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The standard resonance conditions for Bragg scattering as well as weakly nonlinear
wave triads have been traditionally derived in the absence of any background velocity.
In this paper, we have studied how these resonance conditions get modified when
uniform, as well as various piecewise linear velocity profiles, are considered for
two-layered shear flows. Background velocity can influence the resonance conditions
in two ways: (i) by causing Doppler shifts, and (ii) by changing the intrinsic
frequencies of the waves. For Bragg resonance, even a uniform velocity field changes
the resonance condition. Velocity shear strongly influences the resonance conditions
since, in addition to changing the intrinsic frequencies, it can cause unequal Doppler
shifts between the surface, pycnocline and the bottom. Using multiple scale analysis
and Fredholm alternative, we analytically obtain the equations governing both the
Bragg resonance and the wave triads. We have also extended the higher-order spectral
method, a highly efficient computational tool usually used to study triad and Bragg
resonance problems, to incorporate the effect of piecewise linear velocity profile. A
significant aspect, both on the theoretical and numerical fronts, has been extending
the potential flow approximation, which is the basis of the study of these kinds of
problems, to incorporate piecewise constant background shear.

Key words: coastal engineering, nonlinear instability, stratified flows

1. Introduction
‘Wave triad interaction’, the nonlinear interaction between three waves (or modes)

satisfying a certain resonant condition, is a fundamental mechanism of energy transfer
in fluid flows due to the nonlinear nature of the governing Navier–Stokes equations.
In a two-layered density stratified flow in the absence of background velocity, Ball
(1964) showed that two counter-propagating surface gravity waves can give rise to
an interfacial gravity wave by forming a wave triad. Although Ball had ruled out
the possibility of the existence of any other triads involving two surface modes,
such interactions were later observed between three co-propagating modes – two
surface waves and one interfacial wave (Baker, Meiron & Orszag 1982). In fact,
two counter-propagating interfacial gravity waves can also give rise to a surface
gravity wave (Wen 1995; Hill & Foda 1996). Remarkably enough, a rippled bottom
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topography can act like a neutral, stationary wave and mediate nonlinear energy
transfer between two waves – a phenomenon known as the ‘Bragg resonance’
(Davies 1982; Mei 1985; Kirby 1986). Bragg resonance strongly affects the wave
spectrum in continental shelves and coastal regions (Ball 1964), and also modifies the
shore-parallel sandbars (Heathershaw & Davies 1985; Elgar, Raubenheimer & Herbers
2003). A study of Bragg resonance was performed in a two-layered density stratified
flow by Alam, Liu & Yue (2009a). They showed that second-order nonlinearity
may cause a surface wave propagating over a rippled bottom to transfer energy to
(i) an interfacial wave propagating in the same direction (of the surface wave), (ii)
an interfacial wave propagating in the opposite direction or (iii) a surface wave
propagating in the same direction, depending on the wavenumber of the bottom
ripple. Similar results were also obtained for an interfacial wave. Alam et al. (2009a)
also studied interactions up to the third order of nonlinearity, thereby giving rise to
various classes of Bragg resonance. The numerical simulations for the same were
performed using a higher-order spectral (HOS) code (Alam, Liu & Yue 2009b),
which was initially developed for a single-layered flow over bottom topography by
Dommermuth & Yue (1987). Although the equations governing a single triad can also
be analytically obtained without much difficulty up to the second order of nonlinearity,
numerical simulation allows one to incorporate multiple triads up to several orders
of nonlinearity. In most of the above-mentioned analytical and numerical (e.g. HOS)
studies on wave triads or Bragg resonances, the base velocity was assumed to be
absent. This is because these analytical and numerical treatments were based on the
potential flow theory. The primary advantage of using the potential flow assumption
is that it leads to an outstanding simplification – one can solve for the interfaces
only. This allows a deeper insight into the complex nonlinear problem of resonant
triad interactions and subsequent energy transfer. A general base flow falls beyond
the purview of the potential flow theory, and in such flows the dynamics doesn’t
remain confined at the interfaces.

Since atmospheric and oceanic flows usually have base velocities (Vallis 2017),
application of the ‘standard’ potential flow theory to such flows may be an
over-simplification. Furthermore, The velocity present in the ocean, especially in
the littoral region and estuaries, can be substantial (Geyer, Ralston & Holleman
2017). Further, it is also well known that the shear can affect the dynamics of the
problem (Peregrine 1976). In order to accommodate shear in the study of wave
triad interaction, in this work, we have considered a two-layered density stratified
flow in the presence of a piecewise linear base velocity profile (or in other words,
piecewise constant shear profile). While piecewise profiles similar to the ones we
have considered here have been widely studied in the context of linear instabilities
(Drazin 2002; Vallis 2017), studies involving nonlinear waves and instabilities in the
presence of piecewise constant shear are very limited. We have shown that such a
kind of velocity profile can be included under the umbrella of the extended potential
flow theory (Guha & Raj 2018). Therefore, the dynamics is still localised at the
interfaces, even though there is a base velocity present. Piecewise linear base velocity
implies that the base vorticity is layerwise constant. Here, no vorticity is generated in
the perturbed flow except at the interfaces. In other words, if the initial disturbances
are irrotational, the perturbed flow in the bulk remains irrotational forever, despite
the fact that the base flow is vortical (Guha & Raj 2018). This fundamental concept
has also allowed us to use and extend the general framework of the HOS method by
incorporating a piecewise linear velocity profile. For the case of wave triad interaction,
adding a constant base velocity does not change the dynamics of the problem because
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all the frequencies are merely Doppler shifted. It can also be intuitively seen that
adding a uniform flow ‘U’ is similar to moving in a reference frame with a velocity
‘U’, and change of the reference frame should not change the dynamics of a problem.
Any non-trivial base velocity profile, however, will break the otherwise symmetric
nature of the dispersion relation of surface/interfacial gravity waves. On the other
hand, addition of a constant base velocity leads to a significant alteration in the
resonance conditions for Bragg resonance (Kirby 1988); here, the Doppler shift is
not simply equivalent to changing of the reference frame because of the involvement
of the bottom topography. The fact that the bottom topography is at rest while the
surface and the interface have some base flow results in an unequal Doppler shift
between the surface/interface and the bottom topography.

Significant changes occur when a uniform shear is present in each layer. When
there is a jump in the base vorticity (i.e. shear) across an interface, it leads to
vorticity waves. In addition, if there is a buoyancy jump at the same interface, we
get vorticity–gravity waves (Harnik et al. 2008). Interaction between an interfacial
vorticity wave (with no buoyancy jump) and a surface gravity wave was the focus of
a recent study by Drivas & Wunsch (2016). Due to the presence of shear, the surface
and the interface move with different base velocities, which significantly alters the
conditions for the formation of resonant triads. Therefore, we expect that the problems
involving triad interactions and Bragg resonances are remarkably enriched when a
piecewise linear base velocity field is present.

The paper is organised as follows. In § 2, we have shown the applicability of
potential flow theory to piecewise linear velocity profiles. Furthermore, we have
derived the modified evolution equations, which have been subsequently applied to
the HOS code in order to incorporate the velocity field. We also use the evolution
equations to obtain the dispersion relation of a general two-layered flow with a
velocity field. This is followed by a perturbation expansion of the variables till O(ε2),
and using the Fredholm alternative, we obtain the analytical solution for amplitude
variation both for the case of Bragg resonance and wave triad interaction. Here, the
expansion parameter ε measures the steepness of the wave and following Alam et al.
(2009b), we assume the steepness of the wave and the bottom to be of the same order.
In § 3, we have explored the effect of different types of velocity fields on different
types of Bragg resonance triad using dispersion relations. In § 4, we have briefly
explained the effect of velocity field on wave triad interactions. We have devoted § 5
to the numerical code and simulation. In this section, we have described the HOS
code, which we have extended to incorporate piecewise linear velocity profiles. After
validating the code, we have shown some numerical simulations to corroborate our
analytical derivations. Finally, we summarise and conclude the paper in § 6.

2. Theory
The kinematic boundary conditions and the dynamic boundary conditions for the

water wave problem are nonlinear, suggesting that waves can interchange energy
between them through a nonlinear interaction. This nonlinear exchange of energy
between the waves, known as the wave triad interaction, is maximum when the
waves involved satisfy a specific resonance condition. Although the energy exchange
is a weakly nonlinear phenomenon, the condition for triad interactions can simply be
obtained from the linear dispersion relations. The condition for the resonance between
waves of wavenumbers (k1, k2 and k3) and frequencies (ω1, ω2 and ω3) is

k3 = k1 ± k2, (2.1a)
ω3 =ω1 ±ω2. (2.1b)
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The above condition basically means that if on the k–ω plane, waves are denoted by
the vectors (k1, ω1), (k2, ω2) and (k3, ω3), then one of the vectors is equal to the sum
of the other two (Ball 1964). Further, when two waves exchange energy with each
other via mediation of the bottom ripples, which acts as a stationary wave with zero
frequency, it is known as the Bragg resonance. Here, the resonance condition becomes

k2 = k1 ± kb, (2.2a)
ω1 =ω2. (2.2b)

For the case of no velocity, the dispersion relation is a biquadratic polynomial in
ω, and is given as (Ball 1964; Alam et al. 2009a)

ω4(R+ coth khu coth khl)−ω
2gk(coth khu + coth khl)+ g2k2(1− R)= 0. (2.3)

Here R≡ ρu/ρl is the density ratio, and hu and hl are respectively the depths of the
upper and lower layers. Throughout the paper, the subscripts u and l respectively
denote ‘upper’ and ‘lower’. The implication of (2.3) being a biquadratic in ω is
that the leftward travelling waves and the rightward travelling waves are symmetric,
i.e. the difference between the two is simply a matter of a change in the sign of
ω. However, in the presence of a uniform velocity U, the intrinsic frequencies of
the waves are Doppler shifted by an amount ‘Uk’. Further, if the velocity field is
a function of the vertical coordinate ‘z’, then a vorticity wave may also be present,
which will alter the intrinsic frequency of the waves as well, and the biquadratic
and symmetric nature of the dispersion relation will be lost. We have classified
the velocity profiles into four categories: (i) a uniform flow, (ii) shear only in the
lower layer, (iii) shear only in the upper layer, (iv) shear in both the layers. These
cases are shown in figure 1. In the first case, the surface and the interface are not
Doppler shifted with respect to each other but they are Doppler shifted with respect
to the bottom. This should mean that the condition for wave triad interaction will
not change but the condition for Bragg resonance should be altered. Further, there
will not be any change in the intrinsic frequencies of any of the waves present in
the system. In the second case, shear is only present in the lower layer. This case
is similar to the first one with reference to the Doppler shifts, i.e. both the surface,
and the interface between ρu and ρl (hereafter, simply referred to as ‘interface’ or
‘pycnocline’), are Doppler shifted equally with respect to the bottom, but additionally,
the intrinsic frequencies of the waves will change due to the presence of a shear
jump at the interface. In the third case, shear is present only in the upper layer and
hence the surface and the interface are Doppler shifted; moreover, there is a shear
jump present at the interface too. Hence, the intrinsic frequencies of the waves will
also change. In the last case, shear is present in both layers. Hence, there is a shear
jump both at the interface and at the surface and the surface and the interface are
Doppler shifted unequally with respect to the bottom. It is also to be noted here
that the velocity difference between the surface and the interface, i.e. the second
and the fourth cases, might lead to linear instabilities as well due to the formation
of a counter-propagating system (Guha & Lawrence 2014; Shete & Guha 2018).
However, such linear instabilities, for moderate values of shear, are restricted to high
wavenumbers and do not have appreciable growth rates. In any case, we would be
focussing on the nonlinear interactions only.

