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Abstract
Recent progress in using real-time kinematic (RTK) positioning has motivated the exploration of its application
due to its high accuracy and efficiency. However, poorly-observed satellite data will cause unfixed ambiguities
and markedly biased solutions. A novel partial ambiguity resolution method, named the irrespective of integer
ambiguity resolution (IIAR) model, is proposed and applied to improve the reliability of ambiguity resolution. The
proposed method contains initial ambiguity resolution and irrespective of integer ambiguity processes. The initial
ambiguity resolution process applies an iterative partial ambiguity resolution method to obtain an approximate
solution. The irrespective of integer ambiguity process transforms the approximate solution to a high-precision
solution. Experiments show that the approximate solution is unreliable when the initial ambiguity resolution process
has small redundancy, and the proposed method can obtain better results for those cases. The IIAR method showed
about a 40% improvement of multi-GNSS ambiguity success rate and about a 25% improvement of standard
deviation. Therefore, these results show that the proposed IIAR method can improve the results of multi-GNSS
RTK positioning significantly.

1. Introduction

In recent years, real-time kinematic (RTK) positioning has been successfully used in many fields for its
characteristics of rapid positioning, not accumulating error, and high efficiency. However, the integer
ambiguity resolution turns out to have a big impact on RTK positioning. Solutions with fixed ambiguities
can make it possible to achieve positioning precision at the millimetre level (Zhodzishsky et al., 1998;
Edwards et al., 1999; Teunissen, 1999; Odolinski et al., 2015). Since the 1990s, many studies have
been conducted to resolve the integer ambiguity (Position Location and NaTeunissen, 1994; Ge et al.,
2005; Feng, 2008; Xu et al., 2012). Multiple systems with multiple frequencies prove to be an effective
method to improve the ambiguity success rate (Wang and Feng, 2013; Deng et al., 2014; He et al., 2014;
Odolinski et al., 2015; Paziewski and Wielgosz, 2015; Torre and Caporali, 2015). But poorly-observed
satellite data will result in unfixed ambiguities in multi-GNSS RTK positioning. The partial ambiguity
resolution method is developed to solve this problem (Teunissen et al., 1999).

Several partial ambiguity resolution methods have been proposed to solve this problem (Dai et al.,
2007; Takasu and Yasuda, 2010; Parkins, 2011; Wang and Feng, 2013; Li et al., 2015). The first group
of methods select an ambiguity subset by signal-to-noise (SNR) (Parkins, 2011) and elevation angle
(Takasu and Yasuda, 2010). Multi-GNSS RTK positioning contains poorly-observed satellite data with
larger noise and residuals. The ambiguity resolution success rate can be improved by removing these
poorly-observed data. The second group of methods select a narrow-lane ambiguity subset with smaller
variances (Li et al., 2015). After wide-lane ambiguity is fixed, a partial narrow-lane ambiguity resolution
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method is developed to improve the success rate. The third group of methods select the optimal subset
of the ambiguity projections (Wang and Feng, 2013). After ambiguity decorrelation, some rules are
used to select the optimal subset in the ambiguity projections to improve the success rate. Those partial
ambiguity resolution methods select suitable ambiguity subsets by different rules. Consequently, they
have their own merits.

Against this background, this paper presents a new partial ambiguity resolution strategy – the IIAR
method, containing the initial ambiguity resolution and the IIAR processes. The initial ambiguity reso-
lution process is to obtain an approximate solution, but the pseudo-range single point positioning (SPP)
float solution cannot meet the requirements. To resolve this problem, the initial ambiguity resolution
process applies an iterative partial ambiguity resolution to obtain the approximate solution and set it as
the virtual fixed solution. This virtual fixed solution is then set as the solution of the virtual station. Pre-
vious studies applied the partial ambiguity resolution method for poorly-observed data, but its solution
is unreliable when the selected satellites have poor geometry. To solve this problem, the irrespective of
ambiguity resolution process resolves all the adjustment equations. It is hypothesised that the virtual
station and the estimated rover station have the same integer ambiguities in RTK positioning. With the
virtual fixed solution, all of the adjustment equations are transformed into a new form. The proposed
IIAR method omits the integer ambiguity resolution for poorly-observed satellites and improves the
situation in which the selected satellites have poor geometry. This study is structured as follows. First,
the IIAR method is introduced in detail, then the method is validated with real data and the results are
analysed in order to reach the conclusion.

