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Abstract

In the first part of this paper we study approximations of trajectories of piecewise deter-
ministic processes (PDPs) when the flow is not given explicitly by the thinning method.
We also establish a strong error estimate for PDPs as well as a weak error expansion for
piecewise deterministic Markov processes (PDMPs). These estimates are the building
blocks of the multilevel Monte Carlo (MLMC) method, which we study in the second
part. The coupling required by the MLMC is based on the thinning procedure. In the third
part we apply these results to a two-dimensional Morris–Lecar model with stochastic
ion channels. In the range of our simulations the MLMC estimator outperforms classical
Monte Carlo.
Keywords: Piecewise deterministic (Markov) processes; multilevel Monte Carlo; thin-
ning; strong error estimate; weak error expansion; Morris–Lecar model
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1. Introduction

In this paper we are interested in the approximation of the trajectories of piecewise deter-
ministic processes (PDPs). We establish strong error estimates for a PDP and a weak error
expansion for a piecewise deterministic Markov process (PDMP). Then we study the appli-
cation of the multilevel Monte Carlo (MLMC) method in order to approximate expectations
of functionals of PDMPs. Our motivation comes from neuroscience, where the whole class of
stochastic conductance-based neuron models can be interpreted as PDMPs. The response of a
neuron to a stimulus, called neural encoding, is considered as relevant information to under-
stand the functional properties of such excitable cells. Thus many quantities of interest, such
as mean first spike latency, mean interspike intervals, and mean firing rate, can be modelled as
expectations of functionals of PDMPs.

PDPs were introduced by Davis [5] as a general class of stochastic processes character-
ized by a deterministic evolution between two successive random times. In the case where the
deterministic evolution part follows a family of ordinary differential equations (ODEs), the
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corresponding PDP enjoys the Markov property and is called a PDMP. The distribution of a
PDMP is thus determined by three parameters called the characteristics of the PDMP: a family
of vector fields, a jump rate (intensity function), and a transition measure.

We first consider a general PDP (xt) that is not necessarily Markov on a finite time interval
[0, T] for which the flow is not explicitly solvable. Approximating its flows by the classical
Euler scheme and using our previous work [22], we build a thinning algorithm which provides
us with an exact simulation of an approximation of (xt), which we denote by (xt). The pro-
cess (xt) is a PDP constructed by thinning of a homogeneous Poisson process which enjoys
explicitly solvable flows.

In fact this thinning construction provides a whole family of approximations indexed by the
time step h > 0 of the Euler scheme. We prove that for any real-valued smooth function F the
following strong estimate holds:

there exist V1 > 0, V2 > 0 such that E[|F(xT ) − F(xT )|2] ≤ V1h + V2h2. (1.1)

Moreover, if (xt) is a PDMP the following weak error expansion holds:

there exists c1 > 0 such that E[F(xT )] −E[F(xT )] = c1h + o(h2). (1.2)

The estimate (1.1) is mainly based on the construction of the pair (xt, xt) and on the fact that
the Euler scheme is of order 1; this is why it is valid for a general PDP and its Euler scheme.
In contrast, the estimate (1.2) relies on properties which are specific to PDMPs, such as the
Feynman–Kac formula.

The MLMC method relies simultaneously on estimates (1.1) and (1.2); this is why we study
its application to the PDMP framework instead of the more general PDP framework. MLMC
extends the classical Monte Carlo (MC) method, which is a very general approach to estimat-
ing expectations using stochastic simulations. The complexity (i.e. the number of operations
necessary in the simulation) associated with an MC estimation can be prohibitive, especially
when the complexity of an individual random sample is very high. MLMC relies on repeated
independent random samplings taken on different levels of accuracy, which differs from clas-
sical MC. MLMC can then greatly reduce the complexity of classical MC by performing most
simulations with low accuracy but with low complexity, and only a few simulations with high
accuracy at high complexity. MLMC was introduced by Heinrich [18] and developed by Giles
[11]. The MLMC estimator has been efficiently used in various fields of numerical probability
such as SDEs [11], Markov chains [1, 2, 14], Lévy processes [10], jump diffusions [7, 8, 28],
and nested Monte Carlo [13, 21]. See [12] for more references. To the best of our knowledge,
application of MLMC to PDMPs has not been considered.

For the sake of clarity, we will describe the general improvement of MLMC. We are inter-
ested in the estimation of E[X], where X is a real-valued square-integrable random variable
on a probability space (�,F , P). When X can be simulated exactly, the classical MC esti-
mator (1/N)

∑N
k=1 Xk with Xk, k ≥ 1 independent random variables identically distributed as

X provides an unbiased estimator. The associated L2-error satisfies ‖Y −E[X]‖2
2 = Var(Y) =

1
N Var(X). If we quantify the precision by the L2-error, then a user-prescribed precision ε2 > 0
is achieved for N = O(ε−2), so that in this case the global complexity is of order O(ε−2).

Assume now that X cannot be simulated exactly (or cannot be simulated at a reasonable
cost) and that we can build a family of real-valued random variables (Xh, h > 0) on (�,F , P)
which converges weakly and strongly to X as h → 0 in the following sense:

there exist c1 > 0, α > 0 such that E[Xh] −E[X] = c1hα + o(h2α), (1.3)
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and
there exist V1 > 0, β > 0 such that E[|Xh − X|2] ≤ V1hβ . (1.4)

Assume, moreover, that for h > 0 the random variable Xh can be simulated at reasonable com-
plexity (the complexity increases as h → 0). The classical MC estimator now consists of a
sequence of random variables,

Y = 1

N

N∑
k=1

Xk
h, (1.5)

where Xk
h, k ≥ 1 are independent random variables identically distributed as Xh. The bias

and the variance of the estimator (1.5) are given by E[Y] −E[X] =E[Xh] −E[X] � c1hα and
Var(Y) = 1

N Var(Xh) respectively. From the strong estimate (1.4) we have Var(Xh) → Var(X)
as h → 0, so that Var(Xh) is asymptotically a constant independent of h. If as above we
quantify the precision by the L2-error and use ‖Y −E[X]‖2

2 = (E[Y] −E[X])2 + Var(Y), we
obtain that the estimator (1.5) achieves a user-prescribed precision ε2 > 0 for h = O(ε1/α) and
N = O(ε−2), so that the global complexity of the estimator is now O(ε−2−1/α).

The MLMC method takes advantage of the estimate (1.4) in order to reduce the global com-
plexity. Let us fix L ≥ 2 and consider for l ∈ {1, . . . , L} a geometrically decreasing sequence
(hl, 1 ≤ l ≤ L), where hl = h∗M−(l−1) for fixed h∗ > 0 and M > 1. The indexes l are called the
levels of the MLMC and the complexity of Xhl increases as the level increases. Thanks to
the weak expansion (1.3), the quantity E[XhL ] approximates E[X]. Using the linearity of the
expectation, the quantity E[XhL ] can be decomposed over the levels l ∈ {1, . . . , L} as follows:

E[XhL ] =E[Xh∗ ] +
L∑

l=2

E[Xhl − Xhl−1 ]. (1.6)

For each level l ∈ {1, . . . , L}, a classical MC estimator is used to approximate E[Xhl −
Xhl−1 ] and E[Xh∗]. At each level, a number Nl ≥ 1 of samples are required and the key point is
that the random variables Xhl and Xhl−1 are assumed to be correlated in order to make the vari-
ance of Xhl − Xhl−1 small. Considering at each level l = 2, . . . , L independent pairs (Xhl , Xhl−1 )
of correlated random variables, the MLMC estimator then reads

Y = 1

N1

N1∑
k=1

Xk
h∗ +

L∑
l=2

1

Nl

Nl∑
k=1

(Xk
hl

− Xk
hl−1

), (1.7)

where (Xk
h∗ , k ≥ 1) is a sequence of independent and identically distributed random vari-

ables distributed as Xh∗ and ((Xk
hl
, Xk

hl−1
), k ≥ 1) for l = 2, . . . , L are independent sequences

of independent copies of (Xhl , Xhl−1 ) and independent of (Xk
h∗). It is known (see [11] or

[21]) that given a precision ε > 0 and provided that the family (Xh, h > 0) satisfies the strong
and weak error estimates (1.4) and (1.3), the multilevel estimator (1.7) achieves a precision
‖Y −E[X]‖2

2 = ε2 with a global complexity of order O(ε−2) if β > 1, O(ε−2( log (ε))2) if
β = 1, and O(ε−2−(1−β)/α) if β < 1. This complexity result shows the importance of the param-
eter β. Finally, let us mention that in the case β > 1 it is possible to build an unbiased multilevel
estimator: see [15].

Estimates (1.1) and (1.2) suggest investigating the use of the MLMC method in the PDMP
framework with β = 1 and α = 1. Letting X = F(xT ) and Xh = F(xT ) for h > 0 and F a smooth
function, we define an MLMC estimator of E[F(xT )] just as in (1.7) (denoted here by YMLMC)
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where the processes involved at the level l are correlated by thinning. Since these processes
are constructed using two different time steps, the probability of accepting a proposed jump
time differs from one process to the other. Moreover, the discrete components of the post-jump
locations may also be different. This results in the presence of the term V1h in the estimate
(1.1). In order to improve the convergence rate (to increase the parameter β) in (1.1), we show
that for a given PDMP (xt) we have the following auxiliary representation:

E[F(xT )] =E[F(x̃T )R̃T ]. (1.8)

The PDMP (x̃t) and its Euler scheme are such that their discrete components jump at the
same times and in the same state. (R̃t) is a process that depends on (x̃t, t ∈ [0, T]). The repre-
sentation (1.8) is inspired by the change of probability introduced in [28] and is actually valid
for a general PDP (Proposition 2.2) so that E[F(xT )] =E[F(x̃T )R̃T ], where (x̃t) is the Euler
scheme corresponding to (x̃t) and (R̃t) is a process that depends on (x̃t, t ∈ [0, T]). Letting
X = F(x̃T )R̃T and Xh = F(x̃T )R̃T , we define a second MLMC estimator (denoted by ỸMLMC)
where now the discrete components of the Euler schemes (x̃t) involved at the level l always
jump in the same states and at the same times. To sum up, the first MLMC estimator we con-
sider (YMLMC) derives from (1.6), where the corrective term at level l is E[F(xhl

T ) − F(xhl−1
T )],

whereas the corrective term of the second estimator (ỸMLMC) is E[F(x̃hl
T )R̃

hl
T − F(x̃hl−1

T )R̃
hl−1
T ].

For readability, we no longer write the dependence of the approximations on the time step. For
the processes (F(x̃t)R̃t) and (F(x̃t)R̃t) we show the strong estimate

there exists Ṽ1 > 0 such that E[|F(x̃T )R̃T − F(x̃T )R̃T |2] ≤ Ṽ1h2,

so that we end up with β = 2 and the complexity goes from a O(ε−2( log (ε))2) to a O(ε−2).
As an application we consider the PDMP version of the two-dimensional Morris–Lecar

model (see [25]), which takes into account the precise description of the ionic channels and
in which the flows are not explicit. Let us mention [3] for the application of quantitative
bounds for the long-time behaviour of PDMPs to a stochastic three-dimensional Morris–Lecar
model. The original deterministic Morris–Lecar model was introduced in [23] to account for
various oscillating states in the barnacle giant muscle fibre. Because of its low dimension,
this model is among the favourite conductance-based models in computational neuroscience.
Furthermore, this model is particularly interesting because it reproduces some of the main
features of excitable cell response, such as the shape, amplitude, and threshold of the action
potential, the refractory period. We compare the classical MC and the MLMC estimators on the
two-dimensional stochastic Morris–Lecar model to estimate the mean value of the membrane
potential at fixed time. It turns out that in the range of our simulations the MLMC estimator
outperforms the MC one. It suggests that MLMC estimators can be used successfully in the
framework of PDMPs.

As mentioned above, the quantities of interest, such as mean first spike latency, mean
interspike intervals, and mean firing rate, can be modelled as expectations of path-dependent
functionals of PDMPs. This setting can then be considered as a natural extension of this work.

The paper is organized as follows. In Section 2 we construct a general PDP by thinning,
and we give a representation of its distribution in terms of the thinning data (Proposition 2.1).
In Section 3 we establish strong error estimates (Theorems 3.1–3.2). In Section 4 we establish
a weak error expansion (Theorem 4.1). In Section 5 we compare the efficiency of the classi-
cal and multilevel Monte Carlo estimators on the two-dimensional stochastic Morris–Lecar
model.
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2. Piecewise deterministic process by thinning

2.1. Construction

In this subsection we introduce the setting and recall some results on the thinning method
from our previous paper [22]. Let E := � ×R

d where � is a finite or countable set and d ≥ 1.
A piecewise deterministic process (PDP) is defined via the following characteristics:

• a family of functions (�θ, θ ∈ �) such that �θ : R+ ×R
d →R

d for all θ ∈ �,

• a measurable function λ : E → ]0, +∞[,

• a transition measure Q : E ×B(E) → [0, 1].