It was shown in Guha & Raj (2018) that, in the presence of a piecewise linear
velocity profile, there is no perturbation vorticity generation in the fluid bulk and
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FIGURE 1. Schematic of a two-layered density stratified flow in the presence of a bottom
topography and various kinds of simple velocity profiles, labelled by 1 : uniform flow, 2 :
constant shear in the bottom layer, 3 : constant shear in the top layer and 4 : constant
shear in both layers.

vorticity is generated exclusively at the interfaces. This means that if the bulk flow
is initially irrotational, then it will remain so forever, similar to the scenario of no
background velocity. Further, if there is a density difference (ρ1, ρ2) as well a shear
difference (Ω1, Ω2) across any general (hence subscripts ‘1’ and ‘2’ are used, instead
of ‘u’ and ‘l’) interface z = h0 + η(x, t) moving in a velocity field U = U(z), then
the dynamic boundary condition at any interface z = h0 + η(x, t) is given by (see
appendix A for derivation)

ρ1
[
φ1,t +

1
2(φ

2
1,x + φ

2
1,z)+Uφ1,x −Ω1ψ1 + gη

]
= ρ2

[
φ2,t +

1
2(φ

2
2,x + φ

2
2,z)+Uφ2,x −Ω2ψ2 + gη

]
. (2.4)

Here, φ1 and φ2 are respectively the perturbation velocity potentials of fluids ‘1’ and
‘2’, while ψ1 and ψ2 are the same for the streamfunctions, which can be obtained
using the respective velocity potentials. The comma in the subscript denotes partial
derivative; for example, η1,x ≡ ∂η1/∂x. In the above equation, the terms Uφ1,x and
Uφ2,x are the ‘Doppler shift’ terms indicating that the interface is moving in a velocity
field U. The terms Ω1ψ1 and Ω2ψ2 appear due to the presence of the constant shears
Ω1 and Ω2 on either side of the interface. Rest all other terms are usual and appear
in the absence of velocity as well. Similarly, the kinematic boundary condition for the
same interface will be given by

η,t + (U + φ,x)η,x = φ,z. (2.5)

Here, the term Uη,x is the Doppler shift term. We will apply both kinematic and
dynamic boundary conditions to the surface and the interface in figure 1. The above
equations are applicable at the interface i.e. at z= h0 + η(x, t). More accurately, the
left-hand side of the dynamic boundary condition is evaluated just above the interface
z= h0 + η(x, t) whereas, the right-hand side is evaluated just below the interface. On
the other hand, for the kinematic boundary condition, there are two separate equations
– one above the interface and one below it. However, quite often in this paper, we
will use the Taylor expansion to evaluate the variables at the mean level i.e. z = h0.
In particular, the velocity U(z) just above the interface would be given as

U =U0 +Ω1η, (2.6)
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and just below the interface it will be

U =U0 +Ω2η, (2.7)

where U0 =U(h0).

2.1. Framework
Here we give a general framework that consists of a system of equations at O(ε)
and O(ε2), which is obtained using perturbation analysis and the method of multiple
scales for a periodic wave train. We have kept the system quite general so as to use
the system of equations for the purpose of wave triad interaction (see § 2.2) and Bragg
resonance (see § 2.3).

We consider a two-interface system with piecewise constant density and vorticity
in each layer, see figure 1. The velocity profile is continuous, but the derivative of
velocity may have a discontinuity at the density interface. The total depth of the
system is H and H = hu + hl. The fluid above the surface is assumed to be a zero
density fluid and R is the density ratio at the interface (R≡ ρu/ρl). The base velocity
profile is piecewise linear, and has the values U = {Uu,Ul,Ub} at z= {0,−hu,−hu −

hl} respectively. The vertical (z) axis points upwards, hence the gravity (g) is along
the negative z-direction. The elevations of the surface and the pycnocline from their
respective mean levels are ηu(x, t) and ηl(x, t). Similarly, the elevation of the bottom
topography is ηb(x) from its mean level at z=−hu − hl. As mentioned already, for a
piecewise linear base velocity profile perturbed by irrotational initial disturbances, the
vorticity generation is limited to the interfaces and the bulk flow remains irrotational.
This allows us to introduce the velocity potentials φu and φl respectively in the upper
and the lower layers. Hence, the continuity equation reduces to the Laplace equation

∇
2φu = 0 − hu + ηl < z<ηu, (2.8a)

∇
2φl = 0 − hu − hl + ηb < z<−hu + ηl. (2.8b)

The kinematic boundary conditions are

ηu,t + (U + φu,x)ηu,x = φu,z at z= ηu, (2.9a)
ηl,t + (U + φu,x)ηl,x = φu,z at z=−hu + ηl, (2.9b)
ηl,t + (U + φl,x)ηl,x = φl,z at z=−hu + ηl, (2.9c)
(U + φl,x)ηb,x = φl,z at z=−hu − hl + ηb. (2.9d)

Likewise, the dynamic boundary conditions are as follows:

φu,t +
1
2(φ

2
u,x + φ

2
u,z)+Uφu,x −Ωuψu + gηu = 0 at z= ηu, (2.9e)

ρu
[
φu,t +

1
2(φ

2
u,x + φ

2
u,z)+Uφu,x −Ωuψu + gηl

]
−ρl

[
φl,t +

1
2(φ

2
l,x + φ

2
l,z)+Uφl,x −Ωlψl + gηl

]
= 0 at z=−hu + ηl. (2.9f )

We are interested in obtaining the solutions up to the first order of nonlinearity.
Hence, we perform a perturbation expansion until O(ε2), where the expansion
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parameter ε measures the wave steepness. It is also assumed that the steepness
of the bottom topography is O(ε).

φu(x, z, t)= εφ(1)u (x, z, t, τ )+ ε2φ(2)u (x, z, t, τ ), (2.10a)

φl(x, z, t)= εφ(1)l (x, z, t, τ )+ ε2φ
(2)
l (x, z, t, τ ), (2.10b)

ηu(x, t)= εη(1)u (x, t, τ )+ ε2η(2)u (x, t, τ ), (2.10c)

ηl(x, t)= εη(1)l (x, t, τ )+ ε2η
(2)
l (x, t, τ ). (2.10d)

Here we have assumed that the potentials and elevations have a slow time scale
‘τ ’ associated with them such that τ = εt. The superscripts (1) and (2) respectively
denote the O(ε) and O(ε2) terms. Further, we expand the velocity potential φ and
the streamfunction ψ in a Taylor series about the respective mean surface/interface,
which at O(ε) gives the following set of equations:

φ(1)u,z − η
(1)
u,t −Uuη

(1)
u,x = 0 at z= 0, (2.11a)

φ(1)u,z − η
(1)
l,t −Ulη

(1)
l,x = 0 at z=−hu, (2.11b)

φ
(1)
l,z − η

(1)
l,t −Ulη

(1)
l,x = 0 at z=−hu, (2.11c)

φ(1)u,t +Uuφ
(1)
u,x −Ωuψ

(1)
u + gη(1)u = 0 at z= 0, (2.11d)

R[φ(1)u,t +Ulφ
(1)
u,x −Ωuψ

(1)
u + gη(1)l ] (2.11e)

−[φ
(1)
l,t +Ulφ

(1)
l,x −Ωlψ

(1)
l + gη(1)l ] = 0 at z=−hu, (2.11f )

φ
(1)
l,z = 0 at z=−hu − hl. (2.11g)

Additionally, we use the eigenfunction expansions with slowly varying amplitudes
satisfying the respective Laplace equations. Thus for j = {1, 2, . . .} and m = {1, 2},
where the subscript j denotes the jth wavenumber and the superscript (m) denotes the
order of nonlinearity, we get

φ
(m)
uj =

[
A(m)j (τ )

cosh kj(z+ hu)

cosh (kjhu)
+ B(m)j (τ )

sinh kjz
cosh (kjhu)

]
ei(kjx−ωjt) + c.c., (2.12a)

φ
(m)
lj =

[
C(m)

j (τ )
cosh kj(z+ hu + hl)

cosh (kjhl)
+D(m)

j (τ )
sinh kj(z+ hu + hl)

cosh (kjhl)

]
ei(kjx−ωjt) + c.c.,

(2.12b)

ψ
(m)
uj = i

[
A(m)j (τ )

sinh kj(z+ hu)

cosh (kjhu)
+ B(m)j (τ )

cosh kjz
cosh (kjhu)

]
ei(kjx−ωjt) + c.c., (2.12c)

ψ
(m)
lj = i

[
C(m)

j (τ )
sinh kj(z+ hu + hl)

cosh (kjhl)
+D(m)

j (τ )
cosh kj(z+ hu + hl)

cosh (kjhl)

]
ei(kjx−ωjt) + c.c.,

(2.12d)
η
(m)
uj = a(m)j (τ )ei(kjx−ωjt) + c.c., (2.12e)

η
(m)
lj = b(m)j (τ )ei(kjx−ωjt) + c.c., (2.12f )

where c.c. denotes complex conjugate. Substituting the above equations (2.12a)–
(2.12f ) in (2.11a)–(2.11g) at O(ε), we obtain a set of linear equations corresponding
to any given wavenumber kj at O(ε), the homogeneous part of which is

D(ωj, kj)x(1)j = 0. (2.13)
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Here, the vector x(1)j ≡[A
(1)
j ,B(1)j ,C(1)

j ,D(1)
j , a(1)j , b(1)j ]

†, and the matrix D(ωj, kj) is given
by

kj

coth(kjhu)

kj

cosh(kjhu)
0 0 iω{1}j 0

0 kj 0 0 0 iω{2}j

0 0
kj

coth(kjhl)
k 0 iω(2)j

−iω(1)j −
iΩu

coth (kjhu)
−

iΩu

cosh (kjhu)
0 0 g 0

−
iRω{2}j

cosh(kjhu)

iRω{2}j

coth(kjhu)
− iRΩu iω{2}j +

iΩl

coth kjhl

iω(2)j

coth kjhl
+ iΩl 0 g(R− 1)

0 0 0
kj

cosh kjhl
0 0



,

(2.14)

where ω{1}j = ωj −Uukj; ω
{2}
j = ωj −Ulkj. The dispersion relation of the above system

is obtained by setting the determinant of the above matrix to zero and is given by the
equation

det(D)(ωj, kj)= 0, (2.15)

where det(D)(ωj, kj) is the determinant of the matrix D(ωj, kj).
In addition to the homogeneous solution, we also have the particular solutions at

O(ε) due to the velocity difference between the bottom and the fluid above it. In
such a case, the time-independent surface elevation, capturing the non-homogeneity
introduced by the mean flow’s interaction with the bottom, is given by