2. Method

In this section, the principle of the IIAR method is described in detail.

2.1. Initial ambiguity resolution process

There are more available satellites for multi-GNSS positioning. It is difficult to fix ambiguities for all the
satellites, however, because of multipath and atmospheric residuals. The partial ambiguity resolution
method is developed to solve this problem. But its solution is unreliable when few satellites are available
for partial ambiguity resolution. This section presents the application of an iterative partial ambiguity
resolution method to obtain an approximate solution like Site B in Figure 1.

GNSS observation equation is expressed as follows:

𝑌 = 𝐴𝑋 + 𝐵𝑏 + 𝜀 (1)

where 𝑌 ∈ 𝑅𝑚 denotes the vector of the pseudo-range and carrier phase observation; 𝐴 ∈ 𝑅𝑚∗𝑛 denotes
the matrix of designed coefficients; 𝑋 ∈ 𝑅𝑛 denotes the vector of the estimated coordinates; 𝐵 ∈ 𝑅𝑚∗𝑝

denotes the matrix of carrier phase length; 𝑏 ∈ 𝑍 𝑝 denotes the vector of the estimated integer ambiguity;
𝜀 ∈ 𝑅𝑚 denotes the noise vector, which is assumed to follow a zero-mean Gaussian distribution. The
float solution of X and b and their variance matrices are expressed as follows:

[
𝑋 𝑓

𝑏 𝑓

] [
𝑄11 𝑄12
𝑄21 𝑄22

]
(2)

where 𝑏 𝑓 ∈ 𝑅𝑝 denotes the float solution vector of b; 𝑋 𝑓 ∈ 𝑅𝑛 denotes the float solution vector of X;
𝑄11 ∈ 𝑅𝑛∗𝑛 denotes the variance submatrix of coordinates; 𝑄22 ∈ 𝑅𝑞∗𝑞 denotes the variance submatrix
of ambiguity; 𝑄12 ∈ 𝑅𝑛∗𝑞 and 𝑄21 ∈ 𝑅𝑞∗𝑛 denote the covariance submatrices.

Integer ambiguity resolution is essential for RTK positioning. It is difficult to fix ambiguities for
all the satellites in a complex environment, so partial ambiguity resolution is implemented (Teunissen,
1999, 2001; Teunissen et al., 1999). The key for partial ambiguity resolution is to select a feasible
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Figure 1. Schematic diagram of the IIAR method.

ambiguity subset. An ambiguity subset is fixed, with a bootstrapped success rate greater than or equal
to a minimum required value 𝑃0, to select the feasible subset such that:

𝐹 (𝑏) =
𝑝∏

𝑖=𝑘

(
2Φ

(
1

2𝜎𝑏𝑖 |𝐼
− 1

))
≥ 𝑃0 (3)

where Φ(𝑥) denotes the cumulative normal distribution; 𝜎𝑏𝑖 |𝐼 denotes the conditional variance element;
𝑏𝑖 |𝐼 ∈ 𝑅𝑝−𝑖+1 denotes the feasible ambiguity subset. Equation (3) denotes that only the last 𝑝 − 𝑘 + 1
ambiguities are in the feasible subset. The ambiguity resolution is then applied for the selected subset.

Many studies have been conducted to resolve the integer ambiguity, such as integer least-squares
(Teunissen, 1999), integer bootstrapping (Teunissen, 1998) and integer rounding (Jonge and Tiberius,
1998). The formula of integer least-squares ambiguity resolution is expressed as follows:

𝑓 (∇Δ𝑏) = min (∇Δ𝑏 − ∇Δ𝑏 𝑓 )𝑇𝑄22 (∇Δ𝑏 − ∇Δ𝑏 𝑓 ) (4)

where ∇Δ denotes the double-difference symbol. This estimator is known to be optimal, which means
the probability of the correct integer estimation is maximised (Teunissen, 1999). In this study, the
least-squares ambiguity decorrelation adjustment (LAMBDA) method is used to resolve ambiguities for
the selected satellites (Teunissen, 1995). The initial ambiguity resolution process is an iterative partial
ambiguity resolution method. The iterative model guarantees the correctness of the virtual station.
Equation (4) is the criterion of the partial ambiguity resolution. The iterative model will end if the
adjacent iterations have the same ambiguity subsets.

