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 Kinematics and dynamics of a six-degree-of-freedom parallel
 manipulator with revolute legs
 Kourosh E .  Zanganeh* ,  Rosario Sinatra †  and Jorge Angeles ‡

 SUMMARY
 This paper presents the kinematics and dynamics of a
 six-degree-of-freedom platform-type parallel manipulator
 with six revolute legs ,  i . e .  each leg consists of two links
 that are connected by a revolute joint .  Moreover ,  each
 leg is connected ,  in turn ,  to the base and moving
 platforms by means of universal and spherical joints ,
 respectively .  We first introduce a kinematic model for
 the manipulator under study .  Then ,  this model is used to
 derive the kinematics relations of the manipulator at the
 displacement ,  velocity and acceleration levels .  Based on
 the proposed model ,  we develop the dynamics equations
 of the manipulator using the method of the natural
 orthogonal complement .  The implementation of the
 model is illustrated by computer simulation and
 numerical results are presented for a sample trajectory in
 the Cartesian space .

 KEYWORDS :  Parallel manipulator ;  Revolute legs ;  Kinemat-
 ics and dynamics ;  Natural orthogonal complement .

 1  INTRODUCTION
 The conventional six-degree-of-freedom (six-dof)
 platform-type parallel manipulator ,  commonly called
 Stewart or Stewart-Gough platform , 1  consists of a
 moving platform (MP) that is connected by six telescopic
 legs to a base platform (BP) ,  as depicted in Fig .  1 .
 Moreover ,  six actuators of the legs are used to control
 the motion of the manipulator .

 The parallel structure of the Stewart platform ,  as
 compared to the structure of serial manipulators ,  has
 higher stif fness and better dynamic-response characteris-
 tics ,  since the overall load on the system is more evenly
 distributed among the actuators .  However ,  the work-
 space of the manipulator is considerably small ,  which ,  to
 some extent ,  limits the full exploitation of these
 predominant features .  Nevertheless ,  one can increase the
 useful volume of the workspace by a proper redesign of
 the legs ,  e . g .  by replacing prismatic with revolute joints
 and changing the actuators accordingly .  In this way ,  the
 potential applications of the manipulator can be
 extended ,  while preserving its predominant features .  The
 kinematic analysis of a six-dof parallel manipulator with
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 three legs in an all-revolute design has been reported by
 Cleary and Brooks . 2  Each leg in their design is driven by
 two motors through a dif ferential drive .  Here ,  we
 consider a more general architecture comprising six
 two-link revolute legs ,  as depicted in Fig .  2 .  The legs are
 connected to the BP and MP by a set of universal and
 spherical joints ,  respectively .  Moreover ,  the motion of
 the manipulator is controlled by six motors that are
 mounted on the base .  Each motor actuates the
 corresponding leg through a coupling with one of the two
 axes of the universal joint .  This unconventional design
 of fers some advantages in terms of the motion
 characteristics and the workspace volume ;  revealing
 these properties calls for a more detailed analysis ,  which
 motivates the present work .

 To better understand the features of any alternative
 manipulator design ,  a study of its dynamics ,  in parallel to
 a study of its kinematics ,  is an essential task .  In recent
 years ,  extensive research has been reported on the
 kinematic analysis of the Stewart platform and its various
 versions , 3  but regarding its dynamics ,  the work reported
 is considerably scarcer .  In this context ,  Sugimoto 4

 proposed a method of inverse dynamics using motor
 algebra ,  while Do and Yang 5  introduced an inverse-
 dynamics algorithm based on the Newton-Euler equa-
 tions .  Other research work on this subject can be found
 in the pertinent literature . 6–14  However ,  most of these
 works focus on manipulators with prismatic legs .

 In this paper ,  we propose a model for the kinematics
 of the manipulator shown in Fig .  2 .  This model is used ,  in
 turn ,  to derive the dynamics equations of the system
 based on the natural orthogonal complement (NOC) ,  as
 proposed by Angeles and Lee . 15 , 16  Moreover ,  these
 equations are implemented in an algorithm that is used
 to study the kinematics and dynamics of the manipulator
 at hand .  The application of this algorithm is illustrated
 through a numerical example that simulates the
 kinematics and dynamics behavior of a typical man-
 ipulator while following a sample trajectory .

 2  KINEMATICS
 With reference to Fig .  2 ,  the origin of the coordinate
 frame  @   is fixed at point  O  of the BP ,  while a frame  }   is
 assigned to the MP with its origin at point  P .  Let us now
 consider the  i th leg of the manipulator ,  as shown in Fig .
 3 .  In this figure ,  a motor is coupled to the axis  + i   of the
 universal joint ,  and used to actuate this leg .  The leg itself
 consists of two links of length  l i  ;  i  A i R i

 Ñ  i    and
 s i  ;  i  R i B i

 Ñ  i  ,  which are free to rotate about  !  i   and  5 i

 axes ,  respectively .  Since these two axes are parallel ,  the
 motion of the foregoing links are confined to the  P i
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 Fig .  1 .  The six-dof parallel manipulator with prismatic legs .

 plane passing through the center of the  i th universal joint
 and perpendicular to the aforementioned axes .