η̂u =−
UuUbU2

l k6
b

cosh (kbhu) cosh2 (kbhl) det(D)(0, kb)
η̂b, (2.16)

and other coefficients, i.e. η̂l, A, B,C,D are given in appendix B.
At O(ε2), we obtain the following equations:

φ(2)u,z − η
(2)
u,t −Uuη

(2)
u,x = p1 + q1 at z= 0, (2.17a)

φ(2)u,z − η
(2)
l,t −Ulη

(2)
l,x = p2 + q2 at z=−hu, (2.17b)

φ
(2)
l,z − η

(2)
l,t −Ulη

(2)
l,x = p3 + q3 at z=−hu, (2.17c)

φ(2)u,t +Uuφ
(2)
u,x −Ωuψ

(2)
u + gη(2)u = p4 + q4 at z= 0, (2.17d)

[φ(2)u,t +Ulφ
(2)
u,x −Ωuψ

(2)
u + gη(2)l ]

−[φ
(2)
l,t +Ulφ

(2)
l,x −Ωlψ

(2)
l + gη(2)l ] = p5 + q5 at z=−hu, (2.17e)

φ
(2)
l,z = p6 + q6 at z=−hu − hl. (2.17f )

The right-hand side terms p1, p2, p3, p4, p5 and p6 are the products of two O(ε) terms
and for neatness, we have removed the superscript ‘(1)’ from the variables. They are
given as

p1 = ηu,x(φu,x +Ωuηu)− ηuφu,zz z= 0, (2.18a)
p2 = ηl,x(φu,x +Ωuηl)− ηlφu,zz z=−hu, (2.18b)
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p3 = ηl,x(φl,x +Ωlηl)− ηlφl,zz z=−hu, (2.18c)
p4 =−ηu(φu,tz +Uuφu,xz +Ωuφu,x)−

1
2

[
(φu,x)

2
+ (φu,z)

2
]
+Ωuηuψu,z z= 0,

(2.18d)
p5 = R

[
ηl(φu,tz +Ulφu,xz +Ωuφu,x)−

1
2

[
(φu,x)

2
+ (φu,z)

2
]
+Ωuηlψu,z

]
−
[
ηl(φl,tz +Ulφl,xz +Ωlφl,x)−

1
2

[
(φl,x)

2
+ (φl,z)

2
]
+Ωlηlψl,z

]
z=−hu,

(2.18e)
p6 = ηb,x(φl,x +Ωlηb)− ηbφl,zz z=−hu − hl. (2.18f )

Here, the right-hand side terms comprise of terms due to nonlinearity of the boundary
condition as well as due to Taylor expansion about the mean level. The right-hand side
terms q1, q2, q3, q4, q5 and q6 are the time derivatives of the O(ε) terms:

q1 = ηu,τ , (2.19a)
q2 = ηl,τ , (2.19b)
q3 = ηl,τ , (2.19c)

q4 =−φu,τ , (2.19d)
q5 =−Rφu,τ + φl,τ , (2.19e)

q6 = 0. (2.19f )

The set of equations obtained to this point are very general and works both for the
case of wave triad interaction and Bragg resonance. This is because until this point,
we have not made any assumption on the wavenumbers present in the system or if
those wavenumbers satisfy any particular resonance condition. Hence, we will be using
the above framework to obtain the analytical solutions for wave triad interaction in
§ 2.2 as well as Bragg resonance in § 2.3.

2.2. Analytical solution for wave triad interaction
We assume that initially at O(ε), the system has only three wavenumbers {k1, k2, k3}

and corresponding frequencies {ω1, ω2, ω3}, satisfying the resonance condition.
Without any loss of generality, the resonance condition is given by k1 = k2 + k3 and
ω1 =ω2 +ω3. The surface elevation expressed as a sum of these three modes reads

η(1)u (x, t, τ )= a(1)1 (τ )e
i(k1x−ω1t)

+ a(1)2 (τ )e
i(k2x−ω2t)

+ a(1)3 (τ )e
i(k3x−ω3t)

+ c.c. (2.20)

The other functions φ(1)u , φ
(1)
l , ψ

(1)
u , ψ

(1)
l and η

(1)
l can also be written in a similar

fashion. Substituting this in the equations at O(ε), we would obtain the following set
of linear equations:

D(ω1, k1)x(1)1 = 0; D(ω2, k2)x(1)2 = 0; D(ω3, k3)x(1)3 = 0. (2.21a−c)

The vector x(1)j ≡ [A
(1)
j , B(1)j , C(1)

j , D(1)
j , a(1)j , b(1)j ]

† and the matrix D(ω, k) are given in
§ 2.1. We further proceed to substitute (2.12a)–(2.12f ) in (2.17a)–(2.17f ) at O(ε2).
Here, the left-hand sides of the equations obtained at O(ε2) are similar to those
obtained at O(ε). On substitution, we collect the terms corresponding to each
wavenumber k1, k2 and k3 after using the resonance conditions k1 = k2 + k3 and
ω1 =ω2 +ω3. We obtain equations of the form

D(ω1, k1)x(2)1 = v1a(1)2 a(1)3 + r1a(1)1,τ , (2.22a)
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D(ω2, k2)x(2)2 = v2ā(1)3 a(1)1 + r2a(1)2,τ , (2.22b)

D(ω3, k3)x(2)3 = v3a(1)1 ā(1)2 + r3a(1)3,τ , (2.22c)

where overbar denotes complex conjugate. The vector x(2)j ≡ [A
(2)
j , B(2)j ,C(2)

j ,D(2)
j , a(2)j ,

b(2)j ]
† and the terms of the vector vj and rj are given in appendix B. The vector vj

comes from the coefficient of exp [i(kjx−ωjt)] present in the product of two O(ε)
terms. Similarly, the vector rj comes from the time derivatives of O(ε) terms. It might
be noted here that the product terms contain combinations of various terms such as
A(1)i a(1)j , B(1)i a(1)j , C(1)

i C(1)
j etc.; however, we have converted each of these products

into the product a(1)i a(1)j , i.e. in terms of products of amplitude of surface elevation
by using the null space of the respective matrix D(ωj, kj). Similarly, the slow time
derivatives are also converted in terms of the slow time derivative of the surface
elevations, i.e. a(1)j,τ .

Using the Fredholm alternative in the context of the sets of (2.21) and (2.22), we
deduce that the solutions for x(2)i exist if and only if the vectors vi are orthogonal
to the null space of the transpose of the respective matrices D(ωj, kj). Denoting the
null space of the transpose of the matrix D(ωj, kj) by nj, we finally get a set of three
equations:

n1 · (v1a(1)2 a(1)3 + r1a(1)1,τ )= 0, (2.23a)

n2 · (v2ā(1)3 a(1)1 + r2a(1)2,τ )= 0, (2.23b)

n3 · (v3a(1)1 ā(1)2 + r3a(1)3,τ )= 0, (2.23c)

which finally gets reduced to

a(1)1,τ = β1a(1)2 a(1)3 ; a(1)2,τ = β2ā(1)3 a(1)1 ; a(1)3,τ = β3a(1)1 ā(1)2 , (2.24a−c)

where
βj =−

nj · vj

nj · rj
. (2.25)

2.3. Analytical solution for Bragg resonance
The equations for the case of Bragg resonance can also be obtained using the same
framework as in § 2.2. However, in the case of Bragg resonance, only two propagating
waves are involved, the third one is the bottom ripple. We assume the participating
waves to have the wavenumbers {k1, k2} with frequencies {ω1, ω2} and the bottom to
have wavenumber kb. Substituting the normal modes, we get a set of linear equations
at O(ε):

D(ω1, k1)x(1)1 = 0; D(ω2, k2)x(1)2 = 0. (2.26a,b)

Here the vector x(1)j ≡ [A
(1)
j , B(1)j , C(1)

j , D(1)
j , a(1)j , b(1)j ]

† and the matrix D(ω, k) are the
same as those in § 2.2. We assume that at O(ε), the surface consists of only two
modes, k1 and k2. Hence we write η(1)u (x, t) as

η(1)u (x, t, τ )= a(1)1 (τ )ei(k1x−ω1t)
+ a(1)2 (τ )ei(k2x−ω2t)

+ c.c., (2.27)
ηb(x)= abeik1x

+ c.c. (2.28)
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The other functions φ(1)u , φ
(1)
l , ψ

(1)
u , ψ

(1)
l and η(1)l containing the wavenumbers ‘k1’ and

‘k2’ can also be written similarly. Substituting this in the equations at O(ε), we obtain
a set of linear equations

D(ω1, k1)x(1)1 = 0; D(ω2, k2)x(1)2 = 0. (2.29a,b)

The vector x(1)j ≡ [A
(1)
j , B(1)j , C(1)

j ,D(1)
j , a(1)j , b(1)j ]

† and the matrix D(ω, k) are the same
as those in § 2.2. We further proceed to substitute (2.12a)–(2.12f ) in (2.17a)–(2.17f )
at O(ε2). Assuming k1 + k2 = kb and ω1 +ω2 = 0, we obtain

D(ω1, k1)x(2)1 = v1abā(1)2 + r1a(1)1,τ , (2.30)

D(ω2, k2)x(2)2 = v2abā(1)1 + r2a(1)2,τ . (2.31)

Denoting the null space of the transpose of D(kj, ωj) by nj and using the Fredholm
alternative, we get the following set of equations:

a(1)1,τ = β1abā(1)2 ; a(1)2,τ = β2abā(1)1 , (2.32a,b)

where
βj =−

nj · vj

nj · rj
. (2.33)

Furthermore, when k1 − k2 = kb and ω1 −ω2 = 0, we get

a(1)1,τ = β1aba(1)2 ; a(1)2,τ = β2āba(1)1 , (2.34a,b)

in which βj remains the same as before.

3. Bragg resonance in the presence of a velocity field
In a single-layered flow in the absence of a velocity field, there can be only one

condition for Bragg resonance – when the wavenumber of the bottom is twice the
wavenumber of the surface wave i.e. kb= 2ks. In such a case, an oppositely travelling
surface mode having the same frequency as that of the incident wave is generated
by the resonant forcing of the bottom. However, in a two-layered flow, several
other resonant pairs are possible (Alam et al. 2009a). As mentioned previously,
in the presence of a pycnocline, there exist four different modes of propagation –
two oppositely travelling surface (or external) modes and two oppositely travelling
interfacial (or internal) modes. Any of these modes, depending on the wavenumber of
the bottom ripples, may resonate with any other mode in the system, subject to the
fulfilment of the resonance conditions. In the absence of a velocity field, there is an
inherent symmetry in the weakly nonlinear wave interaction owing to the symmetric
(or biquadratic) nature of the dispersion relation. This means that if a rightward
travelling surface mode of wavenumber ki interacts with the bottom of wavenumber
kb to resonantly generate a leftward travelling interfacial mode of wavenumber kr,
then a leftward travelling surface mode of wavenumber ki will also interact with
the same bottom of wavenumber kb to resonantly generate a rightward travelling
interfacial mode of wavenumber kr. In the presence of a velocity field, however, this
‘right–left symmetry’ of the interaction is destroyed.