The initial ambiguity resolution is to obtain an approximate solution, which is set as the virtual fixed
solution of the virtual station. Previous studies apply the iterative partial ambiguity resolution method
to obtain the solution, but the solution is unreliable when the selected satellites have small redundancy.
This study applied an iterative partial ambiguity resolution to obtain the virtual fixed solution, and
the iteration will end when the adjacent iterations have the same ambiguity subsets. The virtual fixed
solution is unreliable for high-precision positioning, and the IIAR process is essential.
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2.2. IIAR process

The initial ambiguity resolution process applies an iterative partial ambiguity resolution method to
obtain the virtual fixed solution, which omits the ambiguity resolution for poorly-observed satellites. It
is hypothesised that the virtual station and the estimated rover station have the same integer ambiguities
in RTK positioning. There is no need to resolve integer ambiguities for other satellites with the virtual
fixed solution. The IIAR process transforms all of the adjustment equations to a new form. More formula
derivations are given in the following section.

Figure 1 illustrates a double-difference for site B and site C in. According to Equation (1), the
double-difference ambiguity formula for each observation equation is expressed as follows:

∇Δ𝑏𝑖 = Round
(
∇Δ𝜑𝑖 − ∇Δ𝜌𝑖

𝜆𝑖

)
(5)

where i denotes the frequency i; ∇Δ𝑏𝑖 denotes the double-difference ambiguity element; Round(·)
denotes the rounding function; ∇Δ𝜑𝑖 denotes the double-difference carrier phase observation element;
∇Δ𝜌𝑖 denotes the double-difference pseudo-range observation element; 𝜆𝑖 denotes the carrier phase
length element of frequency i. Zhang et al. (2003) applied Equation (5) for short baseline monitoring.
They obtained the estimated solution based on the hypothesis that the current epoch had the same integer
ambiguities as the initial epoch. In the presetn study, the equation is applied to substitute the integer
ambiguities based on the initial ambiguity resolution process. The selected observations in the initial
ambiguity resolution process and the remaining observations are used to make double differences for
Equation (5). The integer bootstrapping estimator is a sequential least-squares adjustment. It starts with
the more precise ambiguity, here assumed to be the last ambiguity, and rounds its value to the nearest
integer. By contrast, the proposed model divides the ambiguities into two parts. The selected observations
in the initial ambiguity resolution process obtain the virtual fixed solution. This solution is unreliable
with a small redundancy. The remaining observations eliminate the ambiguities by Equation (5) to
obtain a larger redundancy.

Equation (5) is aimed at the code division multiple access model. As for the frequency division multi-
ple access model, the double-difference ambiguity of GLObal NAvigation Satellite System (GLONASS)
is not an integer. To solve this problem, the formula of Equation (5) is expressed as follows:

𝜆𝑖Δ𝑏𝑖 − 𝜆 𝑗Δ𝑏 𝑗 = 𝜆𝑖 (Δ𝑏𝑖 − Δ𝑏 𝑗) + Δ𝑏 𝑗 (𝜆𝑖 − 𝜆 𝑗) = 𝜆𝑖∇Δ𝑏𝑖 𝑗 + Δ𝜆𝑖 𝑗Δ𝑏 𝑗 (6)

where j denotes the frequency j; Δ𝑏𝑖 denotes the single-difference ambiguity element of frequency i;
Δ𝑏 𝑗 denotes the single-difference ambiguity element of frequency j; 𝜆 𝑗 denotes the carrier phase length
element of frequency j; ∇Δ𝑏𝑖 𝑗 denotes the double-difference element of frequency i and j; Δ𝜆𝑖 𝑗 denotes
the single-difference element of frequency i and j. To solve the problem of the satellite geometry,
Equations (5) and (6) are aimed at all of the observation equations. Teunissen (2019) proposed a new
GLONASS ambiguity resolution model. The authors will apply this model to the proposed method in
future studies.