 Next ,  we define two coordinate frames  @ ̂  i ( x ̂  i  ,  y ̂  i  ,  z ̂  i ) and
 ̂  i ( x i  ,  y i  ,  z i ) ,  with their origins fixed at point  A i  ,  such that
 the  x i - and the  y i -axis of frame  ̂  i   are directed along  ! i

 and  + i   axes ,  respectively ,  while the  z i -axis lies in the  P i

 plane .  Moreover ,  frame  ̂  i   is confined to rotate about the
 y ̂  i -axis of the fixed frame  @ ̂  i  ,  its angle of rotation being
 w i  .  Thus ,  the rotation matrix  Q i   that represents the
 orientation of  ̂  i   with respect to  @ ̂  i   is given as

 Q i  ; 3  cos  w i

 0
 sin  w i

 0
 1
 0

 2 sin  w i

 0
 cos  w i

 4 ;  i  5  1 ,  .  .  .  ,  6  (1)

 Furthermore ,  unit vectors along each of the three
 mutually perpendicular axes of frame  @ ̂  i   are defined as

 y ̂  i  ;  u i  5  [ u i  ,  y  i  ,  0] T  ;
 (2a)

 z ̂  i  ;  z  5  [0 ,  0 ,  1] T  ;  x ̂  i  ;  y ̂  i  3  z ̂  i

 where  u i   is a unit vector along the  + i -axis .  Likewise ,  the
 rotation matrix  Q ̂  i   that represents the orientation of  @ ̂  i

 with respect to  @ ,  for  i  5  1 ,  .  .  .  ,  6 ,  can be expressed in
 the  @ -frame as

 Q ̂  i  ;  [ x ̂  i  ,  y ̂  i  ,  z ̂  i ]  5 3  y  i

 2 u i

 0

 u i

 y  i

 0

 0
 0
 1
 4 ;  i  5  1 ,  .  .  .  ,  6  (2b)

 Fig .  2 .  The six-dof parallel manipulator with revolute legs .

 Fig .  3 .  Kinematic notation of the  i th revolute leg .

 Referring to Fig .  3 ,  we can readily derive the relation
 below :

 A i B i
 Ñ  ;  A i R i

 Ñ  1  R i B i
 Ñ  5  2 a i  1  p  1  Qb i ;  i  5  1 ,  .  .  .  ,  6  (3)

 where  a i   and  p  are the position vectors of  A i   and  P  in
 frame  @ ,  while  b i   is the position vector of  B i   in frame  } .
 Moreover ,   Q  represents the rotation matrix relating the
 orientation of  }   with respect to that of  @ .  Using the
 trigonometric relations in triangle  A i R i B i  ,  for  i  5
 1 ,  .  .  .  ,  6 ,  we can readily derive the expressions below :

 θ i  5  cos 2 1  [( l 2
 i  1  s 2

 i  2  q 2
 i  ) / (2 l i s i )]  (4a)

 θ ~  i  5  ( q ~  i q i ) / ( l i s i  sin  θ i )  (4b)

 θ ̈  i  5  ( q 2
 i  1  q i q ̈  i  2  l i s i θ ~  2

 i  cos  θ i ) / ( l i s i  sin  θ i )  (4c)

 where  q i  ;  i  A i B i
 Ñ  i  ,  with  i  ?  i    denoting the Euclidean

 norm of ( ? ) .  Moreover ,  using equation (3) we can write

 q 2
 i  5  ( a i  1  p  1  Qb i )

 T  ( a i  1  p  1  Qb i ) ;  i  5  1 ,  .  .  .  ,  6  (5)

 upon dif ferentiating both sides of equation (5) with
 respect to time ,  we obtain

 q ~  i  ;  dq i  / dt  5
 1
 q i

 ( p ~  1  V Qb i )
 T  A i B i

 Ñ ;  i  5  1 ,  .  .  .  ,  6  (6)

 In the above equation ,   V   denotes the angular-velocity
 matrix of the MP ,  its associated angular-velocity vector  v
 being given as

 v  ; 3  v x

 v y

 v z
 4  5  vect( V )  ;

 1
 2  3  v  3 2  2  v  2 3

 v  1 3  2  v  3 1

 v  2 1  2  v  1 2
 4  (7)

 where  v i j  ,  for  i  5  1 ,  2 ,  3 and  j  5  1 ,  2 ,  3 ,  denotes the entry
 in the  i th row and the  j th column of matrix  V .  Further
 dif ferentiation of equation (6) with respect to time leads
 to the relation

 q ̈  i  ;  d 2 q i  / dt 2  5
 1
 q i

 h  i  p ~  1  Ω Qb i  i  2

 1  [  p ̈  1  ( V ~  1  V 2 ) Qb i ]
 T  A i B i

 Ñ  2  q ~  2
 i  j  (8)

 where  V ~   is the cross-product matrix of  v ~  ;  [ v ~  x  ,  v ~  y  ,  v ~  z ] T ,
 with  v ~   being the angular-acceleration vector of the MP .
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 On the other hand ,  vectors  A i R i
 Ñ   and  R i B i

 Ñ ,  when
 expressed in frame  ̂  i  ,  take on the forms

 [ A i R i
 Ñ ] i  5 3  0

 l i  cos  c i

 l i  sin  c i
 4 ;

 (9)

 [ R i B i
 Ñ ] i  5 3  0

 2 s i  cos  ( c i  1  θ i )
 2 s i  sin  ( c i  1  θ i )

 4 ;  i  5  1 ,  .  .  .  ,  6

 where [ ? ] i   is the representation of any vector or matrix ( ? )
 in frame  ̂  i  .  In addition ,   c i   denotes the angle between
 the positive direction of  y ̂  i   and  A i R i

 Ñ   (see Fig .  3) .
 Moreover ,  using equation (3) we can write

 A i B i
 Ñ  ;  Q ̂  i Q i [ A i B i

 Ñ ] i  5  2 a i  1  p  1  Qb i  ;  i  5  1 ,  .  .  .  ,  6  (10)