The presence of a velocity field may also change the intrinsic frequency of the
waves. It may also cause a relative Doppler shift between the interfaces. When there
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FIGURE 2. Dispersion relation for various velocity profiles with hu/hl = 1 and R= 0.90.
(a) U∗u = U∗l = U∗b = 0.2, (b) U∗u = U∗l = 0.2, U∗b = 0, (c) U∗u = 0.2, U∗l = U∗b = 0 and
(d) U∗u = 0.2, U∗l =−0.2, U∗b = 0.2; SG± denotes surface or external mode, IG± denotes
interfacial or internal mode and the + and − signs respectively imply the direction of
wave propagation.

is a uniform flow (case 1 of figure 1), there is neither a change in the intrinsic
frequency of the waves nor is there a relative Doppler shift between the surface and
the interface. However, the bottom ripples are Doppler shifted with respect to the
surface and the interface. The dispersion curves for this case has been plotted in
figure 2(a) in solid lines. In the dotted lines, we have plotted the dispersion curves
without any velocity field. On the vertical axis is the non-dimensionalised frequency
(ω∗ ≡ ω/

√
g/H) and on the horizontal axis is the non-dimensional wavenumber

kH. The non-dimensionalised velocity is U∗ ≡ U/
√

gH, where H = hu + hl. All
the branches of Doppler shifted dispersion curves are simply U∗kH away from the
respective branches without the velocity field.

Figure 2(b) shows the dispersion curve for the case when the shear is in the lower
layer only (case 2 of figure 1). Thus the Doppler shift component is the same for
both external and internal modes, but the only way this differs from case 1 is by the
presence of shear in the lower layer, which has changed the intrinsic frequencies of
both external and internal modes.

For the case of shear only in the upper layer (case 3 of figure 1), instead of
the pycnocline, the surface undergoes a Doppler shift. Because of shear jump, the
intrinsic frequencies of both the branches change. It can be seen from the dispersion
curve (figure 2c) that the branches SG+ and SG− are highly non-symmetrical due to
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FIGURE 3. (a) Different combinations of kr on SG− such that ki is on SG+, performed for
various values of Fr≡Uu/

√
gH for the case of shear in the lower layer. Here R=0.95 and

hu/hl= 1/3. For solid lines, kb= ki+ kr but for dashed lines, kb= |ki− kr|. (b) Dispersion
relations for the same case for three values of Fr. Here solid lines represent SG+ modes
and dashed lines represent SG−.

presence of the velocity Uu at the surface. There is a small change in the intrinsic
frequency as well, however, it is not evident from the dispersion curves.

In figure 2(d) we have plotted the dispersion curve for the case when both the layers
have shear (case 4 of figure 1). For this case, we have assumed the shear to be positive
in the upper layer and negative in the lower layer. Thus, the external mode is Doppler
shifted positively whereas the internal mode is negatively Doppler shifted.

3.1. Shear in the lower layer
Here, we analyse the case when shear is present only in the lower layer and the
local velocity at the bottom is zero (case 2 of figure 1). Therefore, the surface
modes and the interfacial modes are Doppler shifted by an equal amount with
respect to the bottom ripple. Presence of shear will also result in a change in the
intrinsic frequencies of the waves. For the case of shear in the lower layer, firstly we
investigate the triads formed by two surface modes, i.e. SG+ and SG−. We have taken
the incident wave ki on SG+ and the resonant wave kr on SG−. Changing the Froude
number changes the resonance condition, as is evident from figure 3(a). As mentioned
earlier, in the absence of shear, all the Bragg resonance triads having ki on the SG+
branch will resonate the waves on the SG− branch having kr = ki. This corresponds
to the straight line labelled Fr = 0.0 in figure 3(a). Increasing Fr (≡ Uu/

√
gH) will

mean that the surface will be positively Doppler shifted with respect to the bottom
ripples. For any given positive velocity, at some value of k, the dispersion curve SG−
is bound to cross the k-axis; see figure 3(b). However, while plotting, we have kept
the values of k restricted because for higher values of k, even though the resonance
condition is satisfied, the rate of energy exchange falls off because the waves are
unable to ‘feel’ the bottom. We see that for Fr= 0.2, the SG− branch shifts upwards.
This is naturally reflected in the change in the resonance condition in figure 3(b), in
which we have plotted the two branches of the dispersion relation. (The dispersion
relation is a fourth-order polynomial in ω but we have plotted only two branches
on which the resonance is being studied, i.e. SG+ and SG− in this case.) If Fr is
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further increased, then for a given ki on SG+, there can be up to three values of kr
on SG+ which would form the triad. This is the reason that for Fr = 0.6 curve in
figure 3, for a single kiH, there exist 3 values of krH for which resonance condition
is met. Two of these triads will be formed if the bottom’s wavenumber is kb= ki+ kr
(shown by the solid line). However, the third kr would lie on the part of SG− for
which ω > 0 and for such a triad (shown in broken lines in figure 3a for Fr = 0.6),
the bottom’s wavenumber would be kr − ki. We note here in passing that these triads
represented by the broken lines (in figure 3a, not in 3b) are not ‘usual’ triads but are
‘explosive’ triads. In such triads, both the incident wave and the resonant wave grow
simultaneously, while the total energy of the system still remains conserved. This is
due to the existence of negative energy waves (Cairns 1979). These ‘explosive’ triads
have been explored by McHugh (1992), for capillary–gravity waves, as well as by
the authors of this paper (Raj & Guha 2018).

Further, in figure 3(b) we have also plotted the change in the dispersion curves of
SG− and SG+ for Fr= (0, 0.2, 0.6) for kH< 4. It can be seen that within this window
of kH, for a given ωi on SG+, there can be only one ki (lines parallel to the k-axis
i.e. ω=±ω0 intersects any given SG+ at exactly one point). But for a given |ωr| on
SG−, for Fr = 0.6, there can be three values of kr satisfying the dispersion relation,
two values are negative and one positive (lines parallel to the k-axis i.e. ω=±ω0 may
intersect any given SG− at either one point or at three points).

Although we have discussed the modification in the resonance condition for a
positive Fr, a very similar thing happens for a negative Fr. In figure 3, whereas
for a positive Fr, there may exist up to three kr on SG− for a given ki on SG+,
for a negative Fr (see Fr = 0.6), three different ki on SG+ may resonate the same
wavenumber kr on SG− (see, Fr =−0.6). Because the dispersion curves in question,
i.e. SG+ and SG− are symmetric for Fr = 0, the symmetry is also maintained for a
positive and a negative Fr.

It might be noticed that the value of Fr needed for any appreciable change in the
resonance condition varies from moderate to large. The reason for this is that for
surface gravity waves, the intrinsic frequency is quite large and to Doppler shift the
intrinsic frequency, a local velocity of similar magnitude is needed. For example, to
get three possible resonant waves having krH< 4 for a given kiH, a Froude number of
approximately 0.5 is needed. However, to Doppler shift the interfacial gravity waves
on the pycnocline, a significantly smaller Froude number is sufficient because the
intrinsic phase speeds of the interfacial waves are significantly low.

We move on to the incident/resonant wave pairs formed by two interfacial modes,
i.e. by the waves on IG+ and IG− for the case of shear in the upper layer (case 3 of
figure 1). The pycnocline is not only Doppler shifted with respect to the bottom, but
it also has a discontinuity in shear across it. This signifies the presence of vorticity–
gravity waves at the pycnocline and a significant change in the intrinsic frequency
as well. A figure similar to the previous case showing combinations of ki (on IG+)
and kr (on IG−) has been plotted in figure 4(a) restricting the non-dimensionalised
wavenumber to 5. Naturally, at Fr= 0, the resonance condition is symmetric but the
resonance condition changes greatly even for a small amount of mean flow. As we
increase the Fr, for a small ki on IG+, the resonance condition is met by a larger kr
on IG− (see curves labelled Fr = 0.01, 0.02 of figure 4a). On increasing Fr further,
again we see the existence of three kr values for a given ki, similar to the resonance
between SG+ and SG− (Fr = 0.08, figure 4a,b). However, if we further keep on
increasing Fr, then the complete IG− curve will become positive (shown in figure 4b,
Fr = 0.2) and in such a case, only one resonant wave for any given ki on SG− will
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FIGURE 4. (a) Different combinations of kr on IG− such that ki is on IG+, for various
values of Fr when shear is in the lower layer. Here R= 0.95 and hu/hl = 1/3. For solid
lines, kb = ki + kr and for dashed lines, kb = |ki − kr|. (b) Dispersion relations for the
same case for three values of Fr. Here solid lines represent IG+ modes and dashed lines
represent IG−.

exist (dashed line labelled Fr = 0.2 in figure 4a). The dashed line implies that the
wavenumber of the bottom ripple for such a triad is kb= ki− kr unlike the usual case
kb= ki+ kr for the solid lines in figure 4. Again, similar to the previous case, the triads
marked by the dashed lines are the explosive triads. The positive and a negative Fr
result in symmetric cases as shown in figure 4.

We put this in the context of a real ocean of depth H= 100 m having a pycnocline
at hu = 25 m from the surface. These data are similar to those used by Alam et al.
(2009b). In the ‘no-flow’ situation, an interfacial wave having a wavelength λi∼200 m
will resonate an oppositely travelling wave of wavelength λr∼ 200 m. However, in the
presence of a small velocity of Uu=Ul= 0.31 m s−1 opposite to the direction of the
incident wave, the resonant wave would have a wavelength λr ∼ 140 m.

The third sub-case for the case of shear in the upper layer is the resonant interaction
between a surface and interfacial mode having opposite intrinsic frequency. This
means that the incident/resonant pair is either IG+/SG− or IG−/SG+. Without a
loss of generality, we will discuss only the IG+/SG− pair; see figure 5(a,b). The
results about the other pair can be obtained in a straightforward manner, simply by
changing the sign of Fr from positive to negative and vice versa. What matters is
that whether the sign of mean flow and that of surface/interfacial waves are in the
same direction or the opposite. The positive shear in this particular case will imply
that the velocity at the surface/pycnocline is in the direction of the propagation of
the interfacial wave IG+. Therefore, increasing Fr will lead to an increase in the
frequency of IG+ but a non-monotonic change in the frequency of the SG− mode, as
shown in figure 5(b). Even for a small value of shear, the effect on the speed of IG+
is significant but SG− is relatively less affected. However, for a large value of Fr,
there may exist multiple values of kr for a given ki as can be seen from figure 5(a),
Fr= 0.3, 0.4, 0.5, 0.6. The reason is simply a non-monotonic behaviour of frequency
of SG− with respect to the wavenumber as can be seen from figure 5(b). For a
higher value of Fr, the frequency of SG− becomes positive and the triads formed by
the positive part of SG− are shown in dashed lines in figure 5(a). For these triads
(again these triads are explosive), the bottom’s wavenumber is kr − ki whereas for
triads marked by solid line, the bottom’s wavenumber is kr + ki.
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FIGURE 5. (a) Different combinations of kr on SG− such that ki is on IG+, for various
positive Fr values when shear is in the lower layer. Here R= 0.95 and hu/hl = 1/3. For
solid lines, kb= ki+ kr but for dashed lines, kb= |ki− kr|. (b) Dispersion relations for the
same case for different increasingly positive Fr. Here solid lines represent IG+ modes and
dashed lines represent SG−.
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FIGURE 6. (a) Different combinations of kr on SG− such that ki is on IG+, for various
negative Fr values when shear is in the lower layer. Here R= 0.95 and hu/hl = 1/3. For
solid lines, kb= ki+ kr but for dashed lines, kb= |ki− kr|. (b) Dispersion relations for the
same case for different negative Fr. Direction of arrows imply increasingly negative Fr.
Here solid lines represent IG+ modes and dashed lines represent SG−.

