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Abstract

A preference for diversity has been identified as an important predictor of tie formation in

certain networks, both social and organizational, that also exhibit a high degree of suppleness–

the ability to retain their general form and character under stress (Durkheim, 1893/1997.

The division of labor in society; Powell et al., 1996. Administrative Science Quarterly 116–145;

Powell et al., 2005. American Journal of Sociology, 110(4), 1132–1205; Koput & Gutek, 2010.

Gender stratification in the IT industry: Sex, status and social capital. Edward Elgar Publishing).

Extant models of preferential attachment, based on popularity, similarity, and cohesion,

meanwhile, produce exceedingly brittle networks (Albert et al., 2000. Nature, 406(6794), 378–

382; Callaway et al., 2000. Physical Review Letters, 85(25), 5468–5471; Holme et al., 2002.

Physical Review E, 65(2), 026107; Shore et al., 2013 Social Networks, 35(1), 116–123). A model

of preferential attachment based on diversity is introduced and simulated, demonstrating

that a preference for diversity can create a structure characterized by suppleness. This occurs

because a preference for diversity promotes overlapping and redundant weak ties during the

early stages of network formation.
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1 Introduction

Social ties seldom form at random. Attachment of nodes, whether persons or

organizations, is, instead, biased; or, in network parlance, preferential. There is a

long stream of literature, for example, that emphasizes the role of similarity as a bias,

or preference, in tie formation among social actors. The concept of homophily—the

principle that likeness attracts, or “birds of a feather flock together,” is widely-

viewed as the predominant, naturally-occurring mechanism of social tie formation

(McPherson et al., 2001; Wimmer & Lewis, 2010).

Resemblance, whether in the form of shared attributes, common interests, or

physical proximity, provides a basis for interaction as well as affinity. The social

structures that emerge tend to be primitive and clan-like: segmented networks

comprised of homogeneous nodes and exhibiting what Durkheim (1893/1997)

referred to as “mechanical solidarity.” The “tribal” logics (Durkheim, 1893/1997)

characteristic of such structures precipitate the patterns of preferential attachment in

tie formation and hierarchy in degree distributions that are mimicked in many extant

models of complex networks (see e.g. Barabási & Albert, 1999; Barabási & Frangos,

https://doi.org/10.1017/nws.2014.21 Published online by Cambridge University Press

http://orcid.org/0000-0002-1932-7551
https://doi.org/10.1017/nws.2014.21


304 J. K. M. Watts and K. W. Koput

2002).1 Within such exogenously-conformed networks, ties are seen to accumulate

around the eldest, most-central and most-cohesively connected as nodes begin to

diverge endogenously on such properties. The resulting social bonds are theorized

to be dyadic, as homophily relates to the similarity between a focal node and each

of its partners taken separately (Durkheim, 1893/1997). Consonantly, in simulation

studies of networks based on preferential attachment by popularity, similarity, or

cohesion, the resulting structures are exceedingly brittle—the targeted removal of

a small number of nodes or edges breaks such networks apart, altering their

basic properties, character and function (Albert et al., 2000; Callaway et al., 2000;

Holme et al., 2002; Shore et al., 2013).

Diversity, as a basis for tie formation, has often been viewed as a product of

intervention or design (see, e.g. Reagans et al., 2004). In this view, the construction

of social groups composed of dissimilar members arises as prescriptive for obtaining

both individual and collective outcomes as themselves varied as getting a job,

assimilating into a new culture, pursuing scientific discovery and technological

innovation, shepherding a social movement, and colluding (Baker & Faulkner, 1993;

Granovetter, 1973; Hargadon & Sutton, 1997; Powell et al., 1999; Powell et al., 2005;

Shemtov, 2003; Taylor, 1989). More recently, empirical studies have begun to identify

a preference for diversity as an important, unimposed predictor of tie formation

(Koput & Gutek, 2010; Powell et al., 2005).

Difference, in skills, attributes, and interests, provides a basis for complementarity

as well as friendship (Durkheim, 1893/1997; Pachucki & Breiger, 2010). Arising

from interdependence, rather than likeness, both the social bonds and collective

social structures that emerge tend to be stronger than those based on similarity.

Solidarity is “organic”, rather than mechanical (Durkheim, 1893/1997). We seek

out dissimilar others because they complement us, making us feel less incomplete

as a result (see e.g. Durkheim, 1893/1997 p. 54). Social bonds are strong because

diversity is structural, as the attraction in difference reflects the specialization and

division of labor of more advanced societies. This logic readily extends beyond

a dyad to a circle of friends, or portfolio of ties: we should prefer not just that

each of our partners differs from us, but that they differ from each other as well.

Accordingly, in a number of empirical settings featuring a preference for diversity

in tie formation, the networks appear remarkably supple—maintaining their basic

character and function as key nodes or edges are removed (see e.g. Powell et al.,

2005), or even inserted (Koput & Gutek, 2010).