 Now ,  upon dif ferentiating both sides of equation (10)
 with respect to time ,  and rearranging of terms ,  we obtain

 d
 dt

 [ A i B i
 Ñ ] i  5  h i  2  V i [ A i B i

 Ñ ] i ;  i  5  1 ,  .  .  .  ,  6  (11a)

 where vector  h i  ,  for  i  5  1 ,  .  .  .  ,  6 ,  is defined as

 h i  ;  [ h i x  ,  h i y  ,  h i z ] T  5  Q T
 i  Q ̂  T

 i  ( p ~  1  V Qb i )  (11b)

 Moreover ,   V i   represents the angular-velocity matrix of
 frame  ̂  i  ,  its associated angular-velocity vector ,   v i  ,  being
 given as

 v i  ;  [0 ,  2 w ~  i  ,  0] T  5  vect  ( V i )  (12)

 Now ,  if we let  k i  ;  [ k i x  ,  k i y  ,  k i z ] T  5  Q ̂  T
 i  ( 2 a i  1  p  1  Qb i ) ,

 then equations (9 & 10) lead to the relation

 [ A i B i
 Ñ ] i  ; 3  0

 l i  cos  c i  2  s i  cos  ( c i  1  θ i )
 l i  sin  c i  2  s i  sin  ( c i  1  θ i )

 4
 5 3  k i x  cos  w i  1  k i z  sin  w i

 k i y

 2 k i x  sin  w i  1  k i z  cos  w i
 4  (13)

 Furthermore ,  assuming that 0  #  w i  ,  c i  #  π  ,  we can readily
 compute  w i   and  c i   from the first two components of
 vector [ A i B i

 Ñ ] i   in equation (13) ,  for  i  5  1 ,  .  .  .  ,  6 ,  as

 w i  5  2 tan 2 1  ( k i x  / k i z )  (14a)

 c i  5  atan  ( s i  sin  θ i  ,  l i  2  s i  cos  θ i )

 1  atan  ( 4 q 2
 i  2  k 2

 iy ,  2 k i y )  (14b)

 In the above equations ,  ‘‘atan’’ obviously denotes the
 two-argument arc-tangent function which sometimes
 represented by ‘‘atan2’’ .  In addition ,  we dif ferentiate the
 left-hand side of equation (13) with respect to time and
 then equate the expression thus resulting with the
 right-hand side of equation (11a) .  In this way ,  two

 relations can be derived from the first two components of
 d [ A i B i

 Ñ ] i  / dt ,  namely ,

 w ~  i  5
 h i x

 s i  sin  ( c i  1  θ i )
 ;  i  5  1 ,  .  .  .  ,  6  (15a)

 c ~  i  5
 h i y  2  s i θ ~  i  sin  ( c i  1  θ i )

 2 l i  sin  c i  1  s i  sin  ( c i  1  θ i )
 ;  i  5  1 ,  .  .  .  ,  6  (15b)

 Now ,  the angular-velocity vectors of the two links of the
 i th leg ,  i . e .,   Ã i   and  j i  ,  for  i  5  1 ,  .  .  .  ,  6 ,  are computed as

 Ã i  5  Q ̂  i ( Q i [ Ã i ] i  2  v i ) ;  j i  5  Q ̂  i ( Q i [ j i ] i  2  v i )  (16)

 where ,  [ Ã i ] i  ;  [ c ~  i  ,  0 ,  0] T   and [ j i ] i  ;  [ c ~  i  1  θ ~  i  ,  0 ,  0] T .  On the
 other hand ,  expressions for the angular-acceleration
 vectors of the same links can be obtained from equation
 (16) by dif ferentiating both sides of the foregoing
 equations with respect to time ,  thereby obtaining

 Ã ~  i  5  Q ̂  i ( V i Q i [ Ã i ] i  1  Q i [ Ã ~  i ] i  2  v ~  i ) ;  i  5  1 ,  .  .  .  ,  6  (17a)

 j ~  i  5  Q ̂  i ( V i Q i [ j i ] i  1  Q i [ j ~  i ] i  2  v ~  i ) ;  i  5  1 ,  .  .  .  ,  6  (17b)

 in which  v ~  i  ;  [0 ,  2 w ̈  i  ,  0] T .  Moreover ,  to derive expres-
 sions for  w ̈  i   and  c ̈  i  ,  we first dif ferentiate both sides of
 equation (11b) with respect to time ,  i . e .

 d h i  / dt  ;  [ h ~  i x  ,  h ~  i y  ,  h ~  i z ] T  5  Q  T
 i  Q ̂  T

 i  [ p ̈  1  ( V ~  1  V 2 ) Qb i ]

 1  ( Q ̂  i V i Q i )
 T  ( p ~  1  V Qb i )  (18)

 Then ,  upon dif ferentiating both sides of equations (15a &
 b) with respect to time ,  for  i  5  1 ,  .  .  .  ,  6 ,  we obtain

 w ̈  i  5
 h ~  i x  2  h i w i

 s i  sin  ( c i  1  θ i )
 (19a)

 c ̈  i  5
 h ~  i y  2  h i θ ~  i  2  s i θ ̈  i  sin  ( c i  1  θ i )  2  ( h i  2  l i c ~  i  cos  c i )

 2 l i  sin  c i  1  s i  sin  ( c i  1  θ i )

 (19b)

 where  h i  ;  s i ( c ~  i  1  θ ~  i )  cos  ( c i  1  θ i ) .

