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The unsteady ascent of a buoyant, turbulent line plume through a quiescent, uniform
environment is modelled in terms of the width-averaged vertical velocity and density
deficit. It is demonstrated that for a well-posed, linearly stable model, account must
be made for the horizontal variation of the velocity and the density deficit; in
particular the variance of the velocity field and the covariance of the density deficit
and velocity fields, represented through shape factors, must exceed threshold values,
and that models based upon ‘top-hat’ distributions in which the dependent fields
are piecewise constant are ill-posed. Numerical solutions of the nonlinear governing
equations are computed to reveal that the transient response of the system to an
instantaneous change in buoyancy flux at the source may be captured through new
similarity solutions, the form of which depend upon both the ratio of the old to new
buoyancy fluxes and the shape factors.

Key words: plumes/thermals, turbulent convection, turbulent flows

1. Introduction

Line plumes arise when buoyant fluid emerges from an extended line source. Their
two-dimensional ascent though the environment is driven by the gravitational force
associated with their density deficit and is strongly affected by the mixing that
occurs with the surrounding environmental fluid. Their dynamics share many features
with axisymmetric plumes, which emerge from point sources (Morton, Taylor &
Turner 1956; Turner 1973). However, the planar geometry affects the evolution of
bulk properties in different ways to their axisymmetric counterparts, and leads to
different dependences on the source conditions (Rouse, Yih & Humphreys 1952;
van den Bremer & Hunt 2014; Craske 2017). Line plumes are of direct interest in
geophysical and industrial settings: examples include the emission of hot material
from volcanic fissures on land (Stothers 1989) and at mid-ocean ridges (Woods 2010);
the mechanics of fire plumes from line sources (Lee & Emmons 1961); polar leads
of saline water along planar cracks in ice sheets (Ching, Fernando & Robles 1995);
and ventilation flows within buildings (van den Bremer & Hunt 2014).

† Email address for correspondence: a.j.hogg@bristol.ac.uk
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In this paper we develop a time-dependent model of line plumes, based upon an
integral model of the rise velocity and density deficit relative to the environment,
averaged over the width of the plume. Compared to their axisymmetric counterparts,
line plumes and their time-dependent motion have received relatively little study
(van den Bremer & Hunt 2014), although Craske (2017) has recently analysed the
time-dependent dynamics of line jets. In the current study we show that a model
which assumes ‘top-hat’ profiles of velocity and density, in which both fields are
assumed to be constant within a defined width, is ill-posed; this result is analogous
to axisymmetric plumes (Scase & Hewitt 2012). Instead, one must account for the
distributions of velocity and density, which in this width-averaged formulation are
represented through shape factors that are related to the variance of the velocity field
and the covariance between the density and velocity fields. The inclusion of these
factors plays a crucial role in the behaviour of the model (Craske & van Reeuwijk
2016; Woodhouse, Phillips & Hogg 2016). We show that there are certain values
of these two shape factors that lead to ill-posedness and other values which lead
to regimes within which the time-dependent model supports stable steady solutions
that are not susceptible to disturbances that grow in the far field. If indeed only the
distribution of the velocity field is included (and the density distribution assumed to
be ‘top-hat’-like) then the model is only stable if the variance exceeds a critical value
that we determine. This is the analogous result for line plumes that was found for
axisymmetric plumes (Woodhouse et al. 2016), although the critical value differs in
this different geometry. In this study, however, we extend the analysis to characterise
more completely the significance of including distributions in both the velocity and
density fields.

