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Kinematics and dynamics of a six-degree-of-freedom parallel

manipulator with revolute legs

Kourosh E. Zanganeh*, Rosario Sinatrat and Jorge Angelest

SUMMARY

This paper presents the kinematics and dynamics of a
six-degree-of-freedom platform-type parallel manipulator
with six revolute legs, i.e. each leg consists of two links
that are connected by a revolute joint. Moreover, each
leg is connected, in turn, to the base and moving
platforms by means of universal and spherical joints,
respectively. We first introduce a kinematic model for
the manipulator under study. Then, this model is used to
derive the kinematics relations of the manipulator at the
displacement, velocity and acceleration levels. Based on
the proposed model, we develop the dynamics equations
of the manipulator using the method of the natural
orthogonal complement. The implementation of the
model is illustrated by computer simulation and
numerical results are presented for a sample trajectory in
the Cartesian space.

KEYWORDS: Parallel manipulator; Revolute legs; Kinemat-
ics and dynamics; Natural orthogonal complement.

1 INTRODUCTION

The conventional six-degree-of-freedom  (six-dof)
platform-type parallel manipulator, commonly -called
Stewart or Stewart-Gough platform,' consists of a
moving platform (MP) that is connected by six telescopic
legs to a base platform (BP), as depicted in Fig. 1.
Moreover, six actuators of the legs are used to control
the motion of the manipulator.

The parallel structure of the Stewart platform, as
compared to the structure of serial manipulators, has
higher stiffness and better dynamic-response characteris-
tics, since the overall load on the system is more evenly
distributed among the actuators. However, the work-
space of the manipulator is considerably small, which, to
some extent, limits the full exploitation of these
predominant features. Nevertheless, one can increase the
useful volume of the workspace by a proper redesign of
the legs, e.g. by replacing prismatic with revolute joints
and changing the actuators accordingly. In this way, the
potential applications of the manipulator can be
extended, while preserving its predominant features. The
kinematic analysis of a six-dof parallel manipulator with
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three legs in an all-revolute design has been reported by
Cleary and Brooks.? Each leg in their design is driven by
two motors through a differential drive. Here, we
consider a more general architecture comprising six
two-link revolute legs, as depicted in Fig. 2. The legs are
connected to the BP and MP by a set of universal and
spherical joints, respectively. Moreover, the motion of
the manipulator is controlled by six motors that are
mounted on the base. Each motor actuates the
corresponding leg through a coupling with one of the two
axes of the universal joint. This unconventional design
offers some advantages in terms of the motion
characteristics and the workspace volume; revealing
these properties calls for a more detailed analysis, which
motivates the present work.

To better understand the features of any alternative
manipulator design, a study of its dynamics, in parallel to
a study of its kinematics, is an essential task. In recent
years, extensive research has been reported on the
kinematic analysis of the Stewart platform and its various
versions,” but regarding its dynamics, the work reported
is considerably scarcer. In this context, Sugimoto®
proposed a method of inverse dynamics using motor
algebra, while Do and Yang’ introduced an inverse-
dynamics algorithm based on the Newton-Euler equa-
tions. Other research work on this subject can be found
in the pertinent literature.”'* However, most of these
works focus on manipulators with prismatic legs.

In this paper, we propose a model for the kinematics
of the manipulator shown in Fig. 2. This model is used, in
turn, to derive the dynamics equations of the system
based on the natural orthogonal complement (NOC), as
proposed by Angeles and Lee.'>'® Moreover, these
equations are implemented in an algorithm that is used
to study the kinematics and dynamics of the manipulator
at hand. The application of this algorithm is illustrated
through a numerical example that simulates the
kinematics and dynamics behavior of a typical man-
ipulator while following a sample trajectory.

2 KINEMATICS

With reference to Fig. 2, the origin of the coordinate
frame 93 is fixed at point O of the BP, while a frame ./ is
assigned to the MP with its origin at point P. Let us now
consider the ith leg of the manipulator, as shown in Fig.
3. In this figure, a motor is coupled to the axis % of the
universal joint, and used to actuate this leg. The leg itself
consists _of two links of length [;=|[AR;| and
s; = ||R;B;||, which are free to rotate about &f; and %,
axes, respectively. Since these two axes are parallel, the
motion of the foregoing links are confined to the II,
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Fig. 1. The six-dof parallel manipulator with prismatic legs.

plane passing through the center of the ith universal joint
and perpendicular to the aforementioned axes.