 2 . 1  The  y  elocity Jacobians
 It is known that the kinematic analysis of parallel
 manipulators leads to two Jacobian matrices . 1 7  Based on
 the role that these matrices play in the kinetostatic
 transformation between joint and Cartesian variables ,
 they are commonly referred to as the  forward  and the
 in y  erse  Jacobians .  To find these Jacobians for the
 manipulator under study ,  we first use equation (11b) to
 derive the relation below :

 h i x  ;  [ x ] T
 i  h i  5  x T

 i  ( p ~  1  v  3  Qb i ) ;  i  5  1 ,  .  .  .  ,  6  (20a)

 in which ,  [ x ] i  ;  [1 ,  0 ,  0] T   and  x i  ;  Q ̂  i Q i [ x ] i  .  After some
 algebraic operations ,  equation (20a) can be written in the
 form

 h i x  ;  x T
 i  p ~  1  ( Qb i  3  x i )

 T  v ;  i  5  1 ,  .  .  .  ,  6  (20b)

 Equation (20b) ,  when substituted into equation (15a) ,
 leads to the relation

 s i w ~  i  sin  ( c i  1  θ i )  5  [( Qb i  3  x i )
 T  x T

 i  ] t P ;  i  5  1 ,  .  .  .  ,  6  (21)
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 where  t P  ;  [ v T ,  p ~  T  ] T   is the 6-dimensional twist array at
 point  P  of the MP .  The six equations within equation
 (21) can be written in vector form as

 A w ~  5  Bt P  (22)

 in which ,   w ~  5  [ w ~  1  ,  .  .  .  ,  w ~  6 ]
 T   and the 6  3  6 matrices  A  and

 B   are ,  in fact ,  the inverse and forward Jacobians of the
 manipulator ,  that are defined as

 A  5  diag  ( a 1 1  ,  .  .  .  ,  a 6 6 ) ;
 (23)

 B  5 3  ( Qb 1  3  x 1 )
 T

 ? ? ?
 ( Qb 6  3  x 6 )

 T

 x T
 1

 ? ? ?
 x T

 6
 4

 where  a i i  ;  s i  sin  ( c i  1  θ i ) ,  for  i  5  1 ,  .  .  .  ,  6 .  Now ,  we
 rewrite equation (22) in the form

 T w ~  5  t P  (24)

 where  T  ;  B 2 1 A .  Hence ,  upon dif ferentiating equation
 (24) with respect to time ,  we obtain

 T w ̈  1  T ~  w ~  5  t ~ P  (25)

 In the above equation ,   t ~ P  ;  [ v ~  T ,  p ̈  T  ] T ,  while
 T ~  ;  B 2 1 ( A ~  2  B ~  B 2 1 A ) ,  with  A ~    and  B ~    given as

 A ~  5  diag  ( a ~  1 1  ,  .  .  .  ,  a ~  6 6 ) ;
 (26)

 B ~  5 3  ( V b 1  3  x 1  1  Qb 1  3  x ~  1 )
 T

 ? ? ?
 ( V Qb 6  3  x 6  1  Qb 6  3  x ~  6 )

 T

 x ~  T
 1

 ? ? ?
 x ~  T

 6
 4

 with  a ~  i i  ;  s i ( c ~  i  1  θ ~  i )  cos  ( c i  1  θ i ) ,  and  x ~  i  ;  Q ̂  i V i Q ̂  T
 i  x i  ,  for

 i  5  1 ,  .  .  .  ,  6 .

 Fig .  4 .  Inverse-kinematics algorithm for the all-revolute
 manipulator .

 2 . 2  In y  erse kinematics
 In the inverse kinematic problem ,  the motion of the
 end-ef fector is given and the corresponding motion of
 each joint ,  actuated or unactuated ,  is to be determined .
 The preceding kinematic modeling can be incorporated
 into a single algorithm to evaluate the inverse kinematics
 of the manipulator under dif ferent end-ef fector Cartesian
 trajectories .  The basic steps of this algorithm are
 described in the diagram shown in Figure 4 .

 2 . 3  Direct kinematics
 In the direct kinematics problem ,  the motion of each
 actuated joint is given and the corresponding end-
 ef fector motion as well as that of all unactuated joints are
 to be determined .  At the outset ,  we find the solution to
 the direct problem at the displacement level .  This is done
 by first substituting equation (5) into equation (4a) .
 Thus ,  for  i  5  1 ,  .  .  .  ,  6 ,  we obtain

 l 2
 i  1  s 2

 i  2  2 l i s i  cos  θ i  5  ( a i  1  p  1  Qb i )
 T  ( a i  1  p  1  Qb i )  (27)

 The above equations ,  together with the twelve equations
 resulting from the first two rows of vector equations (13) ,
 yield 18 nonlinear equations in as many unknowns ,
 namely ,  the three components of  p ,  the three
 independent entries of the rotation matrix  Q ,  h θ i j 6

 1 ,  and
 h c i j 6

 1 .  Once the pose of the end-ef fector ,  i . e .  vector  p  and
 matrix  Q ,  and hence ,  the configuration of the
 manipulator is known at each instant ,  we can use
 equations (24) and (25) to compute the corresponding
 values for the components of  t p   and  t ~ p  ,  respectively .

 3  DYNAMICS MODELING USING THE NOC
 In this section ,  we derive the equations of motion using
 the method of the natural orthogonal complement .  With
 this method ,  a set of Euler – Lagrange equations ,  free of
 constraint forces ,  is derived from the Newton – Euler
 (NE) equations of all individual bodies ,  using the natural
 orthogonal complement of the coef ficient matrix of the
 velocity constraint equations .  This method was applied
 by Ma 9  for the modeling and simulation of the Stewart
 platform .  Here ,  we adopt the same concept to develop a
 model for the manipulator under study .