Does a preference for diversity, then, create suppleness? To begin to answer

this question, we develop and simulate a model of preferential attachment by

diversity. We examine the nascency of the network that results, in comparison to

that of referent networks generated by models of either random attachment or

preferential attachment by popularity or clustering. In this way, we hope to reveal

1 We admit to extrapolating from Durkheim at this point, but note that the “homophilous”
character of social groupings that attend mechanical solidarity is, as described by Durkheim, the
result of a homogenizing social influence process that relies on a hierarchical social order with
centralized authority. The dynamics of inclusion in a world of mechanical solidarity can readily be
imagined to result in both an apparent uniformity on demanded attributes and an unequal degree
distribution.
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the development of suppleness. Before proceeding, some remarks are in order: first,

on suppleness; then, on diversity.

2 Suppleness

In lay terms, suppleness suggests a certain softness or pliability. Supple objects

bend gracefully, and are able to return with ease—but equally able to hold the

new position without strain. Supple networks display resilience when key nodes or

edges are removed, retaining or restoring their basic properties while maintaining

their basic character and function. But suppleness, as we introduce the concept

here, extends beyond the notion of resilience. Resilience is anchored and episodic.

Resilient networks “snap back” from each induced change to a fixed, prior state,

at the same rate and in the same manner (Bishop et al., 2011). Supple networks

become more resilient with each instance of change, responding with increasing ease.

Further, supple networks can absorb, as well as rebound from, change. Whereas

resilience implies elasticity, suppleness implies plasticity. While resilience resides

in the structure of a network, suppleness comes from the underlying generative

process.

An example may help. Throughout the 1990’s, observers repeatedly forecast the

consolidation of the biotechnology industry. The industry was comprised of hundreds

of small, startup firms who gained access to much-needed resources through strategic

alliances with a variety of partners: venture capitalists, universities, legal firms,

research labs, hospitals, government agencies, and conglomerate chemical and phar-

maceutical firms. The latter dominated the landscape of partners for commercializing

the new therapies being discovered by dedicated biotech firms. “Big Pharma” had

the resources and incentive to buy up the most prominent and productive biotech

firms, which also were the most centrally-connected (Powell et al., 1996). The large

pharmaceutical firms “cherry-picked” the most promising biotech firms, effectively

removing the most central nodes from the network (Powell et al., 2005). Yet, the

inter-organizational network maintained its basic character, properties, and role as

the locus of innovation—so much so that, in a number of cases, the once-acquired

biotech firms were spun back out as independent firms, reintroduced as nodes in the

network with many, or even most, of their ties restored as edges. The industry did

not consolidate, despite the number of targeted “buy outs.” The inter-organizational

network in biotech exhibited a suppleness that goes beyond resilience. In subsequent

research covering the same time period, a preference for diversity in tie formation

was revealed as a key part of the logic of attachment in the biotech industry

(Powell et al., 2005).

3 Diversity

Diversity, as it suits our purpose, is attributional: meaning that it stems from exoge-

nous characteristics of nodes—size, history, demography, status, financing, wealth,

products, vocation, technology, skill and so forth. Extant models of preferential

attachment tend to treat nodes as in situ homogenous. Nodes become different only

in endogenously-determined egocentric properties, such as numbers of ties. To the

extent that these models of tie formation are to describe social or organizational
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networks, the lack of exogenous variety in nodes is limiting. When all birds are of

the same feather, homophily’s adage can no longer explain why some flock together

while others remain apart.

Attributional diversity is generally constructed of two or more dimensions, the

first of which is nearly always considered to be variety. That is, node attributes must

vary in some way—there must be different kinds of nodes at a demographic level,

or different sorts of subjects or events with which nodes affiliate. The preference for

diversity, then, is a bias for forming new attachments to partners that vary, in some

way, from partners to which a node is currently attached.

Once variety is established, two common additions to the conceptualization of

diversity are balance and disparity.2 Balance is a function of the uniformity, or

evenness, of the distribution of varietal types. For instance, in the simplest case where

the attribute characterizing nodes has two categorical levels, variety is established

once a node is attached to any partners of each type. Consider a biotech firm with six

partners characterized dichotomously as universities or pharmaceutical companies.

Suppose the node has five university partners and one pharmaceutical partner. The

variety is two. Now suppose it has three of each form—the variety is still two. Yet,

it is hard to consider the alternative tie portfolios as equally diverse. The former is

the least balanced it could be, while the latter is fully balanced—and certainly seems

more diverse as a result.

Disparity, as a third dimension of diversity, intends to capture the extent of

difference, separation, or distance between nodes and thus can only be considered

when the nodes are characterized by an attribute that has a numerical level of

measurement. While disparity is of widespread interest as an outcome of social

processes, it is less often incorporated into the discussion of diversity as an antecedent

to structure, where consideration of qualitative, categorical attributes that reflect

the existence and nature of difference among nodes, (e.g. gender, race, religion,

socioeconomic status, and the like) is dominant.

4 Archetyping attachment

We noted at the outset that social ties seldom occur at random. Yet, equally

rarely are they entirely predetermined, whether by similarity, diversity, or some

other formative basis. Chance encounters provide opportunities for recognizing

commonalities or complementarities. Moreover, real actors have many attributes on

which tie formation may be based. When the attributes which form the basis of

attachment vary among dyads, the resulting process might well seem random. If so, a

random network might well portray the aggregate properties of many real networks.