Next, we define two coordinate frames @i()?[, ¥i, 2;) and
F.(x;, yi, 2;), with their origins fixed at point A;, such that
the x;- and the y;-axis of frame % are directed along &,
and ¥, axes, respectively, while the z;-axis lies in the II;
plane. Moreover, frame %, is confined to rotate about the
y;-axis of the fixed frame B, its angle of rotation being
¢ Thus, the rotation matrix @; that represents the
orientation of % with respect to 9 is given as

cos¢; 0 —sin ¢,
0= 0 1 o [ i=1,...,6 (1)
sing; 0 cos g,

Furthermore, unit vectors along each of the three
mutually perpendicular axes of frame %, are defined as

Vi=u=[u;, v, 0]T§

(2a)
z=2z=10,0,1]";

where u; is a unit vector along the %-axis. Likewise, the
rotation matrix @; that represents the orientation of %;
with respect to %, for i=1,...,6, can be expressed in
the %B-frame as

X=9X%

v; u; O
O0,=[%,92%]=| —uw v, 0 i=1,...,6 (2b)
0 0 1

Fig. 2. The six-dof parallel manipulator with revolute legs.
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Fig. 3. Kinematic notation of the ith revolute leg.

Referring to Fig. 3, we can readily derive the relation
below:

A;B;=AR, +R,B;, = —a;+p + Qb;

i=1,...,6 (3)

where a; and p are the position vectors of A; and P in
frame 98, while b, is the position vector of B, in frame /.
Moreover, Q represents the rotation matrix relating the
orientation of ./ with respect to that of Z. Using the
trigonometric relations in triangle A,R;B;, for i=
1,...,6, we can readily derive the expressions below:

6, =cos™" [(I7 + 57 — q7)/(2;s,)] (4a)
6, = (4:9:)/ (Lis; sin 6,) (4b)
0, = (47 + qid; — 1is:07 cos 6,)/ (s, sin 6;) (4¢)
where ¢q;= ||1TB£ |, with ||-|| denoting the Euclidean

norm of (-). Moreover, using equation (3) we can write
gi=(a,+p+0b) (a;+p+0b); i=1,...,6 (5

upon differentiating both sides of equation (5) with
respect to time, we obtain

1 .
G:=dq;/dt=—(p+QOb) AB;; i=1,...,6 (6)
qi
In the above equation, ) denotes the angular-velocity

matrix of the MP, its associated angular-velocity vector w
being given as

w, 1 W3 ™ W3
0= o, |= vect(Q) Ei W13 — W3 (7
w, Wy — W2

where w;, fori=1,2,3 and j =1, 2, 3, denotes the entry
in the ith row and the jth column of matrix €. Further
differentiation of equation (6) with respect to time leads
to the relation

1
§;=d’q;/dr* = ;{||P +QOb;|?

+[p+ (Q+Q%0b]"AB; — 47} (8)

where € is the cross-product matrix of & = [a@,, @, @.],
with @ being the angular-acceleration vector of the MP.
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On the other hand, vectors ﬁ and ﬁ, when
expressed in frame &%, take on the forms
[0
[Iﬁ]z =| licosy; |;
| /i sin ¢
_ )
0
[ﬁ]iz —s;cos (P, + 6) [; i=1,...,6
| —s;sin (; + 6))

where [-]; is the representation of any vector or matrix (+)
in frame %. In addition, ; denotes the angle between
the positive direction of y; and AR, (see Fig. 3).
Moreover, using equation (3) we can write

AiBi = QiQi[AiBi]i = —aQ; +p + le; 1= 1, ey 6 (10)
Now, upon differentiating both sides of equation (10)
with respect to time, and rearranging of terms, we obtain

d R — —_—
E[[AiBi]i:hi_Qi[AiBi]i; i:1, e ,6 (113)
where vector h;, fori=1,..., 6, is defined as
h;=[hi,, hy, h:)" = Q1O (p + QQb)  (11b)