 At the outset ,  we recall the dynamics equations of a
 system that is composed of  p  rigid bodies coupled by
 holonomic constraints .  The NE equations for every
 individual body can be written as

 M i t ~ i  5  2 W i M i t i  1  w i ;  i  5  1 ,  .  .  .  ,  p  (28)

 where  t i  5  [ w  T
 i  ,  c ~  T

 i  ] T   is the 6-dimensional twist array of
 the  i th body ,  defined in terms of its angular velocity ,   v i  ,
 and the velocity of the corresponding mass center ,   c ~  i  .
 Moreover ,  if for the same body ,   n i   and  f i   denote the
 resultant moment and the resultant force acting at the
 mass center ,  respectively ,  then  w i  ;  [ n T

 i  ,  f  T
 i  ] T   represents

 the wrench acting on the body .  This wrench can ,  in
 general ,  be decomposed into a working wrench and a
 nonworking constraint wrench ,   w W

 i    and  w  N
 i  ,  respectively .

 Here ,   w W
 i    comprises all moments and forces exerted by
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 the environment ,  including motors and dissipative
 ef fects ,  while  w N

 i    comprises constraint moments and
 forces exerted by the neighboring bodies ,  and that do not
 produce any work ,  their sole role being to keep the
 bodies together .  Now ,  the 6  3  6  angular - y  elocity  dyad ,
 W i  ,  and the  inertia  dyad ,   M i  ,  are defined as

 (29)

 W i  ; F V i

 O
 O
 O
 G ;  M i  ; F  I i

 O
 O

 m i 1
 G ;

 V i  ;
 ­ ( v i  3  y  )

 ­ y
 5  v i  3  1

 where  I i   denotes the 3  3  3 matrix of the  i th body about
 its mass center ,   m i   represents the mass of the body and  y
 is an arbitrary 3-dimensional vector .  In addition ,   O  and  1
 are the zero and identity 3  3  3 matrices ,  respectively .  It
 should be noted that the NE equations of the  i th body
 are written with respect to a coordinate system fixed to
 the body .  Next ,  the 6 p  3  6 p  matrices of  generalized mass ,
 M ,  and  generalized angular  y  elocity ,  W ,  as well as the
 6 p -dimensional vector of  generalized twist ,  t , generalized
 working wrench ,  w W ,  and  generalized nonworking
 wrench ,  w N ,  are defined below :

 t  ; 3  t 1

 ? ? ?
 t p
 4 ;  w  W  ; 3  w  W

 1

 ? ? ?
 w W

 p
 4 ;  w  N  ; 3  w N

 1

 ? ? ?
 w N

 p
 4  (30a)

 M  ;  diag  ( M 1  ,  .  .  .  ,  M p ) ;  W  ;  diag  ( W 1  ,  .  .  .  ,  W p )  (30b)

 Hence ,  the 6 p  equations within equation (28) can be
 expressed in compact form as

 Mt ~  5  2 WMt  1  w  W  1  w  N  (31)

 The velocity constraint equations can be represented ,
 in turn ,  by a system of linearly dependent equations on
 the vector of generalized twist ,  i . e .,  as  Dt  5  0 6 p  ,  where
 0 6 p   is the 6 p -dimensional zero vector ,   D  is a 6 p  3  6 p
 matrix of rank  g  ,  with  g   being the number of
 independent holonomic constraints .  Thus ,  the degree of
 freedom of the system is readily computed as  n  5  6 p  2  g .
 Accordingly ,  a set of  n  independent variables exists that
 can play the role of independent  generalized speeds . 1 8  If
 this set is stored in the  n -dimensional array  w ~  ,  then we
 can write :

 t  5  T w ~  (32a)

 t ~  5  T w ̈  1  T ~  w ~  (32b)

 where  T  is a 6 p  3  n  twist-shaping matrix .  Upon
 substituting for  t  into the velocity constraint equations ,
 and recalling that all components of  w ~   are independent ,
 we obtain

 DT  5  O 6 p 3 n  (33)

 in which  T  is the natural orthogonal complement of  D .
 As discussed elsewhere , 1 5   w N   lies in the nullspace of the
 transpose of  T .  Thus ,  if both sides of equation (31) are
 multiplied by  T  T   and equation (32b) is substituted into
 the equation thus resulting ,  we obtain

 I w ̈  1  C w ~  5  T  T w W  (34)

 where the  n  3  n  matrices  I  and  C  are defined as :

 I  ;  T  T MT  ;  C  ;  T  T  ( MT ~  1  WMT  )

 On the other hand ,   w N   can be decomposed as follows :

 w W  5  w  a  1  w g  1  w  d  (35)

 where  w a ,  w  g   and  w  d   represent the generalized wrenches
 due to actuators ,  gravity and dissipative ef fects ,
 respectively .  Hence ,  equation (34) can be cast in the
 form

 I w ̈  1  C w ~  2  t g  2  t d  5  t a  (36)

 In the above equation ,  the  n -dimensional generalized
 forces  t a ,  t g   and  t d   are defined as :

 t a  ;  T  T w a  ;  t g  ;  T  T w  g  ;  t d  ;  T  T w  d

 Equation (36) represents the Euler-Lagrange equations
 of the system ,  which are free of constraint forces .  In the
 present form ,  equation (36) is suitable for the study of
 the direct dynamics of the manipulator .  However ,  upon
 assembling all generalized inertia wrenches into vector
 w n ,  defined as  w  n  ;  2 Mt ~  2  WM t ,  equation (36) can be
 rewritten as

 t a  ;  2 T  T  ( w n  1  w  g  1  w  d )  (37)

 The dynamics model given by equation (37) is applicable
 in the solution of the inverse dynamics problem of the
 manipulator .  The inertia wrench ,   w n

 i    on the  i th body can ,
 in turn ,  be computed using the corresponding NE
 equation ,  i . e .,

 w n
 i  ; F 2 v i  3  I i v i  2  I i v ~  i

 2 m i c ̈  i
 G  5  2 M i t ~ i  2  W i M i t i  (38)

 where  v ~  i   denotes the angular-acceleration vector of the
 i th body .