We let x = (θ, ν) denote a generic element of E. We only consider PDPs with continuous
ν-component, so for A ∈B(�) and B ∈B(Rd) we write

Q(x, A × B) = Q(x, A)δν(B). (2.1)

If we write x = (θx, νx), then it holds that

Q((θx, �θx (t, νx)), dθ dν) = Q((θx, �θx (t, νx)), dθ )δ�θx (t,νx)(dν).

Our results do not depend on the dimension of the variable in R
d so we restrict ourselves to R

(d = 1) for readability. We work under the following assumption.

Assumption 2.1. There exists λ∗ < +∞ such that, for all x ∈ E, λ(x) ≤ λ∗.

In [22] we considered a general upper bound λ∗. In the present paper λ∗ is a constant (see
Assumption 2.1). Let (�,F , P) be a probability space on which we define the following.

(1) A homogeneous Poisson process (N∗
t , t ≥ 0) with intensity λ∗ (given in Assumption 2.1)

whose successive jump times are denoted (T∗
k , k ≥ 1). We set T∗

0 = 0.

(2) Two sequences of i.i.d. random variables with uniform distribution on [0, 1], (Uk, k ≥ 1)
and (Vk, k ≥ 1) independent of each other and independent of (T∗

k , k ≥ 1).

Given T > 0 we construct iteratively the sequence of jump times and post-jump locations
(Tn, (θn, νn), n ≥ 0) of the E-valued PDP (xt, t ∈ [0, T]) that we want to obtain in the end
using its characteristics (�, λ, Q). Let (θ0, ν0) ∈ E be fixed and let T0 = 0. We construct T1
by thinning of (T∗

k ), that is,
T1 := T∗

τ1
, (2.2)

where
τ1 := inf{k > 0: Ukλ

∗ ≤ λ(θ0, �θ0 (T∗
k , ν0))}. (2.3)

We let |�| denote the cardinal of � (which may be infinite) and we set � = {k1, . . . , k|�|}.
For j ∈ {1, . . . , |�|} we introduce the functions aj defined on E by

aj(x) :=
j∑

i=1

Q(x, {ki}) for all x ∈ E. (2.4)

By convention, we set a0 := 0. We also introduce the function H defined by

H(x, u) :=
|�|∑
i=1

ki1ai−1(x)<u≤ai(x) for all x ∈ E, u ∈ [0, 1].
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For all x ∈ E, H(x, .) is the inverse of the cumulative distribution function of Q(x, .) (see e.g.
[9]). Then we construct (θ1, ν1) from the uniform random variable V1 and the function H as
follows:

(θ1, ν1) = (H((θ0, �θ0 (T∗
τ1

, ν0)), V1), φθ0 (T∗
τ1

, ν0))

= (H((θ0, �θ0 (T1, ν0)), V1), φθ0 (T1, ν0)).

Thus, the distribution of (θ1, ν1) given (τ1, (T∗
k )k≤τ1 ) is Q((θ0, �θ0 (T∗

τ1
, ν0)), .) or, in view of

(2.1), ∑
k∈�

Q((θ0, �θ0 (T∗
τ1

, ν0)), {k})δ(k,φθ0 (T∗
τ1

,ν0)).

For n > 1, assume that (τn−1, (T∗
k )k≤τn−1 , (θn−1, νn−1)) is constructed. Then we construct

Tn by thinning of (T∗
k ) conditionally to (τn−1, (T∗

k )k≤τn−1 , (θn−1, νn−1)), that is,

Tn := T∗
τn

,

where
τn := inf{k > τn−1 : Ukλ

∗ ≤ λ(θn−1, �θn−1 (T∗
k − T∗

τn−1
, νn−1))}.

Then we construct (θn, νn) using the uniform random variable Vn and the function H as
follows:

(θn, νn) := (H((θn−1, �θn−1 (T∗
τn

− T∗
τn−1

, νn−1)), Vn), �θn−1 (T∗
τn

− T∗
τn−1

, νn−1))

= (H((θn−1, �θn−1 (Tn − Tn−1, νn−1)), Vn), �θn−1 (Tn − Tn−1, νn−1)).

We define the PDP xt for all t ∈ [0, T] from the process (Tn, (θn, νn)) by

xt := (θn, �θn (t − Tn, νn)), t ∈ [Tn, Tn+1[. (2.5)

Thus xTn = (θn, νn) and x−
Tn

= (θn−1, νn). We also define the counting process associated with
the jump times Nt :=∑

n≥1 1Tn≤t.

2.2. Approximation of a PDP

In applications we may not know the functions �θ explicitly. In this case, we use a numer-
ical scheme �θ approximating �θ . In this paper we consider schemes such that there exist
positive constants C1 and C2 independent of h and θ such that

sup
t∈[0,T]

|�θ (t, ν1) − �θ (t, ν2)| ≤ eC1T |ν1 − ν2| + C2h for all θ ∈ �, (ν1, ν2) ∈R
2. (2.6)

To each family (�θ ) we can associate a PDP constructed as above, which we denote by (xt).
We emphasize that there is a positive probability that (xt) and (xt) jump at different times and/or
in different states, even if they are both constructed from the same data (N∗

t ), (Uk), and (Vk).
However, if the characteristics (�, λ̃, Q̃) of a PDP (x̃t) are such that λ̃ and Q̃ depend only on
θ , i.e. λ̃(x) = λ̃(θ ) and Q̃(x, .) = Q̃(θ, .) for all x = (θ, ν) ∈ E, then its embedded Markov chain
(T̃n, (θ̃n, ν̃n), n ≥ 0) is such that (θ̃n, n ≥ 0) is an autonomous Markov chain with kernel Q̃ and
(T̃n, n ≥ 0) is a counting process with intensity λ̃t =∑

n≥0 λ̃(θ̃n)1T̃n≤t<T̃n+1
. In particular, (θ̃n)

and (τ̃n) do not depend on �. The particular form of the characteristics λ̃ and Q̃ implies that
the PDP (x̃t) and its approximation (x̃t) are correlated via the same process (τ̃n, θ̃n). In other
words, these processes always jump at exactly the same times and their θ -components always
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jump in the same states. Such processes (x̃t) are easier theoretically as well as numerically than
the general case. They will be useful for us below.

The following lemma (which is important for several proofs below) gives a direct
consequence of the estimate (2.6).

Lemma 2.1. Let (�θ ) and (�θ ) satisfy (2.6). Let (tn, n ≥ 0) be an increasing sequence of non-
negative real numbers with t0 = 0 and let (αn, n ≥ 0) be a sequence of �-valued components.
For a given ν ∈R, let us define iteratively the sequences (βn, n ≥ 0) and (βn, n ≥ 0) as follows:

βn = �αn−1 (tn − tn−1, βn−1), βn = �αn−1 (tn − tn−1, βn−1),

β0 = ν, β0 = ν.

Then for all n ≥ 1 we have
|βn − βn| ≤ eC1tn nC2h,

where C1 and C2 are positive constants independent of h.

Proof of Lemma 2.1. Let n ≥ 1. From the estimate (2.6), we have for all k ≤ n

|βk − βk| ≤ eC1(tk−tk−1)|βk−1 − βk−1| + C2h,

and therefore
e−C1tk |βk − βk| ≤ e−C1tk−1 |βk−1 − βk−1| + C2h.

By summing up these inequalities for 1 ≤ k ≤ n and since β0 = β0, we obtain

|βn − βn| ≤ eC1tn nC2h. �

2.3. Application to the construction of a PDMP and its associated Euler scheme

In this subsection we define a PDMP and its associated Euler scheme from the construction
of the Section 2.1. Consider a family of vector fields ( fθ , θ ∈ �) satisfying the following.

Assumption 2.2. For all θ ∈ �, the function fθ : R→R is bounded and Lipschitz with constant
L independent of θ .

If we choose �θ = φθ in the above construction, where for all x = (θ, ν) ∈ E we let
(φθ (t, ν), t ≥ 0) denote the unique solution of the ODE

dy(t)

dt
= fθ (y(t)), y(0) = ν, (2.7)

then the corresponding PDP is Markov since φ satisfies the semi-group property that reads
φθ (t + s, ν) = φθ (t, φθ (s, ν)) for all t, s ≥ 0 and for all (θ, ν) ∈ E. In this case, the process (xt)
is a piecewise deterministic Markov process (see [6] or [20]).

Let h > 0. We approximate the solution of (2.7) by the Euler scheme with time step h. First,
we define the Euler subdivision of [0, +∞[ with time step h, denoted (ti, i ≥ 0), by ti := ih.

Then, for all x = (θ, ν) ∈ E, we define the sequence (yi(x), i ≥ 0), the classical Euler scheme,
iteratively by

yi+1(x) = yi(x) + hfθ (yi(x)), y0(x) = ν,

to emphasize its dependence on the initial condition. Finally, for all x = (θ, ν) ∈ E, we set

φθ (t, ν) := yi(x) + (t − ti) fθ (yi(x)) for all t ∈ [ti, ti+1]. (2.8)
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We construct the approximating process (xt) as follows. Its continuous component starts
from ν0 at time 0 and follows the flow φθ0

(t, ν0) until the first jump time T1, which we construct
by (2.2) and (2.3) of Section 2.1, where we replace �θ0 (T∗

k , ν0) by φθ0
(T∗

k , ν0). At time T1

the continuous component of xT1
is equal to φθ0

(T1, ν0) := ν1 since there is no jump in the

continuous component. The discrete component jumps to θ1. We iterate this procedure with
the new flow φθ1

(t − T1, ν1) until the next jump time T2 given by (2.2) and (2.3) with φθ1
(T∗

k −
T1, ν1), and so on. We proceed by iteration to construct (xt) on [0, T].

Consequently, the discretization grid for (xt) on the interval [0, T] is random and is formed
by the points Tn + kh for n = 0, . . . , NT and k = 0, . . . , 
(Tn+1 ∧ T − Tn)/h�. This differs
from the SDE case, where the classical grid is fixed.

By classical results of numerical analysis (see e.g. [17]), the continuous Euler scheme (2.8)
(also called the Euler polygon) satisfies estimate (2.6). If we choose �θ = φθ in the above
construction then the corresponding PDP (xt) is not Markov, since the functions φθ (., ν) do not
satisfy the semi-group property (see [20]).

2.4. Thinning representation for the marginal distribution of a PDP

The sequence (Tn, (θn, νn), n ≥ 0) is an R+ × E-valued Markov chain with respect to its
natural filtration Fn and with kernel K defined by

K((t, θ, ν), du dj dz)

:= 1u≥t λ(θ, �θ (u − t, ν)) exp

(
−
∫ u−t

0
λ(θ, �θ (s, ν)) ds

)
Q((θ, �θ (u − t, ν)), dj dz) du.

(2.9)

For n ≥ 0, the law of the random variable Tn − Tn−1 given Fn−1 admits the density given for
t ≥ 0 by

λ(θn−1, �θn−1 (t, νn−1)) exp

(
−
∫ t

0
λ(θn−1, �(s, νn−1)) ds

)
. (2.10)

Classically, the marginal distribution of xt is expressed using (2.5), the intensity λ via (2.10),
and the kernel K (see (2.9)). Indeed, for fixed x0 = x ∈ E and for any bounded measurable
function g, we can write

E[g(xt)] =
∑
n≥0

E[g(θn, �θn (t − Tn, νn))1Nt=n]

=
∑
n≥0

E[g(θn, �θn (t − Tn, νn))1Tn≤tE[1Tn+1>t|Fn]]

=
∑
n≥0

E

[
g(θn, �θn (t − Tn, νn))1Tn≤t exp

(
−
∫ t−Tn

0
λ(θn, �θn (u, νn)) du

)]
(2.11)

=
∑
n≥0

∫ t

0

∫
E

g(θ, �θ (t − s, ν)) exp

(
−
∫ t−s

0
λ(θ, �θ (u, ν)) du

)
Kn((0, x), ds dθ dν),

(2.12)

where K0 := δ and Kn = K ◦ . . . ◦ K n times, that is,∫ t

0

∫
E

Kn((0, x), ds dy) =
∫ t

0

∫
E

∫
(R+×E)n−1

K((0, x), dt1 dy1) . . . K((tn−1, yn−1), ds dy).
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However, since we have constructed (xt) by thinning, we would prefer to express the dis-
tribution of xt using the upper bound λ∗, the Poisson process (N∗

t , t ≥ 0), and the sequences
(Uk, k ∈N), (Vk, k ∈N). In Proposition 2.1 we give another representation of (2.11). The
product term which appears in the expectation on the right-hand side of the equality in
Proposition 2.1 should be interpreted as the conditional survival function,

t → exp

(
−
∫ t−Tn

0
λ(θn, �θn (u, νn)) du

)
,

of Tn+1 in (2.11).