Equation (6) has a new residual Δ𝜆𝑖 𝑗Δ𝑏 𝑗 , which is influenced by the single-difference carrier phase
length Δ𝜆𝑖 𝑗 and single-difference integer ambiguity Δ𝑏 𝑗 . The new residual Δ𝜆𝑖 𝑗Δ𝑏 𝑗 is less than 0·1
cycle, in the condition that Δ𝜆𝑖 𝑗 is minimal or Δ𝑏 𝑗 is more than several cycles (Zhang et al., 2001),
and Δ𝜆𝑖 𝑗Δ𝑏 𝑗 is absorbed into double-difference noise ∇Δ𝜀. According to Equations (1), (5) and (6), the
formula for each double-difference observation equation is as follows:

𝐴𝑖Δ𝑋 = 𝜆𝑖∇Δ𝜑𝑖 − ∇Δ𝜌𝑖 − 𝜆𝑖𝑅𝑜𝑢𝑛𝑑

(
∇Δ𝜑𝑖 − ∇Δ𝜌𝑖

𝜆𝑖

)
− ∇Δ𝜀𝑖 (7)
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where 𝐴𝑖 ∈ 𝑅𝑚∗𝑛 denotes the designed matrix for Equations (5) and (6); Δ𝑋 ∈ 𝑅𝑛 denotes the difference
vector between the virtual station and the estimated station. The coordinate formula is then as follows:

𝑋𝑐𝑠 = 𝑋vfs + Δ𝑋 (8)

where 𝑋𝑐𝑠 ∈ 𝑅𝑛 denotes the current solution vector. The IIAR process obtains the difference vector Δ𝑋 ,
and then the current solution vector 𝑋𝑐 will be output ifΔ𝑋 meets the requirement. The proposed method
divides the observations into two parts. The selected observations in the initial ambiguity resolution
process obtain a range solution, while the IIAR process obtains a high-precision solution with larger
redundancy. It is hypothesised that the virtual fixed solution and the final solution have the same double-
difference ambiguities. The selected observations are used to eliminate the integer ambiguity parameters
of the remaining observations. The biases in the remaining observations will be decreased or eliminated
by Equations (5) and (6).

Different from the previous studies, this method transforms the integer ambiguity into a new form. It
is hypothesised that the virtual station and the estimated rover station have the same integer ambiguities
in RTK positioning. With the virtual fixed solution, the integer ambiguity vector is substituted by the
pseudo-range and carrier phase observation. The IIAR process resolves the adjustment equations for all
the satellites, which solves the problem of poor satellite geometry.

2.3. Threshold of the difference vector Δ𝑋

Equations (5) and (8) indicate that Δ𝑋 should be within a certain range. It is hypothesised that the
virtual station and the estimated rover station have the same integer ambiguities in RTK positioning.
That means their difference is less than half wavelength. The formula is expressed as follows:

|𝐴𝑖Δ𝑋 | ≤ 0 · 5𝜆 (9)

Supposing that maximum displacements for E (east), N (north) and U (up) are equal, Equation (8) is
derived as follows (Liu, 2014):

|Δ𝑋 | ≤
√

3 · 0 · 5𝜆𝑖
𝑀𝐴𝑋 (|𝐴𝑖 |2)

=

√
3 · 0 · 5𝜆𝑖√

2
= 0 · 6𝜆𝑖 (10)

where |𝐴𝑖 | denotes the determinant value of 𝐴𝑖 . According to Equations (8) and (10), the formula is
expressed as follows:

|Δ𝑋 | = |𝑋 − 𝑋pre | < 0 · 6𝜆𝑖 (11)

where 𝑋pre denotes the solution in the previous iteration. The difference between X and 𝑋pre should satisfy
Equation (11). But the SPP float solution 𝑋 𝑓 cannot meet this requirement. To obtain a more accurate
solution, an iterative partial ambiguity resolution method is applied for the initial ambiguity resolution
process, and its solution substitutes 𝑋𝑣 for 𝑋 𝑓 . The proposed IIAR method obtains an approximate
solution in the initial ambiguity process, while the irrespective of integer ambiguity process resolves
the adjustment equations to obtain the high-precision estimated coordinates. It is hypothesised that the
virtual station and the estimated rover station have the same double-difference ambiguities in RTK
positioning. So the virtual fixed solution should meet the requirements in this section. Otherwise, it
indicates that the iterative partial ambiguity resolution obtains a low-precision solution. the experiment
in section 3.2 shows that the proposed model cannot guarantee a high-precision solution when the virtual
fixed solution cannot meet Equation (11). For clarity, the algorithm schematic diagram is presented in
Figure 1.