 3 . 1  Dynamics analysis of the manipulator
 In order to apply the dynamics model derived in the
 previous section ,  we need expressions for the twist of
 each body of the manipulator ,  along with the time-rate of
 change of this twist .  Here ,  equations (16) and (17a & b)
 can be used to compute the angular velocity and angular
 acceleration of the  i th-leg links .  Moreover ,  for the MP ,
 these vectors have been obtained as  v   and  v ~  ,
 respectively ,  Referring to Figure 5 ,  the position vectors
 of the mass centers of the foregoing bodies are given as

 c i  5  a i  1  r i Q ̂  i Q i [ e i ] i  ;  i  5  1 ,  .  .  .  ,  6  (39a)

 d i  5  a i  1  Q ̂  i Q i h l i [ e i ] i  1  s i [ s i ] i j ;  i  5  1 ,  .  .  .  ,  6  (39b)

 c  5  p  1  Q r  (39c)

 where [ e i ] i  ;  [ A i R i
 Ñ ] i  / l i  ,  [ s i ] i  ;  [ R i B i

 Ñ ] i  / s i  ,  while  r
 represents the position vector of the mass center of the
 MP in frame  } .
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 Fig .  5 .  Kinematic notation for the dynamic analysis .

 At this stage ,  we assign body frames  & i   and  * i   to the
 two links of the  i th leg ,  for  i  5  1 ,  .  .  .  ,  6 .  The origins of
 these frames are fixed at points  A i   and  R i  ,  respectively ,
 such that the rotation matrices ,   G i   and  H i  ,  representing
 the orientations of  & i   and  * i   with respect to  @ ,  are
 defined as

 G i  ;  [ x i  ,  e i  3  x i  ,  e i ] ;  H i  ;  [ x i  ,  s i  3  x i  ,  s i ]  (40)

 where  e i  ;  Q ̂  i Q i [ e i ] i   and  s i  ;  Q ̂  i Q i [ s i ] i  .  Now ,  upon
 dif ferentiating equations (39a – c) with respect to time ,  for
 i  5  1 ,  .  .  .  ,  6 ,  we obtain

 c ~  i  5  r i Q ̂  i h V i Q i [ e i ] i  1  Q i [ e ~  i ] i j  (41a)

 d ~  i  5  Q ̂  i V i Q i h l i [ e i ] i  1  s i [ s i ] i j

 1  Q ̂  i Q i h l i [ e ~  i ] i  1  s i [ s ~ i ] i j  (41b)

 c ~  5  p ~  1  V Q r  (41c)
 in which

 [ e ~  i ] i  ;
 d
 dt

 [ e i ] i  5  [0 ,  2 sin  c i  ,  cos  c i ]
 T c ~  i  (42a)

 [ s ~ i ] i  ;
 d
 dt

 [ s i ] i  5  [0 ,  sin  ( c i  1  θ i ) ,

 2 cos  ( c i  1  θ i )] T  ( c ~  i  1  θ ~  i )  (42b)

 Further dif ferentiation of equations (41a – c) with respect
 to time leads to the relations below :

 c ̈  i  5  r i Q ̂  i h ( V ~  i  1  V 2
 i  ) Q i [ e i ] i  1  2 V i Q i [ e ~  i ] i  1  Q i [ e ̈  i ] i j  (43a)

 d ̈  i  5  Q ̂  i h ( V ~  i  1  V ~  2 ) Q i ( l i [ e i ] i  1  s i  1  [ s i ] i )

 1  2 V i Q i ( l i [ e ~  i ] i  1  s i [ s ~ i ] i )

 1  Q i ( l i [ e ̈  i ] i  1  s i [ s ̈  i ] i ) j  (43b)

 c ̈  5  p ̈  1  ( V ~  1  V 2 ) Q r  (43c)

 In the above relations ,  [ e ̈  i ] i   and [ s ̈  i ] i   are readily computed
 from equations (42a – b) by direct dif ferentiation with
 respect to time .  Similarly ,  from equation (12) we have

 v ~  i  ;  [0 ,  2 w ̈  i  ,  0] T  5  vect  ( V ~  i )  (44)

 On the other hand ,  the generalized gravity wrench  w g

 can be expressed in the form

 w g  5  [( w  g
 1 )

 T ,  .  .  .  ,  ( w g
 6 )

 T ,  ( w g
 6 1 1 )

 T ,  .  .  .  ,  ( w  g
 6 1 6 )

 T ,  ( w  g
 M ) T  ] T

 (45)

 where ,  ( w g
 i  )  ;  [ 0 T ,  m i g

 T  ] ,  ( w g
 6 1 i )

 T  ;  [ 0 T ,  m 6 1 i g
 T  ] ,  with  m i

 and  m 6 1 i   representing the mass of the first and second
 link of the  i th leg ,  respectively .  Moreover ,
 w g

 M  ;  [ 0 T ,  m g  T  ] ,  g  ;  [0 ,  0 ,  2 g ] T ,  with  m  representing the
 mass of the MP and  g  denoting the gravity constant .
 Now ,  let the inertia matrices of the leg links and the MP
 in their associated body frames  & i  ,  * i   and  } ,  be denoted
 by [ I i ] &  ,  [ I 6 1 i ] *  ,  for  i  5  1 ,  .  .  .  ,  6 ,  and [ I M ] }  ,  respectively .
 Then ,  they can be transformed into frame  @   using the
 relations below :

 I i  5  G i [ I i ] & G  T
 i  ;  i  5  1 ,  .  .  .  ,  6  (46a)

 I 6 1 i  5  H i [ I 6 1 i ] * H  T
 i  ;  i  5  1 ,  .  .  .  ,  6  (46b)