Moreover, €, represents the angular-velocity matrix of
frame %, its associated angular-velocity vector, w,, being
given as

W, = [09 _¢i’ O]T = vect (Ql) (12)
if we let k[ [kzxy k klZ]T

Now, ivs O!(-a;+p + Ob)),
then equations (9 & 10) lead to the relation

0
[A:B;]i=| [ cos ¢; —s; cos (i + 6))
[; sin ; — s; sin (; + 6))

kix COS @; + kiZ SiIl Q;
ki (13)
—k;, sin ¢; + k;, cos ¢;

Furthermore, assuming that 0 < ¢;, §; = 11, we can readily
compute ¢; and ; from the first two components of

vector [ﬁ], in equation (13), fori=1,...,6, as
@ = —tan" ' (ky /k;.) (14a)
;= atan (s; sin 6, [; — s, cos 6))
+atan (Vq; — ki, —ki) (14b)

In the above equations, ‘“‘atan” obviously denotes the
two-argument arc-tangent function which sometimes
represented by “atan2”. In addition, we differentiate the
left-hand side of equation (13) with respect to time and
then equate the expression thus resulting with the
right-hand side of equation (1la). In this way, two
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relations can be derived from the first two components of
d[A ;B;];/dt, namely,

h.
e i=1,...,6 15
; Sin (lpl n 9[) ; l ) ) ( a)
. .\ — 50, sin (¢, + 6,
= h,y. 5;6; sm_(llfz 6:) . i=1,...,6 (15b)

—1I; sin i, + s; sin (; + 6))

Now, the angular-velocity vectors of the two links of the
ith leg, i.e., v;and §;, fori=1,..., 6, are computed as

Vi = Qi(Qi[Vi]i - ,); = Qi(Qi[gi]i —w;) (16)

where, [v;]; =[#;, 0,0]” and [&]; = [ + ;, 0, 0]”. On the
other hand, expressions for the angular-acceleration
vectors of the same links can be obtained from equation
(16) by differentiating both sides of the foregoing
equations with respect to time, thereby obtaining

Qi(QiQi[vi]i + O[] — &); i=1,...,6
= Qi(QiQi[gi]i + Qi[éi]i —o); i=1,...,6

in which &;=[0, —&;, 0]”. Moreover, to derive expres-
sions for &; and ij;, we first differentiate both sides of
equation (11b) with respect to time, i.e.

dhi/dt [thJ hty: h ] QITQ?‘[I’. + (Q + Qz)sz]
+(0.0.0)"(p + QQb) (13)

Then, upon differentiating both sides of equations (15a &
b) with respect to time, for i =1, ..., 6, we obtain

(17a)
(17b)

hix — Ni%i
T sin(d +6) 1
s; sin (; + 6;) (19a)
¢ — ];liy - niéi - Siéi Sin (lpl + Q) - (771 - lil.#i COS ¢z)
l —1I; sin ¢; + s; sin (; + 6;)
(19b)

where 7, Esi(t/}i + Q-) cos (; + 6)).

2.1 The velocity Jacobians

It is known that the kinematic analysis of parallel
manipulators leads to two Jacobian matrices.'” Based on
the role that these matrices play in the kinetostatic
transformation between joint and Cartesian variables,
they are commonly referred to as the forward and the
inverse Jacobians. To find these Jacobians for the
manipulator under study, we first use equation (11b) to
derive the relation below:

hie = [x)'h; = x[(p + @ X Qb,);

in which, [x],=[1,0,0]” and x;= Q,Q,[x],. After some
algebraic operations, equation (20a) can be written in the
form

i=1,...,6 (20a)

hy=x/p+(0b;xXx) w;, i=1,...,6 (20b)

Equation (20b), when substituted into equation (15a),
leads to the relation

;@ sin (; + 6,) = [(QOb; X x;)"  x/]tp; i=1, ,6 (21)
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where tp=[w’, p”]" is the 6-dimensional twist array at
point P of the MP. The six equations within equation
(21) can be written in vector form as

A¢ =Bty (22)

in which, @ =[¢y, ..., ¢]" and the 6 X 6 matrices A and
B are, in fact, the inverse and forward Jacobians of the
manipulator, that are defined as