Proposition 2.1. Let (xt, t ∈ [0, T]) be a PDP with characteristics (�, λ, Q) constructed in
Section 2.1 and let n ∈N. Then

E[g(xt)1{Nt=n}] =
∑

1≤p1<p2···<pn≤m

∑
θ∈�

E

[
Q(x−

T∗
pn

, θ ) g(θ, �θ (t − T∗
pn

, νn))

× 1{τi=pi,1≤i≤n,N∗
t =m}

m∏
q=pn+1

(
1 − λ(θ, �θ (T∗

q − T∗
pn

, νn))

λ∗

)]
.

The following proposition and its corollaries will be useful in Section 3. In their statements
(xt, t ∈ [0, T]) and (x̃t, t ∈ [0, T]) are PDPs constructed in Section 2.1 using the same data (N∗

t ),
(Uk), (Vk) and the same initial point x ∈ E but with different sets of characteristics.

The following results are inspired by the change of probability introduced in [28] where
the authors are interested in the application of the MLMC to jump-diffusion SDEs with state-
dependent intensity. In our case we need a change of probability which guarantees not only
that the processes jump at the same times but also in the same states.

Proposition 2.2. Let (�, λ, Q) (resp. (�, λ̃, Q̃)) denote the characteristics of (xt) (resp. (x̃t)).
Let us assume that λ̃ and Q̃ depend only on θ , that Q̃ is always positive, and 0 < λ̃(θ ) < λ∗ for
all θ ∈ �. For all integer n, let us define on the event {Ñt = n},

Z̃n =
Q(x̃−

T∗
τ̃n

, θ̃n)

Q̃(θ̃n−1, θ̃n)

((
1 − λ̃(θ̃n)

λ∗

)N∗
t −τ̃n

)−1 N∗
t∏

q=τ̃n+1

(
1 − λ(θ̃n, �θ̃n

(T∗
q − T∗

τ̃n
, ν̃n))

λ∗

)
,

the product being equal to 1 if τ̃n = N∗
t and, for all 1 ≤ � ≤ n − 1,

Z̃� =
Q(x̃−

T∗
τ̃�

, θ̃�)

Q̃(θ̃�−1, θ̃�)

(
λ̃(θ̃�)

λ∗

(
1 − λ̃(θ̃�)

λ∗

)τ̃�+1−τ̃�−1)−1

×
λ(θ̃�, �θ̃�

(T∗
τ̃�+1

− T∗
τ̃�

, ν̃�))

λ∗

τ̃�+1−1∏
q=τ̃�+1

(
1 − λ(θ̃�, �θ̃�

(T∗
q − T∗

τ̃�
, ν̃�))

λ∗

)
,

Z̃0 =
(

λ̃(θ̃0)

λ∗

(
1 − λ̃(θ̃0)

λ∗

)τ̃1−1)−1 λ(θ̃0, �θ̃0
(T∗

τ̃1
, ν̃0))

λ∗
τ̃1−1∏
q=1

(
1 − λ(θ̃0, �θ̃0

(T∗
q , ν̃0))

λ∗

)
,

R̃n = Z̃n

n−1∏
�=0

Z̃�.

https://doi.org/10.1017/apr.2019.55 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.55


Thinning and multilevel Monte Carlo methods 147

Then, for all n ≥ 0 we have

E[g(x̃t) R̃n 1{Ñt=n}] =E[g(xt) 1{Nt=n}].

Corollary 2.1. Under the assumptions of Proposition 2.2, setting R̃t = R̃Ñt
, we have

E[g(x̃t)R̃t] =E[g(xt)].

Remark 2.1. Proposition 2.2 looks like Girsanov’s theorem (see [26]), but we do not use
martingale theory here.

Remark 2.2. We have chosen to state Proposition 2.2 with a PDP (x̃t) whose intensity and
transition measure only depend on θ for the sake of readability. In fact the arguments of the
proof are valid for non-homogeneous intensity and transition measures of the form λ̃(x, t)
and Q̃((x, t), dy) for x = (θ, ν) ∈ E. A possible choice of such characteristics is λ̃(x, t) =
λ(θ, �̃θ (t, ν)) and Q̃((x, t), dy) = Q((θ, �̃θ (t, ν)), dy) for �̃ a given function. This remark will
be implemented in Section 5.4.

Corollary 2.2. Let (�, λ, Q) (resp. (�̃, λ, Q)) be the set of characteristics of (xt) (resp. (x̃t)).
We assume that Q is always positive and that 0 < λ(x) < λ∗ for all x ∈ E. Let (μn) be the
sequence defined by μ0 = ν and μn = �̃θn−1 (Tn − Tn−1, μn−1) for n ≥ 1. For all integer n, let
us define on the event {Nt = n},

Z̃n = Q((θn−1, μn), θn)

Q((θn−1, νn), θn)

( N∗
t∏

q=τn+1

1 − λ(θn, �θn (T∗
q − T∗

τn
, νn))

λ∗

)−1

×
N∗

t∏
q=τn+1

(
1 − λ(θn, �̃θn (T∗

q − T∗
τn

, μn))

λ∗

)
,

the products being equal to 1 if τn = N∗
t and for all 1 ≤ � ≤ n − 1,

Z̃� = Q((θ�−1, μ�), θ�)

Q((θ�−1, ν�), θ�)

(
λ(θ�, �θ�

(T∗
τ�+1

− T∗
τ�

, ν�))

λ∗

τ�+1−1∏
q=τ�+1

(
1 − λ(θ�, �θ�

(T∗
q − T∗

τ�
, ν�))

λ∗

))−1

× λ(θ�, �̃θ�
(T∗

τ�+1
− T∗

τ�
, μ�))

λ∗

τ�+1−1∏
q=τ�+1

(
1 − λ(θ�, �̃θ�

(T∗
q − T∗

τ�
, μ�))

λ∗

)
,

Z̃0 =
(

λ
(
θ0, �θ0 (T∗

τ1
, ν0)

)
λ∗

τ1−1∏
q=1

(
1 − λ

(
θ0, �θ0 (T∗

q , ν0)
)

λ∗

))−1

× λ
(
θ0, �̃θ0 (T∗

τ1
, μ0)

)
λ∗

τ1−1∏
q=1

(
1 − λ

(
θ0, �̃θ0 (T∗

q , μ0)
)

λ∗

)
,

R̃n = Z̃n

n−1∏
�=0

Z̃�.

Then, for all n ≥ 0 we have

E[g(θn, �̃θn (t − Tn, μn)) R̃n 1{Nt=n}] =E[g(x̃t) 1{Ñt=n}].
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Proof of Proposition 2.1. It holds that {Nt = n, τi = pi, 1 ≤ i ≤ n} ⊂ {N∗
t ≥ pn}. Then

E[g(xt)1{Nt=n}] =
∑

1≤p1<p2<···<pn≤m

E[g(xt)1{Nt=n,τi=pi, 1≤i≤n, N∗
t =m}]. (2.13)

The set {Nt = n, τi = pi, 1 ≤ i ≤ n, N∗
t = m} is equivalent to the following:

• N∗
t = m,

• among the times T∗
� , 1 ≤ � ≤ m, exactly n are accepted by the thinning method; these

are the T∗
pi
, 1 ≤ i ≤ n, and all the others are rejected.

We proceed by induction, starting from the fact that all the T∗
q , pn + 1 ≤ q ≤ m are rejected,

which corresponds to the event

Uq >
λ(θn, �θn(T∗

q − T∗
pn

, νn))

λ∗ for all pn + 1 ≤ q ≤ m.

The random variable 1{τi=pi, 1≤i≤n} depends on

(θ�, ν�, 1 ≤ � ≤ n − 1, T∗
i , 1 ≤ i ≤ pn, Uj, 1 ≤ j ≤ pn),

where by construction ν� = φθ�−1 (T∗
p�

− T∗
p�−1

, ν�−1), θ� = H((θ�−1, ν�), V�), which implies
that (θ�, ν�, 1 ≤ � ≤ n − 1) depend on (T∗

i , 1 ≤ i ≤ pn−1, Uj, 1 ≤ j ≤ pn−1, Vk, 1 ≤ k ≤ n − 1).
Thus Vn is independent of all the other random variables of thinning that are present in
g(xt)1{Nt=n,τi=pi, 1≤i≤n, N∗

t =m}. The conditional expectation of g(xt)1{Nt=n,τi=pi, 1≤i≤n,N∗
t =m}

with respect to the vector (T∗
i , 1 ≤ i ≤ m + 1, Uj, 1 ≤ j ≤ m, Vk, 1 ≤ k ≤ n − 1) is therefore an

expectation indexed by this vector as parameters. Since the law of H(x, Vn) is Q(x, ·) for all
x ∈ E, we obtain for p1 < p2 < · · · < pn ≤ m,

E[g(xt)1{Nt=n,τi=pi, 1≤i≤n, N∗
t =m}]

=E

[∑
θ∈�

Q(x−
T∗

pn
, θ ) g(θ, �θ (t − T∗

pn
, νn))

× F(θ, Uj, 1 ≤ j ≤ m, T∗
� , 1 ≤ � ≤ m + 1, Vk, 1 ≤ k ≤ n − 1)

]
, (2.14)

with

F(θ, Uj, 1 ≤ j ≤ m, T∗
� , 1 ≤ � ≤ m + 1, Vk, 1 ≤ k ≤ n − 1)

= 1{N∗
t =m,τi=pi, 1≤i≤n}

m∏
q=pn+1

1Uq>λ(θ,�θ (T∗
q −T∗

pn ,νn))/λ∗ .

In (2.14) the random variables (Uq, pn + 1 ≤ q ≤ m) are independent of the vector (T∗
i , 1 ≤

i ≤ m + 1, Uj, 1 ≤ j ≤ pn, Vk, 1 ≤ k ≤ n − 1). Conditioning by this vector, we obtain

E[g(xt)1{Nt=n,τi=pi, 1≤i≤n, N∗
t =m}]

=
∑
θ∈�

E

[
Q(x−

T∗
pn

, θ ) g(θ, �θ (t − T∗
pn

, νn))1{N∗
t =m,τi=pi, 1≤i≤n}

×
m∏

q=pn+1

(
1 − λ(θ, �θ (T∗

q − T∗
pn

, νn))

λ∗

)]
. (2.15)
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Summing the above equality over 1 ≤ p1 < p2 < · · · < pn ≤ m and using equation (2.13) yields
the result. �

Just as with the successive use of conditioning to obtain (2.12), we can iterate on the form
(2.15) by first conditioning Vn−1 by all the other random variables and then conditioning
(Uq, pn−1 + 1 ≤ q ≤ pn) by all the remaining ones, and so on. However, the terms that appear
do not have the same structure, since the Uq correspond to rejection for pn−1 + 1 ≤ q ≤ pn − 1
whereas Upn corresponds to acceptance. Consequently the next step yields

E[g(xt)1{Nt=n,τi=pi, 1≤i≤n, N∗
t =m}]

=
∑
α∈�

∑
θ∈�

E

[
Q(x−

T∗
pn−1

, α)Q((α, νn), θ )

× g(θ, �θ (t − T∗
pn

, νn))1{N∗
t =m,τi=pi, 1≤i≤n−1}

× λ(α, �α(T∗
pn

− T∗
pn−1

, νn−1))

λ∗
pn−1∏

q=pn−1+1

(
1 − λ(α, �α(T∗

q − T∗
pn−1

, νn−1))

λ∗

)

×
m∏

q=pn+1

(
1 − λ(θ, �θ (T∗

q − T∗
pn

, νn))

λ∗

)]
, (2.16)

where we write νn for simplicity, keeping in mind that

νn = �θn−1 (T∗
pn

− T∗
pn−1

, νn−1)

= �θn−1 (T∗
pn

− T∗
pn−1

, �θn−2 (T∗
pn−1

− T∗
pn−2

, νn−2))

= �α(T∗
pn

− T∗
pn−1

, �θn−2 (T∗
pn−1

− T∗
pn−2

, νn−2)).