Even though not formalizing the underlying causal mechanisms, a random model

of attachment might well serve as a useful baseline for us because they produce

networks that are much less brittle than other established formulations. Erdős &

Rényi (1960) are responsible for deriving the most prominent example of a random

2 Various terms have been used by researchers to describe the three basic dimensions of diversity
(Blau, 1977; Herfindahl, 1950; Pachucki & Breiger, 2010). However, each is qualitatively the same and
analogous to those used in the current work.
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network, which has come to be known as the Erdős–Rényi (ER) model of random

attachment.

Barabási and Albert (1999) extended the ER model to non-random rules of at-

tachment. In particular, the Barabási–Albert (BA) model of preferential attachment

introduces a bias to tie formation based on popularity, an endogenous property.

In this model, new ties go to nodes that have the most previously established ties,

or total partners (Barabási & Albert, 1999). The obvious tendency for all ties to

concentrate on the two nodes that, by whatever logic, are first tied, is typically

attenuated through aggregated rounds with selective tie assignment. Rather than

being defined by the allocation of a single tie, each round encompasses the formation

of several ties, only one of which can be received by any given node in a single

round with as many nodes receiving as there are new ties. While the preference

for popularity of the BA model is certainly the most studied, rules for attachment

can be based on other endogenous node-level characteristics besides number of ties,

such as duration of exposure, cohesion, or geodesic distance.

Both random and rule-based attachment can vary in the way that the probabilities

of receiving a tie are allocated. In the original ER model, ties are randomly

formed with equal probability between nodes in a graph of fixed initial size

(Erdős & Rényi, 1960). The probability of receiving a tie is thus uniformly dis-

tributed across a population of nodes and held constant. The difficulty with this

model is that most real world networks are dynamic, such that new nodes are

added (or removed) over time. Barabási & Albert (1999) updated the ER model

so that the attachment process is initiated by the appearance of new nodes. This

revised ER model evolves to a steady state where the probability of any degree

P (k) ∼ exp(−βk). Such a revision serves to facilitate comparisons across time for

graphs evolving under distinct regimes, while preserving the basic character of the

original ER model.

In both the ER and the BA model, then, the generating function for each regime

proceeds in the following manner. Upon initiation, m0 nodes are created. In each

subsequent step, one new node is introduced and given m ties to existing nodes

provided a tie does not already exist. This process repeats t times such that the

resultant network contains m0 + t nodes and m ∗ t total ties. Under the ER regime,

existing nodes are equally likely to receive a new tie provided one does not already

exist. However, under the BA regime, nodes with many existing (previously received)

ties are more likely than others to receive a new tie.

The power of this type of generating function lies in its ability to hold network

density constant such that macro-level characteristics can be reliably averaged across

instantiations and compared across models. Indeed, the ER model evolves to a state

in which the number of connections per node (degree) is exponentially distributed

whereas the BA model evolves to a scale-free distribution. Yet, comparisons between

the two models can be reliably made because both the number of nodes and the

number of ties are held constant at arbitrary points in time—it is merely the

configuration of ties which differ.

Most algorithms for complex network growth can be understood as a biased

version of the generating function that produces the ER model (see e.g. Skvoretz

et al., 2004). Indeed the BA model introduces one such bias, namely popularity.

Whereas ER ties are formed based on draws from a uniform distribution, BA ties
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are formed based on draws from a distribution defined by structural characteristics

of the existing nodes. Thus, one potent strategy for creating new models is to

redefine the attachment distribution at each time step. This strategy is attractive

for its elegance–distributions are created for an arbitrary number of features, these

distributions are summed, and choices are based on draws from the combined

distribution. However, this introduces the unpleasant problem of defining a priori,

how to weight the contribution of each feature. Different weights can produce vastly

different outcomes.

A more tractable approach is to assume that attachment mechanisms are nested.

In other words, a subset of the available nodes is identified using one criterion and

then the final choice is based on weighting nodes in the subset by a second criterion.

This is the tactic used by Holme & Kim (2002) in their extension of the BA model

to include tunable clustering. Moreover, this approach finds widespread support

in work on the psychology of judgment and decision-making (Boland et al., 2012),

and in many economic models of choice (Tellis, 1988). Lastly, even if one finds it

difficult to determine a priori, which attachment mechanism is used first, inductive

exploration is limited to c! versions of the model, where c is the total number of

criteria. While it should be noted that our results are qualitatively the same when

attachment probabilities are combined rather than nested, we present the latter as

it conforms more readily to the heuristic nature of human decision-making and

results in a more elegant and intuitive generating function. Specifically, we offer a

model based on a preference for diversity as the second step in a two-stage, nested

attachment process.

5 Preferring diversity

Following from our discussion in Section 3, any formalization of a diversity prefer-

ence must (at a minimum) include mechanisms that address both variety and balance.

Incentives for variety are evident in the Durkheimian notion of complementarity—

ties to synergistic (but distinct) partners have a value greater than that achieved by

an equal number of ties to partners of the same type (Pachucki & Breiger, 2010).

