes 1 and 2. This tests the system’s ability to deal with diversionary attack.

® Two Targets, Four Attackers. Route 1 and 3 constituted a roughly parallel attack
against target 1, whilst routes 2 and 4 provide a split attack against target 2. This
represents a higher intensity attack against the defended positions, designed to
test a more likely conventional attack scenario.

® Swarm attack. This profile consists of the four routes described above plus an
additional 20 attackers all taking different routes against the targets. This tests
the ability of the systems to defend against massive odds.

6.2. Benchmark Experiment. The purpose here was to establish a benchmark
against which the performance of a swarm of PSO guided UAVs could be compared.
Groups of independent UAVs were flown around a fixed search pattern, using
avoidance to ensure good search space coverage (see Figure 5). When a target was
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detected, the detector would attempt to get within firing range and destroy it where
possible, before resuming the search pattern.

6.3. Swarm-Only. Swarms were allowed to engage in stochastic search under
the same conditions as the benchmark. When targets were detected the whole swarm
responded, as per Figure 6.
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Figure 6. Swarming UAVs attack a single target.

6.4. LSZ Neighbourhood. The experiments were repeated under the same
conditions as for swarm-only, except the LSZ neighbourhood was employed.
Figure 7 illustrates how the LSZ operates in practice. Initially the target was travel-
ling up the screen on route 1. At point A, UAV 1 detected it, causing it to change
direction to avoid being destroyed. UAV 1 communicated the target velocity vector
to the swarm, and two other UAVs (2 and 3) met the criteria for membership of
the LSZ neighbourhood and, believing they could provide assistance, have steered
accordingly. Notice that the rest of the swarm are still searching for new targets, since
they cannot assist with the current target engagement.

6.5. Swarm Attack. A conventional ‘swarm attack’ does not refer to the use of
techniques from the field of swarm intelligence; instead, the term is used to convey
the large numbers of simultaneous attacks on a target (see Figure §). The simulation
was modified to allow the inclusion of an additional 20 attackers, all with different
attack profiles; half attacking defended position 1 and the other half position 2.

7. COMPARISON OF PERFORMANCE. The performance of each
guidance system (benchmark, swarm-only, and swarm with LSZ) was evaluated on
the basis of score and losses. The following section presents graphical representa-
tions of performance under varying attack profiles and target velocities (expressed
as a multiple of UAV velocity). Swarm sizes of 20, 40 and 60 and target velocities
of 1, 2 and 4 were used. Results reported are an average of 1000 trials of each con-

figuration.
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Figure 10. Average score for swarm size =40.

7.1. Score. The relationship between the performance of the guidance systems
was consistent in nature across swarm sizes, with the LSZ controlled swarm per-
forming better across the largest range of scenarios (see Figures 9 to 11). With small
numbers of UAVs, the benchmark performed well against low speed targets because
of the increased likelihood of detection through the efficient deterministic search
pattern. Once detection had been achieved, the attacker could not outrun the
defender and the benefits of cooperation were not required. At higher target speeds,
though, the system performed less well since targets could outrun the detecting
aircraft without running into cooperating defenders.
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Figure 11. Average score for swarm size = 60.

Once the swarms were large enough (e.g. 40 and above) it was good to note the
consistency of the LSZ swarm, against varying attack profiles and target velocities.
This can be attributed to the search area remaining defended when multiple attacks
occurred, and the LSZ was less sensitive to relative velocity because it adapted to
faster attacking aircraft and there were sufficient UAVs to make use of the dynamic
nature of the neighbourhood.

The effect on the performance of the swarm-only system against multiple targets
at slow speed is again highlighted when compared to the performance of the other
systems. Particularly in Figures 10 and 11, it can be seen that swarm-only perform-
ance drops against slower speed targets whilst the other systems improve because
they find the targets easier to detect and destroy without being distracted by early
detections.

7.2. Losses. The losses metric can be regarded as a measure of the efficacy of the
system in defending the ground positions from attack. The results (Figures 12 to 14)
followed the same pattern as for the score, with the two swarming algorithms
improving markedly when swarm sizes were sufficient (e.g. for this size search area
at least 40 UAVs). Again the swarm-only system was outperformed by the bench-
mark for slow speed multiple target attacks but the difference was only marginal
and the swarm-only advantage where target speed is higher could make it more
attractive.