If the Froude number is negative (see figure 6a,b), the frequency of SG− increases
monotonically but that of IG+ may become non-monotonic; shown in figure 6(b)
for the case Fr = −0.08. Because the frequency of SG− plotted in figure 6(b) is
restricted, not much difference in the dispersion curves is obtained. For a higher Fr,
the frequency changes sign within the chosen limit of kH = 4 and becomes negative
(Fr=−0.1). For a further increase in the velocity, the frequency becomes completely
negative for IG− (Fr=−0.2). This change in the frequency is reflected in the change
in the resonance condition and the change can be visualised in figure 6(a). For Fr=
−0.01,−0.02,−0.04, for a single kr, only one ki< 4 exists but for higher Fr, a single
kr maybe resonant by multiple ki (Fr = −0.08, −0.1). For Fr = −0.1, the bottom’s
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FIGURE 7. (a) Different combinations of kr on SG+ such that ki is on IG+ for various
values of positive Fr and for low values of negative Fr for the case of shear in the lower
layer; R= 0.95, hu/hl= 1/3. For solid lines, kb= |ki− kr| and for dashed lines, kb= ki+ kr.
(b) Dispersion relation for positive Fr. Here solid lines represent IG+ modes and dashed
lines represent SG+.

wavenumber is ki+ kr for the solid line part in figure 6(a) and ki− kr for the dashed
line part i.e. the explosive triads.

Finally, we deal with the case when the incident/resonant modes are in the same
direction i.e. IG+/SG+ or IG−/SG−. Again, without a loss of generality, we study
only the resonance between IG+/SG+ modes and in this case, positive Fr will imply
a flow in the same direction of the waves; see figure 7(a,b). Because all the involved
waves and the mean flow are in the same direction, there is no question of sign
changing of the frequency of any wave. The frequencies of all the waves increases
progressively with increasing Fr (figure 7b). In figure 7(a,b), however, we have plotted
both the positive Fr and the negative Fr having low magnitudes. Increasing Fr will
mean that for a given ki, a higher kr will be needed for resonance which can be seen
from figure 7(a,b) (positive Fr).

For a negative Fr (see figure 8a,b), the dispersion relation is plotted in figure 8(b).
For Fr=−0.1, SG+ is positive throughout but a part of IG+ becomes negative. For
a higher negative Fr (say −0.3), SG+ remains positive, but IG+ becomes completely
negative. For a further negative Fr, IG+, remains negative and a part of SG+ also
becomes negative. The effect on the resonance conditions for the case of small
negative Fr (up to −0.25) has been plotted in figure 7(a) and for higher negative Fr
has been plotted in figure 8(a).

3.2. Shear in the upper layer
As we have mentioned earlier, shear in the upper layer causes a relative Doppler shift
between the surface and the pycnocline, as well as the bottom ripple. Further, the
change in the intrinsic frequencies of the surface modes will be minimal compared
to the change in the intrinsic frequencies of the interfacial modes. In § 3.1, we have
performed a detailed study on how the Doppler shift changes the resonance conditions.
Here we focus on the case when the intrinsic frequency of the waves changes, and
because the intrinsic frequencies of the interfacial waves are more prone to change,
the case of substantial interest is the resonant interaction between the IG+ and IG−
modes. Since shear is only in the upper layer and the pycnocline has no local base
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FIGURE 8. (a) Different combinations of kr on SG+ such that ki is on IG+ for high values
of negative Fr for the case of shear in the lower layer. Here R = 0.95 and hu/hl = 1/3.
For solid lines, kb= |ki− kr| and for dashed lines, kb= ki+ kr. (b) Dispersion relation for
negative Fr. Here solid lines represent IG+ modes and dashed lines represent SG+.
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FIGURE 9. (a) Different combinations of kr on IG− such that ki is on IG+, for various
values of Fr≡Uu/

√
gH when shear is in the upper layer. Here Ul=Ub= 0, R= 0.95 and

hu/hl = 1/3. (b) Dispersion relations for the same case for three values of Fr.

velocity, there is no role of the Doppler shift. However, when shear in the upper layer
is positive (Fr> 0), IG+ is sped up but the IG− mode is slowed down (we note that
the wave at the interface is a vorticity–gravity wave). Although for the Fr = 0 case,
the resonant wave is kr = ki, the conditions change when Fr 6= 0. For Fr> 0, we have
kr < ki, and for Fr< 0, we get kr > ki. The change in the resonance condition is shown
in figure 9(a) and the dispersion relation for Fr> 0 has been plotted in figure 9(b).

4. Wave triad in the presence of a base velocity field
4.1. Uniform flow and consequences of shear

Wave triad interaction is an energy exchange between waves on the surface and the
pycnocline and there is no direct involvement of bottom topography. Therefore, a
velocity field with a uniform flow (figure 1 case 1) will Doppler shift the waves
on the surface and the pycnocline by the same velocity U and there will not be
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any consequences for the resonance condition. To illustrate this, we take three waves
having wavenumbers (k1, k2, k3) and corresponding frequencies (ω1, ω2, ω3) such that
k1 + k2 − k3 = 0 but ω1 + ω2 − ω3 6= 0. In the presence of a constant base velocity
U, every frequency ωj ( j = 1, 2, 3) would be Doppler shifted by an amount Ukj. In
such a case, however, the intrinsic frequencies of the waves will undergo no change.
Therefore, the modified frequency condition would be

(ω1 +Uk1)+ (ω2 +Uk2)− (ω3 +Uk3)

=ω1 +ω2 −ω3 +U(k1 + k2 − k3)

=ω1 +ω2 −ω3

6= 0. (4.1)

Thus, a mere Doppler shift by the same velocity U would not change the resonance
condition for the wave triad interaction. However, if the surface and the interface were
to be Doppler shifted by different amounts, there can be changes in the resonance
conditions and naturally the three waves satisfying the resonance condition in the
absence of shear might not do so in the presence of a shear. Alternatively, three waves
not satisfying a resonance condition might do so in the presence of velocity shear.
This can be elucidated using a simple example: let k1+ k2− k3= 0 but ω1+ω2−ω3 6=

0, i.e. the waves do not satisfy the resonant condition in the absence of a base velocity
shear. Let us assume that the waves 1 and 2 are at the surface, which now has a
base velocity Uu, while wave 3 is at the interface, which travels with a velocity Ul
(different from Uu because of shear). Then, the frequency condition reads

(ω′1 +Uuk1)+ (ω
′

2 +Uuk2)− (ω
′

3 +Ulk3)

=ω′1 +ω
′

2 −ω
′

3 +Uu(k1 + k2)−Ulk3

= 0 iff ω′1 +ω
′

2 −ω
′

3 = k3(Ul −Uu). (4.2)

The primes in the frequencies denote that the intrinsic frequencies will be modified
due to shear.

4.2. Shear in the lower layer
When shear is present only in the lower layer, there is no Doppler shift between the
two waves and the only effect of the shear is felt in modifying the intrinsic frequencies
of the waves. Although the shear jump is only at the pycnocline, the effect of it at
lower wavenumbers would be felt in the surface mode as well. In figure 10(a), we
have shown the change in the resonance condition for three interacting waves having
k1, k2 and k3 on IG−, SG− and IG+ respectively. The Froude numbers are as follows:
Fr= (0.0, 0.2, 0.4, 0.6). As the shear is increased in the positive direction, for a given
k1 on IG−, k2 on SG− decreases but k3 on IG+ increases. The figure reveals that the
change is not as significant as that in the Bragg resonance case even at high values
of shear.

4.3. Shear in the upper layer
The presence of a shear in the upper layer modifies the flow in two ways. Firstly,
there now exists a jump in base shear both at the surface and at the interface,
which changes the intrinsic frequencies of all four modes. Secondly, the presence
of shear automatically means that the local mean velocities at the surface and at
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FIGURE 10. Different combinations of k1, k2 and k3 on IG−, SG−, IG+ respectively
forming a resonance triad for (a) shear in bottom layer only; U∗u =U∗l = (0.0, 0.2, 0.4, 0.6),
U∗b = 0, R = 0.95 and hu/hl = 1/3. (b) Shear in top layer only; U∗u = (0.0, 0.2, 0.4, 0.6),
U∗l =U∗b = 0, R= 0.95 and hu/hl = 1/3.

the pycnocline are different from each other, which implies a relative Doppler shift
between the two. Although such a situation may give rise to shear instabilities, such
shear instabilities tend to occur at higher wavenumbers which have very low growth
rates. In figure 10(b), we have shown the resonance condition for three interacting
waves having k1, k2 and k3 respectively on IG−, SG− and IG+. Yet again, the
behaviour is similar to that of the previous case but the change in the resonance
condition is more prominent here due to the Doppler shifting of the surface and the
interface.

5. Numerical method

Higher-order spectral (HOS) method is a highly accurate and efficient numerical
method developed by Dommermuth & Yue (1987) for studying wave propagation
and wave–topography interaction for a single-layered fluid. Among other things, they
studied the collision of two wave packets. The method was further expanded to a
two-layered density stratified fluid by Alam et al. (2009b) to study various cases of
Bragg resonance. Although in § 2 we have derived the evolution equations analytically
assuming the resonance conditions are exactly satisfied, the HOS code allows us to
simulate the near-resonance conditions as well. Furthermore, the study of multiple
resonances, which would be a tedious analytical exercise, becomes simpler on using
the HOS method. Here our objective is to extend the versatile HOS method to
incorporate a piecewise linear velocity field. The base velocity field thus introduced
will be continuous but its z-derivative might be discontinuous at the interfaces, thus
giving rise to vorticity–gravity waves. In our formulation, we specify the values of
the base velocities at h = {0, −hu, −hu − hl} as U = {Uu, Ul, Ub}, using which we
get various sub-cases. For Uu = Ul = Ub = 0, our system will reduce to the system
studied in Alam et al. (2009b), i.e. having four pure gravity waves with no shear.
Furthermore, setting Uu=Ul=Ub 6= 0 would lead to gravity waves whose frequencies
are simply Doppler shifted with respect to the bottom.

