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Summary

This study aims to evaluate the effects ofN-acetylcysteine (NAC) on bovine oocyte maturation,
mitochondrial activity and transzonal projections (TZP), as well as on the levels of reactive oxy-
gen species (ROS) and messenger RNA (mRNA) for catalase (CAT) superoxide dismutase
(SOD), periredoxin-6 (Prdx6), glutathione peroxidase (GPx), growth and differentiation fac-
tor-9 (GDF9), histone H1Foo, cyclin B1 (CCNB1) and c-Mos. Bovine cumulus–oocyte com-
plexes (COC) of medium-sized antral follicles (3.0–6.0 mm) were prematured in TCM-199
for 8 h at 38.5°C in 5%CO2. After prematuration in the presence of forskolin and C-type natriu-
retic peptide, COCs were matured in TCM-199 alone or with 0.1, 0.5 or 2.5 mM NAC. Then,
oocytes were classified according to the stage of chromatin. Furthermore, mitochondrial activ-
ity and intracellular levels of ROS and TZP were also evaluated. The levels of mRNAs for CAT,
SOD, Prdx6, GPx, GDF9,H1Foo, CCNB1 and c-Mos were evaluated using real-time polymerase
chain reaction (RT-PCR). The results showed that NAC significantly increased the percentages
of oocytes with resumption of meiosis when compared with those oocytes matured in control
medium. Oocytes had homogeneous mitochondrial distribution, and those cultured with 0.1
and 0.5 mM NAC had lower levels of ROS when compared with the control. In addition,
0.5 mMNAC reduced TZP and the levels of mRNA for CCNB1. In contrast, NAC did not influ-
ence the expression ofCAT,GPx, Prdx6, SOD,GDF9,H1Foo, and c-Mos. In conclusion, 0.5 mM
NAC reduced the levels of ROS, TZP andmRNA forCCNB1, and improved in vitro resumption
of meiosis in oocytes from medium-sized bovine antral follicles.

Introduction

The efficiency of in vitro embryo production still needs to be improved in domestic animals. For
example, in bovine species, oocytes aspirated from slaughterhouse ovaries have heterogeneous
cellular and molecular features and, consequently, the rate of oocytes that reach the blastocyst
stage is ~35% (Lonergan and Fair 2008). As recently reviewed by Bezerra et al. (2021), there is a
clear relationship between follicle size and the quality of the enclosed oocyte. Bovine oocytes
from small antral follicles (<3.0 mm) still do not have the capacity to undergo meiotic matura-
tion (Hyttel et al., 1989; Lequarre et al., 2005). Chromatin morphology of bovine oocytes from
small-sized and mid-sized antral follicles (3.0–6.0 mm) have four discrete stages of germinal
vesicle (GV), that is from GV0 to GV3 (Dieci et al., 2016). According to these authors, approx-
imately one-third of oocytes obtained from slaughterhouse ovaries have GV2 and GV3 status,
whereas two-thirds of the oocytes are at the GV0 and GV1 stages. GV0 oocytes are transcrip-
tionally active and unable to progress through metaphase II of the meiotic division (Luciano
et al., 2011). Therefore, many oocytes frommid-sized follicles (3.0–6.0 mm) may not have com-
pleted cytoplasmic maturation, which can negatively influence the blastocyst rate after in vitro
fertilization, showing the importance of studying this oocyte population.