Granted, the level of complementarity may vary according to the composition of

types in an actor’s ego network. For instance, firms might value the synergy of a bank

and accounting firm more than they would the synergy of a bank and advertising

agency. Yet, organic solidarity is still achieved when each tie is to a distinct partner

rather than to partners of the same type (i.e. two banks). Admittedly, variance

in the level of synergy by dyad is of practical concern—one would expect the

strength of solidarity to vary accordingly. While acknowledging the substance of

such arguments, we can assume for now that a variety dimension of diversity is

addressed if we account for equivalent synergies by dyad across the set of defined

node types. We leave a more nuanced account of varying complementarity to future

research.

While balance is in and of itself an integral dimension of diversity, a more

subtle (and structural) mechanism can also prompt balance-seeking behavior, albeit

indirectly. This occurs when an actor is concerned with varietal redundancy. This

dimension of diversity is absent in the Durkheimian account, but implied in studies

that deal with the evolution of networks over time. As a social phenomenon,
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dynamism in ego networks is commonplace. Friends drift apart and relatives perish,

just as new relationships are formed. In organizational networks, firms are acquired

or go bankrupt, just as new alliances are established. Accordingly, solidarity (and the

requisite variety) must be managed in light of the uncertainty introduced by these

random events. Thus, depth as a concomitant dimension of diversity is motivated

by considerations of social dynamics.

When depth is accomplished, actors can use a subset of complementary ties, while

redundant ties remain dormant. Under this description, the benefits of additional

depth clearly diminish in the amount of current depth—a tie to a second bank is more

valuable than a tie to a third bank and so forth. Yet, an assumption of diminishing

returns to redundancy naturally leads to balance. Actors prefer additional depth for

types where they have little to begin with—a weighting amongst positive valuations—

which, given enough time, inevitably leads to parity (or balance) across types in an

ego network.

Balance as an outcome of varietal redundancy will only emerge if the value of

depth is equivalent by node type. If certain types are introduced or removed from

a network with higher (lower) frequency, then the value of depth should reflect

these probabilities. However, maintaining balance across node types is a reasonable

(often optimal) heuristic for achieving depth when information about the true

probabilities is either sparse or costly to attain (March, 1991; Stinchcombe, 1965).

For instance, knowledge about the true distribution of new and terminated partner

types is imprecise during the early stages of network formation (i.e. nascent social

graphs). Nevertheless, actors may be more or less strategic in how they approach the

problem of depth as information becomes more precise over time. If for instance, a

firm learns that certain partner types are more likely than others to be acquired by

competing firms, they might decide to maintain a higher proportion of these partners

in their network. However, an explicit learning component is beyond the purview

of the current work. A model of diversity preference is sufficient if it addresses the

heuristic strategy—a uniform distribution of depth value across node types.

Lastly, any model of diversity preference should allow for benefits to level off as

diversity is achieved. Granted, certain empirical research has shown that diversity

actually becomes a liability (turns negative) after crossing some threshold; however,

this is typical in mature networks where concerns over legitimacy conflict with the

solidarity argument (Owen-Smith et al., 2014). Our focus here is on the forces which

describe nascent social graphs. Moreover, many empirical studies that incorporate

attributional diversity in their models present data in a range with diminishing

(rather than negative) returns. This is despite significant negative coefficients on the

squared terms (see e.g. Cohen & Broschak, 2013) that would otherwise indicate a

peaking benefit. While, the liabilities of inordinate diversity have theoretical merit,

for now we focus on a benefit that increases at a decreasing rate.

Naturally, if the number of total possible attributes is fixed, then once an ego

network has nodes of all possible types, variety cannot be increased and the value

of variety is fully realized. However, the value of maintaining variety in the presence

of uncertainty will still drive behavior. This happens via increases in depth and

the process of rebalancing. As previously noted, the value of depth decreases in

the amount of current depth. To the extent that balance is simply the outcome of

increasing depth by a heuristic, its value should also diminish as depth is achieved.
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However, the value of balance is more than just realized depth. Rather, balance

is a primary motivation in diversity and should negatively weight additions to an

ego network that place it out of balance. This is not to say that additions which

adversely affect balance should be negative overall—varietal redundancy is still

desired. Rather, redundant ties that place a network out of balance, should be

valued lower than those which restore balance.

In sum, a model of diversity preference should (1) highly value any changes that

increase variety, (2) value changes that increase depth, (3) value increases in depth

that improve balance more than those that do not, and (4) diminish as variety,

balance and depth are achieved. In the next section, we provide a formal model of

the diversity preference that addresses these four properties.

5.1 A model for diversity preference

In our conception of diversity, nodes vary along an arbitrary, non-structural

category in which d captures the number of mutually exclusive classifications. Under

these circumstances, variety and balance are maximized when the probability of

selecting two nodes (at random) of the same type is lowest (Gibbs & Martin, 1962;

Herfindahl, 1950). Formally, given some neighborhood, the probability of selecting a

node of type dj , is equal to the proportion of nodes of that type in the neighborhood,

which we denote pj . We can then specify a diversity index as one minus the

probability of selecting a node of the same type twice.