The detailed steps of the proposed method are as follows, where site A is the base station; site C is
the rover station; sites p and q are the satellite p and q:
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Table 1. Statistics of experiment hardware.

Station 1 2 3 4 5

Receiver Type Trimble Trimble Trimble Trimble Trimble
Net R9 Net R9 Net R9 Net R9 Net R9

Version 5·03 5·03 5·03 4·81 5·03
Antenna Trimble Trimble Trimble Trimble Trimble

Zephyr Zephyr Zephyr Zephyr Zephyr
Geodetic 2 Geodetic 2 Geodetic 2 Geodetic 2 Geodetic 2

1. Select feasible satellites for the initial ambiguity resolution process. The site B in Figure 1 is set as
the virtual station and the initial ambiguity resolution process obtains its solution 𝑋𝑖𝑛𝑖𝑡 .

2. Update the float solution 𝑋 𝑓 and the corrections of the virtual station by 𝑋𝑖𝑛𝑖𝑡 .
3. Set the current solution 𝑋𝑖𝑛𝑖𝑡 as the virtual fixed solution 𝑋vfs, if the adjacent iterations have the

same ambiguity subsets. Otherwise, back to step 1.
4. Substitute the combination of carrier phase and pseudo-range observations for the integer

ambiguity as Equation (5).
5. Obtain the difference solution Δ𝑋 as Equation (7), and update the current solution 𝑋𝑐𝑠. Now the

current solution 𝑋𝑐𝑠 is resolved by all the observed satellites.
6. Set the current solution 𝑋cs as the final solution X. Go to step 7, if it meets the requirement of

Equation (11). Otherwise, back to step 1.
7. Output X as the fixed solution, if |𝑋 − 𝑋𝑖𝑛𝑖𝑡 | < 0.6𝜆. Otherwise, output 𝑋pre as the float solution.

3. Experiments

Ambiguity success rate (Equation (12)) is an essential proportion to assess the integer ambiguity
resolution method. The formula is expressed as follows:

𝑃fixed =
𝑁𝑟

𝑁total
× 100% (12)

where 𝑃fixed denotes the successful rate of correctly fixed ambiguity; 𝑁𝑟 denotes the epoch numbers
of correctly fixed ambiguity; 𝑁total denotes all of the epoch numbers in the experiment. In this study,
3 cm, 3 cm and 5 cm are set for the correctly fixed ambiguity threshold of E, N and U directions. The
processing strategy in this section is conducted by single epoch.

3.1. Ultra-short baseline experiment

To verify the proposed IIAR method, experiments were conducted on the roof of the China Electric
Research Institute, with 15 s interval GPS+BDS+Galileo+GLONASS+QZSS (L1+L2) data from
0:00 to 24:00 on 7 November 2019 (GPST). The five stations are situated on the roof of a 40 m building
with good observation conditions. The cut-off elevation mask is 10◦. Because of the different firmware
versions, the receiver of site 4 did not contain Galileo data. The GNSS receivers were Trimble Net R9.
There are two parts in this section. The first part demonstrates that the virtual fixed solution (VFS) was
insufficient for high-precision positioning in a complex environment, while the second part demonstrates
that the proposed IIAR method is feasible. The antenna and receiver hardware is as shown in Table 1.

3.1.1. VFS experiment

Previous studies applied the partial ambiguity resolution method to obtain a better result, but its solution
may be unreliable in a complex environment. To prove this hypothesis, the China Electric Research
Institute Baseline 1-2 GPS experiment was conducted. Figure 2 shows the time series of this experiment.
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Figure 2. Time-series scatter diagram of Baseline 1-2 GPS experiment.

Figure 3. Satellite time-series diagram of Baseline 1-2 GPS experiment.

