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On the contact region of a diffusion-limited
evaporating drop: a local analysis
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Motivated by experiments showing that a sessile drop of volatile perfectly wetting
liquid initially advances over the substrate, but then reverses, we formulate the
problem describing the contact region at reversal. Assuming a separation of scales,
so that the radial extent of this region is small compared with the instantaneous radius
a of the apparent contact line, we show that the time scale characterizing the contact
region is small compared with that on which the bulk drop is evolving. As a result, the
contact region is governed by a boundary-value problem, rather than an initial-value
problem: the contact region has no memory, and all its properties are determined by
conditions at the instant of reversal. We conclude that the apparent contact angle θ is
a function of the instantaneous drop radius a, as found in the experiments. We then
non-dimensionalize the boundary-value problem, and find that its solution depends on
one parameter L , a dimensionless surface tension. According to this formulation, the
apparent contact angle is well-defined: at the outer edge of the contact region, the film
slope approaches a limit that is independent of the curvature of bulk drop. In this,
it differs from the dynamic contact angle observed during spreading of non-volatile
drops. Next, we analyse the boundary-value problem assuming L to be small. Though,
for arbitrary L , determining θ requires solving the steady diffusion equation for the
vapour, there is, for small L , a further separation of scales within the contact region.
As a result, θ is now determined by solving an ordinary differential equation. We
predict that θ varies as a−1/6, as found experimentally for small drops (a < 1 mm).
For these drops, predicted and measured angles agree to within 10–30 %. Because
the discrepancy increases with a, but L is a decreasing function of a, we infer that
some process occurring outside the contact region is required to explain the observed
behaviour of larger drops having a> 1 mm.

Key words: capillary flows, contact lines, thin films

1. Introduction
In recent experiments (Poulard et al. 2005; Guéna, Allançon & Cazabat 2007a;

Guéna, Poulard & Cazabat 2007b), a sessile drop of pure liquid evaporates into a
mixture of its own vapour and an inert gas at a rate controlled by vapour diffusion.
The temperature T can be assumed uniform in space and time. The total gas pressure
pT is uniform; far from the drop, the partial pressure pv approaches the constant
ps−1pv; ps is the saturation pressure at temperature T , and 1pv > 0. Though perfectly

† Email address for correspondence: morris@berkeley.edu

first published online 18 December 2013)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

57
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:morris@berkeley.edu
https://doi.org/10.1017/jfm.2013.577


Evaporating sessile drop 309

wetting, this system exhibits an apparent contact angle: θ is defined experimentally
to be the slope measured at the inflexion point on the drop profile; it is a property
of the small-scale flow induced by evaporation, and vanishes for 1pv = 0. Under
certain conditions, a drop spreads over the substrate until evaporation forces the
apparent contact line to retreat. During reversal, the contact line is stationary; see
figure 2.1 of Guéna (2007, p. 35). (We note that, unlike a, the contact angle decreases
monotonically over the drop lifetime: as shown by figure 2.10 of Guéna (2007, p.
50), the decrease is rapid during spreading, but much slower during retreat.) Only the
stationary contact line is treated here.

Guéna et al. (2007a, figures 6 and 3) show experimentally that, for a given liquid,
θ and the drop radius a at reversal are each functions of initial drop volume v,
even when v is varied 1000-fold. As shown in figure 11 of Guéna et al. (2007a),
eliminating v between those relations gives θ as a function of a. The absence of
dependence on initial conditions suggests that θ is a property of the contact region at
the instant of reversal, and is independent of the history of that region.

To interpret the θ–a relation, Poulard et al. (2005, equation (9)) outline a model,
referred to in their subsequent papers as the ‘wedge model’. Assuming that the system
is isothermal and that, within the contact region, the flow is quasi-steady, the authors
use scaling to obtain a relation between θ and a. In essence, θ is assumed to form
within a region having two defining properties: capillary pressure balances disjoining
pressure and, at same scale, the divergence of the mass flux along the film balances
the evaporative mass flux given by equation (5) of Deegan et al. (2000). According to
equation (14) of Poulard et al. (2005), θ ∝ a−1/6: because larger drops have a smaller
gradient in chemical potential within the vapour, θ varies inversely with drop size.
According to Guéna et al. (2007a, § 6.1), for a < 1 mm (roughly), measured angles
obey the one-sixth rule predicted by the wedge model.

For larger drops, a stronger dependence on a is observed. A. M. Cazabat (Personal
communication, 17 March 2013) has pointed out that for these drops, buoyant
convection within the gas is likely to affect mass transfer at the drop scale. Kelly-
Zion, Batra & Pursell (2013) report measured values of evaporation rates from sessile
drops of a liquid whose vapour phase is denser than air; the contact line was pinned.
Comparing their figures 3 and 4, we see that for a heptane droplet with a = 8 mm,
the evaporation rate is ∼3 times that expected from pure diffusion. Because, at the
scale of the whole drop, buoyant convection influences the mass transfer, it is useful to
separate the problem of determining θ from that of the large-scale dynamics.

Here, we formulate and analyse the boundary-value problem defining the contact
region. Our formulation is local in the sense that we exploit the separation of
length scales existing between this small region and the macroscopic drop: the
radial dimension of the contact region is small compared with the radius a of the
apparent contact line. We make the following assumptions. (a) Within the gas, mass
transfer occurs by steady diffusion, even when buoyant convection is significant at
the drop scale. This is a good approximation provided the Péclet number based on
the dimension of the contact region is small compared with unity. (b) The system is
isothermal; for the Guéna experiments this assumption is justified because the thermal
conductivity of the silicon substrate is three decades larger than that of the liquid.
(c) Within the contact region, the liquid motion is quasi-steady: at each instant, the
divergence of the radial mass flux balances the evaporative mass flux into the gas.
This is subsequently shown to be a good approximation whenever there is a separation
of length scales. (d) Because, in the experiments, θ � 1, boundary conditions on the
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310 S. J. S. Morris

liquid–gas interface are transferred onto the plane y = 0. (For brevity, we continue to
call these the ‘interfacial’ conditions, even after their transfer to y= 0.)

Together, assumptions (a)–(d) allow us to replace the initial-value problem
governing the whole drop by a boundary-value problem; the contact angle and
distribution of evaporative mass flux are determined by the solution of this problem.
To complete its formulation, the partial pressure pv of vapour must be imposed as
a outer boundary condition holding on a large semicircular arc bounding the contact
region.

This outer condition is not arbitrary. Far from the apparent contact line, the
interfacial conditions simplify. Towards the macroscopic drop, they require pv to
approach the saturation pressure appropriate to the system temperature; towards the
molecular-scale wetting film, they require the evaporative mass flux to vanish. Together
with the Laplace equation for pv, these conditions constrain the variation of pv along
the perimeter of the semicircle bounding the contact region. By separation of variables,
we find that pv must be expressible as a superposition of certain basis functions.
Matching to an outer solution, specific to the mass transfer process at the drop scale,
requires pv to take the form of one of these basis functions. The drop-scale transport
process selects that function, and determines its amplitude.

To illustrate our formulation, we work out the details for a drop sufficiently small
for mass transfer to be by pure diffusion, even at the scale of the whole drop. In
§ 2, the boundary-value problem is stated without derivation, but with the underlying
assumptions identified. In § 3, the problem is non-dimensionalized. With the scales in
hand, in § 4 the underlying assumptions are shown to hold provided the radial scale
of the contact region is small compared with the radius a of the apparent contact
line; this is also the condition under which the notion of an apparent contact line has
meaning.

The boundary-value problem contains one parameter: L is a dimensionless surface
tension and is a decreasing function of a. In § 5 the solution of the boundary-value
problem is analysed in the limit as L → 0; the corresponding expression for θ is
given in § 6. Because this expression corresponds to a physical picture of the contact
region, in § 7 scaling is used to summarize that picture. In § 8, we compare predicted
and experimentally values of both the angle and the film thickness at which it is
formed. There, we also discuss carefully the relation between the theory and the
observations. In § 9, we summarize the main points of the paper, and we discuss the
relation between our asymptotic analysis for small L and an approximation made by
Eggers & Pismen (2010) in their numerical simulation of an evaporating sessile drop.

In this work, the swung dash ∼ denotes an asymptotic relation: in a specified
limit, a ∼ b⇔ a/b→ 1. The symbol ≈ is used where scaling arguments are used for
interpretation.

2. Formulation
Figure 1 shows the geometry of the problem. The origin O is at the apparent contact

line defined by extrapolating the tangent from infinity. Subscripts l and v denote the
liquid and vapour phases. The unknowns are the vapour partial pressure pv, liquid
pressure pl and film thickness h. The droplet planform radius a is assumed large
compared with the radial dimension `0 of the contact region. This allows us to assume
plane flow within the contact region.

In the experiments, θ is small (less than 0.08), allowing the use of lubrication
theory to describe the liquid film. The liquid and vapour flows are coupled through
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FIGURE 1. Contact region: scales h0 and `0 are defined by (3.2).

the usual interfacial conditions. Because the drop is thin and the solution pv(x, y) of
the Laplace equation varies on the radial length scale `0, boundary conditions on the
vapour can be transferred from y= h to y= 0 with error vanishing with the ratio h0/`0

of characteristic film thickness h0 to `0. By contrast, for the flow within the thin liquid
film, the length scale in y is the thickness scale h0. Consequently, boundary conditions
on the liquid flow cannot be transferred from y = h to y = 0; instead lubrication
theory must be used to account for the internal structure of the film. As a result, the
unknowns pv, pl and h are determined by solving the Laplace equation for pv in the
half space y> 0, subject to boundary conditions on y= 0.