H = 1−
d∑

j=1

p2
j (1)

However, a preference for diversity implies forecasting. Actors possess a current

ego network and weight the contribution of a hypothetical new node based on type.

We call this hypothetical contribution the diversity margin δij , of adding a node with

type dj to the neighborhood of nodei. Values are determined by the diversity index

of nodei after the addition of a hypothetical new node of type dj , and subtracting

out the original diversity index,

δij = Hij −Hi0 (2)

such that δij is the diversity margin for nodei after the addition of a hypothetical

node of type dj .

Since H can vary between 0 and (d−1)/d, δ will take on values between (1−d)/d

and (d− 1)/d, which violates the requirement that depth-increasing changes have a

positive value. To illustrate, imagine d = 2 such that any given network neighborhood

is comprised of nodes of type A and nodes of type B. Further, consider the specific

neighborhood {A,B} with diversity index 1/2. Clearly, the addition of a new node of

type A or B will reduce the index in this neighborhood to 4/9 such that δ = −1/18.

One way to circumvent this issue is to supply the diversity margin as a parameter

to the exponential function. This has the desired effect of maintaining a positive

value for depth-enhancing additions (δij < 0), while emphasizing depth that restores

balance (δij > 0). Moreover, Equation (1) implies that eδij naturally diminishes as

variety, balance and depth are achieved for nodei. Thus, we can specify the preference

for diversity as a matrix of weights Ω , where ωij , represents the preference of nodei
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for connections with new nodes of type dj .

ωij = eδij (3)

5.2 Generating function

We use both the ER and the BA model as a starting point for our algorithm and

provide simulations that incorporate a preference for diversity under each regime. We

also implement the Holme–Kim (HK) model of tunable clustering as an archetype of

cohesion-biased attachment. Their model provides a conceptually relevant contrast

to diversity-seeking behavior and uses a similar two-stage selection process. The

specifics of our implementation proceed as follows.

Initiate the graph with m0 > m new nodes. In each subsequent step, add one new

node to the graph and randomly assign this node a classification of dj . Then create

m ties between the new node and existing nodes using the following process for each

attachment. From the set of all existing nodes, select m at random (or weighted by

popularity under the BA regime) provided a tie does not already exist. From this set,

make a random choice weighted by the potential benefit of adding a node of type dj
to the existing node’s neighborhood. Our pseudo-code is presented below followed

by a discussion of macro-level features of the model alongside implementations of

ER, BA and HK with the same number of nodes and ties.

Input:

- m: the number of initial nodes

- n: desired number of nodes in the final graph

- d: number of distinct node types

- regime: a switch for first-stage node selection (ER or BA)

create m initial nodes

for i← m + 1 to n do
create a new nodei
randomly classify nodei as type dj
generate Ω according to equation (3)

for c← 1 to m do

if regime is ER then
choices = m random draws from existing nodes without replacement

end

if regime is BA then
choices = m random draws from existing nodes, weighted by degree,

without replacement
end

form a tie between nodei and a random draw from choices weighted by

ωj

end

end

Algorithm 1: Preference for diversity under ER or BA.
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6 Network descriptives

Figure 1 shows degree distributions of graphs with 1,000 nodes on a log scale (top)

and the evolution of a graph’s variance in degree from m to 100 (bottom). Graphs

are arranged with ER models on the left and BA models on the right. A baseline

model corresponding to the parent regime is shown alongside implementations of

a clustering and of a diversity bias to the baseline model. As you can see from

the degree distributions under the BA regime, the scale-free nature of accumulated

advantage appears to hold even when a preference for diversity is added to the model

(BA+D). This feature is detected by examining the linear relationship between the

log of degree k, and the log of its frequency in a given network. Specifically,

scale-free graphs are identified when the probability of a given degree P (k) ∼
k−λ, where λ is often found to be between 2.0 and 4.0 in real-world networks

(Barabási & Albert, 1999; Clauset et al., 2009).

For a pure BA model, λ evolves to approximately 2.9; however, this is expected

only after the network has grown quite large and may exist only in the tail of the

distribution. Indeed, Figure 1 suggests that the baseline BA model has yet to exhibit

a truly scale-free distribution. The simulated network consists of only 1,000 nodes, so

this is expected. However, the graph trends towards scale-free much quicker with the

addition of a preference for diversity to the standard BA model. With 1,000 nodes

averaged over 100 instantiations, and m0 = m = 5, our generating algorithm for

BA+D puts λ at approx. 3.05. This fact is noteworthy in its own right; however, more

precise methods for estimating λ involve larger simulations and tests for goodness of

fit at both low and high k (Clauset et al., 2009). Thus, we leave a complete analysis

of scaling to future research and instead focus on macro-level characteristics more

closely related to suppleness. However, it should be reiterated that our preliminary

analysis suggests a preference for diversity is not inconsistent with the scale-free

property in graphs with n ∼ 1, 000. This is an important consideration given that

several recent studies have identified scale-free distributions in smaller networks

(n < 2, 000). Indeed Powell et al., (2005) study such a network that is both

scale-free and supple, and explicitly reject the BA process as a primary driver of

attachment.