A =diag (ay, ..., des);
(23)
(Ob, X x))" x{
B=| :
(Qbs X x5)" x¢
where a;=s;sin (; + 6;), for i
rewrite equation (22) in the form

Te=tr (24)

1,...,6. Now, we

where T =B 'A. Hence, upon differentiating equation
(24) with respect to time, we obtain

In the above equation, f,=[e",p"]", while
T=B '(A—-BB 'A), with A and B given as
A = diag (dyy, - - - , dee);
(26)

(Qb, X x, + Qb Xx,)"  *
B- : :
(QQb6 X Xe + Qb6 X J£'6)T xg

with d; =s,(; + 8;) cos (; + 6;), and X; = QiQiQ,»Txi, for
i=1,...,6.

Input geometric data of
the manipulator

Compute {Q;}$ |
1

Input a motion trajectory
in the Cartesian space
4
At each trajectory point, evaluate
Qpppww
1
Inverse position analysis
{a:}%. {68, {e}}, {0}t
4
Compute rotation matrices of each frame
{Q:}1
4
Inverse velocity & accgleratign analyses
{@11 {63, {0:)5, {6:)%

{01 {@:)) (o), (S

{wil}, (Wi}
{Vi}(liv {')i (liv {51 (1;’ {61}(1i
Fig. 4. Inverse-kinematics
manipulator.

algorithm for the all-revolute

https://doi.org/10.1017/50263574797000477 Published online by Cambridge University Press

Kinematics & dynamics

2.2 Inverse kinematics

In the inverse kinematic problem, the motion of the
end-effector is given and the corresponding motion of
each joint, actuated or unactuated, is to be determined.
The preceding kinematic modeling can be incorporated
into a single algorithm to evaluate the inverse kinematics
of the manipulator under different end-effector Cartesian
trajectories. The basic steps of this algorithm are
described in the diagram shown in Figure 4.

2.3 Direct kinematics

In the direct kinematics problem, the motion of each
actuated joint is given and the corresponding end-
effector motion as well as that of all unactuated joints are
to be determined. At the outset, we find the solution to
the direct problem at the displacement level. This is done
by first substituting equation (5) into equation (4a).
Thus, fori=1, ..., 6, we obtain

7 +s7—2ls;cos 6, = (a; +p + Qb)) (a; + p + Ob;) (27)

The above equations, together with the twelve equations
resulting from the first two rows of vector equations (13),
yield 18 nonlinear equations in as many unknowns,
namely, the three components of p, the three
independent entries of the rotation matrix Q, {6;}9, and
{;}3. Once the pose of the end-effector, i.e. vector p and
matrix @, and hence, the configuration of the
manipulator is known at each instant, we can use
equations (24) and (25) to compute the corresponding
values for the components of ¢, and ip, respectively.

3 DYNAMICS MODELING USING THE NOC

In this section, we derive the equations of motion using
the method of the natural orthogonal complement. With
this method, a set of Euler—Lagrange equations, free of
constraint forces, is derived from the Newton-Euler
(NE) equations of all individual bodies, using the natural
orthogonal complement of the coefficient matrix of the
velocity constraint equations. This method was applied
by Ma’ for the modeling and simulation of the Stewart
platform. Here, we adopt the same concept to develop a
model for the manipulator under study.

At the outset, we recall the dynamics equations of a
system that is composed of p rigid bodies coupled by
holonomic constraints. The NE equations for every
individual body can be written as

Mii:_W/thi_l—wi; i=1,...,p (28)

where t;=[w/, ¢/]" is the 6-dimensional twist array of
the ith body, defined in terms of its angular velocity, w;,
and the velocity of the corresponding mass center, ¢;.
Moreover, if for the same body, n; and f; denote the
resultant moment and the resultant force acting at the
mass center, respectively, then w,=[n/, f/]" represents
the wrench acting on the body. This wrench can, in
general, be decomposed into a working wrench and a
nonworking constraint wrench, w;* and w?, respectively.
Here, w! comprises all moments and forces exerted by
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the environment, including motors and dissipative
effects, while w} comprises constraint moments and
forces exerted by the neighboring bodies, and that do not
produce any work, their sole role being to keep the
bodies together. Now, the 6 X 6 angular-velocity dyad,
W, and the inertia dyad, M;, are defined as

