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Abstract

The functional partial differential equation (FPDE) for cell division,

∂

∂t
n(x, t) +

∂

∂x
(g(x, t)n(x, t))

= −(b(x, t) + µ(x, t))n(x, t) + b(αx, t)αn(αx, t) + b(βx, t)βn(βx, t),

is not amenable to analytical solution techniques, despite being closely related to the

first-order partial differential equation (PDE)

∂

∂t
n(x, t) +

∂

∂x
(g(x, t)n(x, t)) = −(b(x, t) + µ(x, t))n(x, t) + F(x, t),

which, with known F(x, t), can be solved by the method of characteristics. The difficulty

is due to the advanced functional terms n(αx, t) and n(βx, t), where β ≥ 2 ≥ α ≥ 1, which

arise because cells of size x are created when cells of size αx and βx divide.

The nonnegative function, n(x, t), denotes the density of cells at time t with respect to

cell size x. The functions g(x, t), b(x, t) and µ(x, t) are, respectively, the growth rate,

splitting rate and death rate of cells of size x. The total number of cells,
∫ ∞

0
n(x, t) dx,

coincides with the L1 norm of n. The goal of this paper is to find estimates in L1

(and, with some restrictions, Lp for p > 1) for a sequence of approximate solutions to

the FPDE that are generated by solving the first-order PDE. Our goal is to provide a

framework for the analysis and computation of such FPDEs, and we give examples of

such computations at the end of the paper.
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1. Introduction and model

1.1. Introduction The goal of this paper is to give precise estimates for a sequence

of approximations to the solution of a functional partial differential equation (FPDE)
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that models the growth and splitting of cells. In this model, introduced by Zaidi et al.

[21], the cell density n(x, t) is a function of cell size x and time t. Thus, the number of

cells having a size between x1 and x2 is
∫ x2

x1

n(x, t) dx.

Assuming that cells of size x divide into two smaller cells with size x/α and x/β,

(1/α + 1/β = 1), the authors of [21] derived the model

∂

∂t
n(x, t) +

∂

∂x
(g(x, t)n(x, t)) = −{b(x, t) + µ(x, t)}n(x, t) + b(αx, t)αn(αx, t)

+ b(βx, t)βn(βx, t), (1.1)

n(0, t) = 0, n(x, 0) = f (x), lim
x→∞

n(x, t) = 0. (1.2)

The extra functions appearing in this equation are the cell growth rate g, splitting (or

birth) rate b and death rate µ. The function f (x) is the density of cells at time 0.

The sequence of approximations to the FPDE is obtained by solving first-order

partial differential equations (PDE). This provides a basis on which to construct

computational schemes and also provides a simple, constructive proof of the existence

of solutions. In some cases, it may be possible to use the approach as a basis for

constructing analytical solutions, as was done by Zaidi et al. [20] in the case of a

similar model with g, b and µ being constants. We illustrate the use of these estimates

for the computation of solutions to the FPDE for the two cases g constant and g linearly

depending on cell size x.

We start by reformulating the model as an integral conservation equation. We

consider the case for which g is a function of x and t. For simplicity, we also initially

assume that b and µ are constants, but then later show how the theory can be modified

to allow for nonconstant b and µ.

1.2. Growth curves and an integral conservation law It is worth reformulating

the model as an integral conservation law, both because it clarifies the physical

interpretation of the model and because it will be useful in computing our estimates.

This conservation of cells is illustrated in Figure 1.

In this model, individual cells grow at a rate g(x, t) dependent on cell size x and

time t. Thus, the size X(t) of a cell, until it divides, satisfies the ordinary differential

equation

X′(t) = g(X(t), t). (1.3)

We assume that small cells will grow, so there is a function a(t) > 0 such that

g(x, t) > 0 for 0 < x < a(t)

and that g and ∂g/∂x are continuous for x ∈ [0,∞), t ∈ [0, t1] for some t1 > 0. We

also assume that solutions of the ordinary differential equation (1.3) starting on the

nonnegative x- or t-axes exist for t ≤ t1. From now on, we will assume that 0 ≤ t ≤ t1.
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X(t) βX(t) αX(t)

cell size→

x σ2 σ1

µ n(x, t)

b n(σ2, t) b n(σ1, t)b n(x, t)

n(x, t)

FIGURE 1. The growth, death and division of cells influencing cell density n(x, t).

We do not require that g(0, t) = 0, but if g(0, t) > 0 we will need to impose a

boundary condition n(0, t) = 0 corresponding to the fact that cells cannot grow from

zero size.