In the HOS method, we solve the evolution of the surface and interface elevations
and velocity potentials associated with them. The rest of the variables in the fluid
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bulk are solved analytically using the boundary conditions. Since the major part of
the computation is limited to the surface and the interface, the HOS method is highly
computationally efficient. We proceed similar to what has been described in Alam
et al. (2009b), using similar notations. The continuity equations read

∇
2φu = 0 − hu + ηl < z<ηu, (5.1a)

∇
2φl = 0 − hu − hl + ηb < z<−hu + ηl. (5.1b)

The kinematic boundary conditions are as follows:

ηu,t + (U + φu,x)ηu,x = φu,z at z= ηu, (5.2a)
ηl,t + (U + φu,x)ηl,x = φu,z at z=−hu + ηl, (5.2b)
ηl,t + (U + φl,x)ηl,x = φl,z at z=−hu + ηl, (5.2c)
(U + φl,x)ηb,x = φl,z at z=−hu − hl + ηb. (5.2d)

Likewise, for the dynamic boundary conditions, we have

φu,t +
1
2(φ

2
u,x + φ

2
u,z)+Uφu,x −Ωuψu + gηu = 0 at z= ηu, (5.3a)

ρu
[
φu,t +

1
2(φ

2
u,x + φ

2
u,z)+Uφu,x −Ωuψu + gηl

]
− ρl

[
φl,t +

1
2(φ

2
l,x + φ

2
l,z)+Uφl,x −Ωlψl + gηl

]
= 0 at z=−hu + ηl. (5.3b)

The governing equations for the potential are simply the Laplace equations, which
cannot accommodate time evolution, by itself. However, there is a time evolution
equation for the potentials at the surface and the interface, which are given by the
dynamic boundary conditions. We define a surface potential and an interface potential,
whose evolution can be tracked using the two dynamic boundary conditions:

φS(x, t)≡ φu(x, ηu(x, t), t), (5.4a)
φI

u(x, t)≡ φu(x,−hu + ηl(x, t), t), (5.4b)
φI

l (x, t)≡ φl(x,−hu + ηl(x, t), t). (5.4c)

Further, we define a new potential at the interface using the above defined potentials:

φI(x, t)≡ φI
l (x, t)− RφI

u(x, t). (5.5)

Additionally, we define surface and interface streamfunctions

ψS(x, t)≡ψu(x, ηu(x, t), t), (5.6a)
ψ I

u(x, t)≡ψu(x,−hu + ηl(x, t), t), (5.6b)
ψ I

l (x, t)≡ψl(x,−hu + ηl(x, t), t). (5.6c)

Using the kinematic and dynamic boundary conditions, we obtain the evolution
equations for the surface potential, φS, the interface potential, φI , the surface elevation,
ηu, and the interface elevation, ηl:

ηu,t =−ηu,x[φ
S
u,x +Uu +Ωuηu] + (1+ η2

u,x)φu,z at z= ηu, (5.7a)

ηl,t =−ηl,x[φ
I
l,x +Ul +Ωlηl] + (1+ η2

l,x)φl,z at z=−hu + ηl, (5.7b)
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φS
,t =−gηu −

1
2(φ

S
u,x)

2
+

1
2(1+ η

2
u,x)φ

2
u,z − (Uu +Ωuηu)φ

S
u,x +Ωuψ

S at z= ηu, (5.7c)

φI
,t =

1
2(R(φ

I
u,x)

2
− (φI

l,x)
2)+ 1

2(1+ η
2
l,x)(φ

2
l,z − Rφ2

u,z)− gηl(1− R)+Ul(RφI
u,x − φ

I
l,x)

−RΩuψ
I
u +Ωlψ

I
l + ηl(RΩuφ

I
u,x −Ωlφ

I
l,x) at z=−hu + ηl. (5.7d)

In the above equations, we have substituted the Taylor expansion for U (see
(2.6) and (2.7)). The velocity potential and the streamfunctions are expanded in a
perturbation series:

φu/l(x, z, t)=
M∑

m=1

φ
(m)
u/l (x, z, t); ψu/l(x, z, t)=

M∑
m=1

ψ
(m)
u/l (x, z, t). (5.8a,b)

At every order m, we further write the velocity potentials as a sum of basis
functions (Fourier basis function in this case). Assuming solutions to be periodic
in the x-direction, we express the solutions as a discrete Fourier series. (It is
necessary to filter out the high wavenumbers by applying a low pass filter, so that
the amplification of round off errors at higher wavenumbers does not happen; see
§ 3.2.2 of Dommermuth & Yue (1987).) Furthermore, we use the Laplace equations
to find the function form of the solutions, and we finally get

φ(m)u =

N−1∑
n=−N

[
A(m)n (t)

cosh kn(z+ hu)

cosh (knhu)
+ B(m)n (t)

sinh (knz)
cosh (knhu)

]
eiknx, (5.9)

φ
(m)
l =

N−1∑
n=−N

[
C(m)

n (t)
cosh kn(z+ hu + hl)

cosh (knhl)
+D(m)

n (t)
sinh kn(z+ hu + hl)

cosh (knhl)

]
eiknx. (5.10)

However, it would not be convenient to directly substitute (5.9) and (5.10) in the
boundary conditions to obtain the unknown coefficients because at the surface and the
interface, z will have a dependence on x. Hence, we expand the surface and interface
potentials as a Taylor series about the respective mean level, so as to eliminate the
implicit x-dependence of the eigenfunctions:

φS(x, t)=
M∑

m=1

φ(m)u (x, ηu, t)=
M∑

m=1

M−m∑
k=0

ηk
u

k!
∂k

∂zk
φ(m)u (x, z, t)

∣∣∣∣∣
z=0

. (5.11)

The above equation can be written as a sequence of Dirichlet boundary conditions at
each order m. Here, the boundary conditions at each order depend on the product of
the terms which have already been found out at the leading orders, therefore making
the problem effectively linear at every order m. Further details on the derivation of
the boundary conditions can be found in appendix B. We have

φ(m)u (x, 0, t)= f (m)u , (5.12)

where

f (1)u = φ
S, (5.13)

f (m)u =−

m−1∑
k=1

ηk
u

k!
∂k

∂zk
φ(m−k)

u (x, z, t)

∣∣∣∣∣
z=0

. (5.14)
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Similarly, for the interface we have a similar sequence of Dirichlet boundary
conditions:

Φ(m)(x,−hu, t)= f (m)l1 , (5.15)

where

f (1)l1 = φ
I, (5.16)

f (m)l1 =−

m−1∑
k=1

ηk
l

k!
∂k

∂zk
Φ(m−k)(x, z, t)

∣∣∣∣∣
z=−hu

. (5.17)

Here we have defined Φ(x, z, t)≡ φl(x, z, t)− Rφu(x, z, t). As for the third boundary
condition, we write

ϕ,z(x, z, t)= ηl,xϕ,x(x, z, t)+ ηlηl,x(Ωu −Ωl) at z=−hu + ηl, (5.18)

with ϕ(x, z, t)≡ φu(x, z, t)− φl(x, z, t). Using the Taylor expansion of ϕ(x, z, t) about
the mean interface level along with the Laplace equation, we finally get a sequence
of Neumann boundary conditions:

ϕ(m),z (x,−hl, t)= f (m)l2 , (5.19)

where

f (1)l2 = 0, (5.20)

f (2)l2 =
∂

∂x
[ηlϕ

(1)
,x (x, z, t)|z=−hu] + ηlηl,x(Ωu −Ωl) (5.21)

f (m)l2 =

m−1∑
k=1

∂

∂x

[
ηk

l

k!
∂k−1

∂zk−1
ϕ(m−k)
,x (x, z, t)

∣∣∣∣
z=−hu

]
. (5.22)

Finally, for the bottom boundary condition, we have a similar impenetrability boundary
condition:

φ
(m)
l,z (x,−hu − hl, t)= f (m)b , (5.23)

where

f (1)b =Ubηb,x, (5.24)

f (2)b =
∂

∂x
[ηbφ

(1)
l,x (x, z, t)|z=−hu−hl] + ηbηb,xΩl (5.25)

f (m)b =

m−1∑
k=1

∂

∂x

[
ηk

b

k!
∂k−1

∂zk−1
φ
(m−k)
l,x (x, z, t)

∣∣∣∣
z=−hu−hl

]
. (5.26)

Using the four boundary conditions, we obtain the value of unknown coefficients An,
Bn, Cn and Dn at every order m. Now we have a full solution of φ(m)u and φ

(m)
l at

the order m. At the next order m + 1, the functions fu, fl1, fl2, fb can be evaluated
by using the velocity potentials and their derivatives, which were already found out
at the previous order m. Again the boundary value problem at the order m + 1 can
be solved, and in this way we can proceed further to obtain φ(m)u and φ

(m)
l at each

order. It is interesting to note here that the all the above four boundary conditions –
(5.12), (5.15), (5.19), (5.23) are the same as those in Alam et al. (2009b), i.e. without
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FIGURE 11. Code validation for R = 0.98, kiH = 0.086, krH = 0.1140, kbH = 0.2, ω∗i =
0.0982, ω∗r =−0.0982, U∗u = 0.1864, U∗l = 0.0083, M = 3, N = 2048, Ti/1T = 512. The
analytical and numerical solutions are indistinguishable.

a background velocity. Therefore, the function form of the coefficients An, Bn, Cn and
Dn in terms of the functions fu, fl1, fl2 and fb remain the same. Using these coefficients,
we can find any derivative of the velocity potentials at any location. After solving the
boundary value problem, we march forward in time using a fourth-order Runge–Kutta
method. The domain size is chosen to be 2π and the number of points in real space
equals 2N + 1 such that variables are periodic in x.

5.1. Validation
A comprehensive benchmarking of the HOS method for two layers without a velocity
field has been performed in Alam et al. (2009b). In this paper, we have extended
the method to incorporate the velocity field by adding requisite terms. For validation
of the code, we have simulated a case of Bragg resonance in which the surface
mode interacts with the bottom to generate another surface mode having an intrinsic
frequency of the opposite sign. We have compared the solution of the HOS code to
the analytically obtained solution. The parameters used are mentioned in the caption
of figure 11. It can be seen that the analytical solution and the numerical solution
are graphically indistinguishable.

5.2. Numerical results
We have simulated a resonance between the waves on the same branch (SG−) of the
dispersion curve for case 2, i.e. shear only in the lower layer. The incident wave has
the wavenumber kiH= 0.83, while the resonant wave has the wavenumber krH= 2.27.
These two waves have the same direction of propagation and have the same frequency
of ω∗=−0.4770. Because the direction of propagation of the waves is the same, the
wavenumber of the bottom is the difference of the wavenumber of the incident and the
resonant waves, i.e. kbH= 1.44. The velocities are U∗u = 0.5016,U∗l = 0,U∗b = 0. Other
relevant physical parameters are hu/hl = 1/3 and R= 0.95. The dispersion relation is
plotted in figure 12(a) and the corresponding HOS simulation is shown in figure 12(b).