As you can see from the two graphs at the bottom of Figure 1, variance in degree is

generally much higher under the BA regime. This is not surprising since preferential

attachment based on popularity promotes a scenario in which the rich get richer

and the poor remain as such. However, variance is increasing monotonically under

both the ER and the BA regime. This is also understandable, since older nodes will

gain more ties by virtue of their presence during many random draws in the history

of the graph. In all cases, the addition of a preference for diversity reduces variance

in degree. This is because the effect of a node’s age (ER) and the popularity bias

(BA) are attenuated by a preference for diversity—especially early in the growth

process.

Equation (2) implies that the potential benefit of adding a new node is decreasing

in the size of one’s network neighborhood. Take for example the set {A,A, B} and

the set {A,A, A, B, B}. Clearly the addition of a B-type node will have greater benefit

to the first set than it will to the second. This means that existing nodes with smaller

neighborhoods will attract connections from new nodes at a higher rate than those
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Fig. 1. Degree distributions for graphs with n = 1,000 (top) and average variance in degree as graphs grow from n = 5 to 100 (bottom row).

All values are averaged across 100 random trials.
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with larger neighborhoods. This is especially true during the early stages of network

growth when there are few nodes overall. In other words, the nodes available during

stage one of the selection process are smaller when the network is young. Thus

existing nodes with small neighborhoods are more likely to be considered and more

likely to exert their preference for diversity.

The attenuating effect of a preference for diversity is shown in Figure 2. Essentially,

as existing nodes with small neighborhoods fight for attachment with the new nodes

coming online, connections are more evenly spread throughout the graph, creating

something like a crystalline lattice. The graphs in Figure 2 show networks of size

n = 10, n = 30 and n = 50 under pure BA (top) and BA+D (bottom). While

connections are severely concentrated under the pure BA model, they are more

spread out when a preference for diversity is added to the growth model.

7 Results

Suppleness, as we conceive it, is the ability to retain structural integrity while

undergoing change. Supple networks are able to maintain or restore global properties

when subject to the loss or removal of nodes or edges. Here, we focus on how each

network fares over time as the most central nodes are systematically removed. While

the literature on network fragility considers, variously, the removal of nodes and

edges (Callaway et al., 2000), we focus solely on the removal of nodes, and specifically

those with the highest degree-based centrality, for two reasons. First, edge removal

is subordinate—the removal of a central node eliminates many edges. Second, node

removal seems of more paramount concern when translating to real-world scenarios,

particularly as an analog to mergers, acquisitions and exit in industrial networks

such as that of the biotech industry (Powell et al., 1996; Powell et al., 2005) or drop-

outs, fallbacks, or commencements in classmate networks such as the one studied

by Koput & Gutek (2010).

7.1 Post-hoc attacks

Existing research generally focuses on post-hoc attack strategies (e.g. Holme, 2002)

in which nodes are strategically pruned after a network grows to a certain size. This

is useful because it can reveal the structure upon which metrics like average path

length (APL) are based (Girvan & Newman, 2002). More importantly, it can reveal

when those structures begin to fail (Callaway et al., 2000). The analysis presented

here may be used as a comparison to results found in existing studies on the strength

and vulnerability of generated networks. In each case, degree-based centrality scores

are calculated and nodes with the highest scores are removed in order of highest to

lowest degree. In other words, those nodes with the most connections are removed

first. The scores defining which node is to be removed may be calculated once at the

beginning, or recalculated after each node is removed (Holme et al., 2002). In the

figures below, we use the former strategy, but note that our results are qualitatively

the same regardless of the specific implementation.

Figure 3 shows the results of a degree-based attack on a graph’s inverse geodesic

and the size of the largest component. These are two of the most commonly

used metrics when studying a network’s response to attack (Callaway et al., 2000;
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Fig. 3. Post-hoc attack after network is grown to n = 300. Attack is based on degree-centrality. Values averaged over 10 random trials.
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Holme et al., 2002). The inverse geodesic of each graph is a convenient interpretation

of APL in which the calculation for fragmented graphs can be handled gracefully.

APL is calculated as the average of all shortest paths between nodes in a graph;

however, in a fragmented graph there are several paths that do not exist and so are

considered of infinite length—a value, which affects the average to say the least. If

instead, we use the inverse of the distance, 1/infinity can be defined as zero and the

calculation proceeds benevolently.

In essence, each metric is capturing the level of overall connectedness in the

network. If large chunks of the graph become disconnected, the size of the largest

connected component will drop dramatically. If large chunks of the graph become

isolated—either completely cut off or sparsely connected—the inverse geodesic drops

dramatically. This is because nodes either cannot reach each other, or their shortest

paths all go through one or two edges making the overall trip much longer. You can

see from each figure that the addition of a preference for diversity to either the ER

or the BA model significantly reduces a graph’s vulnerability to this sort of attack.