It is useful to consider growing cohorts of cells of size between 0 and X(t). The

number N(t) of such cells is

N(t) =

∫ X(t)

0

n(x, t) dx.

In this model, N′(t), the rate of change of N(t), is only due to the following variables.

• The rate of arrival of cells arising from splitting of larger cells. Cells split into

sizes of fraction 1/α or 1/β of their original sizes, so there are two contributions

arising from the intervals [X(t),αX(t)] and [X(t), βX(t)], and the rates are

b

∫ αX(t)

X(t)

n(σ1, t) dσ1, b

∫ βX(t)

X(t)

n(σ2, t) dσ2.

Note that these intervals overlap. In fact, they are the same interval if α = β = 2.

• The rate of splitting of cells in the interval [0, X(t)]. Each splitting results in one

extra cell, so the rate of this occurring is

b

∫ X(t)

0

n(x, t) dx.

• The death rate of cells in the interval [0, X(t)],

µ

∫ X(t)

0

n(x, t) dx.

Balancing these terms yields the conservation law

d

dt

∫ X(t)

0

n(x, t) dx =b

∫ αX(t)

X(t)

n(σ1, t) dσ1 + b

∫ βX(t)

X(t)

n(σ2, t) dσ2

+ (b − µ)

∫ X(t)

0

n(x, t) dx.
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It is useful to rewrite the integral
∫ αX(t)

X(t)

n(σ1, t) dσ1 =

∫ αX(t)

0

n(σ1, t) dσ1 −

∫ X(t)

0

n(σ1, t) dσ1

= α

∫ X(t)

0

n(αx, t) dx −

∫ X(t)

0

n(x, t) dx,

where we have made a substitution σ1 = αx in one of the integrals. A similar

modification of the integral involving β allows us to write

d

dt

∫ X(t)

0

n(x, t) dx =

∫ X(t)

0

bαn(αx, t) + bβn(βx, t) − (b + µ)n(x, t) dx. (1.4)

Integration of this gives
∫ X(t)

0

n(x, t) dx =

∫ t

0

∫ X(s)

0

bαn(αx, s) + bβn(βx, s) − (b + µ)n(x, s) dx ds (1.5)

and thus we require the following condition for our model.

CONDITION M 1. Equation (1.5) holds for all growth curves X(t) starting on either

the nonnegative x-axis or the nonnegative t-axis. If g(0, t) = 0 for all t, then we need

only consider such growth curves starting on the x-axis, because those starting on the

t-axis will stay on the t-axis.

We need to include in the model the feature that cell sizes are finite. However, the

mathematics is simplified by allowing the cell-size variable x to take values in [0,∞).

The size of cells in the model is determined by the initial cell density f (x). If f (x) = 0

for x > X0, then the model should tell us that n(x, t) = 0 for x > X(t), where X(t) is the

growth curve satisfying X(0) = X0.

For some functions g(x, t) the cell growth curves are bounded for t > 0 even when

the initial cell size tends to infinity. For example, if g(x, t) = kx(a − x) where k and a

are positive constants then the cell growth curves satisfy the logistic equation and one

finds that the curve satisfying X(0) = x0 is given by

X(t) =
ax0

x0 + (a − x0)e−kat
.

Graphs of these curves are shown in Figure 2. These curves have the interesting feature

that

lim
x0→∞

ax0

x0 + (a − x0)e−kat
= X∗(t) =

a

1 − e−kat
,

which corresponds to the red envelope curve shown in Figure 2.

In such cases, for which the growth curve satisfying X(0) = x0 approaches a curve

X∗(t) < ∞ as x0 → ∞, we need to define the cell density n(x, t) = 0 for x ≥ X∗(t). This

ensures that the terms n(αx, t) and n(βx, t) in equation (1.5) are defined, even when

(αx, t) and (βx, t) are points lying to the right of (X∗(t), t). Hence, we include the

following condition for our model.

https://doi.org/10.1017/S1446181121000055 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181121000055


[5] Approximations to a model of cell division 473

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

FIGURE 2. Growth curves for the logistic equation, with cell growth rate g(x, t) = kx(a − x), a = k = 1.

CONDITION M 2. If the growth curves admit an envelope curve X∗(t), then n(x, t) = 0

for x ≥ X∗(t).