i O I, O
=lo o =g il
(29)
; X
Qizia(w‘ v)=ooi><1

v

where I, denotes the 3 X 3 matrix of the ith body about
its mass center, m; represents the mass of the body and v
is an arbitrary 3-dimensional vector. In addition, O and 1
are the zero and identity 3 X 3 matrices, respectively. It
should be noted that the NE equations of the ith body
are written with respect to a coordinate system fixed to
the body. Next, the 6p X 6p matrices of generalized mass,
M, and generalized angular velocity, W, as well as the
6p-dimensional vector of generalized twist, t, generalized
working wrench, w", and generalized nonworking
wrench, w”, are defined below:

151 wi’ wy
t=| [ wW=| |} wi=]| (30a)
t Wy W,
M =diag(M,, ..., M,); W=diag(W;,..., W,) (30b)

Hence, the 6p equations within equation (28) can be
expressed in compact form as

Mt=—WMt+w" +w" (31)

The velocity constraint equations can be represented,
in turn, by a system of linearly dependent equations on
the vector of generalized twist, i.e., as Dt =0q,, where
0¢, is the 6p-dimensional zero vector, D is a 6p X 6p
matrix of rank vy, with +y being the number of
independent holonomic constraints. Thus, the degree of
freedom of the system is readily computed as n = 6p — .
Accordingly, a set of n independent variables exists that
can play the role of independent generalized speeds.'® 1f
this set is stored in the n-dimensional array ¢, then we
can write:

t=T¢ (32a)
=T+ Té (32b)
where T is a 6p Xn twist-shaping matrix. Upon

substituting for ¢ into the velocity constraint equations,
and recalling that all components of ¢ are independent,
we obtain

DT = O, ,, (33)

in which T is the natural orthogonal complement of D.
As discussed elsewhere,'> w” lies in the nullspace of the
transpose of T. Thus, if both sides of equation (31) are
multiplied by T and equation (32b) is substituted into
the equation thus resulting, we obtain

I6+Co=T"w" (34)
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where the n X n matrices I and C are defined as:
I=T"MT; C=T"(MT + WMT)
On the other hand, w" can be decomposed as follows:
w" =w' 4w+ w (35)

where w*, w® and w? represent the generalized wrenches
due to actuators, gravity and dissipative effects,
respectively. Hence, equation (34) can be cast in the
form

I +Cop—15—1l=1" (36)

In the above equation, the n-dimensional generalized
forces 7°, 7¢ and 79 are defined as:

“=T"w", =T"ws '=T"w!
Equation (36) represents the Euler-Lagrange equations
of the system, which are free of constraint forces. In the
present form, equation (36) is suitable for the study of
the direct dynamics of the manipulator. However, upon
assembling all generalized inertia wrenches into vector
w", defined as w" = —Mt — WMt, equation (36) can be
rewritten as

=TT (w" +w* +w?) 37)

The dynamics model given by equation (37) is applicable
in the solution of the inverse dynamics problem of the
manipulator. The inertia wrench, w} on the ith body can,
in turn, be computed using the corresponding NE
equation, i.e.,

wn=[_wi><[iwi_lid)i
n=

] = _Miii, — WM, (38)

—m;é;

where o; denotes the angular-acceleration vector of the
ith body.

3.1 Dynamics analysis of the manipulator

In order to apply the dynamics model derived in the
previous section, we need expressions for the twist of
each body of the manipulator, along with the time-rate of
change of this twist. Here, equations (16) and (17a & b)
can be used to compute the angular velocity and angular
acceleration of the ith-leg links. Moreover, for the MP,
these vectors have been obtained as ® and o,
respectively, Referring to Figure 5, the position vectors
of the mass centers of the foregoing bodies are given as

c=a;+ piQiQi[ei]i; i=1,...,6 (39a)
d=a;+ QiQi{li[ei]i + Ui[si]i}; i=1,...,6 (39)
c=p+0p (39)

where  [e];=[AR;):/l;, [s:]i=[RBi]:/s;; while p
represents the position vector of the mass center of the
MP in frame /.
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Fig. 5. Kinematic notation for the dynamic analysis.