2.1. Governing equations
These are stated, then interpreted. The unknowns pl(x), pv(x, y) and h(x) satisfy the
following problem. For y> 0, and −∞< x<∞,

∇2pv = 0. (2.1a)

On y= 0

pv − ps = ρs

ρl
(pl − pT), (2.1b)

pT − pl = γ d2h

dx2
+ A

h3
, (2.1c)

0= 1
3νl

∂

∂x

[
h3 ∂pl

∂x

]
+ Dv

RvT

∂pv
∂y
. (2.1d)

The conditions on h are

lim
x→−∞

h= 0, lim
x→∞

dh

dx
= θ, (2.1e,f )

where θ is to be determined as part of the solution. In these equations, the parameters
are vapour diffusivity Dv, surface tension γ , dispersion constant A, the kinematic
viscosity νl and density ρl of the liquid, saturation pressure ps, saturation vapour
density ρs and the ratio Rv of the molar gas constant to vapour molar mass M.
The temperature T is uniform in space and time. Material properties are given in
appendix B.

According to (2.1b), at each point on the interface, the partial pressure pv of vapour
is related to the pressure pl on the liquid side by the linearized Gibbs–Thomson
relation (Gibbs 1875, equation (287); Thomson 1872). For (2.1b) to hold, it is
necessary that the liquid and its vapour be in local thermodynamic equilibrium across
their interface; that being so, the local values of pl and pv are related by the nonlinear
Gibbs–Thomson relation. That expression can be linearized for our purpose because,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

57
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.577


312 S. J. S. Morris

within the region of interest, the change in vapour density ρv proves to be small
compared with the saturation vapour density ρs. (This statement is justified in § 4.)

Local thermodynamic equilibrium is assumed without explanation by Doumenc &
Guerrier (2010, equation (13)) and by Eggers & Pismen (2010, equation (4)). By
scaling the interfacial mass balance, Njante (2012, appendix A) shows that if the
system is effectively isothermal, so that evaporation is diffusion-limited, the liquid and
its vapour are in local equilibrium whenever the continuum approximation holds in the
gas.

According to the Laplace–Young equation (2.1c), the difference between the total
pressure pT in the gas and the liquid pressure pl balances the resultant of the forces
exerted by surface tension, and Van der Waals forces. For the latter (‘disjoining
pressure’) we use the form appropriate to the non-retarded potential for non-polar
molecules. Levinson et al. (1993, figure 3) show experimentally that for an octane
film on oxidized silicon, disjoining pressure varies as h−3 for film thicknesses lying
(roughly) in the range 1–3 nm; see also Truong & Wayner (1987, figure 6). We return
to this assumption at the end of § 8.

The Reynolds equation (2.1d) expresses the film mass balance for quasi-steady flow:
it has been assumed that there is no slip at the wall and that the shear stress vanishes
at the gas–liquid interface. For the latter condition to hold, surface tension γ must
be uniform: Guéna (2007, pp. 83–84) discusses the precautions taken to realize this
condition in his experiments.

Although, to describe the evolution of the whole droplet, we would need to augment
the Reynolds equation (2.1d) by adding the appropriate unsteady term, that term is
negligibly small within the contact region. There, the gradient terms displayed in
(2.1d) are large, whereas the magnitude of the unsteady term is determined by the
slow evolution of the whole droplet. Section 4 contains a more detailed discussion.

Growth condition (2.1e) states that within the region described by problem (2.1), the
film thickness is large compared with that characterizing the wetting film to the left
of the origin in figure 1. This is a good approximation for the Guéna experiments in
which the partial pressure vanishes far from the drop: because a liquid film can not
coexist with a vacuum, the thickness of the wetting film then vanishes far from the
drop. Lastly, in (2.1f ), θ is to be determined as part of the solution.

Using (2.1b), we express (2.1c) and (2.1d) in terms of pv: on y= 0,

ρl

ρs
(ps − pv)= γ d2h

dx2
+ A

h3
, (2.1c′)

0= ∂

∂x

[
h3 ∂pv
∂x

]
+ 3L2 ∂pv

∂y
. (2.1d ′)

The Reynolds length L, defined by

L2 = ρsνlDv

ρlRvT
, (2.2)

is the dimension at which the two terms in (2.1d ′) would balance if x, y and h were
all comparable. Using the material properties given in appendix B, we find that for the
fluids used by Guéna et al. (2007a), γL2/A takes the following values: 0.19 (nonane),
0.37 (octamethyltrisiloxane, OMTS), 0.49 (octane) and 1.55 (hexamethyldisiloxane,
HMDS).
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2.2. Outer boundary condition
To complete the formulation, we must prescribe pv on a semicircle of radius R� `0;
in its present form, (2.1) is incomplete because it contains no information about the
potential difference 1pv driving evaporation.

This matching condition must be compatible with growth conditions (2.1e) and
(2.1f ); it must also be compatible with the solution of the outer (Deegan et al.)
problem. Unlike the boundary-value being formulated here, that outer problem
accounts for overall drop geometry, but does not describe the structure of the contact
region itself.

We first consider the implications of the growth conditions. Because the volume
flow along the film is proportional to h3, we assume and then verify (equation (4.6))
that the first condition (2.1e) requires the volume flow to vanish as h→ 0. The
Reynolds equation (2.1d ′) then requires that

lim
x→−∞

∂pv
∂y

∣∣∣∣
y=0

= 0. (2.3a)

Similarly, the second condition (2.1f ) and the Laplace–Young condition (2.1c′)
together require that

lim
x→∞

(pv − ps)|y=0 = 0. (2.3b)

In the first instance, (2.3a) and (2.3b) hold on the gas–liquid interface; they are,
however, transferred to y= 0 using the argument given in § 2, ¶2.

We digress to note that (2.3a) and (2.3b) are obtained by taking the outer limit
of boundary conditions holding throughout the contact region. In their interpretation,
equations (2.3a) and (2.3b) differ from similar conditions imposed by Deegan et al. on
the outer problem, that is, their diffusion model of mass transfer at the drop scale.
Viewed at that scale, the droplet has a triple junction at which all three components are
in contact. On the gas–solid interface, a no-flux condition is applied, whereas on the
gas–liquid interface, pv = ps; each condition is applied at all points on the appropriate
interface. By contrast, because our inner problem resolves the structure of the contact
region, no more than two components are ever in contact. Consequently, there is no
triple junction, and conditions (2.3a) and (2.3b) apply only in the limits stated.

Returning to the main argument, we use (2.3) to determine the most general form
which the solution of (2.1) could take far from the apparent contact line. Because this
form must be consistent with the growth conditions (2.1e) and (2.1f ), it must satisfy
the outer limit (2.3) of the boundary conditions (2.1c′) and (2.1d ′), rather than the
full conditions. By separation of variables, the general solution of the boundary-value
problem comprising (2.1a), (2.3a) and (2.3b) is a linear combination of basis functions

pn = rn+1/2 sin
(
n+ 1

2

)
φ, (2.4)

(integer n). To interpret these modes, we note two properties. First, although
∂p0/∂r > 0 for 0 < φ < π, for n > 1, ∂pn/∂r changes sign; whereas the zeroth mode
represents a mass flow that would be outward at each point (for evaporation), higher
modes permit inflow and might be expected to occur in systems in which condensation
occurs at some points on the film. Second, for each n,

∫ π
0 (∂p/∂r) r dφ 6= 0; though

higher-order modes describe both outflow and inflow, each mode contributes to the
radial mass flow. This determines the outer limit of the inner solution.

For sufficiently small droplets, mass transport at the scale of the whole drop occurs
by steady diffusion. In this case, the distribution of vapour pressure outside the contact
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region is given by the boundary-value problem posed by Deegan et al. (2000, equation
(4)). In the limit as θ → 0, the solution of that outer problem is given by the
Weber formula (Landau & Lifshitz 1960, p. 27; Cazabat & Guéna 2010, Appendix
1). Consequently, the Weber solution can be used to determine the outer boundary
condition for the inner problem (2.1) determining θ , even though the Weber solution
itself is independent of θ .

According to Landau & Lifshitz (1960, p. 27), for r � a, the Weber formula
simplifies to

pv − ps ∼−k1pv

√
r

a
sin

φ

2
, (2.5a)

k = 2
√

2/π. (2.5b)

Comparing (2.5) with the pressure modes pn defined by (2.4), we see that the solution
of the inner problem (2.1) will match to the outer (Weber) solution provided that (2.1)
is solved subject to the outer boundary condition defined by (2.5). This completes the
formulation.

When buoyant convection is significant at the drop scale, the numerical constant
k must replaced by a function of the parameters controlling the convective motion.
Depending on the transport process operating at the drop scale, another member of the
family (2.4) might also be selected; the present author has not investigated this.

3. Dimensionless boundary-value problem
3.1. Definition of h0 and `0

These scales have two defining properties. In the Reynolds equation (2.1d ′), the terms
balance; in the Laplace–Young equation (2.1c′), the left-hand side balances the second
term on the right:

h3
0

`0
= L2, k

ρl

ρs
1pv

√
`0

a
= A

h3
0

. (3.1a,b)

Eliminating h0 between (3.1a) and (3.1b), we obtain

`0 = a1/3d2/3/k2/3; h0 = L2/3a1/9d2/9/k2/9. (3.2a,b)

The disjoining-diffusion length d is defined by

d = A

νlDv1ρv
; (3.3)

on this scale, disjoining pressure balances the shear stress due to a volume flow
Dv1ρv/ρl. The notion of an apparent contact line is valid provided `0� a; according
to (3.2), this separation of scales exists provided a� d.