We should check that if our model equation (1.5) is satisfied and if the density

n happens to be continuously differentiable, then the functional partial differential

equation (1.1) is satisfied. If n is continuously differentiable, then we can write

d

dt

∫ X(t)

0

n(x, t) dx = n(X(t), t)X′(t) +

∫ X(t)

0

∂n

∂t
(x, t) dx

= g(X(t), t)n(X(t), t) +

∫ X(t)

0

∂n

∂t
(x, t) dx

=

∫ X(t)

0

∂n

∂t
(x, t) +

∂

∂x
(g(x, t)n(x, t)) dx. (1.6)

The assumed smoothness of n allows us to differentiate (1.5) to retrieve (1.4), which,

using (1.6), can be written as

0 =

∫ X(t)

0

[

∂n

∂t
(x, t) +

∂

∂x
{g(x, t)n(x, t)} + (b + µ)n(x, t) − bαn(αx, t) − bβn(βx, t)

]

dx.

(1.7)

Equation (1.7) holds for an arbitrary growth curve X(t). In particular, given arbitrary

x̃ > 0, t̃ > 0, we can let X(t) be the growth curve passing through the value x̃ at time t̃.

Thus, we can write

0 =

∫ x̃

0

[

∂n

∂t
(x, t̃ ) +

∂

∂x
{g(x, t̃ )n(x, t̃ )} + (b + µ)n(x, t̃ ) − bαn(αx, t̃ ) − bβn(βx, t̃ )

]

dx.

https://doi.org/10.1017/S1446181121000055 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181121000055


474 S. Taylor and X. Yang [6]

If we now differentiate this equation with respect to x̃, we see that the integrand must

vanish. As x̃ and t̃ are arbitrary, it follows that if n is differentiable, then it is a solution

of the FPDE (1.1).

Note however that n(x, t) is merely a cell density, so there is no physical expectation

that n(x, t) is differentiable with respect to either of its arguments. Indeed, it is

easy to devise plausible situations for which the initial density n(x, 0) = f (x) has

discontinuities, such as

f (x) =















K, x1 < x < x2,

0, otherwise,

where K is a positive constant. Consequently, in order to capture physically meaningful

solutions, we require

CONDITION M 3. n(x, t) ≥ 0,

∫ ∞

0

n(x, t) dx < ∞.

We also need to impose the following initial condition.

CONDITION M 4. n(x, 0) = f (x) ≥ 0,

∫ ∞

0

f (x) dx < ∞.

This completes our description of the model. The focus in the rest of this paper will

be to generate a sequence of solutions of first-order PDEs and show, by finding precise

estimates, that it converges to solutions of the models M1–M4.

1.3. Related literature This model for asymmetric cell division that we analyse

here was recently discussed by Zaidi et al. [21], where the authors studied properties

of eigenfunction solutions with the assumption that the birth, growth and death rates

(b, g and µ) are constants. That method seems promising in that the authors were able

to construct explicit formulae for eigenfunctions. However, it is still not clear what

space of functions these eigenfunctions span.

The model discussed by Zaidi et al. [21] is closely related to another model studied

by the same authors in [20], where this time they studied the case of symmetric

division of cells into two or more daughter cells. In the latter paper, again with the

assumption of constant coefficients, the authors developed an explicit series solution

of their equations. The terms in their series are found by solving first-order PDEs, so

that approach is similar to what we use here. The construction of analytical solutions

in [20] was dependent on their FPDE being relatively simple with constant parameters.

Even with these assumptions, the construction was a remarkable achievement and

indicates that such analytical solutions would be impossible to find for more general

FPDEs. Thus, our goal is different in that we wish to use the idea to develop simple

computational methods. The model discussed in [21] was studied in a much earlier

paper [6], in which the authors considered steady size distributions of solutions.

Related studies by this group include [4] and papers in which this type of model is

applied to tumour cells [2] and plankton [3].
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The model discussed in this paper allows for asymmetric cell division. There has

been a great deal of experimental work done in this area that shows that the contents

of cells, including proteins and DNA, are often asymmetrically shared between two

daughter cells. We refer to the paper [14] for a review of this work on animal and yeast

cells.

We consider nonconstant growth rate of cells in this paper. There is evidence that

cells do not grow at a constant rate. In particular, there is evidence (see the paper by

Taheri-Araghi et al. [17] who discussed this and nonconstant splitting) that certain

types of bacterial cells grow exponentially. A recent analysis of a FPDE for this case

can be found in the work of van Brunt et al. [19]. Precise measurements of growth rates

can now be found experimentally; in a recent Nature article, Kafri et al. [9] discussed,

using HeLa cells [16], a new technique to measure cell growth rate and showed that it

appears to be linked to the cell cycle.

Regarding the mathematical analysis, models of cell division have been studied,

starting with the work of Diekmann et al. [5] in 1984. Later works of Laurençot and

Perthame [10] and Michel et al. [11, 12] use a technique involving entropy. This kind

of approach is detailed in Perthame’s book [15] for various models.