In Figure 12, where the swarm size is insufficient to exploit the benefits of the
cooperative nature of the LSZ it can be seen that it behaves very much like the
benchmark, albeit with a slight improvement (where occasional cooperation would
occur when there happened to be UAVs close enough). As swarm size increased,
in Figures 13 and 14, the behaviour became much more consistent, with the latter
showing that the system was only really under pressure with four targets travelling
four times their speed. Thus, the LSZ always outperforms the benchmark and, with
sufficient UAVs, the swarm-only system (except in the final scenario of 4 targets
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Figure 14. Average losses with Swarm Size = 60.
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Figure 15. Performance of systems against a 24 aircraft swarm attack.

Figure 16. The swarm-only system produced a poor diversity of response at speed =1, leaving
defended positions unprotected (left). At speed =4, the system is gradually drawn toward the
middle of the search space (right).

at 4 times UAYV velocity). One might expect that tuning of the LSZ (e.g. in terms
of defining angle and distance) to improve matters further —i.e. extending the
neighbourhood when faced with faster moving targets. This consistency against
different attack profiles is very attractive when considering a defensive system.

7.3. Swarm Attack. Effectiveness against swarm attack can be shown through
the losses metric. Again the LSZ swarm consistently outperformed the Benchmark
because, whilst both systems maintained airspace coverage, the cooperative nature
of the swarm allowed the LSZ UAVs to destroy targets that would have otherwise
escaped by outpacing the defenders. This is highlighted by the increase in perform-
ance of the LSZ swarm at higher speed differentials (see Figure 15).

However, although the swarm-only system generally performed poorly due to
homogeneous response (see Figure 16), it did perform best at higher speeds. This
was due to the targets spending less time within the UAV RADAR range, thereby
reducing the amount of swarming time against a single target, causing the UAVs
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Figure 17. Lack of diversity in the swarm-only system (left). Diversity of response is maintained
with LSZ enabled (right).

to concentrate toward the centre of the defended area. This could be regarded as
a ‘sensible’ behaviour since at times of intense pressure it is a good defensive tactic
to withdraw outlying defenders and concentrate them round the point to be defended.

7.4. Diversity Of Response. The lack of response diversity in the swarm-only
system against multiple targets has been highlighted. Four aircraft, travelling at UAV
speed, were set to attack the two defended positions, which were guarded by 30
swarming UAVs. Figure 17 illustrates that the aircraft detected first have the ability
to draw the swarm away from the defended position and the other attacking aircraft.
This homogenous response (or lack of diversity) renders the swarming system open to
the exploitation of its emergent behaviour. With the LSZ enabled, however, diversity
is maintained and early detections do not distract the whole swarm.

8. DISCUSSION. The following discussion explores a range of issues based
on swarming using the LSZ neighbourhood as this was the most effective system
overall.

8.1. Categorisation As Swarm Intelligence. Whilst visually the UAVs appear to
exhibit properties of a swarm, it is useful to apply criteria that assess whether swarm
intelligence exists and thereby establish whether the advantages offered by swarming
are available. Millonas (1994) identified five basic principles that could be used to
identify swarm intelligence, and these principles are shown to exist within the LSZ
system as follows:

® Proximity. All swarm members should be able to perform elementary space
and time computations. These are fundamental behaviours for the autonomous
swarming UAVs. Just as natural organisms use such calculations to perform
activities such as searching for food, the UAV sensors detect the velocity vector
of targets and friendly aircraft, and, combined with knowledge of their own
velocity vector, attempt to compute an immediate course of action that will
have the highest likelihood of achieving the group goal.

® Quality. The swarm members should be able to respond to quality measures with
respect to the attainment of their individual goals. This was achieved through
the application of a fitness function, which considers the relative positions of
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the UAV and the target aircraft, their bearing, and the missile characteristics.
With the ability to ascertain the quality of a given solution to its goals, the
UAY can select the most appropriate target from several possibilities. A further
response to a quality measure was the UAVs self-determination with respect
to LSZ membership — the quality measure being the relative target and UAV
positions and the velocity vector of the target, the goal being an efficient response
to attack and maintenance of airspace coverage.