We also examine the nonlinear, unsteady adjustment associated with an instantaneous
change in the buoyancy flux per unit width at the source. Such a change leads to
a transient pulse that propagates through the domain as the system adjusts from
one steady state to another. The transition is captured numerically by integrating
the governing system of partial differential equations (in a regime for which they
are well-posed and stable). However, the transition is more insightfully found
quasi-analytically in terms of a similarity solution. The similarity solution arises
because for an instantaneous change in buoyancy flux per unit width, there is no
external length scale imposed upon the system. Its form depends upon the ratio
of the old to the new buoyancy fluxes at the source, as well as the values of the
shape factors. The solution may feature shocks, over which the variables change
discontinuously, and critical points at which the gradients change discontinuously. We
show how to construct these new similarity solutions and describe how the phenomena
that they exhibit may be classified in terms of the ratio of the old to new buoyancy
fluxes and the shape factors. The solutions are distinct from their axisymmetric
counterparts in that the gearing between spatial and temporal variables is different
(Woodhouse et al. 2016). Moreover they differ strongly from the ‘separable’ similarity
solutions reported by Scase et al. (2006) and Craske & van Reeuwijk (2016), and
more recently for line jets by Craske (2017) in that they satisfy all the boundary
conditions for the motion generated by an instantaneous change in the buoyancy flux
per unit width.

The paper is structured as follows. First we formulate the width-averaged governing
equations and identify steady states (§ 2). We then demonstrate ill-posedness and
linear instability if the shape factors adopt certain values, behaviour which is
confirmed through numerical integration of the nonlinear governing equations (§ 3).
Notably in this section we show that the assumption of ‘top-hat’ profiles leads to an
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Unsteady turbulent line plumes 105

ill-posed system of equations. Then in the regimes where the governing equations are
well-posed and linearly stable, we compute the response to an instantaneous change
in buoyancy flux per unit width at the source and construct the underlying similarity
solutions for this transition (§ 4). Brief conclusions are given in § 5. The paper also
includes four appendices. In appendix A, we present a derivation of the governing
equations and evaluate the shape factors if both the vertical velocity and reduced
gravity (which encompasses the density deficit) adopt Gaussian distributions. We also
show how different assumptions about the representation of the turbulent motions
leads to a different integral model (Craske & van Reeuwijk 2016; Craske 2017),
although shape factors will still be shown to play a vital role in this alternative
formulation. In appendix B, we examine the linearised evolution, and find closed
form solutions, arising from harmonic perturbations to the source of a line plume
in the special case where the vertical velocity field adopts a top-hat distribution.
In appendix C, we extend our linear stability analysis to an alternative model of
line plumes, built on the study of line jets by Craske (2017). For this approach,
we also demonstrate ill-posedness and regimes of linear stability that depend on
the shape factors that occur within the alternative model. These results employ
the mathematical framework developed in § 3 and reiterate the need to capture the
distributions of velocity and reduced gravity within integral models of line plumes.
Finally, in appendix D, we present the additional results from numerical integration of
the nonlinear governing equations and the underlying similarity solutions in response
to an instantaneous change in the buoyancy flux per unit width at the source. These
results add to the phenomenology reported in § 4.

2. Governing equations
The two-dimensional, buoyancy-driven ascent of fluid through an environment of

uniform density ρ0 from a line source at z= 0, issuing fluid of density ρ1 (ρ1 < ρ0)

is modelled in terms of the half-width of the mobile fluid, b, the vertical velocity,
w, and the reduced gravity, g′ = (ρ0 − ρp)g/ρ0, where ρp is the density of the plume
and g is the magnitude of gravitational acceleration. The coordinate axes are aligned
with x horizontal and z vertical (upwards), and the relative density of the plume
fluid is sufficiently small (ρ0 − ρp)/ρ0� 1) so that the motion is modelled under the
Boussinesq approximation. On the assumption that the plume is relatively narrow so
that the length scale of horizontal motion is much less than the length scale of vertical
motion and consequentially, vertical pressure gradients are solely hydrostatic (Linden
2000), and that viscous processes are negligible, integral expressions that represent
conservation of mass, balance of vertical momentum and evolution of reduced gravity
are given by

∂b
∂t
+
∂

∂z

∫ b

0
w dx= ue, (2.1)

∂

∂t

∫ b

0
w dx+

∂

∂z

∫ b

0
w2 dx=

∫ b

0
g′ dx, (2.2)