In (2.16), the product term

λ(α, �α(T∗
pn

− T∗
pn−1

, νn−1))

λ∗
pn−1∏

q=pn−1+1

(
1 − λ(α, �α(T∗

q − T∗
pn−1

, νn−1))

λ∗

)

should be interpreted as the density probability function of Tn which appears in (2.12) via the
kernel K.

Moreover, the previous arguments apply to

E(g(xt) f (θi, νi, 1 ≤ i ≤ n − 1, θn, νn, T∗
k , 1 ≤ k ≤ m) 1{Nt=n,τi=pi, 1≤i≤n, N∗

t =m}),

where f is a measurable function, and provide

E[g(xt)f (θi, νi, 1 ≤ i ≤ n − 1, θn, νn, T∗
k , 1 ≤ k ≤ m) 1{Nt=n,τi=pi, 1≤i≤n, N∗

t =m}]

=
∑
θ∈�

E

[
Q(x−

T∗
pn

, θ )g(θ, �θ (t − T∗
pn

, νn))

× f (θi, νi, 1 ≤ i ≤ n − 1, θ, νn, T∗
k , 1 ≤ k ≤ m) 1{N∗

t =m,τi=pi, 1≤i≤n}

×
m∏

q=pn+1

(
1 − λ(θ, �θ (T∗

q − T∗
pn

, νn))

λ∗

)]
. (2.17)
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Below we prove Proposition 2.2. The other statements can be proved analogously.

Proof of Proposition 2.2. By assumption the (jump) characteristics (λ̃, Q̃) of (x̃t) depend
only on θ . Let p1 < p2 < · · · < pn ≤ m. Applying the same arguments as in (2.17) to (x̃t) and
using the definitions of Z̃�, 0 ≤ � ≤ n and R̃n, we obtain

E[g(x̃t) R̃n 1{Ñt=n,τ̃i=pi,1≤i≤n,N∗
t =m}]

=
∑
θ∈�

E

[
Q̃(θ̃n−1, θ ) g(θ, �θ (t − T∗

pn
, ν̃n)) Z̃n

n−1∏
�=0

Z̃� 1{N∗
t =m,τ̃i=pi, 1≤i≤n}

] (
1 − λ̃(θ )

λ∗

)m−pn

=
∑
θ∈�

E

[
Q̃(θ̃n−1, θ ) g(θ, �θ (t − T∗

pn
, ν̃n))

n−1∏
�=0

Z̃� 1{N∗
t =m,τ̃i=pi, 1≤i≤n}

(
1 − λ̃(θ )

λ∗

)m−pn

×
((

1 − λ̃(θ )

λ∗

)m−pn
)−1 Q(x̃−

T∗
pn

, θ )

Q̃(θ̃n−1, θ )

m∏
q=pn+1

(
1 − λ(θ, �θ (T∗

q − T∗
pn

, ν̃n))

λ∗

)]

=
∑
θ∈�

E

[
Q(x̃−

T∗
pn

, θ ) g(θ, �θ (t − T∗
pn

, ν̃n)) Z̃n−1

n−2∏
�=0

Z̃� 1{N∗
t =m,τ̃i=pi, 1≤i≤n}

×
m∏

q=pn+1

(
1 − λ(θ, �θ (T∗

q − T∗
pn

, ν̃n))

λ∗

)]
.

We iterate the above argument based on the use of (2.17) and we use the definition of Z̃n−1
to obtain

E[g(x̃t)R̃n1{Ñt=n,τ̃i=pi, 1≤i≤n, N∗
t =m}]

=
∑
α∈�

∑
θ∈�

E

[
Q(x̃−

T∗
pn−1

, α)Q((α, ν̃n), θ ) g(θ, �θ (t − T∗
pn

, ν̃n))

×
n−2∏
�=0

Z̃� 1{N∗
t =m,τ̃i=pi, 1≤i≤n−1}

m∏
q=pn+1

(
1 − λ(θ, �θ (T∗

q − T∗
pn

, ν̃n))

λ∗

)

× λ(α, �α(T∗
pn

− T∗
pn−1

, ν̃n−1))

λ∗
pn−1∏

q=pn−1+1

(
1 − λ(α, �α(T∗

q − T∗
pn−1

, ν̃n−1))

λ∗

)]
,

where for short ν̃n = φα(T∗
pn

− T∗
pn−1

, ν̃n−1) and ν̃n−1 = φθ̃n−2
(T∗

pn−1
− T∗

pn−2
, ν̃n−2). Comparing

the latter expression to (2.16) and using induction, we conclude that

E[g(x̃t)R̃n1{Ñt=n,τ̃i=pi, 1≤i≤n, N∗
t =m}] =E[g(xt) 1{Nt=n,τi=pi,1≤i≤n,N∗

t =m}].

It remains to sum up on pi, 1 ≤ i ≤ n and m. �

3. Strong error estimates

In this section we are interested in strong error estimates. Below, we state the main assump-
tions and theorems of this section. The proofs are given in Sections 3.2 and 3.3 respectively.
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Assumption 3.1. For all θ ∈ � and for all A ∈B(�), the functions ν �→ λ(θ, ν) and ν �→
Q((θ, ν), A) are Lipschitz with constants Lλ > 0, LQ > 0, respectively, independent of θ .

Theorem 3.1. Let �θ and �θ satisfy (2.6) and let (xt, t ∈ [0, T]) and (xt, t ∈ [0, T]) be the
corresponding PDPs constructed in Section 2.1 with x0 = x0 = x for some x ∈ E. Assume that
� is finite and that λ and Q satisfy Assumption 3.1. Then, for all bounded functions F : E →R

such that for all θ ∈ � the function ν �→ F(θ, ν) is LF-Lipschitz, where LF is positive and
independent of θ , there exist constants V1 > 0 and V2 > 0 independent of the time step h such
that

E[|F(xT ) − F(xT )|2] ≤ V1h + V2h2.

Remark 3.1. When the numerical scheme �θ is of order p ≥ 1, which means

sup
t∈[0,T]

|�θ (t, ν1) − �θ (t, ν2)| ≤ eC1T |ν1 − ν2| + C2hp,

we have
E[|F(xT ) − F(xT )|2] ≤ V1hp + V2h2p.

Assumption 3.2. There exist positive constants ρ, λ̃min, λ̃max such that, for all (i, j) ∈ �2, ρ ≤
Q̃(i, j) and λ̃min ≤ λ̃(i) ≤ λ̃max < λ∗.

Theorem 3.2. Let �θ and �θ satisfy (2.6) and let (x̃t, t ∈ [0, T]) and (x̃t, t ∈ [0, T]) be the
corresponding PDPs constructed in Section 2.1 with x̃0 = x̃0 = x for some x ∈ E. Let (R̃t, t ∈
[0, T]) and (R̃t, t ∈ [0, T]) be defined as in Corollary 2.1. Under Assumptions 3.1 and 3.2 and
for all bounded functions F : E →R such that for all θ ∈ � the function ν �→ F(θ, ν) is LF-
Lipschitz (LF > 0), there exists a positive constant Ṽ1 independent of the time step h such that

E[|F(x̃T )R̃T − F(x̃T )R̃T |2] ≤ Ṽ1h2.

We now introduce the random variable τ † which will play an important role in the strong
error estimate of Theorem 3.1 as well as in the identification of the coefficient c1 in the weak
error expansion in Section 4 (see the proof of Theorem 4.1 in Section 4.2).

Definition 3.1. Let us define τ † := inf{k > 0: (τk, θk) �= (τ k, θk)}.

The random variable τ † enables us to partition the trajectories of the pair (xt, xt) in a sense
that we now make precise. Consider the event

{min (Tτ †, Tτ † ) > T} = {NT = NT , (T1, θ1) = (T1, θ1), . . . , (TNT , θNT ) = (TNT
, θNT

)}, (3.1)

where (Tn) and (Tn) denote the sequences of jump times of (xt) and (xt). On this event
{min (Tτ † , Tτ † ) > T} the trajectories of the discrete time processes (Tn, θn) and (Tn, θn) are
equal for all n such that Tn ∈ [0, T] (or equivalently Tn ∈ [0, T]). Moreover, the complement,
i.e. {min (Tτ †, Tτ † ) ≤ T}, contains the trajectories for which (Tn, θn) and (Tn, θn) differ on [0,
T] (there exists n ≤ NT ∨ NT such that Tn �= Tn or θn �= θn).

3.1. Preliminary lemmas

In this subsection we start with two lemmas which will be useful for proving Theorems 3.2
and 3.3.
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Lemma 3.1. Let K be a finite set. We let |K| denote the cardinal of K, and for i = 1, . . . , |K|
we let ki denote its elements. Let (pi, 1 ≤ i ≤ |K|) and (pi, 1 ≤ i ≤ |K|) be two probabilities on
K. Let aj :=∑j

i=1 pi and aj :=∑j
i=1 pi for all j ∈ {1, . . . , |K|}. By convention, we set a0 =

a0 := 0. Let X and X be two K-valued random variables defined by

X := G(U), X := G(U),

where

U ∼ U ([0, 1]), G(u) =
|K|∑
j=1

kj1aj−1<u≤aj , G(u) =
|K|∑
j=1

kj1aj−1<u≤aj for all u ∈ [0, 1].

Then, we have

P(X �= X) ≤
|K|−1∑

j=1

|aj − aj|.

Proof of Lemma 3.1. By definition of X and X and since the intervals [aj−1, aj] ∩ [aj−1, aj]
are disjoint for j = 1, . . . , K, we have

P(X = X) =
|K|∑
j=1

P(U ∈ [aj−1, aj] ∩ [aj−1, aj]).

Moreover, for all 1 ≤ j ≤ |K|, we have

P(U ∈ [aj−1, aj] ∩ [aj−1, aj]) =
{

0 if [aj−1, aj] ∩ [aj−1, aj] = ∅,

aj ∧ aj − aj−1 ∨ aj−1 if [aj−1, aj] ∩ [aj−1, aj] �= ∅.

Thus, letting x+ := max (x, 0) denote the positive part of x ∈R and using x+ ≥ x, we obtain

P(X = X) ≥
|K|∑
j=1

(aj ∧ aj − aj−1 ∨ aj−1).

Adding and subtracting aj ∨ aj in the the above sum yields

P(X = X) ≥
|K|∑
j=1

(aj ∨ aj − aj−1 ∨ aj−1) +
|K|∑
j=1

(aj ∧ aj − aj ∨ aj).

The first sum above is a telescopic sum. Since a|K| = a|K| = 1 and a0 = a0 = 0, we have

P(X = X) ≥ 1 −
|K|−1∑

j=1

|aj − aj|. �

Lemma 3.2. Let (an, n ≥ 1) and (bn, n ≥ 1) be two real-valued sequences. For all n ≥ 1, we
have

n∏
i=1

ai −
n∏

i=1

bi =
n∑

i=1

(ai − bi)
n∏

j=i+1

aj

i−1∏
j=1

bj.

Proof of Lemma 3.2. We use induction. �
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3.2. Proof of Theorem 3.1

First, we write

E[|F(xT ) − F(xT )|2]

=E[1min (T
τ† ,T

τ† )≤T |F(xT ) − F(xT )|2] +E[1min (T
τ† ,T

τ† )>T |F(xT ) − F(xT )|2]

=: P + D,

where τ † is defined in Definition 3.1. The order of the term P is the order of the probability that
the discrete processes (Tn, θn) and (Tn, θn) differ on [0, T]. The order of the term D is given
by the order of the Euler scheme squared, because the discrete processes (Tn, θn) and (Tn, θn)
are equal on [0, T]. In the following we prove that P = O(h) and that D = O(h2).

Step 1: estimation of P. The function F being bounded, we have

P ≤ 4M2
FP(min (Tτ †, Tτ † ) ≤ T),

where MF > 0. Moreover, for k ≥ 1,

{τ † = k} = {τ † > k − 1}
⋂

{(τk, θk) �= (τ k, θk)}.
Hence

P(min (Tτ † , Tτ † ) ≤ T) =
∑
k≥1

E[1min (Tk,Tk)≤T1τ †=k]

=
∑
k≥1

E[1min (Tk,Tk)≤T1τ †>k−11(τk,θk)�=(τ k,θk)]

≤
∑
k≥1

Jk + 2Ik,

where
Jk :=E[1min (Tk,Tk) ≤ T1τ †>k−11τk=τ k1θk �=θk

],

Ik :=E[1min (Tk,Tk) ≤ T1τ †>k−11τk �=τ k ].
(3.2)

We start with Jk. First note that, for k ≥ 1, {τk = τ k} = {Tk = Tk}, and that on the event
{Tk = Tk}, we have min (Tk, Tk) = Tk, so

Jk =E[1Tk≤T1τ †>k−11τk=τ k1θk �=θk
].