The presence of functional transzonal projections (TZP) mediating bidirectional communi-
cation between oocyte and cumulus cells is responsible for keeping high levels of cAMP in the
oocyte, as well as its chromatin uncondensed (GV0). When this communication is interrupted,
the chromatin rapidly condenses and RNA synthesis suddenly ceases (Luciano et al., 2011).
Therefore, an in vitro delay in meiotic resumption during a prematuration period has been used
to increase the efficiency of oocyte development, the oocyte then gains more time to accumulate
important molecules (Lima et al., 2018). Among the transcripts that are stored are kinase c-MOS
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(Wu et al., 1997), histone H1Foo (Fu et al., 2003; Yun et al., 2015),
cyclin B1 (CCNB1; Wu et al., 1997) and growth and differentiation
factor 9 (GDF9) (Biase and Kimble, 2018). These transcripts play
important roles during oocyte maturation and early embryo devel-
opment (Wu et al., 1997). It is also important to consider that oxi-
dative stress during in vitro culture of oocytes can cause negative
effects, mainly due to the accumulation of reactive oxygen species
(ROS). To minimize the damage caused by oxidative stress, non-
enzymatic antioxidants are commonly added to culture medium.
For example,N-acetylcysteine (NAC) is a precursor of intracellular
cysteine and glutathione that reduces oxidative stress by eliminat-
ing free oxygen radicals. Mahmoodi et al. (2015) reported that
NAC regulates the expression of antioxidant enzymes. Among
these enzymes, superoxide dismutase (SOD) promotes a dismuta-
tion of superoxide radicals to H2O2, which is further detoxified to
water and oxygen by catalase (CAT) or glutathione peroxidase.
CAT is responsible for the conversion of H2O2 into water and oxy-
gen, whereas glutathione peroxidase (GPx) catalyzes the degrada-
tion of lipid peroxides and H2O2 (Kala et al., 2016). Periredoxin-6
(Prdx6) is another enzyme with the ability to bind and reduce
phospholipid hydroperoxides (Fisher et al., 2018). However, it is
still not known if NAC reduces the levels of ROS during bovine
oocyte maturation and if it influences TZP, mitochondrial activity,
and gene expression.

The aims of this study were to evaluate the effects of NAC on
oocyte maturation, mitochondrial activity and TZP distribution, as
well as on the levels of ROS and mRNA for CAT, SOD, Prdx6,GPx,
GDF-9, H1Foo, CCNB1 and c-Mos in bovine oocytes matured
in vitro.

Material and methods

All chemicals were purchased from Sigma Chemicals Company, St.
Louis, MO, USA unless otherwise stated in the text.

Ovaries and cumulus–oocyte complexes (COC) recovery

Cow ovaries (n= 200) were collected in slaughterhouses and trans-
ported to the laboratory in TCM-199 containing antibiotics (100
IU/ml penicillin and 100 mg/ml streptomycin) at 32°C, for a maxi-
mum period of 1 h. The COC of mid-sized antral follicles (3.0–6.0
mm) were recovered and, after morphological evaluation, destined
for in vitro prematuration. This study was approved and carried
out in accordance with the rules and guidelines of the Ethics
and Animal Welfare Committee of the Federal University of
Ceará (no. 016/20).

Prematuration and maturation of COC

For in vitro prematuration, COC were cultured in TCM-199 con-
taining Earle salts and L-glutamine (Sigma) supplemented with 0.2
mM pyruvic acid, 5.0 μg/ml luteinizing hormone (LH) (Lutropin®-
V, Bioniche, Belleville, ON, Canada), 0.5 μg/ml follicle-stimulating
hormone (FSH) (Follitropin®-V, Bioniche, Belleville, Canada),
0.4% BSA, 100 IU/ml penicillin, 50 μg/ml streptomycin, 100 μM
forskolin (FSK) and 100 nM C-type natriuretic peptide (CNP).
The COC were cultured in four-well plates for 8 h at 38.5°C, with
5% CO2 in air, and then used for in vitro maturation (IVM).

For IVM, the culture medium was the same as used during pre-
maturation, but without FSK and CNP. For the treatments, COC
were cultured in control medium alone or supplemented with 0.1,
0.5 or 2.5mMNAC. TheNAC concentrations were chosen accord-
ing to previous studies (Whitaker et al., 2012). COC were matured

in vitro for 22 h (Bezerra et al., 2016), and then, chromatin con-
figuration, TZP, mitochondrial activity, and the levels of ROS
and RNAs were evaluated. This experiment was repeated
eight times.

Assessment of chromatin configuration of oocytes

To assess meiotic progression after IVM, the cumulus cells were
removed with the aid of a vortex and the oocytes were fixed in
4% paraformaldehyde for 15 min and transferred to 0.1% Triton
X-100. The chromatin configuration was evaluated after the addi-
tion of 10 μg/ml of Hoechst 33342 under an inverted epifluores-
cence microscope (Nikon, TS100). Oocytes with a nuclear
membrane were considered to be at the GV stage, whereas those
without a nuclear membrane, that is that were at germinal vesicle
break-down (GVBD), metaphase I, anaphase I, telophase I, or
metaphase II stages, were considered to have resumed meiosis
(Bezerra et al., 2016).