Using the material properties given in appendix B, we find that for the fluids used in
the Guéna experiments d ranges from 0.9 nm (HMDS) to 9 nm (nonane). We note that
d, h0 and `0 are independent of γ .

We define dimensionless variables (without asterisks):

{x, y}∗ = `0{x, y}, h∗ = h0h, (3.4a,b)

p∗v − ps = k1pv

√
`0

a
p. (3.4c)
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Outer b.c. (3.5d)

Reynolds & Laplace–Young equations (3.5b, c)

FIGURE 2. Summary of problem (3.5) defining the contact region.

Substituting (3.4) into (2.1) and (2.5), we find that for y> 0 and −∞< x<∞,

∇2p= 0. (3.5a)

On y= 0

−p=L
d2h

dx2
+ h−3, (3.5b)

0= ∂

∂x

[
h3 ∂p

∂x

]
+ 3

∂p

∂y
. (3.5c)

As r→∞,

p∼−√r sin
φ

2
. (3.5d)

The conditions on h(x) are

lim
x→−∞

h= 0, lim
x→∞

dh

dx
= b. (3.5e,f )

In (3.5f ), the constant b > 0 is to be determined as part of the solution. In (3.5b),
L = γ h4

0/(A`
2
0); eliminating h3

0/`0 between this definition and (3.1a), we find that

L = γL2

A
θ0, (3.6)

θ0 = h0/`0. Because each of h0, `0 and L is independent of γ , L is proportional to γ ;
it is a dimensionless surface tension.

Figure 2 summarizes the boundary-value problem. We note that the Weber solution
enters (3.5) only as the outer boundary condition on the semicircle of radius R� `0

bounding the contact region. The evaporative flux from the liquid film is to be
determined as part of the solution of (3.5); it is not obtained from the Weber formula.

This ends the statement of the boundary-value problem. As to its mathematical
nature, we note that if h were given, equations (3.5a), (3.5b) and the outer boundary
condition (3.5d) would define a Poisson problem for p. The solution of that Poisson
problem prescribes the distribution flux ∂p/∂y along the x-axis. The function h(x) is
to be chosen to make this distribution compatible with the remaining condition (3.5c);
this could, of course, be done by adding the appropriate unsteady term to the Reynolds
equation, and solving (3.5) as an initial-value problem.

The contact angle is given by

θ = θ0 b(L ); (3.7a)

θ0 = k4/9L2/3

a2/9d4/9
. (3.7b)
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Reynolds
length

Disjoining-
diffusion

Slope
unit

Laplace
parameter

Density
parameter

(2.2) length, (3.3) (3.7) (3.6) (6.4)

L=
[
ρsνlDv

ρlRvT

]1/2

d = A

νlDv1ρv
θ0 = L2/3k4/9

a2/9d4/9
L = γL2

A
θ0 D = νlDv1ρv

(γ 3Aa2)
1/4

TABLE 1. Chief parameters. As defined by (2.5b), k = 2
√

2/π,= 0.900 . . . , provided that
mass transfer at the drop scale is by pure diffusion.

Equations (3.2a) and (3.2b) have been used. Because the unit of slope θ0 is
independent of γ , the contact angle depends on surface tension only through the
slope parameter b.

Though the solution of (3.5) depends on the single parameter L , the contact
angle itself depends on two parameters θ0 and L . By (3.6), the magnitude of L is
determined by that of θ0, because γL2/A is at most of the order of unity. Consequently,
whenever the assumption θ � 1 holds, the parameter L is also small. This fact is
exploited in § 5.

We note that θ0 and L vary respectively as A−4/9 and as A−13/9, and A is not known
precisely. According to Gee, Healy & White (1989, figure 6), for the alkanes on silica
A is known to within a factor of ∼2; similarly, Levinson et al. (1993, p. 484) find
that the value of A measured for an octane film on silica agrees to within a factor
of two with that predicted by Lifshitz theory. As a result of this uncertainty in a
material property, the numerical values of θ0 and L are themselves uncertain, for a
reason entirely separate from the problem of the evaporating drop. Moreover, for the
conditions of the Guéna experiments, we find in § 6 that θ in fact depends only weakly
on A. Because this uncertainty in material properties would swamp the relation being
tested, it would be nugatory to try using (3.7) in the form of the similarity principle
θ/θ0 = b(L ). In this case, solving the boundary-value problem provides a result that
no amount of dimensional analysis can approach.

Table 1 collects the chief parameters of the theory.

4. Discussion of assumptions
4.1. Linearized Gibbs–Thomson relation

In our problem, a pure incompressible liquid is in contact with a perfect gas mixture
comprising inert components and the vapour phase of the liquid. According to Gibbs
(1875, equation (285)), when the liquid pressure is increased by an amount dpl, the
liquid and its vapour phase will remain in thermodynamic equilibrium if the partial
pressure of vapour is increased by an amount dpv given by d ln pv = dpl/(ρlRvT).

As reference state, we use the condition holding on the interface as x→∞ in
figure 1. There, pl is equal to the total pressure pT in the gas, and the liquid and its
vapour coexist in equilibrium at partial pressure ps. Integrating from this state to the
thermodynamic state in which the liquid pressure is pl, we obtain

pl − pT = ρlRvT ln
pv
ps
. (4.1)

The total pressure pT has been assumed to be uniform; in the experiments, this is
a good approximation because the partial pressure is at most about 1 % of the total
pressure.
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As (2.1b), we have used the linearized form of (4.1). This approximation is valid
provided the change in pv along the interface is small compared with ps. In the Guéna
experiments, this is not true for the whole drop because 1pv = ps: at the interface, pv
varies from ps on the bulk drop to zero above the wetting film far from the bulk drop.
Even in those experiments, however, the linearization is valid for the local formulation
because the contact region does not see the entire variation in pv. According to the
outer boundary condition (2.5), within the contact region, pv varies by an amount
of the order of 1pv

√
`0/a. Even for 1pv = ps, this scale is small compared with ps

because `0� a.
We conclude that when the notion of an apparent contact line is applicable, the

linearized Gibbs–Thomson relation (2.1b) holds within the contact region. Outside that
region, we must use (4.1), however. In the Guéna experiments, for example, pv→ 0 in
the laboratory far from the drop; uncritically using (2.1b) to determine the wetting film
thickness far from the bulk drop would then lead to the false conclusion that a liquid
layer of finite thickness coexists with a vacuum.

4.2. Separation of time scales
As noted below (3.3), the notion of an apparent contact line is appropriate provided
a� d, the disjoining-diffusion length. We now verify that this separation of spatial
scales implies a separation of time scales: within the small contact region, the flow
evolves on a time scale short compared with that on which the drop evolves as a
whole. This is why there is no time derivative in the Reynolds (2.1d) describing
the contact region. This separation of time scales is commonly assumed without
explanation: see, for example, Bonn et al. (2009, equations (49) and (64)) and Eggers
& Pismen (2010, equation (39)). However, as we have discussed in § 1, the behaviour
of drops having Bond number ρlga2/γ > 1 is not understood. For this reason, we
verify this approximation carefully.

Relative to axes fixed in the laboratory, and with the unsteady term included, the
(dimensional) Reynolds equation for the whole drop is

ρl
∂h

∂t
= 1

3νl s

∂

∂s

[
sh3 ∂pl

∂s

]
+ Dv

∂ρv

∂y
; (4.2)

s denotes radial distance from the symmetry axis of the drop. The ideal gas law
pv = ρvRvT has been used.

Balancing the first and third terms in (4.2) we find that, for the contact region,
the time scale is given by tc = ρlh0(a`0)

1/2/(kDv1ρv). The drop as a whole, however,
evolves on the longer time scale tb set by the integral mass balance. To obtain that
balance, we assume that, within the liquid film, the radial mass flow vanishes at the
apparent contact line. This is a good approximation because, whenever the notion of
an apparent contact line is applicable, the mass loss from the wetting film is negligibly
small compared with that from the bulk drop. (For this, see the discussion below (5.5)
and, again, below (7.3).)

Multiplying (4.2) by 2πs, then integrating from s = 0 to a, we obtain the integral
mass balance (Guéna et al. 2007a, equation (3)):

2πρl

∫ a

0

∂h

∂t
s ds=−4Dva1ρv. (4.3)

To evaluate the diffusive flux, we have used results for the Weber solution given by
Cazabat & Guéna (2010, Appendix 1). In using those results, we have assumed that,
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at reversal, the drop is shallow: its maximum height hm is small compared with a.
We have made no other assumption about drop shape, however. Because, for the drop
as a whole, ∂h/∂t scales as the ratio of hm to the time scale tb, we conclude that
tb = ahmρl/(Dv1ρv).

The ratio of time scales is given by tb/tc = khma1/2/(h0`
1/2
0 ). Provided hm� h0 and

a� `0, the bulk drop evolves on a time scale large compared with that of the contact
region: tb� tc. This conclusion is independent of drop shape.

4.3. Self-consistency of the outer boundary conditions (2.3)
4.3.1. Tapered film: (2.3a)

We consider the behaviour as r→∞ within the tapered film to the left of the origin
O in figure 1. Setting φ = π in (3.5d), we find that as r→∞,

p∼−√r. (4.4)

To calculate the corresponding asymptote for h, we note that within the tapered film,
the capillary pressure becomes negligibly small compared with the disjoining pressure.
Using this observation to simplify the Laplace–Young condition (3.5b), we find that as
r→∞,

h∼ r−1/6 (4.5)

the film thickness vanishes asymptotically within the tapered film. This is consistent
with the first growth condition (3.5e) on h.