We emphasize that it makes no difference in the rest of the proof if we choose min (Tk, Tk) =
Tk. Since {

τ † > k − 1} =
k−1⋂
i=0

{(τi, θi) = (τ i, θ i)

}
,

we can rewrite Jk as follows:∑
1≤p1<...<pk

α1,...,αk−1∈�

E[1{τi=τ i=pi,1≤i≤k}1{θi=θ i=αi,1≤i≤k−1}1T∗
pk

≤T1θk �=θk
]. (3.3)

By construction we have θk = H((θk−1, νk), Vk) and θk = H((θk−1, νk), Vk). The ran-
dom variable 1{τi=τ i=pi,1≤i≤k}1{θi=θ i=αi,1≤i≤k−1}1T∗

pk
≤T depends on the vector (Ui, 1 ≤ i ≤
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pk, T∗
j , 1 ≤ j ≤ pk, Vq, 1 ≤ q ≤ k − 1), which is independent of Vk. Conditioning by this vector

in (3.3) and applying Lemma 3.1 yields

E[1{τi=τ i=pi,1≤i≤k}1{θi=θ i=αi,1≤i≤k−1}1T∗
pk

≤T1θk �=θk
]

≤E

[
1{τi=τ i=pi,1≤i≤k}1{θi=θ i=αi,1≤i≤k−1}1T∗

pk
≤T

|�|−1∑
j=1

|aj(αk−1, νk) − aj(αk−1, νk)|
]

.

From the definition of aj (see (2.4)), the triangle inequality, and since Q is LQ-Lipschitz, we
have

|�|−1∑
j=1

|aj(αk−1, νk) − aj(αk−1, νk)| ≤ (|�| − 1)|�|
2

LQ|νk − νk|.

Since we are on the event

{τi = τ i = pi, 1 ≤ i ≤ k}
⋂

{θi = θ i = αi, 1 ≤ i ≤ k − 1},

the application of Lemma 2.1 yields |νk − νk| ≤ eLT∗
pk kCh. Thus Jk ≤ C1hE[1Tk≤Tk], where C1

is a constant independent of h. Moreover,

∑
k≥1

1Tk≤Tk =
NT∑

k=1

k ≤ N2
T and E[N2

T ] ≤E[(N∗
T )2] < +∞

so that ∑
k≥1

Jk = O(h).

From the definition of Ik (see (3.2)), we can write

Ik =E[1min (Tk,Tk)≤T1τ †>k−1(1τk<τ k + 1τk>τ k )]

=E[1Tk≤T1τ †>k−11τk<τ k ] +E[1Tk≤T1τ †>k−11τk>τ k ]

=: I
(1)
k + I

(2)
k .

The second equality above follows since {τk < τ k} = {Tk < Tk} and {τk > τ k} = {Tk > Tk}.
We only treat the term I

(1)
k ; the term I

(2)
k can be treated similarly by swapping (τk, Tk) and

(τ k, Tk). Just as in the previous case, we can rewrite I
(1)
k as follows:∑

1≤p1<...<pk
α1,...,αk−1∈�

E[1{τi=τ i=pi,1≤i≤k−1}1{θi=θ i=αi,1≤i≤k−1}1T∗
pk

≤T1τk=pk1pk<τ k ]. (3.4)

In (3.4) we have

{τk = pk} ∩ {pk < τ k}
⊆ {λ(αk−1, �αk−1 (T∗

pk
− T∗

pk−1
, νk−1)) < Upkλ

∗ ≤ λ(αk−1, �αk−1 (T∗
pk

− T∗
pk−1

, νk−1))}.
The random variable 1{τi=τ i=pi,1≤i≤k−1} 1{θi=θ i=αi,1≤i≤k−1} 1T∗

pk
≤T depends on

(Ui, 1 ≤ i ≤ pk−1, T∗
j , 1 ≤ j ≤ pk, Vq, 1 ≤ q ≤ k − 1),
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which is independent of Upk . Conditioning by this vector in (3.4) yields

E[1{τi=τ i=pi,1≤i≤k−1}1{θi=θ i=αi,1≤i≤k−1}1T∗
pk

≤T1τk=pk1pk<τ k ]

≤E[1{τi=τ i=pi,1≤i≤k−1}1{θi=θ i=αi,1≤i≤k−1}1T∗
pk

≤T

× |λ(αk−1, �αk−1 (T∗
pk

− T∗
pk−1

, νk−1)) − λ(αk−1, �αk−1 (T∗
pk

− T∗
pk−1

, νk−1))|].
Using the Lipschitz continuity of λ and then Lemma 2.1, we obtain

I
(1)
k ≤ C2hE[1Tk≤Tk],

where C2 is a constant independent of h. Concerning the term I
(2)
k , we will end with the esti-

mate I
(2)
k ≤ C2hE[1Tk≤Tk]. We conclude in the same way as in the estimation of Jk above that∑

k≥1 Ik = O(h).
Step 2: estimation of D. Note that for n ≥ 0 we have

{NT = n} ∩ {min (Tτ †, Tτ † ) > T} = {NT = n} ∩ {NT = n} ∩ {τ † > n},
where we can swap {NT = n} and {NT = n}. Thus, using the partition {NT = n, n ≥ 0}, we have

D =
∑
n≥0

E[1NT=n1NT=n1τ †>n|F(θn, �θn (T − Tn, νn)) − F(θn, �θn (T − Tn, νn))|2].

Application of the Lipschitz continuity of F and of Lemma 2.1 yields

|F(θn, �θn (T − Tn, νn)) − F(θn, �θn (T − Tn, νn))| ≤ LF eLT (n + 1)Ch.

Then we have D ≤ C3h2 ∑
n≥0 E[1NT=n(n + 1)2], where C3 is a constant independent of h.

Since ∑
n≥0

E[1NT=n(n + 1)2] =E[(NT + 1)2] ≤E[(N∗
T + 1)2] < +∞,

we conclude that D = O(h2).

3.3. Proof of Theorem 3.2

First we reorder the terms in R̃T . We write R̃T = Q̃T S̃T H̃T , where

Q̃T =
ÑT∏
l=1

Q(x̃−
T∗

τ̃l

, θ̃l)

Q̃(θ̃l−1, θ̃l)
, (3.5)

S̃T =
ÑT∏
l=1

λ(θ̃l−1, �θ̃l−1
(T∗

τ̃l
− T∗

τ̃l−1
, ν̃l−1))

λ∗
τ̃l∏

k=τ̃l−1+1

(
1 −

λ(θ̃l−1, �θ̃l−1
(T∗

k − T∗
τ̃l−1

, ν̃l−1))

λ∗

)
(3.6)

×
N∗

T∏
l=τ̃ÑT

+1

(
1 −

λ(θ̃ÑT
, �θ̃ÑT

(T∗
l − T∗

τ̃ÑT
, ν̃ÑT

))

λ∗

)
,

H̃T =
ÑT∏
l=1

(
λ̃(θ̃l−1)

λ∗

(
1 − λ̃(θ̃l−1)

λ∗

)τ̃l−τ̃l−1−1)−1((
1 − λ̃(θ̃ÑT

)

λ∗

)N∗
T−τ̃ÑT

)−1

. (3.7)
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Likewise we reorder the terms in R̃T , writing R̃T = Q̃T S̃T H̃T , where Q̃T and S̃T are defined
as (3.5) and (3.6) replacing x̃ and � by x̃ and �. Since the processes (θ̃n) and (τ̃n) do not depend
on � or �, the term H̃ is the same in R̃ and R̃. To prove Theorem 3.2, let us decompose the
problem and write

|F(x̃T )R̃T − F(x̃T )R̃T | = |(F(x̃T ) − F(x̃T ))R̃T + (R̃T − R̃T )F(x̃T )|
≤ |F(x̃T ) − F(x̃T )||R̃T | + |R̃T − R̃T ||F(x̃T )|,

so that

E[|F(x̃T )R̃T − F(x̃T )R̃T |2] ≤ 2E[|F(x̃T ) − F(x̃T )|2|R̃T |2] + 2E[|R̃T − R̃T |2|F(x̃T )|2]

=: 2D + 2C.

In the following we show that C = O(h2) and D = O(h2).
Step 1: estimation of C. The function F being bounded, we have

C ≤ M2
FE[|R̃T − R̃T |2],

where MF is a positive constant. Moreover, for all θ ∈ � we have

(1 − λ̃(θ )/λ∗)−1 ≤ (1 − λ̃max/λ
∗)−1 and (λ̃(θ )/λ∗)−1 ≤ (λ̃min/λ

∗)−1.

Thus

H̃T ≤
(

λ̃min

λ∗

(
1 − λ̃max

λ∗

))−N∗
T

,

and using the definition of R̃ and R̃ (see (3.5), (3.6), and (3.7)) we can write

|R̃T − R̃T | ≤
(

λ̃min

λ∗

(
1 − λ̃max

λ∗

))−N∗
T

(|Q̃T − Q̃T |S̃T + |S̃T − S̃T |Q̃T ).

We set J = |Q̃T − Q̃T |S̃T and I = |S̃T − S̃T |Q̃T . To provide the desired estimate for C,
we proceed as follows. First, we work ω by ω to determine (random) bounds for J and I,
from which we deduce a (random) bound for |R̃T − R̃T |. Finally, we take the expectation.
We start with I. For all (θ, ν) ∈ E and for all t ≥ 0, we have from Assumption 2.1 that 1 −
λ(θ, �θ (t, ν))/λ∗ ≤ 1 and λ(θ, �θ (t, ν))/λ∗ ≤ 1. Then, using Lemma 3.2 (twice), we have

|S̃T − S̃T | ≤ 1

λ∗
ÑT+1∑
l=1

τ̃l∧N∗
T∑

k=τ̃l−1+1

|λ(θ̃l−1, �θ̃l−1
(T∗

k − T∗
τ̃l−1

, ν̃l−1))

− λ(θ̃l−1, �θ̃l−1
(T∗

k − T∗
τ̃l−1

, ν̃l−1))|.

Using the Lipschitz continuity of λ and Lemma 2.1, we find that, for all l = 1, . . . , ÑT + 1
and k = τ̃l−1 + 1, . . . , τ̃l ∧ N∗

T ,

|λ(θ̃l−1, �θ̃l−1
(T∗

k − T∗
τ̃l−1

, ν̃l−1)) − λ(θ̃l−1, �θ̃l−1
(T∗

k − T∗
τ̃l−1

, ν̃l−1))| ≤ eLTChl.

Moreover, for all l = 1, . . . , ÑT + 1 we have τ̃l ∧ N∗
T − τ̃l−1 ≤ N∗

T , so that

|S̃T − S̃T | ≤ N∗
T (N∗

T + 1)2C1h,
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where C1 is a positive constant independent of h. Finally, since Q̃T ≤ ρ−N∗
T we have

I ≤ ρ−N∗
T N∗

T (N∗
T + 1)2C1h. (3.8)

Now, consider J. Note that from Assumption 2.1 we have S̃T ≤ 1. We use the same type of
arguments as for I. That is, we successively use Lemma 3.2, the Lipschitz continuity of Q, and
Lemma 2.1 to obtain

J ≤ ρ−N∗
T (N∗

T )2C2h, (3.9)

where C2 is a positive constant independent of h. Then we derive from the previous estimates
(3.8) and (3.9) that

|R̃T − R̃T | ≤ �1(N∗
T )C3h,

where

�1(n) =
(

ρ
λ̃min

λ∗

(
1 − λ̃max

λ∗

))−n

n(n + 1)2 and C3 = max (C1, C2).

Finally, we have E[|R̃T − R̃T |2] ≤ C3h2
E[�1(N∗

T )2]. Since

E[�1(N∗
T )2] < +∞,

we conclude that C = O(h2).
Step 2: estimation of D. Recall that x̃T = (θ̃ÑT

, �θ̃ÑT
(T − T̃ÑT

, ν̃ÑT
)) and x̃T = (θ̃ÑT

,

�θ̃ÑT
(T − T̃ÑT

, ν̃ÑT
)). Then, using the Lipschitz continuity of F, Lemma 2.1 and since ÑT ≤

N∗
T , we get

|F(x̃T ) − F(x̃T )| ≤ LF eLT (ÑT + 1)Ch ≤ LF eLT (N∗
T + 1)Ch.