Assessment of mitochondrial activity in oocytes

After in vitro culture in the different treatments, the oocytes were
recovered and stained for mitochondrial evaluation. Briefly,
oocytes were incubated in PBS with 100 nM Mitotracker Red
(Mitotracker® Red, CMXRos, Molecular Probes, Melbourne,
Victoria, Australia) at 37°C for 20 min. After this period, the
oocytes were washed in PBS and evaluated with the aid of an epi-
fluorescence microscope (TS100; Nikon Corp.), as described by
Lima et al. (2018). Fluorescence intensity was measured using
ImageJ software (version 1.46; National Institutes of Health,
Bethesda, MD).

Assessment of ROS levels in oocytes

The oocytes were washed in 0.1% polyvinyl alcohol in phosphate-
buffered saline (PBS-PVA) and incubated with 10 mM 6-carboxy-
2,7-dichlorodihydrofluorescein diacetate (H2DCFDA, Molecular
Probes®, Eugene, OR, USA), whichmeasures singlet oxygen, super-
oxide, hydroxyl radical, peroxide, hydroperoxides and other types
of ROS. After incubation at 38.5°C for 30 min, in the dark, the
oocytes were washed with PBS-PVA and placed on glass slides
in ProLong® Gold (Molecular Probes, Eugene, OR, USA), as
described by Sovernigo et al. (2017). The slides were evaluated
using an epifluorescence microscope (Nikon, TS100) under 460
nm wavelength. The fluorescence intensity of ROS staining was
analyzed individually using ImageJ software (version 1.46;
National Institutes of Health, Bethesda, MD, USA). Relative fluor-
escence intensity was considered to be directly proportional to ROS
concentration.

Analysis of TZP in COC

After IVM, oocytes were fixed in 4% paraformaldehyde for up to 1
h at room temperature. Then, they were transferred to a solution
composed of PBS plus 0.1% BSA and 0.1% Tween 20 for 8–12 h at
4°C. After this period, COC were incubated in blocking solution
composed of PBS plus 0.5% BSA, 0.2% sodium azide, 1%milk pow-
der, 10% goat serum, 1% of donkey serum, 0.1 M glycine and 0.1%
Triton X-100 for 1 h, under agitation and protected from light.
Then, the oocytes were incubated for 2 h at room temperature with
Alexa 488 Phalloidin antibody (Invitrogen, cat. no. T6199, 1:50
dilution) also under shaking and protected from light. After this
incubation period, the oocytes were subjected to three washes in
blocking solution, for 5 min, as described by Lopes et al. (2020).
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Finally, oocytes were placed on 60-well slides (μ-Slide
Angiogenesis IbiTreat, Ibidi GmbH, Germany) containing 10 μl
of mounting medium (50% glycerol and 50% PBS) with DAPI
(ABCAM-104139) and examined under a confocal laser scanning
microscope (Zeiss LSM 700 META, Weimer, Germany). The TZP
distribution throughout the zona pellucida of oocytes was
evaluated.

Quantification of mRNA in oocytes

Quantification of mRNA was performed in oocytes cultured with
0.5 mMNAC, and had higher rates of resumption of meiosis when
compared with those culture in control medium alone or supple-
mented with 0.1 mMNAC. Total RNA isolation and DNA synthe-
sis were performed using TRIzol (Invitrogen, São Paulo, Brazil),
according to the manufacturer’s instructions. For this, 1 ml of
TRIzol was added to each sample, and the lysate was then aspirated
through 20G needles before being centrifuged at 10,000 g for 3min.
Then, the lysates were diluted 1:1 in 70% ethanol and placed in a
mini-column. After binding the RNA to the column, DNA diges-
tion was performed using RNase-free DNase (340 units/ml) for 15
min. After washing the columns three times, RNA was collected in
30 μl of ultrapure water. Total RNA concentration was assessed
using a spectrophotometer (Instrutherm) and 1 μg of total RNA
was used for reverse transcription. Before the reverse transcription
reaction, the RNA samples were incubated for 5 min at 70°C, and
then cooled in ice. Reverse transcription was performed in a total
volume of 20 μl, composed of 10 μl of sample RNA, 4 μl of reverse
transcriptase buffer (Invitrogen, São Paulo, Brazil), 8 RNasin units,
150 units of Superscript reverse transcriptase, 0.036 U random pri-
mers, 10 mMDTT and 0.5 m of each dNTP (Invitrogen, São Paulo,
Brazil). The mixture was incubated at 42°C for 1 h, then at 80°C for
5 min, and then stored at −20°C. A negative control was prepared

under the same conditions, but without the addition of reverse
transcriptase.