It remains to verify that the flux from the tapered film vanishes asymptotically as
h→ 0. Using (4.4) and (4.5) to calculate the film transport (first term in the Reynolds
equation (3.5c)), we find that

∂

∂x

[
h3 ∂p

∂x

]
∼ ∂2

∂r2
(ln h3), ∼ 1

2r2
. (4.6)

The Reynolds equation then requires that

lim
x→−∞

∂p

∂y

∣∣∣∣
y=0

= 0, (4.7)

as stated by (2.3a).

4.3.2. Wedge: (2.3b)
We consider the behaviour as x→∞ on the interface separating the liquid wedge

from the gas: as discussed above (2.4), as far the vapour is concerned, this interface
is at φ = 0. Using (3.5d) to evaluate the vapour flux at the interface, we obtain
∂p/∂y ∼ −1/(2

√
x). Substituting this expression into the Reynolds equation (3.5c),

then integrating, we obtain

h3 ∂p

∂x
∼ 3
√

x+ c0. (4.8)

The integration constant c0 depends on L .
For p to approach a constant on the interface, ∂p/∂x must be integrable at infinity;

this is so if h grows more rapidly than
√

x. But, although the existence of an apparent
contact angle is sufficient for ∂p/∂x to be integrable at infinity, it is not necessary.
For example, in § 5, we find that in the limit as L → 0, (3.5) has an inner-and-outer
structure. At the outer edge of the inner region, h then grows more rapidly than x and,
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we find that although the contact angle has not yet formed, this rapid growth of h has
already forced p to vanish on the interface.

For the moment, we need the simplest example showing that (2.3b) is consistent,
and that (3.5) can define a contact angle. For this purpose, we assume, then verify, that
an apparent contact angle has been formed, so that h∼ bx. Using this to solve (4.8) for
p, we obtain

p(x, 0)∼−2/(b
√

x)
3 : lim

x→∞
p= 0, (4.9a,b)

consistent with (2.3b).
To complete the example, we verify that the assumption h ∼ bx is self-consistent.

Substituting (4.9a) into the Laplace–Young equation (3.5b), then integrating in x, we
find that as x→∞ (L fixed)

dh

dx
∼ b− 4/(b3√x). (4.10)

Because dh/dx approaches a limit as x→∞, an apparent contact angle has formed.
We conclude that the formulation of (3.5) is self-consistent whenever the notion of an
apparent contact line is applicable.

5. Analysis for small Laplace parameter L → 0
5.1. The picture to be developed

Figure 3 shows the contact region, as seen at two different scales. Figure 3(a) shows
the axisymmetric bulk droplet with its precursor film. As stated in § 1, far from the
drop the dimensional partial pressure approaches the constant value ps−1pv in the free
air in the laboratory. Because the pressure scale adopted in (3.4c) is asymptotically
o(1pv), the corresponding dimensionless pressure is large in magnitude and (of
course) negative. The precursor film is therefore asymptotically thin compared with
the film thickness h0 characterizing the contact region, now defined as the solution of
(3.5). In figure 3(a), this region is indicated by the broken rectangle.

Figure 3(b) shows the inner-and-outer structure of the contact region existing in
the limit as L → 0. Because this structure is controlled by the thin liquid film, the
film is described first. The inner region is defined by taking the limit as L → 0
(h fixed); it contains a slender tapered film. Though, within this region, the capillary
pressure is negligibly small, the film curvature proves to increase with increasing
h, whereas the disjoining pressure falls. Consequently, for any small but fixed value
of L , the capillary pressure ultimately balances the disjoining pressure. Because
L is small, this balance is possible only when the film attains a thickness O(h1)
which is asymptotically large in L . The corresponding scales h1 and `1 are defined
quantitatively by (5.10). The scale h1 locates the corner, shown as region abcd in
figure 3(b). (Though h1 is large, the film, of course, remains slender because h0� `0.)
The contact angle is formed within the corner.

Because the disjoining pressure must be small for the two pressures to balance, the
pressure within the corner is necessarily close to zero (the saturation pressure). But
because the flow is quasi-steady, mass lost from the long tapered film is balanced by
mass flowing through the corner from the bulk drop. Within the corner, however, p is
small; as a result, a pressure gradient sufficient to drive the mass flow is possible only
if the streamwise length of the corner is small: O(1/

√
`1), as shown in figure 3(b).

Further simplification is possible. Owing to the small streamwise dimension of the
corner, the evaporative mass loss from the film abcd proves to be negligibly small.
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O

Contact

Corner 
(liquid)

Inner

O ba

Corner 
(vapour)

c

e f

d

(a)

(b)

FIGURE 3. Two views of the contact region. (a) Axisymmetric drop having apparent contact
line of radius a/`0. (b) Contact region showing scales for L → 0: as discussed in the text,
a/`0 � `1 � 1� 1/

√
`1 � h1θ0. Dimensionless slope unit θ0, and dimensionless scales h1

and `1 are defined by (3.7) and (5.10), respectively. Inner and corner regions are defined
as the solutions of problems (5.3) and (5.18), respectively. All lengths are expressed in the
unit `0.

The corner merely acts a funnel, transporting liquid from the bulk drop towards the
long tapered film from which it evaporates. Moreover, we find (equation (5.21)) that
the integrated mass loss from the inner tapered film is determined completely by the
outer boundary condition on p. The inner film structure must adjust to satisfy the
constraint imposed by mass conservation and the outer boundary condition.

In figure 3(b), the square cdef indicates the corner for the vapour. Because the
Laplace equation contains no length scale, this region is equidimensional. In order that
the liquid film affect the vapour merely as a set of boundary conditions on y = 0 (as
displayed in problem (3.5)), the dimension of this region perpendicular to the substrate
must be large compared with the film thickness: 1/

√
`1 � h1θ0. This condition is

satisfied provided the contact angle is small, because θ ≈ h1θ0/(1/
√
`1). This ends the

discussion of figure 3. We now give the analysis.

5.2. Inner limit: L → 0 (fixed h)

We shall see that within the region surrounding the apparent contact line, point O in
figure 3(a), the characteristic film thickness h1 increases as L is reduced. Because
h→ 0 at −∞, to keep h fixed as L is reduced, we need only move suitably far to
the left along the thin tapered film. Within this region, we select a new origin O′. As
shown in the figure, we let `1 = |OO′| be the magnitude of the distance between the
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two origins O and O′. So x′ is related to the coordinate x defined in figure 1 by

x′ = x+ `1. (5.1)

We assume that `1→∞ as L → 0; this assumption is verified below (5.10).
In the following, {r′, φ′} denote polar coordinates with respect to O′. In terms of the

dimensionless coordinates {x, y} defined by (3.4)

r′ =
√
(x+ `1)

2 + y2, φ′ = tan−1

[
y

x+ `1

]
. (5.2)

5.2.1. Inner problem
In the limit as L → 0 (fixed h), problem (3.5) becomes

∇2p= 0 for y> 0, (5.3a)
on y= 0, −p= h−3, (5.3b)
∂

∂x′

[
h3 ∂p

∂x′

]
+ 3

∂p

∂y
= 0, (5.3c)

h→
{

0 as x′→−∞,
∞ as x′→∞. (5.3d)

As r′→∞,

p∼−√r′ sin 1
2φ
′. (5.3e)

Problem (5.3) defines the inner region; by construction, its solution is independent of
L .

We note the following properties of (5.3). First, because the Laplace–Young
equation (3.5b) has been replaced by the algebraic equation (5.3b), we cannot impose
the condition (3.5f ), namely h ∼ bx. Here, instead, we impose only the weak growth
condition (5.3d); we then determine the asymptotic behaviour of h as x′→∞ by
analysing (5.3) itself.

Second, as (5.3e), we have imposed the pressure growth condition (3.5e) on the
solution of the inner problem. This step is valid because the growth conditions (5.3d)
on h again require that the simplified boundary conditions (2.3a) and (2.3b) apply,
but now far from O′ rather than O. The argument leading to (2.5) still applies,
and matching to the outer (Deegan) solution yields (5.3e). Because the dimensional
distance |OO′| is small compared with the drop radius a, negligible error is made by
replacing polar coordinates {r, φ} in (2.5) by {r′, φ′}.

Third, the maximum evaporative flux from the liquid film is finite, and occurs within
this region. Indeed, we have the following asymptotes:

−∂p

∂y

∣∣∣∣
y=0

∼
{

1/(2x′2) as x′→−∞
1/(2
√

x′) as x′→∞. (5.4a,b)

As (5.4a), we repeat (4.7); to obtain (5.4b), we need only use (5.3e) to evaluate the
flux. Because the flux vanishes as x′→±∞, it attains a maximum within this region.
Let this maximum be f0. Because f0 is a property of (5.3), it is independent of L . This
numerical value corresponds to the maximum in evaporative mass described physically
by Guéna et al. (2007a, p. 308).
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According to Fick’s law, the corresponding maximum dimensional flux is given by

−Dv max
x

∂ρ∗v
∂y∗

∣∣∣∣
y=0

= f0Dv

1ρv√
a`0

. (5.5)

(Asterisks denote dimensional variables. The ideal gas law, and definitions (3.4a) and
(3.4c) have been used.) Because (5.5) is deduced from the inner problem (5.3), it holds
only in the limit as L → 0.