The experiment in this section was only conducted by GPS, which was more obvious to show that
the VFS is not adequate for high-precision positioning. It could be seen that the time series of the VFS
has many fluctuations, while the IIAR method had a smooth curve. For E directions, the time series
of VFS had about 0·01 m fluctuations in about 1,400th, 2,000th, 2,500th, 2,900th, and 3,600th–4,000th
epochs. For N directions, the time series of VFS had about 0·01 m fluctuations in about 500th, 1,400th,
2,500th, 2,900th, and 3,900th epochs, and about 0·005 m fluctuations in about 2,000th and 4,000th
epoch. For U directions, the time series of VFS had about 0·04 m fluctuations in about 1,400th, 2,500th,
2,900th, 3,900th, 4,400th, and 5,700th epochs. It is known that RTK positioning can reach millimetre
positioning accuracy for those ultra-short baseline experiments. So the VFS is not adequate for high-
precision positioning. The VFS is obtained with small redundancy, while the IIAR is obtained with a
larger redundancy. Figure 3 shows more details of this ultra-short baseline experiment.

Figure 2 shows the time series of the VFS and IIAR method in the China Electric Research Institute
Baseline 1-2 GPS experiment. It was obvious that the VFS had many fluctuations, and the reason was
shown in Figure 3. Figure 3 is the satellite time series diagram of the VFS experiment. The blue line
is the total satellite number, while the red line is the selected satellite number. There were about seven
satellites available during the experiment, but only about five satellites were feasible. Figure 2 shows
that there were fluctuations in many epochs. Figure 3 shows that there were three feasible satellites in
about the 500th and 1,400th epochs, and four feasible satellites in about the 2,500th, 2,900th, 3,900th,
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Table 2. Statistics of IIAR method, RTK method and total station.

Baseline length (m)

Baseline System RTK IIAR Total station

1-2 BDS 6·0068 6·0072 6·0078
GPS 6·0071 6·0072
Galileo 6·0105 6·0112
GLONASS 6·0063 6·0069
BDS+GPS+Galileo+GLONASS+QZSS 6·0070 6·0073

3-2 BDS 6·0091 6·0093 6·0092
GPS 6·0091 6·0100
Galileo 6·0073 6·0076
GLONASS 6·0092 6·0093
BDS+GPS+Galileo+GLONASS+QZSS 6·0098 6·0096

4-2 BDS 5·9873 5·9873 5·9860
GPS 5·9874 5·9873
GLONASS 5·9884 5·9884
BDS+GPS+GLONASS+QZSS 5·9875 5·9874

5-2 BDS 6·0163 6·0165 6·0161
GPS 6·0167 6·0160
Galileo 6·0338 6·0330
GLONASS 6·0163 6·0163
BDS+GPS+Galileo+GLONASS+QZSS 6·0159 6·0160

4,400th and 5,700th epochs. The selected feasible satellite number corresponds to the fluctuations in
Figure 2. The VFS experiment proved that the solution of the partial ambiguity resolution method is
unreliable when the selected satellites have poor geometry.

3.1.2. Verification experiment

The Baseline 1-2 GPS experiment described in the above subsection proved that VFS was unreliable for
high-precision positioning when the selected satellites have poor geometry. This subsection describes
the Baseline 1-2 multi-GNSS experiment to verify the reliability of the proposed IIAR method. Table 2
shows the comparison of the IIAR method, RTK method and Leica TS60 total station results.

The experiment in this section is to make a comparison for the results of the RTK method, IIAR
method and total station. The results of the total station are set as the criteria for the comparison
of the RTK and IIAR methods. As for the Baseline 1-2 experiments, the BDS+GPS+Galileo+
GLONASS+QZSS experiment had the best results with about 0·5 mm difference, and the Galileo
experiment had the worst results with about 2·7 mm difference. Besides, BDS, GPS, and GLONASS
experiments had similar results with about 0·8 mm difference. As for Baseline 3-2 experiments, BDS,
GPS, GLONASS, and BDS+GPS+Galileo+GLONASS+QZSS experiments had the best results
with about 0·3 mm difference, and the Galileo experiment had the worst results with about 1·6 mm
difference. As for the Baseline 4-2 experiment, BDS, GPS and BDS+GPS+GLONASS+QZSS exper-
iment had similar results with about 0·7 mm difference. The GLONASS experiment had the worst
result with about a 2 mm difference. As for the Baseline 5-2 experiment, BDS, GPS, GLONASS and
BDS+GPS+Galileo+GLONASS+QZSS experiments had similar results with about 0·5 mm differ-
ence, and the Galileo experiment had the worst results with about 2 mm difference. The IIAR method
had a slight improvement in most cases, but there were some exceptions, such as the GPS experiment
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Figure 4. STD statistic histogram for the four baseline multi-GNSS experiments.