7.2 Concurrent attacks

While existing research generally focuses on post-hoc attack strategies (Holme et al.,

2002), we suggest that these after-the-fact approaches often address questions of

vulnerability rather than suppleness. This is because the process essentially measures

the number of attacks a network can withstand before a collapse. We have shown that

a preference for diversity can reduce a network’s vulnerability, and yet, this is only

one component of suppleness. Supple graphs must be able to retain their character

while undergoing change. This means that whichever mechanisms are responsible

for new connections must also respond dynamically to exogenous change. Thus, we

implement a process of strategic attack that coincides with growth.

In this analysis, an attack consists of finding and removing the s most connected

nodes in the network provided some frequency threshold, a, is met in the current

time period and a grace period g, has passed. Figure 4 shows the evolution of our

generated networks with s = 1, a = 50%, and g = 30. Results are similar using

a wide range of parameterizations. Specifically, our algorithm for the concurrent

attack strategy is implemented inside the main loop of our generating function in

the following manner. Prior to the creation of a new node, execute an attack of size

s, if a randomly generated value between 0 and 1 is less than or equal a, and the

size of the graph is greater than g.

As you can see from Figure 4, networks biased with a preference for diversity tend

to retain their global characteristics while the others undergo qualitative change.

This is especially noteworthy under the ER regime in which a bias towards diversity

responds better than the baseline (random) simulation. Random graphs are supple

by their very nature and thus provide a conservative model against which to compare

a preference for diversity. The results under the BA regime are more drastic, but

also more expected. When a network is biased towards popularity, many shortest

paths will flow through nodes with the highest degree. It follows that removal of

high-degree nodes during attack will have an outsized impact on the network’s

characteristic path length. However, adding the preference for diversity as part of
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Fig. 4. Average path length and largest component with attacks starting at n = 30. All values are averaged across 100 random trials.
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the selection criteria adds a level of protection to networks, which would otherwise

evolve to an exceedingly brittle state (Albert et al., 2000).3

While the inverse geodesic and size of the largest component are the most

frequently used measures in the literature on network vulnerability, they do not

capture all of the structural properties affected by exogenous attack. Nor do they

reveal the way in which change is incorporated. Recall from our definition that

supple networks exhibit both some level of resilience, but also a degree of plasticity.

A supple network will absorb change rather than resist it.

To address these additional features of suppleness, we turn to a set of related

measures, which provide a more fine-grained quantification of network structure.

The first measure is called fragmentation, and is defined as 1 minus the Krackhardt

(1994) formula for network connectedness (Borgatti, 2006). Intuitively, the measure

can be interpreted as the proportion of pairs of nodes that are unreachable from

each other. In Equation (4) below, rij = 1 if node i can reach node j by a path of

any length and 0 otherwise. If all nodes are reachable from all others, then F = 0.

If a graph contains only isolates, then F = 1.

F = 1− 2
∑

i>j rij

n(n− 1)
(4)

The second measure is called wholeness (also known as the component ratio),

and is defined as the number of components, s, minus one, divided by the number

of nodes, n, minus one (Borgatti, 2006). CR = 1, when all nodes are isolates and

CR = 0, when all nodes are part of the same component.

CR =
sc − 1

n− 1
(5)

As you can see from Figure 5, APL and size of the largest component are likely

underestimating the true difference in structural change introduced by exogenous

attack. The graphs generated with a preference for diversity maintain their global

structure even as the attack continues concurrent with network growth. Moreover,

the baseline graphs experience high volatility after change, whereas the ER+D

and BA+D graphs incorporate change while maintaining their original character.

This contrast reveals suppleness in the (re)generating process when a preference for

diversity is present.

8 Discussion

Networks serve as a platform for nearly all organized social and economic activity.

The continuity and performance of many social and organizational phenomena

relies, in turn, on the stability provided by the processes that generate these networks

in the face of external pressures. In the extant literature on complex networks, these

pressures take two forms, decay and attack, while stability is captured via measures

of resistance and resilience.

Decay is the occurrence of small perturbations to a network, introduced by the

rewiring of a small number of ties typically among more peripheral nodes, but

3 A copy of the simulation code can be obtained from the first author via email.
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Fig. 5. Fragmentation and Wholeness with attacks starting at n = 30. All values are averaged across 100 random trials.
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otherwise chosen at random. Attack is the targeted removal of a central node, or

a small number of more central nodes, based on their position or other attributes.

Decay and attack each have many analogs in the evolution of real industrial

networks. Instantiations of decay at the organizational level include the dissolution

of ties concomitant to the end of a joint project, or the reshuffling of ties that often

follows the movement of individual employees—these individuals may take their

clients, grants, or other projects, from one firm to another. Attack is exemplified

when larger, more central firms become targets for takeover by outside entities, but

can also occur if critical lines of resources are cut off exogenously.

Resistant structures remain rigid in their global properties in spite of exoge-

nous changes. Resilient networks are elastic, at first deforming to accommo-

date exogenous change, but quickly rebounding so that global properties are

restored to prior levels. Such definitions of stability are apt enough when the

imposed changes are one-offs—idiosyncratic, independent, and transient. Yet, in

many social and organizational settings, networks must deal with changes that are

more integral, interdependent, and long lasting. Environments undergo fundamen-

tal transformation (Haveman, 1992; Haveman et al., 2001), technological equilib-

riums punctuate (Anderson & Tushman, 1990; Tushman & Anderson, 1986), suit-

ors persist (Loch & Huberman, 1999) and resources partition (Boone et al., 2002;

Carroll & Swaminathan, 2000). Resistance and resilience may leave the network

intact, but obsolete, unfit, or otherwise frail.