According to (5.5), the maximum flux is large compared with that on the surface of
the bulk droplet, the latter being of the order of Dv1ρv/a. The total contribution of the
wetting film to mass loss from the drop is, however, smaller than that from the bulk
droplet by a factor of the order of

√
`0/a. But, although mass loss from the film is not

directly significant in the mass balance for the whole drop, by driving the small-scale
flow determining θ , it controls the maximum radius to which the droplet can spread.

We note that, according to (5.4b), as the bulk drop is approached from within
the tapered film, the evaporative mass flux approaches the value given by the Weber
solution for the bulk drop. This is occurring even though the tapered film is separated
from the bulk drop by the corner region in which the contact angle is formed. Though
p∗l is now sufficiently close to the total gas pressure p∗T that p∗v at the interface differs
only slightly from the uniform value ps imposed as a boundary condition on the Weber
solution, the difference p∗T − p∗l proves sufficiently large to generate the contact angle.

5.2.2. Scales `1 and h1 locating the corner
To determine the distance `1 = |OO′|, we need only find the outer limit of h as

x′→∞. Using (5.4b) to evaluate the second term in the Reynolds equation (5.3c),
then integrating in x, we obtain

1
3

h3 dp

dx′
∼√x′ + c2. (5.6)

The integration constant c2 is determined by mass conservation. Equation (5.6)
represents the inward mass flow per unit within the liquid film. This flow equals
the outward flow per unit time within the vapour; that flow is given by

−
∫ π

0

∂p

∂r′
r′dφ =√r′. (5.7)

Equation (5.3e) has been used. Comparing (5.6) with (5.7), we see that c2 = 0.
(We note that, according to (5.7), the total evaporation from the tapered film is

determined by mass conservation, and the outer boundary condition (5.3e). This result
is a consequence of the inner-and-outer structure existing in the limit as L → 0.)

Eliminating p between (5.3b) and the equation obtained by setting c2 = 0 in (5.6),
then integrating in x′, we find that as x′→∞

h∼ c3 exp
[

2
3 x′3/2

]
. (5.8)

By the remark following (5.3), the integration constant c3 is independent of L .
According to (5.8), as x′ → ∞, the film thickness asymptotically increases

exponentially: the disjoining pressure decreases exponentially, whereas the Laplace
pressure increases. As a result, the corresponding terms in the Laplace–Young equation
balance for sufficiently large h. Using (5.8) to evaluate d2h/dx′2, we find, without
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further approximation, that

L h3 d2h

dx′2
∼L h4

(
x′ + 1

2
x′−1/2

)
. (5.9)

According to (5.9), the capillary and disjoining pressures balance when h and x′ satisfy
L h4x′ ≈ 1; of course, the second term in parentheses in (5.9) is negligibly small for
large x′.

We therefore define scales h1 and `1 by

L `1h4
1 = 1, (5.10a)

`1 =
(

3
2 ln h1

)2/3
. (5.10b)

(Equation (5.10b) follows by solving (5.8) for x′ in terms of h; we do not include the
constant c3 in the definition of the scales.) The scales {h1, `1} give the dimensionless
film thickness and location at which capillary pressure balances disjoining pressure. By
determining the distance `1 = |OO′| in figure 3(b), (5.10) locates the corner and the
characteristic film thickness within it.

The argument leading from (5.1) to (5.10) is self-consistent: it is premised on the
condition `1 � 1 and, according to (5.10), `1 is logarithmically large in the small
parameter L . (Roughly speaking, h1 ≈L −1/4 and `1 ≈ |ln L |2/3.)

5.2.3. Dimensions of the corner
Though (5.10) locates the corner, it does not determine the increments 1x, 1p and

1h occurring across that region. To determine these, we impose two conditions: within
the corner, the capillary pressure is to balance the disjoining pressure; and the mass
flow there is to match to that within the inner region. Because, within the inner region,
the mass flow is given by −h3(d/dx)h−3,= (d/dx) ln h, we have the following:

1
h3

1

=1p=L
1h

1x2
; (5.11a,b)

h3
1

1p

1x
=
√
`1. (5.11c)

We have used (5.6) to evaluate the mass flow at the outer edge of the inner region.
Solving (5.11), we obtain

1x= 1/
√
`1, 1h= 1/ 4

√
L `1, (5.12a,b)

1p= (L `1)
3/4
. (5.12c)

In the form h1 = 1/ 4
√

L `1, equation (5.10a) has been used. We note that because these
scales are obtained from the Laplace–Young condition and the film mass balance, they
describe the liquid film within the region shown as abcd in figure 3(b).

According to (5.12a), the x-dimension of the corner is vanishingly small compared
with the length `1 of the tapered film. This is so because the total mass evaporated
from the long tapered film is O(

√
`1), by (5.11c). Because the film thickness

and streamwise pressure difference 1p across the corner satisfy h3
11p = 1, mass

conservation requires the streamwise length of the corner to be O(1/
√
`1). This is the

basis of the physical explanation given in the discussion of figure 3(b).
Variables (with circumflexes) for the corner are defined accordingly:

{x, y} = {x̂, ŷ}/
√
`1, h= ĥ/ 4

√
L `1, (5.13a,b)

p= (L `1)
3/4p̂. (5.13c)
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In (5.13a), we are using the origin O at the apparent contact line; the translated origin
O′ has been used only to describe the inner region.

For use below, we give the relations between the corner variables (5.13) and
dimensional quantities:

{x∗, y∗} = (ad2)
1/3

k2/3`
1/2
1

{x̂, ŷ}, (5.14a)

h∗ = (ad2)
1/6

k1/3`
1/4
1

(
A

γ

)1/4

ĥ. (5.14b)

The pressure difference across the interface is given by

p∗l − pT = k
νlDv1ρv

a1/2

(γ
A

)3/4
`

3/4
1 p̂. (5.14c)

5.2.4. Existence of a separation of pressure scales
Before using the corner variables to manipulate the governing equations, we discuss

the physical significance of the pressure (5.13c). First, because the pressure boundary
condition (5.3e) underlies the entire structure of the corner, we verify that the
magnitude of the pressure within the corner is consistent with the boundary condition
used to obtain (5.3e): namely equation (2.3b).

To do so, we compare the pressure scale 1p = (L `1)
3/4 in (5.13c) with the

maximum pressure pmax within the vapour at the same distance `1 from the origin
O′. According to (5.3e), for fixed r, the maximum pressure within the vapour
occurs along the tapered film at φ′ = π. Consequently, at r′ = `1, pmax ≈ `1/2

1 and
1p/pmax ≈ (`1L 3)

1/4. Because `1 is only logarithmically large in the small parameter
L , we see that

lim
L→0

1p/pmax = 0 : (5.15)

within the corner, the pressure in the vapour is vanishingly small compared with
the maximum pressure in the vapour at that radius `1. Equation (5.13c) is therefore
consistent with the boundary condition on which (5.3e) is based.

Second, although the pressure in the corner abcd is small compared with the
maximum pressure within the vapour, it is large compared with the estimate that
we would obtain for p by evaluating the outer boundary condition (5.3e) at the
liquid–vapour interface. This important condition ensures that, in the corner, the flow
within the liquid film does not see a pressure gradient imposed by the flow outside the
film. Instead, the pressure within the film adjusts to supply the mass being evaporated
within the inner (tapered film) region.

To prove this condition, we first note that, within the corner, the film thickness is
≈h1θ0, as shown in figure 3(b). From figure 3(b), we estimate that, within the corner
at the liquid–vapour interface, φ′ ≈ h1θ0/`1, where θ0 = h0/`0 is given by (3.7b) and h1

by (5.10a).
Using this estimate for φ′ to evaluate the outer boundary condition (5.3e) at the

liquid–vapour interface, and denoting by pest. the pressure estimate so obtained, we
have

pest. ≈ θ0
h1

`
1/2
1

,≈ (L /`1)
3/4 A

γL2
. (5.16)
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Equation (5.10a) has been used to eliminate h1; also equation (3.6) has been used in
the form θ0 = AL /(γL2);

Comparing (5.16) with the corner scale (5.12c), we see that pest./1p ≈ `−3/2
1 .

Because `1 is logarithmically large in the small parameter, it follows that

lim
L→0

pest./1p= 0, (5.17)

the limit being taken with γL2/A fixed. As claimed, the pressure estimated from (5.3e)
is vanishingly small compared with the pressure scale (5.12c) set by the mass balance
within the liquid film. Were this not so, the film flow within the corner would interact
with the vapour flow outside and, to represent that interaction, we would need to
include in (5.13c) an additional additive pressure scale.

Equations (5.15) and (5.17) can be summarized by stating that for L → 0, there
is a separation of pressure scales: pest. � 1p� pmax . Because the pressure within
the film (and adjacent vapour) is small compared with the maximum pressure at
the radial location of corner, it does not modify the external pressure field whose
asymptotic form for large r′ is given by (5.3e). At the same time, when evaluated at
the liquid–vapour interface, the external pressure (5.3e) is small compared with the
pressure in the film; as a result, it does not perturb the liquid flow. We will now see
the implication of this separation of scales.

5.3. Vapour flow in the corner
5.3.1. Governing equations and self-consistency

Expressing (3.5a)–(3.5c) in terms of the corner variables, without approximation,
we find that within the rectangular domain cdef in figure 3(b), the vapour pressure p̂
satisfies

∇̂2p̂= 0. (5.18a)

On ŷ= 0

−p̂= d2ĥ

dx̂2
+ ĥ−3, (5.18b)

∂

∂ x̂

[
ĥ3 ∂ p̂

∂ x̂

]
+ 3(`1L

3)
1/4 ∂ p̂

∂ ŷ
= 0. (5.18c)

(Because growth conditions (3.5e) and (3.5f ) are unchanged, they are not repeated
here.) Together equations (5.18b) and (5.18c) provide the boundary condition for p̂
along the base cd of the rectangular domain shown in figure 2(b); conditions on the
other three sides of the domain would be provided as matching conditions on p̂.