® Diversity Of Response. The swarm should not excessively commit its resources
in a manner that would leave it vulnerable. In previous work (Kennedy 1999,
Kennedy and Mendes 2002), the sociometric structure of the swarm was seen to
effect the rate of convergence on a particular solution. Where the solution space
had a simple landscape this was not problematic. However, where the landscape
was complex, convergence on early solutions had a large probability of being
suboptimal. In the air defence scenario, if the whole swarm converges on the first
enemy aircraft detected this too could be premature, since other aircraft could
enter the controlled airspace vacated by the swarming UAVs. By maintaining
a diversity of response, as achieved with LSZ neighbourhood, this can be
avoided. The LSZ neighbourhood originated from the idea that it would only
be useful for a UAV to attempt to converge on a target if it would be able
to manoeuvre into a position where a missile could be launched successfully.
Once implemented, it was found to have the more useful property of maintaining
diversity of response, and without it the swarm could over-commit to a single,
possibly diversionary, target, leaving the defended position vulnerable to other
attacks.

® Stability. This principle is important to UAVs, because an unstable swarm,
that is one that changes its behaviour too often, is inefficient. The inefficiency
is that, when a goal changes for a swarm member, it will usually have to move
to another part of the search space or radically change direction. Utilising
the LSZ neighbourhood increases swarm stability since it gives the UAV the
ability to decide for itself whether it is efficient use of its resources to change
mode.

® Adaptability. All the swarm members should be able to switch to a different
mode of operation, but only when there is a sufficient return on investment. The
tuning of the LSZ is critical to this principle because if it set too small then it is
less likely that UAVs finding themselves included will have sufficient time to
manoeuvre into a firing position. Conversely, if the LSZ neighbourhood is too
large then UAVs may be switching mode unnecessarily, either because other
UAVs are likely to have destroyed the target long before the more distant ones
get into firing range, or because the target will have changed direction, causing
unnecessary mode changes.

8.2. Network Topology. For optimisation problems, selection of a suitable
topology is usually dependant on the fitness landscape (Kennedy and Mendes, 2002),
which for the airspace defence problem is dynamic and unpredictable. If it were
possible to predict a unimodal landscape, total connectivity with all UAVs swarming
toward the target would be most appropriate since it provides a homogenous
response, but in a multimodal landscape this strategy could leave large areas of the
airspace open to exploitation by other attackers. This problem was alleviated by

https://doi.org/10.1017/S0373463307004444 Published online by Cambridge University Press


https://doi.org/10.1017/S0373463307004444

26 ALEC BANKS, JONATHAN VINCENT AND KEITH PHALP VOL. 61

Figure 18. Swarm Coverage without LSZ neighbourhood (left) and with LSZ neighbourhood
(right).

the introduction of the LSZ neighbourhood topology. Whilst all of the swarm
members were connected due to the broadcast communication strategy employed
in the simulation, each individual decided whether it was profitable to react by
calculating its fitness with respect to the received target information. The importance
of this to the quality of defence system is illustrated in section 7-4 and by comparing
the levels of coverage shown in Figure 18. In this experiment a medium size swarm
(40 members) was challenged by a single, same speed, target that was allowed to fly
for one complete route. Without the LSZ neighbourhood 3469 squares remained
untravelled by UAVs in contrast with 735 with LSZ selected.

8.3. Rules. Examination of the swarm members’ behaviour reveals that each
follows a simple set of rules. This may appear contradictory to the philosophy of
autonomous behaviour, but without these rules there would be no system; each UAV
would fly aimlessly around the search space, and engagement with targets would
be purely on chance. The defining aspect of the rules is that they are low-level; an
external leadership hierarchy does not govern each individual’s behaviour, but the
combination of individual behaviours determines the emergent group behaviour.
The rules that each individual must follow are:

® Record and communicate locations of detected targets.

® Fly toward the source of an LSZ neighbourhood that the UAV finds itself
part of.