At this stage, we assign body frames ¥, and #, to the
two links of the ith leg, for i =1,..., 6. The origins of
these frames are fixed at points A; and R;, respectively,
such that the rotation matrices, G; and H;, representing
the orientations of % and J; with respect to 9, are
defined as

G = [xi) e; Xx;, ei]; H; = [xi) 5; X x;, si] (40)

where e,= QiQi[ei]i and ;= QiQi[si]i~ Now, upon
differentiating equations (39a—c) with respect to time, for
i=1,...,6, we obtain

¢, = p.0{Q.0/e] + Qilé]} (41a)
d,= 0.0,04l[e]; + o.[s,]}
+Q0,0{l[é] + oi[s.]} (41b)
¢=p+Q0p (41¢)
in which
[é]: = % [e.]: = [0, —sin g, cos ] "4 (42a)
[$:]:= d [s:]: = [0, sin (¢; + 6)),

dt
—cos (; + 6)]" (4 + 6,) (42b)

Further differentiation of equations (41a—c) with respect
to time leads to the relations below:

&= p0A(Q + Q)Q[e]: + 20,0, + QE]}  (43a)
d;= (i + @) 0i(l[e]; + o, + [si])

+2Q,0:(l[é&]; + oi[s])

+ Q,(L]é]; + ai[5.])} (43b)
é=p+(Q+0)0p (43c)

In the above relations, [¢;]; and [§;]; are readily computed
from equations (42a-b) by direct differentiation with
respect to time. Similarly, from equation (12) we have

@; = [0, —&;, 0]” = vect (£),) (44)
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On the other hand, the generalized gravity wrench w*
can be expressed in the form

wé=[(w$)', ..., (W, ws. )", ..., (Wi, ws)"]"

(45)

where, (w$)=[07, m,g”], (ws.,)" =[07, mq,,g"], with m;
and mg,; representing the mass of the first and second
link of the ith leg, respectively. Moreover,
w$,=[0", mg"], g=[0,0, —g]”, with m representing the
mass of the MP and g denoting the gravity constant.
Now, let the inertia matrices of the leg links and the MP
in their associated body frames ¥, #; and ., be denoted
by [I]s, [Is+i]s fori=1,...,6, and [I]4, respectively.
Then, they can be transformed into frame % using the
relations below:

I = G,-[I,-]gG,;T; i=1,...,6 (46a)
I, = IJi[I(H—i]%HiT; i=1,...,6 (46b)
I, = Q[IM]MQE (46¢)

It should be noted that the twist 7~ of the mass center of
the MP can be related to the actuated joint-rate vector,
¢, simply by replacing @b, in equation (21) by Qb, — p,
for i=1,...,6. In this way, the inverse Jacobian of the
manipulator remains unchanged, while the direct
Jacobian with respect to point C, i.e., B¢, changes to

[Q(b, —p) Xx1]" x{
B. = : : 47)

[Q(bs— p) X xo]” x7

3.2 Numerical evaluation of the NOC
The direct derivation of T from equation (32a) is, in
general, very tedious and increases the complexity of the
dynamics problem. Thus, we resort to the method
proposed by Ma’ to calculate T numerically, which we
briefly recall, as applied to the manipulator under study.
At the outset, we let 8; denote the jth column of T and
notice that T is independent of the vector of actuated
joint rates, ¢. On the other hand, the generalized twist
vector can be expressed as a linear combination of §;, for
j=1,...,6. Hence, one can infer that ; is equal to ¢
when ¢; is equal to unity and all other components of ¢
are zero, i.e.

5, =t(¢, ¢), 1=0,..0.¢5-1=0,6=1,11=01....36=0 (48)

which means that matrix T can be numerically calculated
columnwise for all leg links. In the case of the MP, the
corresponding T can be directly computed using
equations (23 & 47), i.e. as B'A.