 I M  5  Q [ I M ] } Q  T  ;  (46c)

 It should be noted that the twist  t C   of the mass center of
 the MP can be related to the actuated joint-rate vector ,
 w ~  ,  simply by replacing  Qb i   in equation (21) by  Qb i  2  r ,
 for  i  5  1 ,  .  .  .  ,  6 .  In this way ,  the inverse Jacobian of the
 manipulator remains unchanged ,  while the direct
 Jacobian with respect to point  C ,  i . e .,   B C  ,  changes to

 B C  5 3  [ Q ( b 1  2  r )  3  x 1 ]
 T

 ? ? ?
 [ Q ( b 6  2  r )  3  x 6 ]

 T

 x  T
 1

 ? ? ?
 x T

 6
 4  (47)

 3 . 2  Numerical e y  aluation of the NOC
 The direct derivation of  T  from equation (32a) is ,  in
 general ,  very tedious and increases the complexity of the
 dynamics problem .  Thus ,  we resort to the method
 proposed by Ma 9  to calculate  T  numerically ,  which we
 briefly recall ,  as applied to the manipulator under study .

 At the outset ,  we let  d j   denote the  j th column of  T  and
 notice that  T  is independent of the vector of actuated
 joint rates ,   w ~  .  On the other hand ,  the generalized twist
 vector can be expressed as a linear combination of  d j  ,  for
 j  5  1 ,  .  .  .  ,  6 .  Hence ,  one can infer that  d j   is equal to  t
 when  w ~  j   is equal to unity and all other components of  w ~
 are zero ,  i . e .

 d j  5  t ( w ,  w ~  ) ,  u w ~  1 5 0 , . . . , w ~  j 2 1 5 0 , w ~  j 5 1 , w ~  j 1 1 5 0 , . . . , w ~  6 5 0  (48)

 which means that matrix  T  can be numerically calculated
 columnwise for all leg links .  In the case of the MP ,  the
 corresponding  T  can be directly computed using
 equations (23 & 47) ,  i . e .  as  B 2 1

 C  A .

 4  IMPLEMENTATION AND A NUMERICAL
 EXAMPLE
 The preceding kinematics and dynamics modeling can be
 incorporated into a single algorithm to evaluate the
 kinematics and dynamics of the manipulator under
 dif ferent end-ef fector Cartesian trajectories or actuator
 force histories .  For simulation purposes ,  the basic steps
 of this algorithm for the inverse problem are described in
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 Fig .  6 .  Algorithm for the inverse dynamics of the manipulator .

 the diagram shown in Figure 6 .  The formulas
 corresponding to each block of the diagram have been
 introduced in the previous sections and ,  hence ,  will not
 be discussed further .

 4 . 1  Numerical example
 A numerical example of the inverse dynamics is included
 in this section .  The geometric information of the
 manipulator used in this example is given in Table 1 .  The
 length of the leg links ,  the location of the mass centers ,
 the mass of each body and their associated inertia

 properties ,  for  i  5  1 ,  .  .  .  ,  6 ,  are as follows :

 h l i j 6
 1  5  h s i j 6

 1  5  1 . 4  (m)

 h r i j 6
 1  5  h s i j 6

 1  5  0 . 7  (m)

 r  5  [0 ,  0 ,  1 . 88] T  (m)

 [ I i ] &  5 3  4 . 2
 0
 0

 0
 4 . 2
 0

 0
 0

 0 . 015
 4  (kg-m 2 ) ,  m i  5  10  (kg) ;

 [ I 6 1 i ] *  5 3  3 . 3
 0
 0

 0
 3 . 3
 0

 0
 0

 0 . 015
 4  (kg-m 2 ) ,  m 6 1 i  5  10 (kg) ;

 [ I M ] }  5 3  800
 0
 0

 0
 800
 0

 0
 0

 800
 4  (kg-m 2 ) ,  m  5  500  (kg)

 We have generated a helical trajectory in the Cartesian
 space ,  as described in the Appendix .  The motion of the
 manipulator is such that point  P  remains on this
 trajectory while the MP maintains a fixed orientation
 with respect to the Frenet-Serret triad of the helix (see
 Figs .  7 and 8) .  The corresponding time-histories of the

 Fig .  7 .  Trajectory of point  P .

 Table I .  The parameters of the BP and MP (meter) .

 i  1  2  3  4  5  6

 u i  2 0 . 9397
 0
 0 . 3420

 0 . 9397
 0
 0 . 3420

 0 . 4698
 2 0 . 8138

 0 . 3420

 2 0 . 4698
 0 . 8138
 0 . 3420

 0 . 4698
 0 . 8138
 0 . 3420

 2 0 . 4698
 2 0 . 8138

 0 . 3420
 a i  2 0 . 0953

 2 1 . 9682
 0

 0 . 0953
 2 1 . 9682

 0

 1 . 7521
 0 . 9016
 0

 1 . 6568
 1 . 0666
 0

 2 1 . 6568
 1 . 0666
 0

 2 1 . 7521
 0 . 9016
 0

 b i  2 0 . 0667
 2 1 . 3847

 0

 0 . 0667
 2 1 . 3777

 0

 1 . 2265
 0 . 6381
 0

 1 . 1598
 0 . 7536
 0

 2 1 . 1598
 0 . 7466
 0

 2 1 . 2265
 0 . 6311
 0
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 Fig .  8 .  Poses of the MP while tracing the helical trajectory .

 components of the acceleration vector of point  P  and
 angular acceleration vector of the MP are shown in
 Figures 9 and 10 ,  respectively .  Moreover ,  the time-
 histories of the unactuated joint variables ,  i . e .,   h c i j 6

 1  and
 h θ i j 6

 1 ,  and also the actuated joint variables  h w i j 6
 1

 can be seen in Figures 11 ,  12 ,  and 13 ,  respectively .  As
 well ,  the corresponding actuator torques  h τ  a

 i  j 6
 1  are given

 in Figure 14 .  These results have been obtained by

 Fig .  9 .  Time-histories of the components of the acceleration
 vector of point  P .