The quantification of messenger RNAs was performed using
SYBR Green. Each real-time reaction (15 μl) contained 7.5 μl of
SYBR Green Master Mix (PE Applied Biosystems, Foster City,
CA), 5.5 μl of ultrapure water, 1 μl of cDNA and 0.5 μM of each
primer. Real-time PCR was performed on a thermocycler (Master
Cycler, Eppendorf, Germany) using oocytes samples from four
repetitions of the experiment. The primers (Table 1) were designed
to amplify specifically messenger RNAs for CAT, SOD, Prdx6,
GPx, GDF9, H1Foo, CCNB1 and c-Mos. The glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) gene was used to normalize
mRNA levels. The specificity of each primer pair was confirmed
by analyzing the melting curve of PCR products. The thermal
cycling profile for the first round of PCR was initially denaturation
and activation of the polymerase for 10min at 95°C, followed by 40
cycles of 15 s at 95°C, 30 s at 58°C, and 30 s at 72°C. The final exten-
sion was performed at 72°C for 10 min. All reactions were per-
formed in a Step One Plus instrument (Applied Biosystems,
Foster City, CA, USA). The 2−ΔΔCt method was used to transform
the Ct values into mRNA expression relative levels (Livak and
Schmittgen, 2001).

Statistical analysis

Statistical analysis was performed using GraphPad Prism (5.0)
software. The percentages of oocyte at the GV stage and with
resumption of meiosis in the different treatments were evaluated
using the chi-squared test. The data of expression of mRNAs for
CAT, SOD, Prdx6, GPx, GDF-9,H1Foo, CCNB1 and c-Mos, as well
as those of ROS and mitochondria in the oocytes, were analyzed
using the Kruskal–Wallis test, followed by Dunn’s multiple

Table 1. Primer pairs used for quantification of messenger RNAs

Target gene Primer sequence (5 0→3 0) Strand GenBank accession number

CCNB1 CTCCAGTGCTCTCCTCCTCACT S NM_001045872. 1

CTAATCTTCGTGTTCCTGGTGATCC As

GDF9 ACAACACTGTTCGGCTCTTCACCC S GI: 51702523

CCACAACAGTAACACGATCCAGGTT As

c-MOS CTGCAAGATCGGGGACTTCG S AY_168496.1

CTCGGTGAGTGTAGGTGCCA As

H1Foo CCCAAGAAGCCGAGTGAGTC S NM_001035372.1

CTTGGTATCTGCTTGGCGGC As

Prdx6 GCACCTCCTCTTACTTCCCG S GI: 59858298

GATGCGGCCGATGGTAGTAT As

GPx1 AACGTAGCATCGCTCTGAGG S GI: 156602645

GATGCCCAAACTGGTTGCAG As

SOD GTGAACAACCTCAACGTCGC S GI: 31341527

GGGTTCTCCACCACCGTTAG As

CAT GGGTTCTCCACCACCGTTAG S GI: 402693375

GGGGCCCTACTGTCAGACTA As

GAPDH TGTTTGTGATGGGCGTGAACCA S GI: 402744670

ATGGCGCGTGGACAGTGGTCATAA As

As, Anti-sense; S, sense.
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comparison test. Differences were considered significant when the
P-value was< 0.05.

Results

Assessment of meiotic progression in the oocytes

During IVM, the presence of different concentrations of NAC sig-
nificantly reduced the percentages of GV oocytes when compared
with control medium. Additionally, lower percentages of GV
oocytes were observed after using culture medium supplemented
with 0.5 and 2.5 mM NAC, when compared with those oocytes
matured in the presence of 0.1 mM NAC. The presence of 0.5
and 2.5 mM NAC increased the percentages of oocytes with
resumption of meiosis when compared with those cultured in con-
trol medium alone or supplemented with 0.1 mM NAC (Table 2).

Mitochondrial activity in the oocytes

Oocytes matured in control medium alone or containing NAC had
mitochondria uniformly distributed throughout the cytoplasm. No
significant differences in fluorescence intensity were observed
between the treatments (Figure 1).

Intracellular levels of ROS

The intracellular levels of ROS in oocytes matured with 0.1 and 0.5
mM NAC were lower (P< 0.05) than those observed in oocytes
matured in control medium (Figure 2). No significant differences
were observed in ROS levels between oocytes matured in the pres-
ence of 2.5 mM NAC and those from the control group (P> 0.05)
(Figure 2).