Heijmans [7] has studied a model of asymmetrical cell division which involves

splitting of cells into a probability distribution of sizes. With the assumption of a

positive growth rate depending on cell size x, Heijmans applied semigroup theory to

prove the existence and develop properties of solutions.

For further results on the analysis of growth fragmentation models and an extensive

bibliography on such work, we cite the recent paper of Mischler and Scher [13].

2. Two related first-order partial differential equations

Consider the problem































∂

∂t
u(x, t) +

∂

∂x
(g(x, t)u(x, t)) = −(b + µ)u(x, t) + h(x, t), x > 0, t > 0,

u(0, t) = 0, t > 0,

u(x, 0) = u0(x), x > 0.

(2.1)

The first-order PDE appearing in this problem is closely related to our model FPDE

(1.1), the nonhomogeneous term h(x, t) replacing the nonlocal terms in (1.1).

Equation (2.1) is readily solved by the method of characteristics, detailed in most

standard texts on PDEs, such as John’s book [8]. The characteristic curves for this PDE

are the family of solutions to the ordinary differential equation

X′(t) = g(X(t), t)

with initial condition, either X(t0) = 0 for t0 > 0 or X(0) = x0 for x0 ≥ 0 (see Figure 3).

These characteristic curves are identical to the cell growth curves.
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x

t

t0

x0

u(0, t0) = 0

u(X(0), 0) = u0(x0)

FIGURE 3. Characteristic curves for the partial differential equation (2.1).

Along the characteristics, we find that u(X(t), t) satisfies the ordinary differential

equation

d

dt
u(X(t), t) =

∂u

∂t
+
∂u

∂x
X′(t)

=
∂u

∂t
+
∂u

∂x
g(X(t), t)

= −
∂g

∂x
(X(t), t) u(X(t), t) − (b + µ)u(X(t), t) + h(X(t), t) (2.2)

and the initial condition either u = 0 for t = t0 or u = u0(x0) for t = 0, depending on

whether the characteristic starts on the t-axis or the x-axis.

We can find the value of u along characteristic curves by integrating the differential

equation (2.2):

u(X(t), t) =


















































∫ t

t0

exp

(

−

∫ t

s

∂g

∂x
(X(τ), τ) dτ − (b + µ)(t − s)

)

h(X(s), s) ds, X(t0) = 0,

u0(x0) exp

(

−

∫ t

0

∂g

∂x
(X(τ), τ) dτ − (b + µ)t

)

+

∫ t

0

exp

(

−

∫ t

s

∂g

∂x
(X(τ), τ) dτ − (b + µ)(t − s)

)

h(X(s), s) ds, X(0) = x0.

(2.3)

Another useful PDE is found by integrating (2.1), giving

∫ x

0

∂

∂t
u(σ, t) dσ + g(x, t)u(x, t) = −(b + µ)

∫ x

0

u(σ, t) + h(σ, t) dσ,
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which, if we set

U(x, t) =

∫ x

0

u(σ, t) dσ, H(x, t) =

∫ x

0

h(σ, t) dσ, U(x, 0) = U0(x) =

∫ x

0

u0(σ) dσ,

(2.4)

gives the following PDE problem for U:































∂U

∂t
+ g(x, t)

∂U

∂x
= −(b + µ)U(x, t) + H(x, t), x > 0, t > 0,

U(0, t) = 0, t > 0,

U(x, 0) = U0(x), x > 0.

Along the characteristics, we find that U(X(t), t) satisfies the ordinary differential

equation

d

dt
U(X(t), t) =

∂U

∂t
+
∂U

∂x
X′(t)

=
∂U

∂t
+
∂U

∂x
g(X(t), t)

= −(b + µ)U(X(t), t) + H(X(t), t), (2.5)

and the initial condition either U = 0 for t = t0 or U = U0(x0) for t = 0, depending on

whether the characteristic starts on the t-axis or the x-axis.

We can find the value of U along characteristic curves by integrating the differential

equation (2.5):

U(X(t), t) =































∫ t

t0

e−(b+µ)(t−s)H(X(s), s) ds, X(t0) = 0,

U0(x0)e−(b+µ)t
+

∫ t

0

e−(b+µ)(t−s)H(X(s), s) ds, X(0) = x0.