Next, we have studied the effect of shear in the upper layer on the Bragg resonance
between two oppositely travelling internal modes, i.e. IG+ and IG−. Because the
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FIGURE 12. (a) Dispersion relation showing the location of the resonant triad. Both the
incident and the resonant waves lie on the SG− curve. (b) Numerical simulation using the
HOS code: ai= 0.00005H, ab= 0.02H, U∗u = 0.5016, U∗l =U∗b = 0, ω∗i =−0.4770, R= 0.95,
kiH = 0.83, krH = 2.27, kbH = 1.44, hu/hl = 1/3, M = 3, N = 1024, Ti/1T = 2048. Ti is
the time period of the incident wave.

shear is in the upper layer only, there is no Doppler shift of the concerned waves
(both on the pycnocline), and the changes are only in the intrinsic frequencies. In
the absence of a base flow, it is known that the resonant wavenumber will be the
same as the incident wavenumber. However, we have shown analytically in § 4.1 that
shear changes the resonance condition. To illustrate this here, we take our incident
wave on IG+ having wavenumber kiH = 0.10 and frequency ω∗i = 0.0097. The
bottom ripple consists of three different wavenumbers: kb1H = 0.19, kb2H = 0.20 and
kb3H = 0.21. Thus, the incident wave will interact with the bottom and may generate
three different waves having wavenumbers kr1H = 0.09, kr2H = 0.10, kr3H = 0.11 and
frequencies ω∗r1 = −0.0088, ω∗r2 = 0.0097, ω∗r3 = −0.0107 respectively. Only one of
these wavenumbers may satisfy a resonance condition for a given velocity field and
the other wavenumbers will be generated in a ‘near-resonant’ way (Craik 1988). We
plot the time evolution of amplitude of all these three wavenumbers in the absence of
shear; see figure 13(a). As expected, the maximum growth is only in the wavenumber
kr2H = 0.10. The amplitude plotted is simply the spatial Fourier transform of the
interface, and a rapidly changing amplitude corresponding to kH = 0.10 signifies an
oppositely travelling wave increasing in amplitude. At approximately t/T0 ≈ 30, both
the positively and the negatively travelling waves have the same amplitude. We also
observe a small growth in the wavenumbers kH = 0.09 and kH = 0.11. These two
wavenumbers do not satisfy the exact resonant condition and hence are generated
only near resonantly.

Next, we make the shear negative in the upper layer to yield U∗u = −0.0136,
while keeping U∗l = U∗b = 0. Due to the velocity field, the incident wave’s frequency
gets modified to ω∗i = 0.0092. The frequencies of the three possible resonant waves
respectively become ω∗r1 = −0.0092, ω∗r2 = −0.0103 and ω∗r3 = −0.0103. In this case,
we observe that the incident wave frequency is equal to ωr1, therefore the dominant
resonating wavenumber is kr1H = 0.09. The amplitude evolution has been plotted
in figure 13(b). Wiggles in the plot indicate near-resonant generation of oppositely
travelling waves.

Likewise, we make the shear positive in the upper layer to yield U∗u = 0.0123,
while keeping U∗l = U∗b = 0. The incident wave’s frequency changes to ω∗i = 0.0102.
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FIGURE 13. Amplitude versus time plot for different wavenumbers on the interface for
R = 0.95, hu/hl = 1/3, ai = 0.00005H0, ab = 0.05H0 and U∗l = U∗b = 0. (a) U∗u = 0, (b)
U∗u = −0.0136 and (c) U∗u = 0.0123. Parameters for the simulation are M = 3, N = 512,
T0/1T=512. Here, T0 is the time period of the wave ki in the absence of any background
velocity.

The frequency of the three possible resonant waves become ω∗r1 = −0.0083,
ω∗r2=−0.0093 and ω∗r3=−0.0102. We observe that ωi=ωr3 and hence, the dominant
wavenumber generated is kr3H = 0.11. This also corroborates figure 9, where it can
be seen that for a ki on the IG+ mode, increasing the shear results in an increase in
kr on the IG− mode. The amplitude evolution has been plotted in figure 13(c). Again,
wiggles indicate near-resonant generation of oppositely travelling waves. Thus, we
see that the exclusion of shear may substantially change the condition for resonant
triads. Hence, practical applications, such as broadband cloaking (Alam 2012), in
which bottom corrugations are designed in a particular way to ‘cloak’ the offshore
structures, may need to account for oceanic shear for an optimum design.

6. Summary and conclusion
Four wave modes, two at the surface and two at the pycnocline, exist in two-layered

density stratified flows. A set of three modes can form a triad and undergo weakly
nonlinear interactions when a certain resonance condition is met. A rippled bottom
topography, if present, can act as a stationary wave and mediate weakly nonlinear
interactions – a process known as ‘Bragg resonance’. The conventional approach
towards deriving the standard resonance conditions for weakly nonlinear wave triads,
as well as Bragg scattering, fails to incorporate the effect of background velocity,
especially of background shear. This is because these approaches are based on the
potential flow theory, which dramatically simplifies the problem and allows one
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to solve for the interfaces only. Since atmospheric and oceanic flows always have
background velocity, it is imperative to account for the background flow in studying
triads and Bragg resonances. We have taken a step forward in this direction by
including a piecewise linear velocity profile, while still using the potential flow
approximation. Although a piecewise linear velocity means a piecewise constant
shear, which apparently cannot be dealt with using the potential flow theory, we use
the result derived in Guha & Raj (2018) that the perturbed flow remains potential,
even though the base flow has shear.

On incorporating background velocity, the resonance conditions for wave triads and
Bragg scattering get strongly modified. Background velocity influences the resonance
conditions in two ways: (i) by causing unequal Doppler shifts between the surface,
pycnocline and the bottom (at least two of them), and (ii) by changing the intrinsic
frequencies of the waves. We have explored various kinds of velocity fields – uniform,
constant shear in the lower layer, constant shear in the upper layer and constant shear
in both layers – to form a broad understanding of the effect of background velocity
on triads and Bragg resonances. For Bragg resonance, even a uniform velocity field
changes the resonance condition. In the absence of background shear, Bragg resonance
only occurs when the two wave modes (the third ‘wave’ is the bottom ripple) lie on
two distinct branches of the dispersion curve. However with shear (in the lower layer),
we show that resonant triads appear even when the two wave modes lie on the same
branch of the dispersion curve. In this regard interfacial modes are more susceptible
than surface modes; modest Froude numbers are required in order to cause surface
modes on the same branch to resonate; however, small Froude numbers are sufficient
to do the same for the interfacial modes.

Using multiple scale analysis along with the Fredholm alternative, we have
analytically obtained the equations governing the (slow) time evolution of the
amplitudes of the waves forming both classical and Bragg triads up to O(ε2).
The formalism that we have developed has also been added to the higher-order
spectral (HOS) method, a highly efficient and accurate numerical technique that
can incorporate several triads up to any prescribed order of nonlinearity, which
traditionally does not include background velocity. Using the ‘modified’ HOS we
have numerically studied two problems on Bragg resonance: (i) the case when shear
is present in the lower layer and leads to resonance between two wave modes
lying on the same branch of the dispersion curve, and (ii) shear in the upper layer,
which strongly affects the intrinsic frequencies. In the second case, we consider a
bottom ripple consisting of three wavenumbers (chosen close to each other); a given
incident wave resonantly generates only one wave, however two additional waves are
generated via near-resonant interactions. Imposing the velocity field leads to change in
the standard resonance condition and the wave generated in a near-resonant way may
become resonant. This mechanism of near-resonant generation and effect of velocity
field on resonance condition has been captured using the modified HOS method.
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Appendix A. Derivation of dynamic boundary condition in the presence of a
piecewise linear background shear

The inviscid Navier–Stokes equation within the bulk of a fluid of constant density
ρ is

ρ
[
u,t + 1

2∇(u · u)− u× (∇× u)
]
=−∇p−∇(ρgz). (A 1)
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Using the fact that there is no base vorticity generation in the bulk, we have ∇× u=
∇× ū=Ω ĵ, where Ω is constant for each layer. In addition we use

u× (Ω ĵ)=Ω∇ψ =∇(Ωψ). (A 2)

Substituting (A 2) in (A 1) and removing the mean flow part, we are left with

ρ
[
u′,t +

1
2∇(u

′
· u′)+∇(ū · u′)−∇(Ωψ ′)

]
=−∇p′ −∇(ρgη). (A 3)

Since the perturbed flow is irrotational, we introduce u′ = ∇φ′. Moreover, since the
density is constant within each layer, we obtain

∇
[
ρ
(
φ′,t +

1
2∇φ

′
· ∇φ′ + ū · ∇φ′ −Ωψ ′ + gη

)
+ p′

]
= 0. (A 4)

Since this is true for any arbitrary curve inside the domain, we have on integration

ρ
(
φ′,t +

1
2∇φ

′
· ∇φ′ + ū · ∇φ′ −Ωψ ′ + gη

)
+ p′ = c, (A 5)

where c is an arbitrary function of time, which turns out to be zero in order to satisfy
the unperturbed far-field condition. Thus, equating the pressure just above and just
below the interface z= η(x, t), at which the base flow velocity is ū=Uî, we obtain

ρ1

(
φ′1,t +

1
2∇φ

′

1 · ∇φ
′

1 +Uî · ∇φ′1 −Ω1ψ
′
+ gη

)
= ρ2

(
φ′2,t +

1
2∇φ

′

2 · ∇φ
′

2 +Uî · ∇φ′2 −Ω2ψ
′
+ gη

)
. (A 6)

Dropping the primes, we get

ρ1
[
φ1,t +

1
2(φ

2
1,x + φ

2
1,z)+Uφ1,x −Ω1ψ1 + gη

]
= ρ2

[
φ2,t +

1
2(φ

2
2,x + φ

2
2,z)+Uφ2,x −Ω2ψ2 + gη

]
. (A 7)

Appendix B. Relevant coefficients
The coefficients nj are same for the case of wave triad interaction and the case

of Bragg resonance. They are simply the null vector of the transpose of the matrix
D(kj, ωj). The coefficients of time derivatives of O(ε) terms, i.e. the vector rj also
remains the same both for wave triad interaction and Bragg resonance.

The components of the vector rj are

rj(1)= 1,
rj(2)= Tj,

rj(3)= Tj,

rj(4)=−iQj,

rj(5)=−
i
kj

[
Tj(ωj − kjUl)

(
tanh kjhu +

1
tanh kjhl

)
+

Qj

cosh kjhu

]
,

rj(6)= 0.


(B 1)

Tj =
cosh (kjhu)[(ωj −Uukj)

2
+ (ωj −Uukj)Ωu tanh (kjhu)− gkj tanh (kjhu)]

(ωj −Ulkj)(ωj −Uukj)
, (B 2)
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Qj =
Ωu

kj
+

g
Uukj −ωj

. (B 3)

For the case of wave triad interaction the coefficients of v1 are as follows:

v1(1)=−igk1

(
Ωu

g
+

k2

Uuk2 −ω2
+

k3

Uuk3 −ω3

)
, (B 4)

v1(2)=−ik1

[
k2T3Q2

cosh k2hu
+

k3T2Q3

cosh k3hu
+ T2T3

(
ω2 −Ulk2

tanh k2hu
+
ω3 −Ulk3

tanh k3hu
−Ωu

)]
, (B 5)

v1(3)=−iT2T3k1

(
k2Ul −ω2

tanh k2hl
+

k3Ul −ω3

tanh k3hl
−Ωl

)
, (B 6)

v1(4) =
T2(Ulk2 −ω2)

cosh k2hl
(k2Uu −ω2 + k3Q3 tanh k3hl)

+
T3(Ulk3 −ω3)

cosh k3hl
(k3Uu −ω3 + k2Q3 tanh k3hl)

+ (Uuk3 −ω3)k3Q3 tanh k2hu + (Uuk2 −ω2)k2Q2 tanh k2hu

−Q2Q3k2k3(1− tanh k2hu tanh k3hu)+
T2T3(ω2 −Ulk2)(ω3 −Ulk3)

cosh k2hu cosh k3hl
, (B 7)

v1(5) = T2T3(R− 1)[(k3Ul −ω3)
2
+ (k2Ul −ω2)

2
+ (k2Ul −ω2)(k3Ul −ω3)]

−
Rk2k3Q2Q3

cosh k2hu cosh k3hu
+ Rk2T3Q2

(k3Ul −ω3) tanh k3hu

cosh k2hu

+Rk3T2Q3
(k2Ul −ω2) tanh k2hu

cosh k3hu
− T2T3(k2Ul −ω2)(k3Ul −ω3)

×

(
R tanh k2hu tanh k3hu −

1
tanh k2hl tanh k3hu

)
, (B 8)

v1(6)= 0. (B 9)

Similarly, the terms of the vectors v2 and v3 can be obtained by changing the
indices in a cyclic order, i.e. the substitution {1→ 2, 2→ 3, 3→ 1} in the above
equations.