We need not enter into that detail, however. Because `1 is only logarithmically
large in the small parameter L , the coefficient of ∂ p̂/∂ ŷ in (5.18c) vanishes as
L → 0. Consequently, the mass flux along the film is independent of position within
the corner. This is reasonable because the corner is small, and the mass transport
varies only slowly in x at the outer edge of the inner region. Because the simplified
boundary conditions (5.18b) and (5.18c) no longer contain derivatives normal to
the boundary, they form a pair of simultaneous equations determining p̂(x, 0) and
ĥ. Within the rectangular region cdef shown in figure 3(b), the diffusion field therefore
responds passively to the perturbation pressure imposed along side cd by the liquid
film. Because we are concerned with contact angle, we need not discuss boundary
conditions for (5.18a) on the other three sides of the domain.
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Integrating the simplified form of (5.18c), we obtain

ĥ3 ∂ p̂

∂ x̂
= c4. (5.19)

The constant c4 is determined by matching the mass flow.
At the outer edge of the inner tapered film, the mass flow is given by (5.6):

1
3

h3 ∂p

∂x′
=√x′. (5.7′)

Without approximation, we use (5.1) and the definitions (5.13) to express (5.6) in
terms of corner variables:

1
3

ĥ3 ∂ p̂

∂ x̂
= (1+ x̂/`3/2

1 )
1/2
. (5.20)

Taking the limit as `1→∞ (x̂ fixed, possibly large), we find that

ĥ3 ∂ p̂

∂ x̂
= 3, (5.21)

at the outer edge of the inner region. With (5.21), we establish the claim made in
§ 5.1: the total evaporation-rate from the inner tapered film is determined completely
by mass conservation, and the outer boundary condition (5.3e). Further, comparing
(5.21) with (5.19), we see that the mass flow is matched provided c4 = 3.

Using the separation of pressure scales existing for small L , we have shown that
determining the contact angle does not require solving the Laplace equation for the
corner. Instead the problem reduces to that of solving an ordinary differential equation.
Without this simplifying property of the limit as L → 0, the liquid and vapour
flows are fully coupled throughout the domain illustrated in figure 2, and the Laplace
equation must be solved simultaneously with the other members of (5.18).

5.3.2. Boundary-value problem for ĥ
Substituting (5.18b) into (5.19), we find that for −∞< x̂<∞

1
3

ĥ4 d3ĥ

dx̂3
= dĥ

dx̂
− ĥ, (5.22a)

as x̂→−∞, dĥ

dx̂
− ĥ→ 0, (5.22b)

as x̂→∞, d2ĥ

dx̂2
→ 0. (5.22c)

Equation (5.22b) expresses the condition that, within the liquid film, the pressures
are matched within the overlap region connecting the corner to the inner region.
To prove this, we first express (5.1) in the form x′ = `1 + x̂/`1/2

1 . Substituting this
expression, without approximation, into (5.8), we find that at the outer edge of the
inner tapered film, the film thickness is given by

h∼ c3 exp
[

2
3`

3/2
1 (1+ x̂/`3/2

1 )
3/2
]
. (5.23)

Using (5.13b) to express (5.23) in terms of the corner variable ĥ and noting that (5.10)
can be written as (L `1)

1/4 exp(2`3/2
1 /3)= 1, we obtain

ĥ∼ c3 exp
[

2
3`

3/2
1 [(1+ x̂/`3/2

1 )
3/2 − 1]

]
, (5.24)
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10–1 100 101 102

FIGURE 4. Solid curve, numerical solution of (5.22); broken curves, asymptotes: (A 3),
ĥ→∞ and (A 5), ĥ→ 0; broken line, limiting value (6.1).

without approximation. It follows that in the limit as `1→∞ (fixed x̂)

ĥ∼ c3ex̂. (5.25)

This is equivalent to (5.22b). Because problem (5.22) is invariant under translation
in x̂, boundary condition (5.22b) is sufficient to ensure that the corner film thickness
could be matched to (5.25) for the value of c3 imposed by the solution of the inner
problem (5.3). Because the film thickness can be matched, and p ∼ −h−3 within the
overlap region, so too can the pressure.

Problem (5.22) can be expressed as equivalent problem determining film slope
dĥ/dx̂ as a function of film thickness ĥ; for this reason, we do not need the constant c3

entering into (5.25). Appendix A describes the method used to compute the solution of
(5.22).

6. Predicted contact angle

Figure 4 shows dĥ/dx̂ computed as a function of film thickness ĥ from (5.22).
According to (A 6)

lim
ĥ→∞

dĥ

dx̂
= c6 = 1.47758 . . . . (6.1)

At ĥ = 10, dĥ/dx̂ is within about 4 % of the limiting value (6.1); at that point,
p̂=−0.1045 . . . .

The contact angle here differs in one essential from that occurring during isothermal
spreading. According to (6.1), at the outer edge of the contact region of the stationary
evaporating meniscus, the slope approaches a limit. This is also true for the stationary
meniscus when evaporation is limited by heat conduction through the liquid (Morris
2001). In both cases, the slope approaches a limit because the volume flow rate along
the liquid film is independent of position at the outer edge of the contact region,
causing d3h/dx3 to vary asymptotically as h−3. As a result, h is asymptotically a linear
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function of x. For these two problems in which the apparent contact line is stationary,
the contact angle is independent of the large-scale geometry of the interface; this is
so, provided the pressure difference across the interface at the outer edge of the corner
region is small compared with the pressure difference (5.14c) within the corner. If this
condition is satisfied, problem (3.5) completely determines θ , and the outer geometry
affects θ only through the outer boundary condition (3.5d).

The behaviour is different when the contact line moves relative to the substrate.
Relative to axes moving with the contact line, the volume flow rate then increases
linearly with film thickness, causing d3h/dx3 to vary asymptotically as h−2 (Morris
2001, p. 28). As a result, the film thickness grows more rapidly than x, and the
contact angle is always influenced by the geometry of the large-scale interface. For the
problem of isothermal spreading, this is discussed in the review article of Bonn et al.
(2009, p. 766).

For L → 0, the contact angle is given in terms of the dimensional quantities h∗ and
x∗ by

lim
ĥ→∞

dh∗
dx∗
∼ c6k1/3 A1/4

γ 1/4a1/6d1/3
`

1/4
1 . (6.2)

Equations (5.14a) and (5.14b) have been used. In this work, the swung dash is used
only to indicate an asymptotic relation.

Equation (6.2) holds if mass transfer occurs by pure diffusion at the drop scale. As
noted below (2.5), when buoyant convection is significant at that scale, the factor k
becomes a function of the parameters controlling that convection. According to table 1,
the value of L is also affected by k, through the slope unit θ0; that effect is secondary
because in (6.2) only `1 depends on L and that dependence is weak.

Substituting for d from (3.3) and using c6k1/3 = 1.427, we obtain

θ ∼ 1.427 D1/3 4
√
`1; (6.3)

as given in table 1,

D = νlDv1ρv

(Aγ 3a2)
1/4 . (6.4)

With (6.3), we have overcome the difficulty described at the end of § 3. Though,
in general, θ depends on two parameters, L and θ0, each depending significantly
on A, we have shown that for small L , these parameters combine to form the
density parameter D . Whereas the general relation (3.7) permits θ to depend on A in
an arbitrary fashion, this dependence is weak in the experimentally interesting case:
according to (6.3), θ ∝ A−1/12. This is significant because the value of A is affected
by contamination of the surface, as discussed, e.g., by Truong & Wayner (1987) and
Israelachvili (1991, p.196).

Although θ depends to a first approximation only on the parameter D , it continues
to depend weakly on L through the factor 4

√
`1 in (6.3). As discussed in the context

of figure 5, below, this dependence on L can be noticeable under some conditions.

7. Interpretation using scaling
The formula for θ corresponds to a definite picture of the contact region. As the

Laplace parameter is reduced, at a fixed value of film thickness, the disjoining pressure
dominates the capillary pressure. Because the capillary pressure is essential to contact
angle formation, that process can occur, for small L , only once the film has become
relatively thick. As a result, there is a long section of precursor film from which liquid
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1.0 3.00.3

10–1

10–2

FIGURE 5. Measured and predicted angles. Symbols, Guéna data: in order of increasing L ,
• nonane 0.00046 < L < 0.00075; × OMTS 0.0014 < L < 0.0026; ◦ octane 0.0025 <
L < 0.0045; + HMDS 0.022 <L < 0.041. Arrows guide the eye from the data to the line
showing the angle predicted by (6.3) for that fluid. Lines end at a = 2 mm. There are no
adjustable parameters.

can evaporate; in comparison with the evaporation from the precursor film, that from
the region generating the contact angle is negligibly small.

To consolidate this picture, we combine it with scaling to obtain the form
of (6.3). Let pl, h and ` be the dimensional liquid pressure, and characteristic
dimensions of the corner region within which the angle is formed. This region has
two defining characteristics: the capillary pressure balances the disjoining pressure,
pl ≈ γ h/`2 ≈ A/h3, and within the liquid film, the mass flow rate J per unit length of
contact line is independent of position, h3pl/(νl`)≈ J. These three equations determine
the unknowns {pl, h, `} in terms of the constant J.