∂

∂t

∫ b

0
g′ dx+

∂

∂z

∫ b

0
g′w dx= 0, (2.3)

where ue is the entrainment velocity, representing the rate at which environmental
fluid is engulfed into the line plume per unit area. (Axisymmetric versions of these
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equations were developed by Scase & Hewitt (2012) and Woodhouse et al. (2016) and
in appendix A, we derive these width-integrated expressions relevant for line plumes.)
Crucially there is mixing between the environmental and buoyant fluids as the plume
ascends due to the action of turbulent eddies and, following the seminal work of
Morton et al. (1956), we invoke the entrainment assumption and write ue = αw,
where α is a dimensionless constant. We comment that other studies have adopted
different modelling strategies for representing the dynamics of turbulent plumes and
in particular the mechanics of entrainment (Priestley & Ball 1955; Kaminski, Tait
& Carazzo 2005; Craske & van Reeuwijk 2016). These studies have formulated
expressions for the transport, production and loss of mean kinetic energy, averaged
over the horizontal cross-section of the plume and have then made a closure for the
turbulent terms to form an integral model (see, for example, Craske & van Reeuwijk
2016). An important outcome of these approaches is that the entrainment coefficient
emerges as a consequence of the modelling; it is not constant but is a function of the
dependent variables and their gradients. These alternatives could be substituted within
the modelling framework that follows, and the model of Craske (2017) extended
to line plumes, is analysed in appendix C. To derive the width-averaged form, we
introduce ∫ b

0
w dx= bw and

∫ b

0
g′ dx= bg′. (2.4a,b)

These expressions define the width-averaged vertical velocity and reduced gravity. We
must also model the fluxes of momentum and buoyancy∫ b

0
w2 dx= Sbw2 and

∫ b

0
g′w dx= Sf bwg′, (2.5a,b)

where S and Sf are ‘shape factors’, which differ from unity when the dependent fields
differ from ‘top-hat’ profiles (Craske & van Reeuwijk 2016; Woodhouse et al. 2016).
In particular using (2.4), we note that

(S− 1)bw2
=

∫ b

0
w2 dx− bw2

=

∫ b

0
(w−w)2 dx > 0, (2.6)

and so S > 1. Also we find that

(Sf − 1)bwg′ =
∫ b

0
(g′ − g′)(w−w) dx, (2.7)

and therefore if the distributions of the reduced gravity and velocity fields are
positively correlated then we anticipate Sf > 1 (Rouse et al. 1952; Anwar 1969); we
focus on this regime in what follows (§§ 3 and 4), although we derive the results quite
generally. (In appendix A we compute the shape factors on the assumption that the
velocity and reduced gravity fields adopt Gaussian distributions about the centreline
of the plume.) Provided the shape factors are constant, the governing system for b,
w and g′ is then given by

∂b
∂t
+
∂

∂z
(bw)= αw, (2.8)

∂

∂t
(bw)+ S

∂

∂z
(bw2)= bg′, (2.9)

∂

∂t
(bg′)+ Sf

∂

∂z
(bwg′)= 0. (2.10)
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Unsteady turbulent line plumes 107

This system is the natural generalisation to planar geometry of the time-dependent
model for axisymmetric plumes (Woodhouse et al. 2016). These governing equations
(2.8)–(2.10) form a strictly hyperbolic set of equations when S > 1 and Sf 6= S ±
√

S2 − S with characteristic directions given by

dz
dt
= Sf w and

dz
dt
= (S±

√
S2 − S)w. (2.11a,b)

When S= 1 or Sf = S±
√

S2 − S, the system is parabolic. These characteristic speeds
are identical to the those for axisymmetric plumes up to a constant multiplicative
factor (Woodhouse et al. 2016). When the system is hyperbolic, there may be
solutions with discontinuities. Assuming the discontinuity is at x = xs(t), the jump
conditions across shocks are given by