4 IMPLEMENTATION AND A NUMERICAL
EXAMPLE

The preceding kinematics and dynamics modeling can be
incorporated into a single algorithm to evaluate the
kinematics and dynamics of the manipulator under
different end-effector Cartesian trajectories or actuator
force histories. For simulation purposes, the basic steps
of this algorithm for the inverse problem are described in
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Taput geometric & imertia data of properties, for i =1, ..., 6, are as follows:

the manipulator in local frames

1
4

Input a motion trajectory in the Cartesian space

{13 ={s:}) = 1.4 (m)

{p)s={0};=0.7 (m)

7 p=1[0,0,1.88]" (m)
At each trajectory point, evaluate
Qpphww 42 0 0
1 _ 2 - .
Inverse position analysis [Lls=]| 0 42 0 (kg-m?), m; =10 (kg);
{@:}%, {6:1, {0}, {oil}, {e:}s, {d:} 0 0 0015
1
Compute rotation matrices of each frame 330 0
{Qi}?7 {Gi}?’ {Hl}? [Iﬁ+i]% = 0 33 0 (kg'mz)a Moy = 10 (kg)>
+ 0 0 0015
Inverse \{elocit)_r. & acceleration anal'yses }
{qi}?:{{iji }% {{95}33 {{oi}?}’s{? ?},6{@}?’6{@/’@ ?8 {wil§ 800 0 0
wi}y, {wily, {will, {0:h, {618, (&}
U ledt 210 s Ula=| 0 800 0 | (kgm’), m =500 (kg)
1 0 0 800

Evaluate the NOC & wrenches
{T:}}, {Ts4s}S, T

{wi}, {wé,.}5, wiy We have generated a helical trajectory in the Cartesian

{w?r}s, {wi}S, vl space, as described in the Appendix. The motion of the
Il manipulator is such that point P remains on this
Compute friction wrenches trajectory while the MP maintains a fixed orientation
{wi}}, {wi.}}, wi with respect to the Frenet-Serret triad of the helix (see
+ Figs. 7 and 8). The corresponding time-histories of the
Compute actuator torques
T Toy oo To

Fig. 6. Algorithm for the inverse dynamics of the manipulator.

144
z
the diagram shown in Figure 6. The formulas 2
corresponding to each block of the diagram have been 124
introduced in the previous sections and, hence, will not 115
be discussed further. 1
0.94
084

4.1 Numerical example

A numerical example of the inverse dynamics is included
in this section. The geometric information of the
manipulator used in this example is given in Table 1. The
length of the leg links, the location of the mass centers,
the mass of each body and their associated inertia  Fig. 7. Trajectory of point P.

=02 o

Table I. The parameters of the BP and MP (meter).

i 1 2 3 4 5 6
u —0.9397 0.9397 0.4698 —0.4698 0.4698 —0.4698
0 0 —0.8138 0.8138 0.8138 —0.8138
0.3420 0.3420 0.3420 0.3420 0.3420 0.3420
a; —0.0953 0.0953 1.7521 1.6568 —1.6568 —1.7521
—1.9682 —1.9682 0.9016 1.0666 1.0666 0.9016
0 0 0 0 0 0
b, —0.0667 0.0667 1.2265 1.1598 —1.1598 —1.2265
—1.3847 —1.3777 0.6381 0.7536 0.7466 0.6311
0 0 0 0 0 0
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-2

2

Fig. 8. Poses of the MP while tracing the helical trajectory.

components of the acceleration vector of point P and
angular acceleration vector of the MP are shown in
Figures 9 and 10, respectively. Moreover, the time-
histories of the unactuated joint variables, i.e., {1} and
{69, and also the actuated joint variables {@;};
can be seen in Figures 11, 12, and 13, respectively. As
well, the corresponding actuator torques {1{}{ are given
in Figure 14. These results have been obtained by

025
e . 3—wmponent
o2} s N
k4 N
’ N
0.15 | ; N,
‘ Y
] N
01t ; \\
! Ay

005F7 \

y-component

[ e ki DRSNS
=005} \\ x-component i
K i
o1} N ;
\ ;
-0.15} N N ;
N 7
-o02} > Py
-0‘250 05 1 15 2 25 3 35 4
Time (s)

Fig. 9. Time-histories of the components of the acceleration
vector of point P.