(2.6)

If we rewrite (2.5) and (2.6) using U(x, t) =
∫ x

0
u(σ, t) dσ, then we get some useful

identities for u that will help us in our proof of existence of solutions for our model:

d

dt

∫ X(t)

0

u(σ, t) dσ = −(b + µ)

∫ X(t)

0

u(σ, t) dσ +

∫ X(t)

0

h(σ, t) dσ ds,

∫ X(t)

0

u(σ, t) dσ

=































∫ t

t0

e−(b+µ)(t−s)

∫ X(s)

0

h(σ, s) dσ ds, X(t0) = 0,

e−(b+µ)t

∫ x0

0

u0(σ) dσ +

∫ t

0

e−(b+µ)(t−s)

∫ X(s)

0

h(σ, s) dσ ds, X(0) = x0.

(2.7)
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Letting x0 → ∞ in (2.7) gives the useful L1 identity,

∫ X∗(t)

0

u(σ, t) dσ = e−(b+µ)t

∫ ∞

0

u0(σ) dσ +

∫ t

0

e−(b+µ)(t−s)

∫ X∗(s)

0

h(σ, s) dσ ds, (2.8)

where X∗(t) is the limit of the characteristic X(t) as x0 → ∞. However, if X∗(t) < ∞,

we are free to define h(x, t) = 0, u(x, t) = 0 for x > X∗(t), so we can write

∫ ∞

0

u(σ, t) dσ = e−(b+µ)t

∫ ∞

0

u0(σ) dσ +

∫ t

0

e−(b+µ)(t−s)

∫ ∞

0

h(σ, s) dσ ds. (2.9)

3. Approximate solutions

In this section, we approximate solutions of (1.5) with solutions of first-order PDEs

and give formulae for the errors in L1(0,∞). We focus on the case of constant µ and b,

but see Remark 3.5 for a brief discussion on the nonconstant case.

We assume the existence of a unique solution to (1.5) with initial condition n(·, 0) =

f ∈ L1(0,∞). References for existence–uniqueness results are given in Section 1.3. We

also assume the existence–uniqueness of the relevant first-order PDEs. In fact, in our

applications we are interested mainly in the cases for which these solutions can be

written in closed form, so existence is not an issue.

We define a sequence of approximations as solutions to the first-order PDEs

∂

∂t
nk(x, t) +

∂

∂x
(g(x, t)nk(x, t)) = −(b + µ)nk(x, t) + bαnk−1(αx, t) + bβnk−1(βx, t),

(3.1)

nk(0, t) = 0, nk(x, 0) = f (x) (3.2)

for k = 1, 2, . . . , where n0(x, t) ≡ 0.

THEOREM 3.1. The sequence of approximations satisfies

0 ≤ nj(x, t) ≤ nj+1(x, t), j ≥ 0.

Further, for each t ≥ 0 and each nonnegative integer j, there exists t1 ∈ [0, t] such that

‖n(·, t) − nj(·, t)‖L1 =

∫ ∞

0

n(x, t) − nj(x, t) dx

=
(2bt)j

j!
exp(−2bt1 + (b − µ)t)

∫ ∞

0

f (x) dx

=
(2bt)j

j!
exp(−2bt1)‖n(·, t)‖L1 .

PROOF. Let mj(x, t) = nj(x, t) − nj−1(x, t) for j ≥ 1. Then mj satisfies

∂

∂t
mj(x, t) +

∂

∂x
(g(x, t)mj(x, t)) = −(b + µ)mj(x, t) + hj(x, t), (3.3)
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where

h1(x, t) = 0; hj(x, t) = bαmj−1(αx, t) + bβmj−1(βx, t), j > 1.

The functions mj satisfy the boundary conditions mj(0, t) = 0 and initial conditions

mj(x, 0) =















f (x), j = 1,

0, j > 1.

The function h1 = 0, so inspection of (2.3) tells us that m1 ≥ 0 and (2.9) gives

∫ ∞

0

m1(x, t) dx = e−(b+µ)t

∫ ∞

0

f (x) dx.

We also have
∫ ∞

0

hj(x, t) dx =

∫ ∞

0

[bαmj−1(αx, t) + bβmj−1(βx, t)] dx

= 2b

∫ ∞

0

mj−1(x, t) dx.

Equation (2.3) tells us that mj ≥ 0 for all j ≥ 1 and we also have, by (2.9),

∫ ∞

0

mj+1(x, t) dx = 2b

∫ t

0

∫ ∞

0

e−(b+µ)(t−s)mj(x, s) dx ds, j ≥ 1.