Solving for h and `, we obtain

h≈ A3/4

γ 1/4(νlJ)
1/2 , `≈ A

νlJ
. (7.1a,b)

According to (5.6) of the small-L analysis, J scales with the fundamental units h0

and `0, but is increased by a factor `1/2
1 reflecting the length of the tapered film:

J ≈ h3
0

νl`0

(
ρl

ρs

√
`0

a
1pv

)
`

1/2
1 . (7.2)

(The term in parentheses is the scale for liquid pressure, as given by (3.4c).)
Substituting for h0 and `0 from (3.2), we find that

J

Dv1ρv
≈
(

d

a

)1/3

`
1/2
1 ; (7.3)

here d = A/(νlDv1ρv), as defined by (3.3).
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To interpret (7.3), we recall that the rate of mass loss from the bulk droplet is
2Dv1ρv/π, per unit length of contact line (Cazabat & Guéna 2010, equation (7)).
According to (7.3), the additional rate of mass loss across the wetting film is small
compared with that from the bulk drop provided a� d, that is, provided the notion of
an apparent contact line is applicable.

Eliminating νlJ between (7.1) and (7.3), we obtain

h≈ (a2d)
1/3
(

A

γ a2

)1/4

`
−1/4
1 , `≈ (ad2)

1/3
`
−1/2
1 . (7.4a,b)

To within a numerical factor, these results are equivalent to those given by (5.14).
The scaling relation θ ≈ D1/3 corresponding to (6.3) follows on using θ ≈ h/`.

Poulard et al. (2005) also use scaling to obtain a cube root relation, but their physical
picture differs from ours: theirs contains a triple junction near which the Laplace
pressure balances the disjoining pressure, and the neighbourhood of that triple junction
is assumed to influence the observed contact angle.

8. Comparison with experiment
8.1. Contact angles

Figure 5 shows the measured and the predicted values. Only values for drops having
0.3 < a mm−1 < 3 are shown; this range was chosen to cover a decade in the
logarithmic scale, and to include all experimental data showing the a−1/6 scaling
identified by Guéna et al. (2007a, p. 312). As broken lines, we show the prediction
(6.3); because `1/4

1 varies slightly along each line, the arithmetic mean of the maximum
and minimum values was used to obtain the coefficient in (6.3); using this approach,
the predicted values of θ/D1/3 are 1.60 (octane), 1.62 (OMTS), 1.67 (nonane) and
1.49 (HMDS).

There are no adjustable parameters in this comparison. Appendix B gives the values
of material properties used in making the figure. Of these, only the value of A
is uncertain and, according to (6.3), θ is insensitive to A. Values for the diffusion
coefficient Dv used here are, in all cases, about twice those given by Cazabat & Guéna
(2010, table 2); there is further detail in the appendix.

The figure caption gives the range of L -values for each fluid. Owing to the
differing material properties, for a given value of a, L decreases from the top of
the figure to the bottom. For a given fluid, L decreases from left to right because
L ∝ a−2/9, as shown by table 1.

Fair agreement is obtained between measured and predicted angles: for a = 1 mm,
the ratio of the observed to predicted values is ∼0.9 (octane), 0.8 for HMDS and 0.7
for nonane and OMTS. Two properties of the figure suggest that a mechanism not
included in (3.5) is needed to explain the detailed behaviour, however. First, for each
fluid, the data approach the appropriate small-L asymptote towards the left of the
figure, where the value of L for the fluid is largest (but still less than unity). Though
the approach occurs in the opposite sense to that expected of an asymptote depending
on a single parameter, this behaviour is consistent with the suggestion by Cazabat &
Guéna (2010, § VI.4) that a second scale of motion is needed to explain the behaviour
of larger drops.

Second, the trend from one fluid to another is not monotonic. The gap between
the asymptote and data decreases from HMDS to octane; this is consistent with L
being an order of magnitude smaller for octane. For the next fluid OMTS, however,
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d
(nm)

L
(nm)

a
(mm)

h0
(nm)

`0
(nm)

L h1 `1 hθ
(nm)

Octane 3.1 0.15 1 1.7 230 0.00382 3.6 1.5 60
OMTS 5.3 0.15 9 2.5 680 0.00137 4.5 1.7 110

TABLE 2. Scales for two droplets: hθ is defined by (8.1).

the values of L are slightly less than of octane, but the gap is much larger.
The gap is also large for nonane, even though the values of L for it are about
one-third those for OMTS. Because octane and OMTS have almost the same values of
L , the non-monotonicity cannot be a consequence of the approximate nature of (6.3);
some effect not included in (3.5) is required.

8.2. Film thickness at which θ forms

By (6.1), at ĥ = 10 the slope is within 4 % of its limiting value: the corresponding
dimensional film thickness is

hθ = 10k′(ad2)
1/6
(

A

γ

)1/4

. (8.1)

Equation (5.14b) has been used. The dimensionless factor k′ = k−1/3`
−1/4
1 ; assuming

mass transfer at the drop scale to be by pure diffusion, k′ + 1 to within ∼15 % for
values of L occurring in the experiments.

In table 2 we give predicted values of hθ for two cases for which experimental
values can be estimated, at least roughly. Line 1 gives the scales for a 1 mm octane
droplet. For this case, the uppermost curve in figure 5(a) of Guéna et al. (2007a) gives
the corresponding film profile measured at reversal; the contact angle appears to be
well-defined at the second fringe, the corresponding film thickness being of the order
of 200–300 nm. Though this is about four times the predicted value, more precise
agreement is not to be expected because for this case there are too few interference
fringes to resolve the contact region.

As we would expect from figure 5, the discrepancy between predicted and observed
values of hθ increases with drop size. Line 2 gives the scales for 9 mm droplet of
OMTS. According to figure 5(b) of Guéna et al. (2007a), for droplets of OMTS
having 1< a mm−1 < 9, the angle is observed to form at a thickness hθ ≈ 1–2 µm; the
scale increases weakly with a. Though the trend is consistent with (8.1), the observed
value is 10–20 times that predicted.

Let us review possible causes of this discrepancy. We have assumed that mass
transfer at the droplet scale is by pure diffusion. Though for an 8 mm drop of heptane
(a fluid with properties comparable with those of OMTS) the Nusselt number Nu ≈ 3,
this does not seem large enough to explain an order of magnitude discrepancy in
hθ , particularly because that scale is relatively insensitive to k, varying only as its
one-third power.

Second, our quantitative predictions from (3.5) are based on the assumption of a
separation of scales (`1 � 1) holding in the limit as L → 0. According to table 2,
however, for the experimental conditions `1 ≈ 2. This is also unlikely to explain the
discrepancy. There is no reason for the assumption `1 � 1 to be adequate for small
drops, but to fail for the large ones: because L varies as a−2/9, the approximation
should improve with increasing drop size.
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Third, the equation Π = Ah−3 for disjoining pressures holds only over a very short
range of film thicknesses, as discussed below (2.1). It should, however, be a good
approximation within the thin tapered film in which evaporation from the contact
region is concentrated. Though for h < 1 nm the h−3 relation begins to fail because
the continuum film begins to resemble an adsorbed layer, we know from § 5 that,
in the limit as L → 0, the inner tapered film affects θ only through the total rate
of evaporation within it. This quantity is, however, itself determined by the outer
boundary condition. Because the structure of the tapered film adjusts to the constraint
imposed by mass conservation and the outer boundary condition, failure of the h−3

relation for small film thicknesses seems unlikely to explain the discrepancy between
predicted values of θ , and those observed for large drops.

At the other extreme, when h is sufficiently large, retardation becomes significant,
and the disjoining pressure approaches the asymptote Π ∝ h−4; see Truong & Wayner
(1987, figure 6), Israelachvili (1991, § 11.7). Though this form is likely to be
appropriate within the corner, its effect will be to make problem (5.22) more nonlinear.
This should weaken the dependence of θ on a, rather than producing the stronger
dependence observed for a > 1 mm. (This heuristic argument is readily verified by
scaling. Using the h−4 relation in the steps leading to (7.1), but retaining the h−3

relation in (7.3), we find that θ ∝ a−1/7; this is weaker than the dependence given by
the original argument.) Using another form for disjoining pressure Π seems unlikely
to improve the ability of theory to predict the behaviour of larger drops.

Cazabat & Guéna (2010, § VI.4) propose that larger drops depart from the relation
θ ∝ a−1/6 because the capillary number of the liquid flow at the scale a becomes larger
than unity; as result, ‘hydrodynamic flow and drop shape are no longer independent,
and a second intermediate characteristic length scale is clearly required’. Scaling of
(4.2) verifies that if the Bond number ρlga2/γ � 1, gravitational flattening of the drop
does increase the pressure gradient needed to drive flow towards the contact line.

Because the slope calculated from the local formulation (3.5) approaches a limit
at the outer edge of the contact region, we know the two defining properties of the
second scale (`2, say) proposed by Cazabat and Guéna. First, for the largest drops
(a = 9 mm) studied by Guéna (2007), the measured angle is about one-half that
predicted by (6.3); the product of `2 with the interface curvature characterizing the
second region is, therefore, of the order of θ . Second, this curvature is determined by
the pressure difference needed to drive the large-scale flow from the centre of flattened
drop towards the contact region. These conditions characterize the proposed second
region.

Further, because the first interference fringe occurs at a film thickness of the order
of 0.1 µm, comparable with the thickness at which the present analysis predicts θ
to form, we speculate that two separate contact angles might exist at scales whose
separation increases with drop size. For the advancing heated meniscus, a similar
possibility is proposed by Morris (2001, p. 28). Detailed analysis of the drop-scale
flow is beyond the scope of this work, however.