We introduced the concept of suppleness to capture the ability of a network to

incorporate change without losing its structural integrity and defining characteristics.

Some networks are brittle—they do not suffer change gracefully, such as when

subjected to decay or attack (Callaway et al., 2000; Holme et al., 2002). When key

nodes or edges are removed, brittle network structures may degrade rapidly,

break apart, or even collapse. Small-worlds become big places (Holme et al., 2002;

Watts & Strogatz, 1998), stockpiles of accumulated advantage collapse (Holme, 2002),

and connected cavemen turn their backs on all encampments but their own

(Holme & Kim, 2002). For example, Onnela et al., (2007) describe a mobile commu-

nications database in which social networks quickly fragment when ties are removed.

The resultant structure traps information in silos, thus preventing the flow of useful

resources between clusters. Uzzi (1997) provides and even more intimate account

using the context of interorganizational ties. Cohesion improves performance up to

a threshold after which the cluster of firms becomes vulnerable to exogenous shock.

Other networks are supple, responding less dramatically to change. Supple

networks absorb shocks, such as when key nodes or edges are removed, while

maintaining their fundamental character and integrity. Supple networks have “give.”

That is, the numerical properties of supple networks can change, within some limits,

while the network maintains its function—whether it be providing novel ideas, social

support, or concealment (Fleming et al., 2007; Tiwana, 2008).

Many real-world networks seem to exhibit suppleness. For example, Powell et al.,

(2005) studied the network of overlapping and redundant strategic alliances in

the biotech industry, which remained largely unaffected by numerous consolidating

events (e.g. mergers, acquisition and exit). It may well be that social systems of a

certain complexity require diversity as a precondition for their continued existence.

However, such an argument is not new. Comte (1852) suggests that it is “the
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continuous repartition of different human endeavors which especially constitutes

social solidarity. . . ”—an idea leveraged and refined by Durkheim (1893/1997).

Simply stated, society is more flexible, more plastic, indeed more supple, as the

diversity produced by a division of labor is allowed to flourish.

Yet, archetypes of supple graphs are lacking. Individual-level rules of attachment

structure both the topology of global or socio-centric worlds and the functioning

of local or ego-centric neighborhoods. The micro and macro, or local and global,

are considerably indeterminate of one another. However, certain archetypes have

garnered considerable attention precisely for the interplay between local and global

that they reveal. The algorithms of Watts & Strogatz (1998), Holme & Kim (2002),

and Barabási & Albert (1999) serve as constructivist theories of social structure,

and yet each of the resultant networks is often more brittle than the social system

it professes to describe. Granted, ours is a theory of the structuration of nascent

networks. Social and interorganizational networks may be subject to broader logics

of attachment as certain processes of legitimacy and industry life cycle play out

(Hannan & Freeman, 1977; Klepper, 1996).

In order to obtain the small-world of Watts & Strogatz (1998), it suffices

to maintain just one cross-cutting (weak) tie to distant network clusters. This

formulation is brittle in the most obvious sense—it lacks redundancy. Moreover,

there is no motivation for creating additional cross-cutting ties implied by the

theory. The popularity bias described by Barabási & Albert (1999) suffers a similar

limitation. During the formative stages of the network, there is no motivation to

spread ties amongst several founding nodes. Instead, just a few “lucky” individuals

receive the majority of incoming connections. Thus, the most popular nodes also

serve as easy targets for exogenous attack.

Recent empirical findings seem to suggest that other processes may be at

play (Hargadon & Sutton, 1997; Powell et al., 2005; Shemtov, 2003). Indeed, actors

distinguish between resources. Consider a biotech firm’s partner network. If that

firm currently has only one partner—a university for instance—then they are apt to

pursue subsequent ties with partners of a different form. For instance, they might

pursue ties with a venture capitalist, pharmaceutical or law firm—each of which

brings a complementary set of resources—rather than additional ties to another

university regardless of how prominent that university is. This argument can be

extended to the tie-seeking behavior of both individuals and firms. Clearly, it is

optimal to explore a variety of options early—a point at which uncertainty is

highest—as a means to develop preferences used in later encounters (March, 1991).

For instance, Koput & Gutek (2010) show that women who establish cross-gender

ties early in their careers are more successful than those who attempted to establish

such ties later on. Given these tendencies, the early stages of any social network

algorithm should consider a bias in favor of categorical diversity.

This emphasis on nodes with few ties is addressed by our model directly. During

the formative stages of a network, the influence of popularity and age is attenuated

by the impulse of new nodes to build a diverse portfolio of ties. This renewal

process ensures less variance in degree overall and more redundant cross-cutting

ties. Through this process, we argued, and demonstrated, that a preference for

diversity in tie formation can generate supple networks—and can add suppleness to

networks when introduced into other models of network formation.
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