Iterating this gives

∫ ∞

0

mj+1(x, t) dx =
(2bt)j

j!
e−(b+µ)t

∫ ∞

0

f (x) dx, j ≥ 1. (3.4)

By comparison with the power series for e2bt, the series

∞
∑

j=1

mj(x, t)) =

∞
∑

j=1

{nj(x, t) − nj−1(x, t)}

is convergent in L1 for each t. We also see that the limit n(x, t) satisfies

∫ ∞

0

n(x, t) dx =

∞
∑

j=0

(2bt)j

j!
e−(b+µ)t

∫ ∞

0

f (x) dx = e(b−µ)t

∫ ∞

0

f (x) dx.

We need to verify that n(x, t) is indeed the solution to (1.5). But nj was constructed

to satisfy

d

dt

∫ X(t)

0

nj(x, t) dx =

∫ X(t)

0

bαnj−1(αx, t) + bβnj−1(βx, t) − (b + µ)nj(x, t) dx.
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Integrating this with respect to t gives

∫ X(t)

0

nj(x, t) dx −

∫ X(0)

0

f (x) dx

=

∫ t

0

∫ X(s)

0

bαnj−1(αx, s) + bβnj−1(βx, s) − (b + µ)nj(x, s) dx ds.

The L1 convergence allows us to pass to the limit to get (1.5).

Finally,

‖n(·, t) − nj(·, t)‖L1 = e−(b+µ)t‖f ‖L1

∞
∑

k=j

(2bt)k

k!
.

But the series on the right-hand-side of this equation is the remainder for the Taylor

series for e2bt. By Taylor’s theorem [1], this is precisely e2bt2 (2bt)j/j! for some t2 ∈

(0, t). We get the formulae in the statement of the theorem by setting t1 = t − t2. �

REMARK 3.2. The result on L1 convergence concerns nonnegative initial data f .

However, any f ∈ L1(0,∞) can be written as f = f + − f −, where f + and f − are

nonnegative members of L1(0,∞). It follows that a solution exists for all f ∈ L1. If

n = n+ − n−, where n+ and n− are the solutions with initial data f + and f −, then

∫ ∞

0

|n(x, t)| dx ≤

∫ ∞

0

|n+(x, t)| dx +

∫ ∞

0

|n−(x, t)| dx

= e(b−µ)t

∫ ∞

0

f +(x) dx + e(b−µ)t

∫ ∞

0

f −(x) dx

= e(b−µ)t

∫ ∞

0

|f (x)| dx.

This result also gives a measure of the difference between the two solutions n1 and n2

with initial data f1 and f2, because n1 − n2 is the solution with initial data f1 − f2 and

hence

∫ ∞

0

|n1(x, t) − n2(x, t)| dx ≤ e(b−µ)t

∫ ∞

0

|f1(x) − f2(x)| dx.

REMARK 3.3. (Convergence in weighted Lp norm). The natural space for solutions is

L1, but if we additionally assume that g is a positive function that depends only on x

and that there is a constant G such that g(x)/g(αx) < G, g(x)/g(βx) < G, then we also

get convergence with respect to the weighted Lp norm ‖ ‖p given by

‖u‖p =

(

∫ ∞

0

g(x)p−1|u(x)|p dx

)1/p

.
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The proof is similar to the L1 case, but instead of U given by equation (2.4), we use Up

given by

Up(x, t) =

∫ x

0

g(σ)p−1up(σ, t) dσ,

which satisfies the first-order PDE

∂Up

∂t
+ g(x)

∂Up

∂x
= −p(b + µ)Up(x, t) + p

∫ x

0

g(σ)p−1up−1(σ, t)h(σ, t) dσ. (3.5)

Aside from this, the main difference in the proof is that Hölder’s inequality [18] is used

to estimate terms arising from the integral in (3.5) and one finds that

‖n(·, t)‖p ≤ ebG1/q(α1/q
+β1/q)t‖f ‖p,

where 1/p + 1/q = 1.

If we denote by Sj(t) and S(t) the mappings f → nj(·, t) and f → n(·, t), respectively,

then Theorem 3.1 yields

‖S(t) − Sj(t)‖ ≤
(2bt)j

j!
exp((b − µ)t).

Clearly, the approximation is more accurate for small t. We can exploit this by iterating

the approximation using small time steps of size ∆t > 0. We wish to compute the error

in the resulting approximation (Sj(∆t))kf to n(·, k∆t) = S(k∆t)f for k a positive integer.

THEOREM 3.4. Let f ∈ L1(0,∞) be nonnegative, let k be a positive integer, let ∆t > 0

and let tk = k∆t. Then

‖S(tk)f − (Sj(∆t))kf ‖L1 ≤
(2b∆t)j

j!
ke(b−µ)tk‖f ‖L1 =

(2b∆t)j

j!
k‖S(tk)f ‖L1 .