Table 2. Percentages of oocytes in germinal vesicle (GV) stage and that had meiotic resumption after IVM in the presence of different concentrations of NAC

Treatments Total (n)

Oocyte chromatin configuration

GV (%) Resumption of meiosis (%)

Control 127 48.8A (62/127) 51.2A (65/127)

NAC 0.1 146 32.9B (48/146) 67.1B (98/146)

NAC 0.5 136 12.5C (17/136) 87.5C (119/136)

NAC 2.5 147 16.3C (24/147) 83.7C (123/147)

A,B,CDifferences between treatments in each column, P< 0.05.

Figure 1. Fluorescence staining intensity and distribution of mitochondria in oocytes after IVM in control medium alone (A) or supplemented with 0.1 mM (B), 0.5 mM (C), or 2.5
mM (D) NAC.
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Analysis of TZP in the oocytes

Fluorescence analysis showed that the distribution of TZP
throughout the zona pellucida decreased in oocytes matured in
the presence of 0.5 mM NAC when compared with those matured
in control medium alone or supplemented with 0.1 or 2.5 mM
NAC (Figure 3).

Levels of mRNA for CAT, SOD, PRDX6, GPX, GDF-9, H1FOO,
CCNB1 and c-MOS in the oocytes

Figure 4 shows that 0.5 mMNAC significantly reduced the levels of
messenger RNA for CCNβ1 after IVM. Despite an apparent reduc-
tion in the levels of mRNA for CAT, SOD, Prdx6, GPx, c-MOS,
GDF9 and H1Foo in oocytes matured in the presence of NAC,
the differences were not significant when compared with the con-
trol group (P> 0.05).

Discussion

This study shows that NAC increases the meiotic progression
and reduces the levels of ROS during oocyte maturation. It is
known that during IVM, oocytes are exposed to high tensions
of oxygen leading to increased production of ROS, which can
damage DNA, RNA and proteins. Considering that oxidative
stress in oocytes is often determined by measuring ROS levels
(Li and Zhao, 2019), NAC contributed to maintain the redox
balance during IVM and had a positive effect on oocyte meiotic
resumption. These effects may be associated with the capacity
of NAC to scavenge free radicals and to chelate metals

(Atkuri et al., 2007). The ability of NAC to control oxidative
stress by glutathione (GSH), is well known (Güntürk et al.,
2019). Li and Zhao (2019) revealed that 0.1 mM NAC was able
to reduce intracellular levels of bisphenol-induced ROS in

Figure 2. Fluorescence staining intensity for ROS in oocytes after IVM in control medium alone (A) or supplemented with 0.1 mM (B), 0.5 mM (C), or 2.5 mM (D) NAC. a,bSignificant
differences between treatments (P< 0.05).

Figure 3. Confocal microscopy images showing TZP (arrows) distribution in oocytes
after IVM in control medium alone (A) or supplemented with 0.1 mM (B), 0.5 mM (C), or
2.5 mM (D) NAC. Green staining: F-actin; blue DAPI staining: cellular nuclei.
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in vitro matured mouse oocytes, restoring oocyte nuclear
maturation and the subsequent competence of embryonic devel-
opment after in vitro fertilization. Recently, Sun et al. (2021)
reported that treatment of oocytes with 1.0 mM NAC for 8 h
during IVM attenuated intracellular ROS. Considering that anti-
oxidant enzymes are synthesized in response to oxidative stress,

a reduction in ROS in oocytes matured in the presence of NAC
can explain the tendency to reduce the levels of mRNAs for
enzymes that control oxidative stress such as Prdx6, SOD,
CAT and GPx. The mechanism of action of NAC to control oxi-
dative stress and to improve oocyte IVM was recently reviewed
by Barrozo et al. (2021).