Moreover,

|R̃T | ≤
(

ρ
λ̃min

λ∗

(
1 − λ̃max

λ∗

))−N∗
T

,

so that D ≤ C4h2
E[�2(N∗

T )2], where C4 is a positive constant independent of h and

�2(n) = (n + 1)

(
ρ

λ̃min

λ∗

(
1 − λ̃max

λ∗

))−n

.

Since E[�2(N∗
T )2] < +∞, we conclude that D = O(h2).

4. Weak error expansion

In this section we are interested in a weak error expansion for the PDMP (xt) of Section 2.3
and its associated Euler scheme (xt). First of all, we recall from [5] that the generator A of the
process (t, xt) which acts on functions g defined on R+ × E is given by

Ag(t, x) = ∂tg(t, x) + f (x)∂νg(t, x) + λ(x)
∫

E
(g(t, y) − g(t, x))Q(x, dy), (4.1)

where for notational convenience we have set

∂νg(t, x) := ∂g

∂ν
(t, θ, ν), ∂tg(t, x) := ∂g

∂t
(t, x), and f (x) = fθ (ν) for all x = (θ, ν) ∈ E.
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Below, we state the assumptions and the main theorem of this section. Its proof, which is
inspired by [27] (see also [24] or [16]), is deferred to Section 4.2.

Assumption 4.1. For all θ ∈ � and for all A ∈B(�), the functions ν �→ Q((θ, ν), A), ν �→
λ(θ, ν), and ν �→ fθ (ν) are bounded and twice continuously differentiable with bounded
derivatives.

Assumption 4.2. The solution u of the integro-differential equation{
Au(t, x) = 0 (t, x) ∈ [0, T[ × E,

u(T, x) = F(x) x ∈ E,
(4.2)

with F : E →R a bounded function and A given by (4.1), is such that for all θ ∈ �, the function
(t, ν) �→ u(t, θ, ν) is bounded and twice differentiable with bounded derivatives. Moreover, the
second derivatives of (t, ν) �→ u(t, θ, ν) are uniformly Lipschitz in θ .

Theorem 4.1. Let (xt, t ∈ [0, T]) be a PDMP and (xt, t ∈ [0, T]) its approximation constructed
in Section 2.3 with x0 = x0 = x for some x ∈ E. Under Assumptions 4.1 and 4.2, for any bounded
function F : E →R there exists a constant c1 independent of h such that

E[F(xT )] −E[F(xT )] = hc1 + O(h2). (4.3)

Remark 4.1. If (x̃t) is a PDMP whose characteristics λ̃, Q̃ satisfy the assumptions of
Proposition 2.2 and (x̃t) is its approximation, we deduce from Theorem 4.1 that

E[F(x̃T )R̃T ] −E[F(x̃T )R̃T ] = hc1 + O(h2). (4.4)

4.1. Further results on PDMPs: Itô and Feynman–Kac formulas

Definition 4.1. Let us define the following operators, which act on functions g defined on
R+ × E:

T g(t, x) := ∂tg(t, x) + f (x)∂νg(t, x),

Sg(t, x) := λ(x)
∫

E
(g(t, y) − g(t, x))Q(x, dy).

From Definition 4.1, the generator A defined by (4.1) reads Ag(t, x) = T g(t, x) + Sg(t, x).
We introduce the random counting measure p associated with the PDMP (xt) defined by
p([0, t] × A) :=∑

n≥1 1Tn≤t1Yn∈A for t ∈ [0, T] and for A ∈B(E). The compensator of p,
denoted by p′, is given from [5] by

p′([0, t] × A) =
∫ t

0
λ(xs)Q(xs, A) ds.

Hence, q := p − p′ is a martingale with respect to the filtration generated by p, denoted by
(Fp

t )t∈[0,T]. Similarly, we introduce p, p′, q, and (Fp
t )t∈[0,T] to be the same objects as above but

corresponding to the approximation (xt). The fact that p′ is the compensator of p and that q is
a martingale derives from arguments of the marked point processes theory: see [4].
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Definition 4.2. Let us define the following operators, which act on functions g defined on
R+ × E:

T g(t, x, y) := ∂tg(t, x) + f (y)∂νg(t, x),

Ag(t, x, y) := T g(t, x, y) + Sg(t, x).

Remark 4.2. For all functions g defined on R+ × E, T g(t, x, x) = T g(t, x), so that
Ag(t, x, x) =Ag(t, x).

The next theorem provides Itô formulas for the PDMP (xt) and its approximation (xt). For
all s ∈ [0, T], we set η(s) := Tn + kh if s ∈ [Tn + kh, (Tn + (k + 1)h) ∧ Tn+1[ for some n ≥ 0
and for some k ∈ {0, . . . , 
(Tn+1 − Tn)/h�}.
Theorem 4.2. Let (xt, t ∈ [0, T]) and (xt, t ∈ [0, T]) be a PDMP and its approximation, respec-
tively, constructed in Section 2.3 with x0 = x0 = x for some x ∈ E. For all bounded functions
g : R+ × E →R continuously differentiable with bounded derivatives, we have

g(t, xt) = g(0, x) +
∫ t

0
Ag(s, xs) ds + Mg

t , (4.5)

where

Mg
t :=

∫ t

0

∫
E

(g(s, y) − g(s, xs−))q(ds dy)

is a true Fp
t -martingale, and

g(t, xt) = g(0, x) +
∫ t

0
Ag(s, xs, xη(s)) ds + M

g
t , (4.6)

where

M
g
t :=

∫ t

0

∫
E

(g(s, y) − g(s, xs−))q(ds dy)

is a true Fp
t -martingale.

Proof of Theorem 4.2. The proof of (4.5) is given in [5]. We prove (4.6) following the same
arguments. Since q = p − p′, we have

M
g
t =

∑
k≥1

1Tk≤t(g(Tk, xTk
) − g(Tk, x−

Tk
)) −

∫ t

0
Sg(s, xs) ds.

Consider the above sum. As in [5], we write, on the event {Nt = n}, that∑
k≥1

1Tk≤t(g(Tk, xTk
) − g(Tk, x−

Tk
))

= g(t, xt) − g(0, x) −
[

g(t, xt) − g(Tn, xTn
) +

n−1∑
k=0

g(Tk+1, x−
Tk+1

) − g(Tk, xTk
)

]
.
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For all k ≤ n − 1, we decompose the increment

g(Tk+1, x−
Tk+1

) − g(Tk, xTk
)

as a sum of increments on the intervals [Tk + ih, (Tk + (i + 1)h) ∧ Tk+1] ⊂ [Tk, Tk+1].
Without loss of generality we are led to consider increments of the form g(t, θ, φθ (t, ν)) −
g(ih, θ, yi(x)) for some i ≥ 0, t ∈ [ih, (i + 1)h] and for all x = (θ, ν) ∈ E, where we recall that φ

is defined by (2.8). The function g is smooth enough to write

g(t, θ, φθ (t, ν)) − g(ih, θ, yi(x)) =
∫ t

ih
(∂tg + fθ (yi(x))∂νg)(s, θ, φθ (s, ν)) ds.

Then the above arguments together with Definition 4.2 yield

g(t, xt) − g(Tn, xTn
) +

n−1∑
k=0

g(Tk+1, x−
Tk+1

) − g(Tk, xTk
) =

∫ t

0
T g(s, xs, xη(s)) ds. �

The following theorem gives us a way to represent the solution of the integro-differential
equation (4.6) as the conditional expected value of a functional of the terminal value of the
PDMP (xt). It plays a key role in the proof of Theorem 4.1.

Theorem 4.3. (PDMP’s Feynman–Kac formula [6].) Let F : E →R be a bounded function.
Then the integro-differential equation (4.2) has a unique solution u : R+ × E →R given by

u(t, x) =E[F(xT )|xt = x], (t, x) ∈ [0, T] × E.

4.2. Proof of Theorem 4.1

We provide a proof in two steps. First, we give an appropriate representation of the weak
error E[F(xT )] −E[F(xT )]. Then we use this representation to identify the coefficient c1 in
(4.3).

Step 1: representing E[F(xT )] −E[F(xT )]. Let u denote the solution of (4.2). From Theorem
4.3 we can write

E[F(xT )] −E[F(xT )] =E[u(T, xT )] − u(0, x).

Then, the application of the Itô formula (4.6) to u at time T yields

u(T, xT ) = u(0, x) +
∫ T

0
Au(s, xs, xη(s)) ds + M

u
T .

Since (M
u
t ) is a true martingale, we obtain

E[u(T, xT ) − u(0, x)] =E

[ ∫ T

0
Au(s, xs, xη(s)) ds

]
.

For s ∈ [0, T] we have Au(s, xs, xη(s)) = ∂tu(s, xs) + f (xη(s))∂νu(s, xs) + Su(s, xs) (see
Definition 4.2). From the regularity of λ, Q, and u (see Assumptions 4.1 and 4.2), the functions
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∂tu, ∂νu, and Su are smooth enough to apply the Itô formula (4.6) between η(s) and s
respectively. This yields

∂tu(s, xs) = ∂tu(η(s), xη(s)) +
∫ s

η(s)
A(∂tu)(r, xr, xη(r)) dr + M

∂tu
s − M

∂tu
η(s),

∂νu(s, xs) = ∂νu(η(s), xη(s)) +
∫ s

η(s)
A(∂νu)(r, xr, xη(r)) dr + M

∂νu
s − M

∂νu
η(s),

Su(s, xs) = Su(η(s), xη(s)) +
∫ s

η(s)
A(Su)(r, xr, xη(r)) ds + M

Su
s − M

Su
η(s).

Moreover, since η(r) = η(s) for r ∈ [η(s), s], we have

f (xη(s))∂νu(s, xs) = f (xη(s))∂νu(η(s), xη(s))

+
∫ s

η(s)
f (xη(r))A(∂νu)(r, xr, xη(r)) dr + f (xη(s))(M

∂νu
s − M

∂νu
η(s)),

so that

Au(s, xs, xη(s)) =Au(η(s), xη(s), xη(s)) +
∫ s

η(s)
ϒ(r, xr, xη(r)) dr

+ M
∂tu
s − M

∂tu
η(s) + f (xη(s))(M

∂νu
s − M

∂νu
η(s)) + M

Su
s − M

Su
η(s),

where
ϒ(t, x, y) := (A(∂tu) + f (y)A(∂νu) +A(Su))(t, x, y). (4.7)

Since Au(t, x, x) =Au(t, x), the first term in the above equality is 0 by Theorem 4.3. By

using Fubini’s theorem and the fact that (M
∂tu
t ) and (M

Su
t ) are true martingales, we obtain

E

[ ∫ T

0
M

∂tu
s − M

∂tu
η(s) ds

]
=E

[ ∫ T

0
M

Su
s − M

Su
η(s) ds

]
= 0.

Moreover, since (M
∂νu
t ) is a Fp

t -martingale, we have

E

[ ∫ T

0
f (xη(s))(M

∂νu
s − M

∂νu
η(s)) ds

]
=
∫ T

0
E

[
f (xη(s))E[M

∂νu
s − M

∂νu
η(s)|Fp

η(s)]
]

ds = 0.

Collecting the above results, we obtain

E[F(xT )] −E[F(xT )] =E

[ ∫ T

0

∫ s

η(s)
ϒ(r, xr, xη(r)) dr ds

]
.

We can compute an explicit form of ϒ in terms of u, f , λ, Q and their derivatives. Indeed, ϒ is
given by (4.7), and we have

A(∂tu)(t, x, y) = ∂2
ttu(t, x) + f (y)∂2

tνu(t, x) + S(∂tu)(t, x),

(fA(∂νu))(t, x, y) = f (y)(∂2
tνu(t, x) + f (y)∂2

ννu(t, x) + S(∂νu)(t, x)),

A(Su)(t, x, y) = ∂t(Su)(t, x) + f (y)∂ν(Su)(t, x) + S(Su)(t, x).
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Application of the Taylor formula to the functions ∂2
ttu, ∂2

tνu, ∂2
ννu, S(∂tu), S(∂νu),

∂t(Su), ∂ν(Su) and S(Su) at the order 0 around (η(r), xη(r)) yields ϒ(r, xr, xη(r)) =
ϒ(η(r), xη(r), xη(r)) + O(h). Setting �(t, x) = ϒ(t, x, x) and recalling that for r ∈ [η(s), s],
η(r) = η(s) and that |s − η(s)| ≤ h, we obtain

E[F(xT )] −E[F(xT )] =E

[ ∫ T

0
(s − η(s))�(η(s), xη(s)) ds

]
+ O(h2).