PROOF. Note that n(·,∆t) ≥ Sj(∆t)f . Hence,

n(·, 2∆t) = S(∆t)n(·,∆t) ≥ S(∆t)Sj(∆t)f ≥ (Sj(∆t))2f .

Clearly, we can continue this and find that

n(·, i∆t) ≥ (Sj(∆t))if

for each positive integer i. Thus,

‖S(tk)f − (Sj(∆t))kf ‖L1 =

∫ ∞

0

n(x, tk) − (Sj(∆t))kf dx

= e(b−µ)k∆t‖f ‖L1 −

(
j−1
∑

i=0

(2b∆t)i

i!
e−(b+µ)∆t

)k

‖f ‖L1 ,

where we have used equation (3.4) with t = ∆t.
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Letting

x = e(b−µ)∆t, y =

j−1
∑

i=0

(2b∆t)i

i!
e−(b+µ)∆t,

we may write

e(b−µ)k∆t −

(
j−1
∑

i=0

(2b∆t)i

i!
e−(b+µ)∆t

)k

= xk − yk

= (x − y)

k−1
∑

l=0

xk−1−lyl

≤ (x − y)kxk−1.

Taylor’s theorem gives

x − y =
(2b∆t)j

j!
exp(−2bτ + (b − µ)∆t) ≤

(2b∆t)j

j!
exp((b − µ)∆t),

where τ ∈ (0,∆t). Hence,

‖S(tk)f − (Sj(∆t))kf ‖L1 ≤ (x − y)kxk−1‖f ‖L1

≤
(2b∆t)j

j!
ke(b−µ)tk‖f ‖L1 . �

REMARK 3.5. (The case of variable µ and b) Recall that µ is the cell death rate

and b is the cell splitting rate and these are expected to depend on cell size x; it is

of interest to see how to modify the analysis for this case. We assume that µ and

b are bounded, nonnegative functions of x and let M and B respectively denote the

least upper bounds of µ(x) and b(x) for x ∈ [0,∞). Instead of equation (3.1) for the

approximating sequence, we use

∂

∂t
nk(x, t) +

∂

∂x
(g(x)nk(x, t)) = −(B +M)nk(x, t) + (B +M − b(x) − µ(x))nk−1(x, t)

+ b(αx)αnk−1(αx, t) + b(βx)βnk−1(βx).

The coefficient B +M − b(x) − µ(x) is nonnegative, ensuring that the approximation

sequence is nonnegative. Instead of (3.4), we now have
∫ ∞

0

mj+1(x, t) dx ≤
{(3B − B1 +M −M1)t}j

j!
e−(B+M)t

∫ ∞

0

f (x) dx, j ≥ 1,

where M1 and B1 are, respectively, the greatest lower bounds of µ(x) and b(x) for

x ∈ [0,∞). This results in an estimate for the solution,
∫ ∞

0

n(x, t) dx ≤ e(2B−B1−M1)t

∫ ∞

0

f (x) dx.
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4. Examples

We illustrate Theorems 3.1 and 3.4 with two examples. For each example, b and

µ are constants. Example 4.1 concerns the usual constant-g case, while Example 4.2

concerns g(x) = γx, where one can think of γ as a constant relative growth rate.

In each case, we seek solutions to (3.1) and (3.2) in the form

nj(x, t) =

j
∑

k=1

mk(x, t),

where the functions mk are defined in the proof of Theorem 3.1 as solutions of the

first-order PDEs (3.3). The calculations are simplified by the observation that

m̃k(x, t) ≡ e(b+µ)tmk(x, t)

satisfy the equations

∂m̃j

∂t
+
∂

∂x
(gm̃j) = h̃j, x > 0, t > 0, (4.1)

where

h̃1(x, t) = 0; h̃j(x, t) = bαm̃j−1(αx, t) + bβm̃j−1(βx, t), j > 1. (4.2)

The functions m̃j satisfy the boundary conditions m̃j(0, t) = 0 and initial conditions

m̃j(x, 0) =















f (x), j = 1,

0, j > 1.
(4.3)

4.1. Example (constant g, b, µ) In this case, m̃1 satisfies

∂m̃1

∂t
+ g
∂m̃1

∂x
= 0, x > 0, t > 0

with initial condition m̃1(x, 0) = f (x) and boundary condition m̃1(0, t) = 0. If we extend

the domain of f to R by defining f (x) = 0 for x < 0, then we may write

m̃1(x, t) = f (x − gt).