Figure 5. Residual statistic histogram for Baseline 1-2 multi-GNSS experiment.

of the Baseline 3-2 experiment, in which the RTK method had better results than the IIAR method. In
summary, the IIAR method had a more precise solution than the RTK method in most cases.

Figure 4 shows the average standard deviation (STD) for the four baselines BDS+GPS+
Galileo+GLONASS+QZSS experiment at the China Electric Research Institute. The IIAR method
had noticeable improvement, compared with the RTK methods. In summary, the IIAR method had the
most obvious improvement by about 25%, compared with the RTK method.

Figure 5 shows the comparison for the residual distribution of the Baseline 1-2 BDS+GPS+
Galileo+GLONASS+QZSS experiment at the China Electric Research Institute. The left histogram
in blue is the statistical results of the RTK method, while the right one in red is for the proposed IIAR
method. The result of the IIAR method had more epochs in [−0·0032 m, 0·0032 m] than the RTK method.
The IIAR method had a smaller variance, which corresponded to the statistical results in Figure 4. The
verification experiment proved that the proposed IIAR method had slightly better results than the RTK
method in the ultra-short baseline experiment.

3.2. Short baseline experiment

The experiment described in this subsection was to verify the practicality of the proposed IIAR method.
The Wuhan Baishazhou Bridge S023 experiment was conducted with GPS +BDS+GLONASS (L1+L2)
10hz data, from 14:00 to 15:00 on 26 September 2016 (GPST). The length of the bridge is 3,598 m,
while the width is 25·6 m. Site S023 is on the middle span of the bridge. The cut-off elevation mask is
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Figure 6. Time-series scatter of Baishazhou Bridge S023 experiment.

10◦. The baseline length was 2,173·41 m. The GNSS receivers were ComNav-K508 and versions were
55·0. Figure 6 shows the time series of the Baishazhou S023 experiment.

The purpose of this experiment was to apply the proposed IIAR method to the bridge monitoring
experiment. Figure 6 shows the comparison of the RTK method and the IIAR method. The IIAR method
had obvious better results in the initial stage, while the RTK method had divergence. The RTK method
could not obtain a fixed solution because of poorly-observed satellites therein. In contrast, the IIAR
method had better convergence during the initial time with few fluctuations. But the IIAR method had
worse results in about the 10,000th, 14,000th and 18,000th epochs. Both methods had similar results
after about the 22,000th epoch. To obtain more obvious comparisons, Table 3 shows the statistics of the
Baishazhou Bridge S023 experiment. These are: ambiguity success rate (ASR), time-to-first-fixed epoch
(TTFF), and root mean squared error (RMSE). It was obvious that the IIAR method had better statistical
results. For ASR, the GPS and BDS experiments had the same results. The GLONASS experiment
was from 46·37% to 61·62%, and the multi-GNSS experiment was from 55·03% to 92·61%. For TTFF,
the GPS and BDS experiments had the first fixed epoch in the first epoch. The GLONASS experiment
had worse results than the GPS and BDS experiments. The RTK method had the first fixed epoch in
the 9,400th epoch, while the IIAR method was in the 2,934th epoch. The results of the multi-GNSS
experiment had better results than the GLONASS experiment. The RTK method had the first epoch in
the 216th epoch, while the IIAR method was in the first epoch. For RMSE, the GLONASS experiment
had the worst results in the four experiments, while the GPS experiment had the best results. It was
obvious that the IIAR method had smaller RMSE results than the RTK method. In summary, the IIAR
method had better results in the short baseline experiment.

Figure 7 is the time series statistic diagram of the Baishazhou Bridge S023 experiment, which shows
the reason for Figure 6. Figure 6 shows that the RTK method had divergence results in the initial time,
in which Figure 7 shows that there were about four poorly-observed satellites. The IIAR method had
convergence results because the VFS was obtained by the selected feasible satellites. Figure 6 shows the
IIAR method had worse results in about the 10,000th, 14,000th and 18,000th epochs, in which Figure 7
shows that the VFS was obtained by poor ratio value. Both methods had similar results after about the
22,000th epoch in Figure 6, in which Figure 7 shows that the VFS was obtained by better ratio value.