For the case of Bragg resonance, where k3 ≡ kb = k1 + k2 and ω3 =ωb = 0 we have
two cases,

Case 1: Ub = 0.

v1(1)= v1(2)= v1(3)= v1(4)= v1(5)= 0,

v1(6)= i
k1(ω2 −Ulk2)T2

sinh k2hu
;

v2(1)= v2(2)= v2(3)= v2(4)= v2(5)= 0,

v2(6)= i
k2(ω1 −Ulk1)T1

sinh k1hu
.


(B 10)

The vector rj remains the same as before.
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Case 2: Ub 6= 0.
In this case, the bottom boundary condition would be inhomogeneous. This will

mean that there will exists a time-independent particular solution of the system at O(ε)
having

η̂u =−
UuUbU2

l k6
b

det(D)(0, kb) cosh kbhu cosh2 kbhl
η̂b ≡ Xb1η̂b,

η̂l =−
UbUlk5

b(U
2
ukb cosh kbhu − (ΩuUu + g) sinh kbhu)

det(D)(0, kb) cosh kbhu cosh2 kbhl
η̂b ≡ Xb2η̂b,

Â=−i
UbU2

l k5
b(ΩuUu + g)

det(D)(0, kb) cosh kbhu cosh2 kbhl
η̂b ≡ iXb3η̂b,

B̂=−i
UbU2

l k5
b(cosh kbhuU2

ukb − sinh kbhu(ΩuUu + g))
det(D)(0, kb) cosh kbhu cosh2 kbhl

η̂b ≡ iXb4η̂b,

Ĉ=−i
Ub(k6

bU2
uU2

l + det(D)(0, kb) cosh3 kbhl − k5
bU2

l (ΩuUu + g) tanh kbhu)

det(D)(0, kb) cosh kbhl sinh kbhl
η̂b ≡ iXb5η̂b,

D̂= iUb cosh kbhlη̂b ≡ iXb6η̂b.


(B 11)

The coefficients v2(1), v2(2), v2(3), v2(4), v2(5) may not be zero if Ub 6= 0 and will
be given as:

v2(1)=−ik2(kbQ1Xb1 + kbXb3 +ΩuXb1), (B 12)

v2(2) = ik2

(
Xb2(T1(k1Ul −ω1) sinh k1hu − k1Q1)

cosh k1hu

+
T1(−Xb4 sinh k3hu + Xb3)kb

cosh kbhu
+ΩuT1Xb2

)
, (B 13)

v2(3)=−ik2T1

(
Xb2(k1Ul −ω1)

tanh k1hl
− Xb6k1 tanh k1hl + kbXb5 −ΩlXb2

)
, (B 14)

v2(4) = T1Xb1
(k1Ul −ω1)

k1Uu −ω1
cosh k1hu + k1Q1Xb1(k1Uu −ω1) tanh k1hu

− kb

(
Xb3 tanh kbhu +

Xb4

cosh kbhu

)(
T1(k1Ul −ω1)

cosh k1hu
− kbUu

)
−Q1k1Xb3kb(tanh k1hu tanh kbhu + 1)−

Q1k1Xb4kb tanh k1hu

cosh kbhu
, (B 15)

v2(5) = T1

(
ΩlXb6kb

coth kbhl
−

UlXb5k2
b

coth kbhl
+ RUlXb4k2

b − Xb6k1Ulkb

)
+T1(k1Ul −ω1)

[
−

RkbXb4

coth k1hu coth kbhu
+ (k1Ul −ω1)Xb2(R− 1)

+ Xb6(k1 + kb)− RXb4kb +
kb tanh k1huRXb3

cosh kbhu
+

kbXb5

tanh k1hl
+

kbXb5

coth kbhl

]
+Rk1kbQ1

Xb4 sinh kbhu − Xb3

cosh k1hu cosh kbhu
+
ΩlkbT1

sinh k1hl

(
1

cosh k1hl
− cosh k1hl

)
, (B 16)

v2(6)= i
k2(ω1 −Ulk1)T1

sinh k1hu
. (B 17)

The coefficients v1(1), v1(2), v1(3), v1(4), v1(5) will be given by swapping k2 and
k1 in the above equations.
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Appendix C. Boundary conditions
C.1. Dirichlet boundary conditions

We expand the velocity potential as a perturbation series up to an order ‘(m)’. So,
from (5.11) we have,

φS(x, t)=
M∑

m=1

M−m∑
k=0

ηk
u

k!
∂k

∂zk
φ(m)u (x, z, t)

∣∣∣∣∣
z=0

. (C 1)

Collecting the terms of leading order, that is terms of O(ε), we have,

φu(x, 0, t)= φS(x, t). (C 2)

Further, collecting the terms of O(εm) from (5.11), we have,

m−1∑
k=0

ηk
u

k!
∂k

∂zk
φ(m−k)

u (x, z, t)

∣∣∣∣∣
z=0

= 0,

⇒

m−1∑
k=1

ηk
u

k!
∂k

∂zk
φ(m−k)

u (x, z, t)

∣∣∣∣∣
z=0

+ φ(m)u (x, z, t)|z=0 = 0,

⇒ φ(m)u (x, 0, t)=−
m−1∑
k=1

ηk
u

k!
∂k

∂zk
φ(m−k)

u (x, z, t)

∣∣∣∣∣
z=0

.


(C 3)

So, combining the boundary conditions at every order, we can write,

φ(m)u (x, 0, t)= f (m)u , (C 4)

where

f (1)u = φ
S, (C 5)

f (m)u =−

m−1∑
k=1

ηk
u

k!
∂k

∂zk
φ(m−k)

u (x, z, t)

∣∣∣∣∣
z=0

. (C 6)

In a very similar way, we can derive the Dirichlet boundary condition at the
pycnocline.

C.2. Neumann boundary condition
Firstly, we subtract the two kinematic boundary conditions at the pycnocline to get
rid of the time derivative, and obtain

ϕ,z(x, z, t)= ηl,xϕ,x(x, z, t)+ ηlηl,x(Ωu −Ωl) z=−hu + ηl. (C 7)

Note, that we have expanded the base velocity U in a Taylor series about the mean
surface. Here, ϕ(x, z, t) ≡ φu(x, z, t) − φl(x, z, t). We expand ϕ(x, z, t) in a Taylor
expansion about the mean height of the interface to get

ϕ(x,−hu + ηl, t)=
M∑

m=1

M−m∑
k=0

ηk
l

k!
∂k

∂zk
ϕ(m)(x, z, t)

∣∣∣∣∣
z=−hu

. (C 8)
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Substituting this in the (C 7), while keeping aside the term ηlηl,x(Ωu −Ωl) for now,
we have,

M∑
m=1

M−m∑
k=0

ηk
l

k!
∂k

∂zk
ϕ(m),z (x, z, t)

∣∣∣∣∣
z=−hu

=
∂ηl

∂x

M∑
m=1

M−m∑
k=0

ηk
l

k!
∂k

∂zk
ϕ(m),x (x, z, t)

∣∣∣∣∣
z=−hu

. (C 9)

Again, collecting the terms of O(εm) from the above equation we have

m−1∑
k=0

ηk
l

k!
∂k

∂zk
ϕ(m−k)
,z

∣∣∣∣∣
z=−hu

=
∂ηl

∂x

m−1∑
k=1

ηk−1
l

(k− 1)!
∂k−1

∂zk−1
ϕ(m−k)
,x

∣∣∣∣∣
z=−hu

⇒

m−1∑
k=1

ηk
l

k!
∂k

∂zk
ϕ(m−k)
,z

∣∣∣∣∣
z=−hu

+ ϕ(m),z |z=−hu =

m−1∑
k=1

∂ηl

∂x
ηk−1

l

(k− 1)!
∂k−1

∂zk−1
ϕ(m−k)
,x

∣∣∣∣∣
z=−hu

.


(C 10)

Now, using the continuity equation we have,

∂2φu

∂z2
=−

∂2φu

∂x2

⇒
∂kφu,z

∂zk
=−

∂k−1

∂zk−1
φu,xx for k> 0.

 (C 11)

Similarly, we have,

∂kφl,z

∂zk
=−

∂k−1

∂zk−1
φl,xx. (C 12)

Subtracting the above two equations, we obtain,

∂kϕ,z

∂zk
=−

∂k−1

∂zk−1
ϕ,xx. (C 13)

Now using the above result in (C 10), we have,

−

m−1∑
k=1

ηk
l

k!
∂k−1

∂zk−1
ϕ(m−k)
,xx

∣∣∣∣∣
z=−hu

+ ϕ(m),z |z=−hu =

m−1∑
k=1

∂ηl

∂x
ηk−1

l

(k− 1)!
∂k−1

∂zk−1
ϕ(m−k)
,x

∣∣∣∣∣
z=−hu

. (C 14)

Rearranging the terms, we have,

ϕ(m),z |z=−hu =

m−1∑
k=1

∂k−1

∂zk−1

[
ηk−1

l

(k− 1)!
∂ηl

∂x
ϕ(m−k)
,x +

ηk
l

k!
ϕ(m−k)
,xx

]
z=−hu

, (C 15)

⇒ ϕ(m),z |z=−hu =

m−1∑
k=1

∂k−1

∂zk−1

∂

∂x

[
ηk

l

k!
ϕ(m−k)

x

]
z=−hu

, (C 16)

⇒ ϕ(m),z |z=−hu =

m−1∑
k=1

∂

∂x

[
ηk

l

k!
∂k−1

∂zk−1
ϕ(m−k)

x

]
z=−hu

. (C 17)
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Now, we include the term ηlηl,x(Ωu −Ωl), the effect of which will be only in the
O(ε2) terms. So, finally we have

ϕ(m),z (x,−hu, t)= f (m)l2 , (C 18)

where

f (1)l2 = 0, (C 19)

f (2)l2 =
∂

∂x
[ηlϕ

(1)
,x (x, z, t)|z=−hu] + ηlηl,x(Ωu −Ωl), (C 20)

f (m)l2 =

m−1∑
k=1

∂

∂x

[
ηk

l

k!
∂k−1

∂zk−1
ϕ(m−k)
,x (x, z, t)

∣∣∣∣
z=−hu

]
. (C 21)

At O(ε) in a similar way we can derive the bottom boundary condition, which is also
a Neumann boundary condition.
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