One then finds from (4.1) that

m̃2(x, t) =
bβ

g
{F1(αx − gt) − F1(α(x − gt))} +

bα

g
{F1(βx − gt) − F1(β(x − gt))},

where F1 is the first integral (antiderivative) of f ,

F1(x) =

∫ x

0

f (s) ds.
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FIGURE 4. The first seven approximations given by Theorem 3.1 for n(x, 2), as discussed in Example 4.1.

It is easy to verify that m̃j+1(x, t) is simply a linear combination of functions of the

form Fj(kx − ct) for various constants k and c, where Fj is the jth integral of f ,

Fj(x) =

∫ x

0

Fj−1(s) ds =
1

(j − 1)!

∫ x

0

(x − s)j−1f (s) ds.

We note that, because the domain of f was extended so that f (x) = 0 for x < 0, each Fj

also vanishes on (−∞, 0).

Figure 4 shows the first seven approximations to n(x, 2) for the case b = 0.5, µ =

g = 1, α = 3, β = 3/2 and initial density
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FIGURE 5. The initial value n(x, 0) = f (x) and the computed value of n(x, 5) as discussed in Example 4.1.

f (x) =















1, 1.5 ≤ x ≤ 2.5,

0, otherwise.

According to Theorem 3.1, the L1 error for n7(·, 2) is

27

7!
exp(−1 − t1) ≈ 0.0093 exp(−t1)

for t1 ∈ (0, 2). The actual L1 error is approximately 0.0017.

Next, we illustrate Theorem 3.4 with the same model. In this case, the time interval

is partitioned into sub-intervals of length dt and we solve equations (4.1) and (4.2) for

m̃j(x, t) = m̃k
j
(x, t) for t ∈ [k dt, (k + 1) dt], k = 0, 1, . . . , where the initial values of these

functions are given by equation (4.3) for k = 0 and by the following for k ≥ 1:

m̃k
j (x, k dt) =















m̃k−1
j

(x, k t), j = 1,

0, j > 1.

For this computation, we use the initial function for n plotted in Figure 5, which

also gives a plot of n(x, 5) calculated using this method.

Theorem 3.4 gives an estimate of the L1 error of the approximation shown

in Figure 5. We applied the method of Theorem 3.4 with j = 4 to compute the

solution with a range of step sizes. We also calculated the L1 errors, which, accord-

ing to Theorem 3.4, we expect to be O(dt3), because the number of steps, k, is

O(1/dt). Figure 6 shows the computed L1 errors and the upper bound predicted by

Theorem 3.4.
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FIGURE 6. The computed L1 error and the predicted upper bound of the error in n(x, 5) obtained from

Theorem 3.4 with j = 4. The calculations are for the model of Example 4.1 with n(x, 0) as shown in

Figure 5.

At the beginning of each time step, we are essentially solving a new problem

with initial data from the previous step. One extra requirement for this method is

the need to suitably represent the functions n(x, k dt) for k = 1, 2, . . . . We chose cubic

splines to represent the functions, because this satisfied the need to be able to, at each

time step, integrate these functions a few times and to be able to evaluate n(αx, k dt),

n(βx, k dt).

4.2. Example (linear growth rate g(x) = γ x; γ, b and µ constant) We briefly

mention this case, because there is evidence that it occurs in nature [17]. In this case,

the functions mj of Theorem 3.1 are particularly simple to calculate, and the charac-

teristic projections (cell growth curves) are exponentials, x(t) = x0eγt. Consequently,

αx(t) and βx(t) are also characteristic projections. One easily finds that

m1(x, t) = f (xe−γt)e−(b+µ+γ)t,

m2(x, t) = (αf (αxe−γt) + βf (βxe−γt))bte−(b+µ+γ)t.

Other values of mj have a similar form and it is relatively easy to carry out the

approximations of Theorems 3.1 and 3.4.

5. Concluding remarks

The goal of this paper is to make use of the analytical properties of first-order

partial differential equations in order to compute solutions of related functional partial
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differential equations. This is the spirit of the work of Zaidi et al. [20], who constructed

explicit solutions of a functional PDE from the general solution of a related PDE.

The challenging calculations required in [20] for a relatively simple functional

PDE suggests that such explicit constructions are unlikely for most functional PDEs.

However, we show in this paper that similar ideas can still be used to compute solutions

of functional PDEs. For this, we focused on a model for asymmetrical cell division

and constructed a sequence of solutions to PDEs that converge to the solution of the

functional PDE. The simplicity of this development was based on a reformulation of

the model in terms of an integral conservation law and well-known properties of linear

first-order PDEs. We illustrated such computations for the cases of constant growth

rate and linear growth rate. The technique used to obtain the precise estimates for the

approximations is applicable to other similar models.
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