0.2
015} / h¥
o1t ! \

005/

025 15 2 ] : ; '
Time (s}

Fig. 10. Time-histories of the components of the angular
acceleration vector of the MP.
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Fig. 11. Time-histories of the unactuated joint variables {i;}]
(rad).
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g% g%
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Fig. 12. Time-histories of the unactuated joint variables {6;}}
(deg).

assuming that the dissipative effects can be neglected, as
compared with the other forces involved.

5 CONCLUSIONS
In this paper, the kinematics and dynamics of a six-dof
parallel manipulator with six revolute legs were studied.

28 05
2o4s
'3 275 2
- ~ 04
27 0.38
2 3 0 1 2 3 4
Time (8) Time {8)
26 1
08
3'2'4 :8' \
b Zos
22 X
o 1 2 3 4 ° ‘0 1 2 3 4
Time (8) Time (8)
2.65
g' 2.6 g’O.G
= F=
5255 &
25 0.5
[+] 1 2 3 4 [} 1 2 3 4
Tirme (s) Time (a)

Fig. 13. Time-histories of the actuated joint variables {¢,}}
(rad).
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200 1 2 3 4 0 1 2 3 4
Time (s) Time (s)

Fig. 14. Time-histories of the joint torques {7{}; (kNm).

Each leg comprises two links connected by a revolute
joint and is actuated by a motor at the base. In this way,
the leg masses and inertias can be reduced significantly.
To study the motion characteristics of the manipulator,
we introduced a kinematic model that was used to derive
the dynamics equations of the system based on the
method of the NOC. The present study provides a
framework for future research on the design and control
of this type of manipulators. Moreover, the study can
further reveal the potential applications of the proposed
mechanism as a robotic manipulator, a motion simulator,
and so on.
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APPENDIX

To generate a sample trajectory in the Cartesian space,
we let the position vector of point P of the MP be
defined in frame % by a vector-valued function that
represents the position vector of a point of a helix,
namely,

p=acos(B+w)e +asin(B+w)e,
+b(B+a)e,; a>0,b#0 (49)
where a, b, w, and @ are scalar constants; the first two
with units of length, the last two dimensionless.
Moreover, e,, e, and e, are unit vectors along the three
axes of frame 9, while 8 denotes the parameter of the

helix that varies with time ¢ according to the quintic
polynomial below:

5
B = kgo at* (50)

Moreover, if the motion of the manipulator starts at time
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t=0 and ends at time ¢ = 1;, then the coefficients {a,}; are
given as

. 1.
ap=Bo; a1 = PBo; azziﬁo (51a)
e 208, — 208, — (885 + 12B0)t; — (3B — Bt} (51b)
3 267
308, — 308, + (148, +16Bo)t; + (3Bo — 25,)t7 (51c)
4 21
a5 — 128, — 128, — (6Bf + 6,80)tf —(Bo— Bf)t% (51d)
2t7

where subscripts “0” and ’*f” represent values of the
corresponding parameters at times r=0 and f=¢,
respectively. Furthermore, to start and end the motion
with zero velocity and acceleration, we set B, = B, = B/
= B, =0. Now, upon differentiating equation (49) twice
with respect to time, we obtain

p=mB; p=mp +np> (52)
where m and n are defined as
m= —asin (B + w)e, +acos (B + w)e, + be,
n=—acos(B +w)e, —asin(B+ w)e,
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and B and 8 are computed upon differentiating equation
(50) twice with respect to time, as

B= kad ™ B=3 k(k—Dad?  (53)
k=0 k=0

On the other hand, expressions for the angular velocity
and angular acceleration vectors of the MP can be
derived using the Darboux vector and its time-derivative
associated with the helical parametric curve,” i.e.
w=pe, and o =pPe,. Moreover, the unit tangent,
normal, and binormal vectors defining the Frenet-Serret
triad of the helix are derived as

1 1
e,=—n;

e = 7(012 NG m; p e, =e Xe, (54)

Hence, the rotation matrix @ is expressed in the form

0=[-e,e,e] (35)

For the purpose of the present study, we assigned the
following values to the parameters involved:

Bo=-—m/2, B;=-m/3, a=0.2,
b=12, =22

w=0,
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