Figure 4. Levels of mRNA for CAT (A), SOD (B), Prdx6 (C), GPx1 (D), c-MOS (E), GDF9 (F), CCNB1 (G), and H1FOO (H) in bovine oocytes after maturation in TCM-199þ alone or
supplemented with 0.5 mM NAC. *Statistically significant differences (P< 0.05).
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The present study shows that oocytes cultured in vitro had a
homogeneous distribution of mitochondria in the cytoplasm,
but NAC did not influence mitochondrial activity. During oocyte
maturation, mitochondria are a key component of the metabolic
machinery responsible for supplying energy that is consumed dur-
ing the maturation process and is also the main generator of free
radicals in mammals (Ferreira et al., 2009; Brand et al., 2013). The
distribution of mitochondria to areas of high energy consumption
is crucial for the oocyte and embryo during critical periods of the
cell cycle. For this reason, the mitochondrial distribution pattern
has been associated with the quality and developmental capacity
of mammalian oocytes (Cajas et al., 2020). Mastrorocco et al.
(2020) demonstrated that dispersed mitochondrial distribution
throughout the cytoplasm is associated with maturity and compe-
tence of oocytes. Furthermore, Takahashi et al. (2016) revealed that
mitochondria in human oocytes at the GV stage have a hetero-
geneous distribution, but after GVBD this configuration quickly
changed to a homogeneous distribution. In rats, Dumollard
et al. (2006) found that mitochondria appeared uniformly distrib-
uted in the periphery of the cytoplasm in immature oocytes.
Romek et al. (2011) also described that there was an accumulation
of mitochondria in the periphery before maturation and in the for-
mation of mitochondria clusters located in the centre after oocyte
maturation in cattle.

During development, growing oocytes engage in a prolonged
phase of intensive RNA synthesis necessary to produce essential
transcripts for oocyte growth and early embryonic development
(Bezerra et al., 2019). In the follicular microenvironment, cell com-
munication between oocytes and cumulus cells is complex, and
both sides have active regulatory functions. Macromolecules, such
as RNAs (Macaulay et al., 2014), can also be transported from
cumulus cells to oocytes. In the present study, the distribution
of TZP throughout the zona pellucida was reduced in oocytes
matured with 0.5 mMNAC. Recently, Abbassi et al. (2021) showed
that TZP retraction is not regulated by oocyte-derived signals, but
is instead controlled by epidermal growth factor receptor (EGFR)
signalling within the granulosa cells. Previously, Wang et al. (2013)
reported that NAC enhances mRNA levels for EGF and amphi-
regulin in porcine epithelial cells. Fully grown oocytes within antral
follicles are held in meiotic arrest through the action of cyclic GMP
(cGMP) secreted only by the mural granulosa cells (Jaffe and
Egbert, 2017). Consequently, the reduction in the distribution of
TZP in oocytes cultured with 0.5 mM NAC led to a drop in
cGMP transported to the oocyte, enabling the latter to initiate mei-
otic maturation.

Bezerra et al. (2019) showed that prematuration of oocytes from
mid-sized antral follicles increased the levels of mRNA for CCNB1
and c-Mos, but did not influence the levels of mRNAs for GDF9,
PARN, eIF4E and H1Foo. Conversely, these authors showed an
increase in the levels of all this transcripts during in vivo and in
vitro growth of preantral follicles, emphasizing that they were
actively synthesized during follicular growth, but not at the late
stages of oocyte maturation. Our study showed that NAC reduced
the levels of CCNB1 during oocyte maturation, which can be asso-
ciated with the higher rate of oocyte meiotic resumption in oocytes
matured in the presence of NAC. This reduction can be associated
with the translation of CCNB1 mRNA to proteins, which are
required during meiosis (de Vantéry et al., 1996). The apparent
reduction in the levels of mRNA for c-MOS, GDF9 and H1Foo
in oocytes matured in the presence of NAC can also be associated

with their translation to proteins that will have an important role
during oocyte fertilization and early embryo development.
Regarding the role of these proteins, c-MOS is a kinase expressed
exclusively in germ cells that have an important role in oocyte
maturation (Wu et al., 1997). The c-MOS–MAPK1/3 pathway is
important for maintaining oocytes arrested at the MII stage
(Phillips et al., 2002). GDF9 is involved in the process of oocyte
maturation by regulating the function of cumulus cells from pre-
ovulatory follicles (Gui and Joyce, 2005).H1Foo plays a key role in
the control of chromatin configuration and is essential for oocyte
maturation (Furuya et al., 2007).

In conclusion, the presence of 0.5 mM NAC in maturation
medium increases the percentage of oocytes with resumption of
meiosis and reduces the levels of ROS and the distribution of
TZP in the oocyte, showing that supplementation of culture
medium with NAC is very important to optimize oocyte IVM.
NAC also reduces mRNA levels for CCNB1, but does not influence
the expression of CAT, GPX, Prdx-6, SOD, GDF9, H1Foo and
c-Mos. Understanding the mechanisms involved in oxidative stress
control and how NAC is able to reduce the damage caused by oxi-
dative stress can contribute to the improvement of oocyte IVM.
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