Consider the expectation on the right-hand side of the above equality. We decompose the
integral into a (finite) sum of integrals on the intervals [Tn + kh, (Tn + (k + 1)h) ∧ Tn+1],
where � is a constant. Without loss of generality, we are led to consider integrals of the form∫ t

kh (s − kh)C ds for some k ≥ 0, t ∈ [kh, (k + 1)h] and C a bounded constant. We have∫ t

kh
(s − kh)C ds = t − kh

2

∫ t

kh
C ds,

and moreover adding and subtracting h in the numerator of (t − kh)/2 yields∫ t

kh
(s − kh)C ds = h

2

∫ t

kh
C ds + t − (k + 1)h

2

∫ t

kh
C ds.

Since C is bounded we deduce that∫ t

kh
(s − kh)C ds = h

2

∫ t

kh
C ds + O(h2).

Since � is assumed bounded and E[NT ] < +∞, the above arguments yield the following
representation:

E[F(xT )] −E[F(xT )] = h

2
E

[ ∫ T

0
�(η(s), xη(s)) ds

]
+ O(h2). (4.8)

Step 2: from the representation (4.8) to the expansion at the order one. In this step we show
that

E

[ ∫ T

0
�(η(s), xη(s)) ds

]
=E

[ ∫ T

0
�(s, xs) ds

]
+ O(h).

First, we introduce the random variables � and � defined by

� :=
∫ T

0
�(η(s), xη(s)) ds and � :=

∫ T

0
�(η(s), xη(s)) ds,

and write

E[|� − �|] =E
[
1min (T

τ† ,T
τ† )≤T |� − �|]x +E

[
1min (T

τ† ,T
τ† )>T |� − �|],

where τ † is defined in Definition 3.1. Since � is bounded and P(min (Tτ †, Tτ † ) ≤ T) = O(h)
(see the proof of Theorem 3.1), we have

E
[|� − �|1min (T

τ† ,T
τ† )≤T

]= O(h).
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Now, recall from (3.1) that, on the event {min (Tτ †, Tτ † ) > T}, we have Tk = Tk and θk =
θk for all k ≥ 1 such that Tk ∈ [0, T]. Thus, for all n ≤ NT and for all s ∈ [Tn, Tn+1 [we
have xη(s) = (θn, φθn

(η(s) − Tn, νn)) and xη(s) = (θn, φθn
(η(s) − Tn, νn)). Consequently, on the

event {min (Tτ † , Tτ † ) > T} we have

|� − �| ≤
NT∑
n=0

∫ Tn+1∧T

Tn

|�(η(s), θn, φθn
(η(s) − Tn, νn)) − �(η(s), θn, φθn

(η(s) − Tn, νn))| ds.

From the regularity Assumptions 4.1 and 4.2, the function ν �→ �(t, θ, ν) is uniformly
Lipschitz in (t, θ ) with constant L� as sum and product of bounded Lipschitz functions. Thus,
from this Lipschitz property and the application of Lemma 2.1, we get

|�(η(s), θn, φθn
(η(s) − Tn, νn)) − �(η(s), θn, φθn

(η(s) − Tn, νn))| ≤ L�C eLT (n + 1)h.

From the above inequality, we find that

E
[
1min (T

τ† ,T
τ† )>T |� − �|]≤ L�C eLTThE[NT (NT + 1)].

Since NT ≤ N∗
T and E[N∗

T (N∗
T + 1)] < +∞, we conclude that

E
[
1min (T

τ† ,T
τ† )>T |� − �|]= O(h).

We have shown that

E

[ ∫ T

0
�(η(s), xη(s)) ds

]
=E

[ ∫ T

0
�(η(s), xη(s)) ds

]
+ O(h).

Secondly, from the regularity Assumptions 4.1 and 4.2, the function (t, ν) �→ �(t, θ, ν) is
uniformly Lipschitz in θ . Moreover, for all s ∈ [0, T] there exists k ≥ 0 such that both s
and η(s) belong to the same interval [Tk, Tk+1 [so that xs = (θk, φθk (s − Tk, νk)) and xη(s) =
(θk, φθk (η(s) − Tk, νk)). Thus, from the Lipschitz continuity of �, from the fact that |s −
η(s)| ≤ h and since fθ is uniformly bounded in θ , we have |�(s, xs) − �(η(s), xη(s))| ≤ Ch,
where C is a constant independent of h. Then we obtain

sup
s∈[0,T]

|E[�(s, xs)] −E[�(η(s), xη(s))]| ≤ Ch,

from which we deduce that∣∣∣∣E[ ∫ T

0
�(η(s), xη(s)) ds

]
−E

[ ∫ T

0
�(s, xs) ds

]∣∣∣∣≤ CTh.

Finally, the weak error expansion reads

E[F(xT )] −E[F(xT )] = h

2
E

[ ∫ T

0
�(s, xs) ds

]
+ O(h2).

5. Numerical experiment

In this section we use the theoretical results above to apply the MLMC method to the PDMP
two-dimensional Morris–Lecar (shortened to PDMP 2d-ML).
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5.1. The PDMP two-dimensional Morris–Lecar

The deterministic Morris–Lecar model was introduced in 1981 by Catherine Morris and
Harold Lecar in [23] to explain the dynamics of the barnacle muscle fibre. This model belongs
to the family of conductance-based models (like the Hodgkin–Huxley model [19]) and takes
the following form:

dv

dt
= 1

C
(I − gLeak(v − VLeak) − gCaM∞(v)(v − VCa) − gKn(v − VK)),

dn

dt
= (1 − n)αK(v) − nβK(v),

(5.1)

where

M∞(v) = (1 + tanh [(v − V1)/V2])/2,

αK(v) = λK(v)N∞(v),

βK(v) = λK(v)(1 − N∞(v)),

N∞(v) = (1 + tanh [(v − V3)/V4])/2,

λK(v) = λK cosh ((v − V3)/2V4).

In this section we consider the PDMP version of (5.1), which we denote by (xt, t ∈ [0, T]),
T > 0, whose characteristics ( f , λ, Q) are given by

f (θ, ν) = 1

C

(
I − gLeak(ν − VLeak) − gCaM∞(ν)(ν − VCa) − gK

θ

NK
(ν − VK)

)
,

λ(θ, ν) = (NK − θ )αK(ν) + θβK(ν),

Q((θ, ν), {θ + 1}) = (NK − θ )αK(ν)

λ(θ, ν)
, Q((θ, ν), {θ − 1}) = θβK(ν)

λ(θ, ν)
.

The state space of the model is E = {0, . . . , NK} ×R where NK ≥ 1 stands for the number of
potassium gates. The values of the parameters used in the simulations are V1 = −1.2, V2 = 18,
V3 = 2, V4 = 30, λK = 0.04, C = 20, gLeak = 2, VLeak = −60, gCa = 4.4, VCa = 120, gK = 8,
VK = −84, I = 60, NK = 100. See Figure 1.

5.2. Classical and multilevel Monte Carlo estimators

In this subsection we introduce the classical and multilevel Monte Carlo estimators in order
to estimate the quantity E[F(xT )], where (xt, t ∈ [0, T]) is the PDMP 2d-ML and F(θ, ν) = ν

for (θ, ν) ∈ E so that F(xT ) gives the value of the membrane potential at time T . Note that other
possible choices are F(θ, ν) = νn or F(θ, ν) = θn for some n ≥ 2. In those cases, the quantity
E[F(xT )] gives the moments of the membrane potential or the number of open gates at time T
so that we can compute statistics on these biological variables.

Let X := F(xT ). It will be convenient below to emphasize the dependence of the Euler
scheme (xt) on a time step h. We introduce a family of random variables (Xh, h > 0) defined by
Xh := F(xT ), where for a given h > 0 the corresponding PDP (xt) is constructed as in Section
2.3 with time step h. In particular, the processes (xt) for h > 0 are correlated through the same
randomness (Uk), (Vk), and (N∗

t ). We build a classical Monte Carlo estimator of E[X] based on
the family (Xh, h > 0) as follows:

YMC = 1

N

N∑
k=1

Xk
h, (5.2)
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FIGURE 1. Ten trajectories of the characteristics of the PDMP 2d-ML on [0,100]. (a) Membrane potential
as a function of time: red curves, stochastic potential; black curve, deterministic potential. (b) Proportion
of opened gates as a function of time: red curves, stochastic gates (θ/NK); black curve, deterministic
gates (n). (c) Probability of opening a gate (Q(xt, {θt + 1})) as a function of time. (d) Jump rate (λ(xt)) as
a function of t.

where (Xk
h, k ≥ 1) is an i.i.d. sequence of random variables distributed like Xh. The parameters

h > 0 and N ∈N have to be determined. We build a multilevel Monte Carlo estimator based on
the family (Xh, h > 0) as follows:

YMLMC = 1

N1

N1∑
k=1

Xk
h∗ +

L∑
l=2

1

Nl

Nl∑
k=1

(Xk
hl

− Xk
hl−1

), (5.3)

where ((Xk
hl
, Xk

hl−1
), k ≥ 1) for l = 2, . . . , L are independent sequences of independent copies

of the pair (Xhl , Xhl−1 ) and independent of the i.i.d. sequence (Xk
h∗ , k ≥ 1). The parameter h∗

is a free parameter that we fix in Section 5.4. The parameters L ≥ 2, M ≥ 2, N ≥ 1 and q =
(q1, . . . , qL) ∈ ]0, 1[L with

∑L
l=1 ql = 1 have to be determined; then we set Nl := �Nql�, hl :=

h∗M−(l−1).
We also set X̃ := F(x̃T )R̃T , where R̃T is defined as in Proposition 2.2 with an intensity λ̃ and a

kernel Q̃ that will be specified in Section 5.4, and let (X̃h, h > 0) be such that X̃h := F(x̃T )R̃T for
all h > 0. By Proposition 2.2 we have E[X] =E[X̃] and E[Xh] =E[X̃h] for h > 0. Consequently,
we build likewise a multilevel estimator ỸMLMC based on the family (X̃h, h > 0).

The complexity of the classical Monte Carlo estimator YMC depends on the parameters (h,
N) and that of the multilevel estimators YMLMC and ỸMLMC depends on (L, q, N). In order
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TABLE 1: Optimal parameters for the MLMC estimator (5.3).

L

⌈
1 + log (|c1|1/αh∗)

log (M)
+ log (A/ε)

α log (M)

⌉
, A = √

1 + 2α

Q q1 = μ∗(1 + ρ(h∗)β/2)

qj = μ∗ρ(h∗)β/2
(n−β/2

j−1 + n−β/2
j√

nj−1 + nj

)
, j = 2, . . . , L, μ∗ = 1/

∑
1≤j≤L qj

N

(
1 + 1

2α

)Var(X)
(

1 + ρ(h∗)β/2 ∑L
j=1 (n−β/2

j−1 + n−β/2
j )

√
nj−1 + nj

)2

ε2
∑L

j=1 qj(nj−1 + nj)

to compare those estimators we proceed as in [21] (see also [24]), that is to say, for each
estimator we determine the parameters which minimize the global complexity (or cost) subject
to the constraint that the resulting L2-error must be lower than a prescribed ε > 0.

As in [21], we let V1, c1, α, β, and Var(X) be the structural parameters associated with
the family (Xh, h > 0) and X. We know theoretically from Theorem 3.1 (strong estimate) and
Theorem 4.1 (weak expansion) that (α, β) = (1, 1), whereas V1, c1, and Var(X) are not explicit
(we explain how we estimate them in Section 5.3). Moreover, the structural parameters Ṽ1, c̃1,
α̃, β̃, and Var(X̃) associated with (X̃h, h > 0) and X̃ are such that α̃ = α, c̃1 = c1 (see (4.4)),
β̃ = 2 (see Theorem 3.2), and Ṽ1, Var(X̃) are not explicit.

The classical and multilevel estimators defined above are linear and of Monte Carlo type
in the sense described in [21]. The optimal parameters of those estimators are then expressed
in terms of the corresponding structural parameters as follows (see [21] or [24]). For a user-
prescribed ε > 0, the classical Monte Carlo parameters h and N are

h(ε) = (1 + 2α)−1/(2α)
(

ε

|c1|
)1/α

, N(ε) =
(

1 + 1

2α

)
Var(X)(1 + ρhβ/2(ε))2

ε2
, (5.4)

where ρ = √
V1/Var(X). The parameters of the estimator YMLMC are given in Table 1, where

nl := Ml−1 for l = 1, . . . , L with the convention n0 = n−1
0 = 0. The parameters of ỸMLMC are

given in a similar way using Ṽ1, β̃, and Var(X̃). Finally, the parameter M(ε) is determined as
in [21, Section 5.1].