 Fig .  10 .  Time-histories of the components of the angular
 acceleration vector of the MP .

 Fig .  11 .  Time-histories of the unactuated joint variables  h c i j 6
 1

 (rad) .

 Fig .  12 .  Time-histories of the unactuated joint variables  h θ i j 6
 1

 (deg) .

 assuming that the dissipative ef fects can be neglected ,  as
 compared with the other forces involved .

 5  CONCLUSIONS
 In this paper ,  the kinematics and dynamics of a six-dof
 parallel manipulator with six revolute legs were studied .

 Fig .  13 .  Time-histories of the actuated joint variables  h w i j 6
 1

 (rad) .
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 Fig .  14 .  Time-histories of the joint torques  h τ  a
 i  j 6

 1  (kNm) .

 Each leg comprises two links connected by a revolute
 joint and is actuated by a motor at the base .  In this way ,
 the leg masses and inertias can be reduced significantly .
 To study the motion characteristics of the manipulator ,
 we introduced a kinematic model that was used to derive
 the dynamics equations of the system based on the
 method of the NOC .  The present study provides a
 framework for future research on the design and control
 of this type of manipulators .  Moreover ,  the study can
 further reveal the potential applications of the proposed
 mechanism as a robotic manipulator ,  a motion simulator ,
 and so on .
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 APPENDIX
 To generate a sample trajectory in the Cartesian space ,
 we let the position vector of point  P  of the MP be
 defined in frame  @   by a vector-valued function that
 represents the position vector of a point of a helix ,
 namely ,

 p  5  a  cos  ( b  1  v  ) e x  1  a  sin  ( b  1  v  ) e y

 1  b ( b  1  v #  ) e z  ;  a  .  0 ,  b  ?  0  (49)

 where  a , b ,  v  ,  and  v #    are scalar constants ;  the first two
 with units of length ,  the last two dimensionless .
 Moreover ,   e x  ,  e y   and  e z   are unit vectors along the three
 axes of frame  @ ,  while  b   denotes the parameter of the
 helix that varies with time  t  according to the quintic
 polynomial below :

 b  5  O 5
 k 5 0

 a k t k  (50)

 Moreover ,  if the motion of the manipulator starts at time
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 t  5  0 and ends at time  t  5  t f  ,  then the coef ficients  h a k j 5
 0  are

 given as

 a 0  5  b  0 ;  a 1  5  b ~  0 ;  a 2  5
 1
 2

 b ̈  0  (51a)

 a 3  5
 20 b f  2  20 b  0  2  (8 b ~  f  1  12 b ~  0 ) t f  2  (3 b ̈  0  2  b ̈  f  ) t 2

 f

 2 t 3
 f

 (51b)

 a 4  5
 30 b  0  2  30 b f  1  (14 b ~  f  1  16 b ~  0 ) t f  1  (3 b ̈  0  2  2 b ̈  f  ) t 2

 f

 2 t 4
 f

 (51c)

 a 5  5
 12 b f  2  12 b  0  2  (6 b ~  f  1  6 b ~  0 ) t f  2  ( b ̈  0  2  b ̈  f  ) t 2

 f

 2 t 5
 f

 (51d)

 where subscripts ‘‘0’’ and ’‘ f  ’’ represent values of the
 corresponding parameters at times  t  5  0 and  t  5  t f  ,
 respectively .  Furthermore ,  to start and end the motion
 with zero velocity and acceleration ,  we set  b ~  0  5  b ̈  0  5  b ~  f

 5  b ̈  f  5  0 .  Now ,  upon dif ferentiating equation (49) twice
 with respect to time ,  we obtain

 p ~  5  m b ~  ;  p ̈  5  m b ̈  1  n b ~  2  (52)

 where  m  and  n  are defined as

 m  ;  2 a  sin  ( b  1  v  ) e x  1  a  cos  ( b  1  v  ) e y  1  b e z

 n  ;  2 a  cos  ( b  1  v  ) e x  2  a  sin  ( b  1  v  ) e y

 and  b ~    and  b ̈    are computed upon dif ferentiating equation
 (50) twice with respect to time ,  as

 b ~  5  O 5
 k 5 0

 ka k t k 2 1 ;  b ̈  5  O 5
 k 5 0

 k ( k  2  1) a k t k 2 2  (53)

 On the other hand ,  expressions for the angular velocity
 and angular acceleration vectors of the MP can be
 derived using the  Darboux  vector and its time-derivative
 associated with the helical parametric curve , 1 9  i . e .
 v  5  b ~  e z   and  v ~  5  b ̈  e z  .  Moreover ,  the unit tangent ,
 normal ,  and binormal vectors defining the Frenet-Serret
 triad of the helix are derived as

 e i  5
 1

 ( a 2  1  b 2 ) 1 / 2  m ;  e n  5
 1
 a

 n ;  e b  5  e t  3  e n  (54)

 Hence ,  the rotation matrix  Q  is expressed in the form

 Q  5  [ 2 e b  ,  e n  ,  e t ]  (55)

 For the purpose of the present study ,  we assigned the
 following values to the parameters involved :

 b  0  5  2 π  / 2 ,  b f  5  2 π  / 3 ,  a  5  0 . 2 ,

 b  5  1 . 2 ,  v  5  0 ,  v #  5  2 . 2
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