The short baseline experiment in this section shows that there are two keys to the proposed method.
One is that the VFS must meet the requirement of Equation (13), and the other is that the residual had
no impact on Equations (7) and (8).
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Table 3. Statistics of the Baishazhou Bridge S023 experiment.

RMSE (m)

Method Satellite system ASR (%) TTFF E N U

RTK GPS 99·62 1 0·00007 0·00005 0·00011
BDS 99·61 1 0·00014 0·00022 0·00037
GLONASS 46·37 9,400 0·12929 0·00846 0·15234
GPS+BDS+GLONASS 55·03 216 0·00914 0·00884 0·00201

IIAR GPS 99·62 1 0·00007 0·00004 0·00007
BDS 99·61 1 0·00013 0·00016 0·00012
GLONASS 61·62 2,934 0·08407 0·00594 0·09338
GPS+BDS+GLONASS 92·61 1 0·00627 0·00060 0·00188

Figure 7. Time-series statistic diagram of Baishazhou Bridge S023 experiment.

3.3. Medium baseline experiments

The above two experiments focus on the short baseline experiments, and the experiment in this section
was to verify whether the proposed IIAR method was feasible for the medium baseline experiment.
Site 1 at the China Electric Research Institute was set as the rover station, while the Beĳing Fangshan
(bjfs) IGS site was set as the base station. The baseline length was 61,443·96 m. The site 1 receiver is
introduced in Table 1. The IGS station receiver type is Trimble Net R9, and its version is 4·85. Figure 8
shows the time series of the Baseline 1-bjfs experiment.

Figure 8 shows the IIAR results for the Baseline 1-bjfs experiment. Compared with Figure 2, the
IIAR results had divergence for most of the epochs. The above short baseline experiments show that the
VFS and residual are the keys for the proposed method. Figure 9 shows the reason for Figure 8.

Figure 9 is the VFS time series scatter of the Baseline 1-bjfs experiment. The VFS had divergence for
most of the epochs, which can meet the requirement of Equation (13). Previous studies add atmospheric
corrections for long baseline RTK positioning. In this section, the initial ambiguity resolution process
obtains the VFS without any corrections. In this case, the equation residual will have an impact on the
integer ambiguity resolution, and then Equations (7) and (8) would not be applicable.
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Figure 8. Time-series scatter of Baseline 1-bjfs experiment.

Figure 9. VFS time series scatter of Baseline 1-bjfs experiment.

4. Conclusions

This study attempted to apply a new strategy for the partial ambiguity resolution – the IIAR method,
containing the initial ambiguity resolution and IIAR processes. The initial ambiguity resolution process
is used to obtain an approximate solution, but the pseudo-range SPP float solution cannot meet the
requirements. To resolve this problem, the initial ambiguity resolution process applies an iterative partial
ambiguity resolution to obtain an approximate solution, which is set as the VFS. And this VFS is set
as the solution of the virtual station. Previous studies applied the partial ambiguity resolution method
for poorly-observed data, but its solution is unreliable when the selected satellites have poor geometry.
To solve this problem, the IIAR process resolves all the adjustment equations. It is hypothesised that
the virtual station and the estimated rover station have the same double-difference ambiguities in RTK
positioning. With the VFS, the adjustment equations are transformed into a new form. The proposed
IIAR method omits the integer ambiguity resolution for poorly-observed satellites and improves the
situation in which the selected satellites have poor geometry. Three experiments were conducted to
verify the proposed IIAR method. The ultra-short baseline experiment shows that the VFS is unreliable
when the selected satellites have small redundancy. The short baseline experiment shows that the IIAR
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method can obtain better results in some cases. And the medium baseline experiment shows that the
IIAR method is not applicable for long baseline positioning.

In conclusion, it is confirmed that the proposed IIAR method is an effective tool for partial ambiguity
resolution. Benefiting from the initial ambiguity resolution process, a better initial solution will be
obtained under a situation of poorly-observed satellites. The IIAR process omits the ambiguity resolution
for the poorly-observed satellites. The solution of the partial ambiguity resolution is unreliable when
the selected satellites have poor geometry and IIAR process is then essential. Furthermore, more studies
will be focused on applying the IIAR method to long baseline positioning.
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