5.3. Methodology

We compare the classical and multilevel Monte Carlo estimators in terms of precision, CPU-
time, and complexity. The precision of an estimator Y is defined by the L2-error

‖Y −E[X]‖2 =
√

(E[Y] −E[X])2 + Var(Y),

also known as the root mean square error (RMSE). The CPU-time represents the time needed
to compute one realization of an estimator. The complexity is defined as the number of time
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steps involved in the simulation of an estimator. Let Y denote the estimator (5.2) or (5.3). We
estimate the bias of Y by

b̂R = 1

R

R∑
k=1

Yk −E[X],

where Y1, . . . , YR are R independent replications of the estimator. We estimate the variance of
Y by

v̂R = 1

R

R∑
k=1

vk,

where v1, . . . , vR are R independent replications of v, the empirical variance of Y . In the case
where Y is the crude Monte Carlo estimator, we set

v = 1

N(N − 1)

N∑
k=1

(Xk
h − mN)2, mN = 1

N

N∑
k=1

Xk
h.

If Y is the MLMC estimator, we set

v = 1

N1(N1 − 1)

N1∑
k=1

(Xk
h − m(1)

N1
)2 +

L∑
l=2

1

Nl(Nl − 1)

Nl∑
k=1

(Xk
hl

− Xk
hl−1

− m(l)
Nl

)2,

where

m(1)
N1

= 1

N1

N1∑
k=1

Xk
h,

and for l ≥ 2,

m(l)
Nl

= 1

Nl

Nl∑
k=1

Xk
hl

− Xk
hl−1

.

Then we define the empirical RMSE ε̂R by

ε̂R =
√

b̂2
R + v̂R. (5.5)

The numerical computation of (5.5) for both estimators (5.2) and (5.3) requires computation
of the optimal parameters given by (5.4) and in Table 1 of Section 5.2, which are expressed
in terms of the structural parameters c1, V1, and Var(X). Moreover, computation of the bias
requires the value E[X]. Since there is no closed formula for the mean and variance of X,
we estimate them using a crude Monte Carlo estimator with h = 10−5 and N = 106. The con-
stants c1 and V1 are not explicit; we use the same estimator of V1 as in [21, Section 5.1],
that is,

V̂1 = (1 + M−β/2)−2h−β
E[|Xh − Xh/M|2], (5.6)

and we use the following estimator of c1:

ĉ1 = (1 − M−α)−1h−α
E[Xh/M − Xh]. (5.7)

The estimator of c1 is obtained by writing the weak error expansion for the two time steps
h and h/M, summing and neglecting the O(h2) term. In (5.6) we use (h, M) = (0.1, 4) and in
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(5.7) we use (h, M) = (1, 4), and the expectations are estimated using a classical Monte Carlo
of size N = 104 on (Xh/M, Xh). We emphasize that we are interested in the order of c1 and V1,
so we do not need a precise estimate here.

5.4. Numerical results

In this subsection we first illustrate the results of Theorems 3.1 and 3.2 on the Morris–Lecar
PDMP and then compare the MC and MLMC estimators. The simulations were carried out on
a computer with an Intel Core i5-4300U CPU @ 1.90GHz × 4 processor. The code is written
in C++. We implement the estimator ỸMLMC (see Section 5.2) for the following choices of
the parameters (λ̃, Q̃).

Case 1: λ̃(θ ) = 1 and

Q̃(θ, {θ + 1}) = NK − θ

NK
, Q̃(θ, {θ − 1}) = θ

NK
.

Case 2: λ̃(x, t) = λ(θ, v(t)) and Q̃((x, t), dy) = Q((θ, v(t)), dy), where v denotes the first
component of the solution of (5.1).

Cases 1 and 2 correspond to the application of Proposition 2.2. Based on Corollary 2.2, we
also consider the following case.

Case 3: Consider the quantity E[F(xT ) − F(x̃T )], where (xt) and (x̃t) are PDPs with
characteristics (�, λ, Q) and (�̃, λ, Q) respectively. By Corollary 2.2, we have E[F(x̃T )] =
E[F(yT )R̃T ], where (yt) is a PDP whose discrete component jumps in the same states and at the
same times as the discrete component of (xt), and (R̃t) is the corresponding corrective process.
Thus, we consider the quantity E[F(xT ) − F(yT )R̃T ] instead of E[F(xT ) − F(x̃T )].

Case 3 implies using the following MLMC estimator, which is slightly different from (5.3):

ỸMLMC = 1

N1

N1∑
k=1

Xk
h∗ +

L∑
l=2

1

Nl

Nl∑
k=1

Xk
hl

− X̃k
hl−1

,

where ((Xk
hl
, X̃k

hl−1
), k ≥ 1) for l = 2, . . . , L are independent sequences of independent copies

of the pair (Xhl , X̃hl−1 ) = (F(xT ), F(yT )R̃T ), where (yt) is a PDP whose discrete component
jumps in the same states and at the same times as the Euler scheme (xt) with time step hl,
whose deterministic motions are given by the approximate flows with time step hl−1 and (R̃t)
is the corresponding corrective process (see Corollary 2.2).

Figure 2 confirms numerically that E[|Xhl − Xhl−1 |2] = O(hl) and that E[|X̃hl − X̃hl−1 |2] =
O(h2

l ) for Cases 1, 2, and 3 (see Theorems 3.1 and 3.2 respectively). Indeed, for T = 10 (see
Figure 2(a)), we observe that the curve corresponding to the decay of E[|Xhl − Xhl−1 |2] as l
increases is approximately parallel to a line of slope −1 and that the curves corresponding
to the decay of E[|X̃hl − X̃hl−1 |2] in Cases 1, 2, and 3 are parallel to a line of slope −2. We
also see that the curves corresponding to Cases 2 and 3 are approximately similar, and that for
some value of l those curves go below the one corresponding to E[|Xhl − Xhl−1 |2]. The curve
corresponding to Case 1 is always above all the others; this indicates that the L2-error (or the
variance) in Case 1 is too big (with respect to the others) and that is why we do not consider this
case below. As T increases (see Figures 2(b) and 2(c)), the theoretical order of the numerical
schemes is still observed. However, for T = 20, a slight difference begins to emerge between
Cases 2 and 3 (Case 3 being better) and this difference is accentuated for T = 30, so we do not
represent Case 2.
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FIGURE 2. Plots (a), (b), and (c) show the decay of E[(Xhl − Xhl−1 )2] and E[X̃hl − X̃hl−1 )2] (y-axis, logM

scale) as a function of l with hl = h × M−(l−1), h = 1, M = 4, for different values of the final time T: (a)
T = 10, (b) T = 20, (c) T = 30. For a visual guide, we added black solid lines with slopes −1 and −2.

For the Monte Carlo simulations we set T = 30, λ∗ = 10, and the time step involved in the
first level of the MLMC is set to h∗ = 0.1. We choose this value for h∗ because it represents (on
average) the size of an interval [T∗

n , T∗
n+1] of two successive jump times of the auxiliary Poisson

process (N∗
t ). The estimation of the true value and variance leads to E[X] = −31.4723 and

Var(X) = 335. Note that v(30) = −35.3083, where v is the deterministic membrane potential
solution of (5.1), so there is an offset between the deterministic potential and the mean of
the stochastic potential. We replicate 100 times the simulation of the classical and multilevel
estimators to compute the empirical RMSE so that R = 100 in (5.5).

The results of the Monte Carlo simulations are shown in Table 2 for the classical Monte
Carlo estimator YMC and in Tables 3 and 4 for the multilevel estimators YMLMC and ỸMLMC

(Case 3). As an example, the first line of Table 3 reads as follows: for a user-prescribed ε =
2−1 = 0.5, the MLMC estimator YMLMC is implemented with L = 2 levels, the time step at
the first level is h∗ = 0.1, this time step is refined by a factor nl = Ml−1 with M = 2 at each
level, and the sample size is N = 2600. For such parameters, the numerical complexity of the
estimator is Cost(YMLMC) = 28 200, the empirical RMSE ε̂100 = 0.389 and the computational
time of one realization of YMLMC is 0.362 seconds. We also reported the empirical bias b̂100
and the empirical variance v̂100 in view of (5.5).

The results indicate that the MLMC outperforms classical MC. More precisely, for small
values of ε (i.e. k = 1, 2, 3) the complexity and the CPU-time of the classical and multilevel
MC estimators are of the same order. As ε decreases (i.e. as k increases) the difference in
complexity and CPU-time between classical and multilevel MC increases. Indeed, for k = 5 the
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TABLE 2: Results and parameters of the Monte Carlo estimator YMC. Estimated values of the structural
parameters: c1 = 4.58, V1 = 7.25.

k ε = 2−k ε̂100 b̂100 v̂100 Time (sec) N h Cost

1 5.00e-01 4.32e-01 2.34e-01 1.52e-01 3.10e-01 2.16e+03 6.30e-02 3.43e+04
2 2.50e-01 2.59e-01 1.69e-01 3.87e-02 1.55e+00 8.47e+03 3.15e-02 2.69e+05
3 1.25e-01 1.17e-01 6.25e-02 9.78e-03 8.80e+00 3.34e+04 1.58e-02 2.12e+06
4 6.25e-02 5.67e-02 2.73e-02 2.47e-03 5.62e+01 1.32e+05 7.88e-03 1.68e+07
5 3.12e-02 2.50e-02 −1.78e-03 6.21e-04 3.93e+02 5.24e+05 3.94e-03 1.33e+08

TABLE 3: Results and parameters of the multilevel Monte Carlo estimator YMLMC. Estimated values of
the structural parameters: c1 = 4.58, V1 = 7.25.

k ε = 2−k ε̂100 b̂100 v̂100 Time (sec) L M h N Cost

1 5.00e-01 3.89e-01 1.14e-01 1.38e-01 3.62e-01 2 2 0.1 2.60e+03 2.82e+04
2 2.50e-01 2.29e-01 1.19e-01 3.83e-02 1.44e+00 2 4 0.1 1.04e+04 1.16e+05
3 1.25e-01 1.21e-01 6.24e-02 1.07e-02 5.76e+00 2 7 0.1 4.22e+04 4.85e+05
4 6.25e-02 5.91e-02 1.38e-02 3.30e-03 2.69e+01 3 4 0.1 1.90e+05 2.37e+06
5 3.12e-02 3.47e-02 −1.39e-02 1.01e-03 1.08e+02 3 6 0.1 7.71e+05 9.99e+06

TABLE 4: Results and parameters of the multilevel Monte Carlo estimator ỸMLMC (Case 3). Estimated
values of the structural parameters: c̃1 = 3.91, Ṽ1 = 34.1.

k ε = 2−k ε̂100 b̂100 v̂100 Time (sec) L M h N Cost

1 5.00e-01 4.28e-01 1.98e-01 1.44e-01 3.13e-01 2 2 0.1 2.38e+03 2.50e+04
2 2.50e-01 2.47e-01 1.55e-01 3.72e-02 1.26e+00 2 3 0.1 9.46e+03 1.00e+05
3 1.25e-01 1.36e-01 8.90e-02 1.05e-02 5.00e+00 2 6 0.1 3.80e+04 4.11e+05
4 6.25e-02 6.22e-02 2.15e-02 3.41e-03 2.09e+01 3 4 0.1 1.58e+05 1.75e+06
5 3.12e-02 3.17e-02 6.07e-03 9.71e-04 8.35e+01 3 5 0.1 6.30e+05 7.02e+06

complexity of the estimator YMC is approximately 13 times superior to that of YMLMC and 19
times superior to that of ỸMLMC. The same fact appears when we look at the complexity ratio of
the estimators YMLMC and ỸMLMC (i.e. Cost(YMLMC)/Cost(ỸMLMC)) as ε decreases. However,
the difference between the complexity of these two MLMC estimators increases more slowly
than the one between an MC and an MLMC estimator. Recall that the computational benefit
of the MLMC over the MC grows as the prescribed ε decreases.

Both classical and multilevel estimators provide an empirical RMSE which is close to the
prescribed precision (see Tables 2, 3, and 4). We can conclude that the choice of the parameters
is well adapted. For readability, Figures 3(a) and 3(b) show the ratios of the complexities and
the CPU-times of the three estimators YMC, YMLMC, and ỸMLMC as a function of ε.
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FIGURE 3. (a) Ratio of the complexities and (b) ratio of the CPU-times with respect to the complexity
and CPU-time of the estimator ỸMLMC as a function of the prescribed ε (log2 scale for the x-axis, log
scale for the y-axis).
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