® Where an individual finds itself in multiple LSZ neighbourhoods it must decide
which would be the most profitable source to pursue.

® When an individual is not part of a LSZ neighbourhood it should engage in
a stochastic search, staying within a given area to maintain swarm density.

8.4. Feedback. Without feedback, systems cannot adapt to dynamic environ-
ments. The feedback in particle swarm systems cause the UAVs in this imple-
mentation to acquire a heading toward the target and maintain the heading toward
it whilst the target is being detected. Loss of detection breaks the feedback loop
causing the swarm members to resume the search mode.

8.5. Determinism. An implementation of the UAV defence system would be
regarded as safety critical; its failure is unacceptable on the grounds of risk to human
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life. Currently such systems must be deterministic in the sense that it must be possible
to predict its behaviour given a certain set of circumstances®. To an extent each
UAV’s behaviour is predictable; they all follow a set of low-level rules. Their flight
trajectories appear to be stochastic in that they are not predictable to an observer,
without knowledge of the algorithms and the random number sequence. One would
not, perhaps, expect such a system to be fully autonomous, and some form of over-
sight might be expected. This work is really about the guidance system, rather than
the process of destroying a target. As artificial intelligence paradigms take more
control of defence systems, maybe the next generation of electronic warfare systems
will be behaviour analysts and predictors?

9. CONCLUSIONS AND FURTHER WORK. This research has exam-
ined the possibility of employing Particle Swarm Optimisation (PSO), in the devel-
opment of a guidance strategy for UAVs in an air defence role. The precise nature
of the task is secondary to the assessment of the utility of PSO in facilitating
cooperative search, tracking and interception, which may find more general appli-
cation.

A simulation environment based on an abstract world model was created to
facilitate the exploration of PSO concepts in a representative, but much simplified, air
defence scenario. A parametric study was undertaken to compare the performance
of three defensive strategies: a benchmark configuration where UAVs adopted a
deterministic search pattern, a swarm-only system, and a swarm with LSZ neigh-
bourhood. At slow target speeds the benchmark system worked well due to its
efficient systematic search and the ability of individuals to destroy the targets without
cooperation. Once target speeds increased, performance declined because targets
were able to escape from the detecting aircraft. The swarm-only system worked well
against single targets because, once detection occurred, the whole swarm worked
cooperatively to defend the area. This homogeneous response hindered the system
when multiple targets were involved, especially at slower speeds, because once the
first target was detected the whole swarm would be drawn toward it leaving large
areas of the airspace vacant, to be exploited by other targets. The dynamic neighbour-
hood of the LSZ system overcame this problem to a large extent. When a target
was detected, only those UAVs that considered, through the application of a set of
low-level rules, that they were in a position to be able to destroy the target actually
reacted to it. This meant that those who did not consider themselves part of the
neighbourhood could continue to search for other targets. The stochastic search of
both swarm systems meant that smaller swarms did not perform well. This was
due to the inefficiency of searching randomly over a large area using few resources.
The performance of all three systems in defending against a large scale attack was
also explored. Interestingly, the swarm-only system performed well against high-
speed attack, because the swarm tended to be drawn toward the focus of the attack
and the concentration of UAVs resulted in better defence of that area.

For the simplified application under investigation the particle swarm approach to
cooperative guidance improved the ability of a group of UAVs to defend locations
within a specified area, when compared with a more traditional fixed search pattern.

2 Although BAE Systems have recently announced its commercial development of autonomous UAVs
(Robinson, 20006).
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This remained true for isolated attacks as well as for overwhelming swarm attacks.
Critically, the proposed dynamic neighbourhood scheme has not only allowed
diversity of response to be maintained, but also enabled the defending UAVs to
intercept much faster targets. Thus, the development of the LSZ is considered a
valuable contribution, enabling a higher level of swarm intelligence to be realised.

This work has demonstrated the potential for PSO to contribute to cooperative
guidance in complex high-speed multimodal domains. However, this is at the earliest
stage of development and further work is in progress to explore the use of biologically
plausible solutions to the problems of search efficiency and maintenance of target
pursuit post detection loss.
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