9. Conclusion

Motivated by the experiments of Guéna et al. (2007a), we have posed the boundary-
value problem (3.5) governing the contact region of an evaporating drop at the instant
it reaches its maximum radius a. In § 4, we have shown that the formulation is self-
consistent. In particular, the notion of an apparent contact line having a well-defined
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radius is applicable if there is a separation of length scales:

a� d; (9.1)

the macroscopic scale a must be large compared with the disjoining-diffusion length
d = A/(νlDv1ρv), as defined by (3.3). We have shown that when (9.1) holds, there
is also a separation of time scales: the contact region then evolves on a time scale
short compared with that on which the bulk drop evolves. As a result, there is no time
derivative in (3.5).

The solution of (3.5) depends on one parameter L , a dimensionless surface tension.
Though the formulation is valid for arbitrary values of L , we have analysed the
special case L → 0 corresponding to small surface tension. In the experiments L
ranges from 0.0005 to 0.04; for a given fluid, L decreases with increasing drop size.

In the limit as L → 0, there is a further separation of length scales within the
contact region itself. Evaporation from this region is now confined to a long thin
tapered wetting film extending radially outwards from the drop; the dimensionless
streamwise length `1 of this film is asymptotically large in the small parameter
L . Within the film, the capillary pressure is negligibly small. As the bulk drop
is approached, the film thickens and, as a result, the disjoining pressure decreases,
allowing it to be balanced by the capillary pressure within a corner region whose
streamwise dimension vanishes as `−1/2

1 . The contact angle is formed within this small
region.

This structure has implications for the distribution of evaporative mass flux. At the
inner edge of the corner, facing the drop centre, the liquid pressure rises towards the
total pressure in the gas. As a result, the vapour pressure pv on the interface falls to
the (constant) saturation value ps, and the evaporative mass flux across the interface
matches to that given by the Weber disc solution. Within the corner, and wetting film,
the liquid pressure pl is sufficiently low that the vapour partial pressure at the interface
is coupled to the liquid flow through the Gibbs–Thomson relation. This brings us to
the key simplifying feature of the small-L analysis.

In the limit as L → 0, evaporation from the corner proves to be negligibly small.
As a result, the corner acts as a funnel feeding liquid from the drop to the long
thin evaporating film. This has two implications. Within the corner, film thickness is
determined completely by the liquid flow; consequently, the film profile is determined
by an ordinary differential equation, rather than by a coupled system involving the
steady diffusion equation for the vapour.

Further, because evaporation is negligibly small within the corner, and the
Gibbs–Thomson (Kelvin) effect is negligibly small within the bulk drop, for the
purpose of calculating the evaporative mass flux the difference between p∗v and ps

is significant only within the thin tapered film. To evaluate it there, the pressure
difference pT − pl across the interface can be replaced by the disjoining pressure; see
(5.3b).

This result illuminates an approximation made by Eggers & Pismen (2010) in
their simulation of an evaporating sessile drop. In their equation (25) for the
evaporative mass flux, it is assumed that the pressure jump across the interface can be
approximated by the disjoining pressure ‘since van der Waals forces dominate in the
contact line region’. According to the discussion above, this approximation amounts to
assuming, at least implicitly, a separation of scales.

We have made a careful comparison between predicted and measured angles.
According to the experiments of Guéna et al. (2007a), the contact angle θ measured
at the inflexion point varies as a−1/6 for a < 1 mm (about); for larger drops, θ ∝ a−n,
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the exponent n then being fluid-specific. For drops obeying the a−1/6 rule, predicted
and measured angles agree to within 10–30 %; the discrepancy increases with drop
size, and is fluid-specific. Because L varies inversely with drop size for a given fluid,
we infer that some effect not included in (3.5) is required to explain the behaviour of
larger drops. In particular, we note that measured and predicted angles may refer to
quantities occurring at scales which coincide for small drops, but become increasingly
separated with increasing drop size. Numerical solutions, of (3.5) and of the initial-
value problem for the whole drop, will be made to investigate this possibility.
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Appendix A. Solution of (5.22)
We introduce dummy variables x and y defined by

x̂= x, ĥ= 31/4y. (A 1)

Because these variables are used only in this appendix, they cannot be confused with
the coordinates {x, y} used in the text.

Substituting (A 1) into (5.22), then introducing y as the independent variable, we
find that z= dy/dx satisfies the following problem. For 0< y<∞

y4z
d
dy

[
z

dz

dy

]
= z− y, (A 2a)

as y→∞, z→ c, (A 2b)
as y→ 0, z∼ y. (A 2c)

The constant c is found as part of the solution.
To find the form of the solution, we let z= c+ζ . Because (A 2b) requires that ζ � c

for y→∞, the left-hand side of (A 2a) can be linearized, and the right-hand side can
be approximated by −y. With these simplifications, we find that y3c2 d2ζ/dy2 ∼ −1.
So ζ ∼ c′0y + c′1 − 1/(2c2y), where (A 2b) requires that the constants c′0 = 0 = c′1. We
conclude that for y→∞, the solution of (A.2) depends on the single parameter c, and
that z ∼ c − 1/(2c2y). (We may also reach this conclusion by linearizing the left-hand
side of (A 2a) as above, but without approximating the right-hand side. This leads to
the modified Bessel equation; the conclusion then follows from known properties of its
solutions.)

So, for y→∞, the solution of (A.2) has the asymptote

z∼ c+
∞∑

n=1

any−n. (A 3)

Substituting (A 3) into (A 2a), then equating coefficients of y−n, we obtain

a1 =− 1
2c2

, a2 = 4c4 − 5
24c5

, a3 = 28c4 − 41
288c8

, (A 4a,b,c)

a4 =−20c8 − 139c4 + 168
1440c11

, (A 4c,d)
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Nonane Octane HMDS OMTS

Dv mm2 s−1 5.4a 6.0a 5.5b 4.4b

γ mN m−1 23 23 15.8 16.6
η l mPa s 0.67 0.53 0.50 0.88
ρl kg m−3 720 700 760 820
ps kPa 0.420c 1.53c 4.66d 0.415e

M kg mol−1 0.1283 0.1142 0.1624 0.2365
ρs kg m−3h 0.022 0.071 0.31 0.040
A zJi 1f 1f 1g 1g

TABLE 3. Material properties at 295 K. a Berezhnoi & Semenov (1997) and Beverley,
Clint & Fletcher (1999, figure 6 and table 2); b Chapman & Cowling (1970, equation
(14.2.4)); c Carruth & Kobayashi (1973); d Flaningam (1986); e Lindley & Hershey (1990);
f Gee et al. (1989, figure 6) and Levinson et al. (1993, figure 3); g Valignat et al. (1993,
figure 4), A. M. Cazabat (Personal communication, 17 March 2013) and Israelachvili
(1991, table 11.3); h ideal gas law; i1 zJ (zeptojoule) = 10−21 J. No source is given for
values on which there is wide agreement.

a5 =−4240c8 − 18 176c4 + 18 207
172 800c14

, (A 4e)

a6 = 67 200c12 − 1 122 160c8 + 3 457 088c4 − 2 936 031
29 030 400c17

. (A 4f )

(The open-source program Maxima has been used.)
Using (A 3) to obtain initial values, we integrate (A 2a) towards y = 0. We find that

as y→ 0, z diverges to ±∞ according as c is less than or greater than a critical value
c′. As c→ c′, this divergence is confined to a region of decreasing size near O. The
numerical solution consequently overlaps the small-y asymptote

z= y+ y5 + 31y9 + 2986y13 + O(y17), (A 5)

as can be seen in figure 4.
We conclude that 1.12271749510877< c′ < 1.12271749510879, so

lim
ĥ→∞

dĥ

dx̂
= 31/4c′. (A 6)

Appendix B. Material properties
Table 3 gives the values of material properties used in this work. According to

A. M. Cazabat (Personal communication, 17 March 2013), laboratory temperatures
ranged from 21–23 ◦C. Calculations in the text are based on properties at 22 ◦C
(295 K). The conclusions from figure 5 would not be affected by fluctuations of a few
Kelvin about the value of 295 K despite the sensitive dependence of ρs on temperature:
though for HMDS at 298 K, ρs would be almost 16 % higher than at 295 K, the value
of the independent variable D1/3 in figure 5 would be altered by only ∼5 %.

Though measured values of Dv were used for the alkanes, those for the linear
siloxanes in air are not available. Values given in the table were obtained using the
first-order Chapman–Enskog relation (Chapman & Cowling 1970, equation (14.2.4))
and the expressions given as correlation (ix) in Tee et al. (1966, table 3). For octane
and nonane, I found this method to predict the published experimental values of Dv
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to within 2 % at the experimental temperature of 295 K. (Discrepancies between
prediction and experiment are, however, appreciable at temperatures higher than those
occurring in the Guéna experiments; see figures 3 and 5 of Chae, Elvati & Violi
(2011).)

For siloxanes, the Chapman–Enskog prediction has been tested for two systems
closely related to the one of interest. Park et al. (1987) measured the diffusivity
of the cyclic molecule octamethylcyclotetrasiloxane (OMcTS) in air at 298 K; their
measured value agreed to within about 30 % with the Chapman–Enskog prediction.
They describe this discrepancy as being ‘large’. Maczek & Edwards (1979, table 7)
measured the diffusivity of both HMDS and OMTS in argon (rather than in air) at
343 K; for both systems, their experimental values agreed to within 4 % with the
Chapman–Enskog prediction. Together, those studies suggest that Chapman–Enskog
theory is adequate for our purpose.
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