[b(w− ẋs)]
x+s
x−s
= 0, [bw(Sw− ẋs)]

x+s
x−s
= 0 and [bg′(Sf w− ẋs)]

x+s
x−s
= 0. (2.12a−c)

These conditions conserve mass, momentum and buoyancy over the shock, respectively.
In the special case Sf = 1 there are two types of shocks satisfying these conditions. In
one type the vertical velocity, w, and width of the line plume, b, are discontinuous,
but the reduced gravity, g′ is continuous. In the other, termed a contact discontinuity,
the vertical velocity equals the shock speed (w = ẋs) and consequentially, the width
must be continuous, but no condition is implied for the reduced gravity. As with the
shallow water equations for fluid flows (e.g. Whitham 1974), we anticipate that terms
neglected in the width-averaged plume equations (2.1)–(2.3), such as streamwise
diffusion due to turbulent processes, will modify the structure of the solutions close
to the discontinuities. However, away from these locations, and treated on length
scales commensurate with the rest of the motion, the jump conditions (2.12) express
conservation principles over the shock.

An important steady state of (2.8)–(2.10) corresponds to the motion generated by
a sustained buoyancy flux at the line source. In this situation we enforce the ‘pure
plume’ source conditions of a constant buoyancy flux per unit width, but vanishing
mass and momentum fluxes at the origin (Sf bwg′→ f1, bw→ 0 and bw2

→ 0 as z→ 0,
where 2f1 denotes the constant buoyancy flux at the source). This steady state was
derived by Lee & Emmons (1961) for S= Sf = 1 and is only slightly modified by the
inclusion of shape factors, S and Sf . It is given by

b= αz, w=
(

f1

αSSf

)1/3

and g′ =
(

Sf 2
1

α2S2
f

)1/3 1
z
. (2.13a−c)

It is noteworthy that pure plume source conditions do not impose an independent
length scale on the flow and consequently the dimensional dependences are determined
solely in terms of the buoyancy flux per unit width, f1, and the distance from the
source, z (see Rouse et al. 1952). Thus the plume half-width grows linearly with
distance from the source at a rate determined by the entrainment coefficient and is
independent of the imposed buoyancy flux per unit width (see, for example, Morton
et al. (1956), Turner (1973)). The velocity of the steady line plume remains constant
at the value determined by the source condition. This is in contrast to axisymmetric
plumes from a point source for which the velocity decreases with distance from
the source as z−1/3 (Morton et al. 1956) and to line jets (where there is no density
difference but a non-zero momentum flux per unit width at the source) for which
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the velocity decays as z−1/2 (Bradbury 1965). This illustrates the delicate balance in
steady line plumes with the buoyancy forces that accelerate the fluid being in balance
with the momentum drag due to the entrainment and acceleration of ambient fluid. In
what follows we examine the time-dependent behaviour when the source condition is
altered from an established steady pure plume.

3. Unsteady evolution: well-posedness and linear stability
We analyse the unsteady behaviour of line plumes and to this end, it is convenient

to introduce dimensionless independent variables and to redefine the dependent
variables such that the steady state (2.13) is scaled out. We introduce τ = t/T , where
T is a relevant time scale of the motion, potentially set by time-dependent source
conditions, and the dimensionless spatial variable is given by ξ = z(αSSf /f1)

1/3T−1.
The following dimensionless dependent variables are introduced:

b= αzb̂(ξ , τ ), bw=
(
α2f1

SSf

)1/3

zq̂(ξ , τ ) and bg′ =
(
αSf 2

1

S2
f

)1/3

ĝ(ξ , τ ). (3.1a−c)

The governing equations can then be written in compact form by introducing q =
(b̂, q̂, ĝ) so that

∂q
∂τ
+

 0 1 0
−Sq̂2/b̂2 2Sq̂/b̂ 0
−Sf ĝq̂/b̂2 Sf ĝ/b̂ Sf q̂/b̂

 ∂q
∂ξ
=

1
ξ

 q̂(1− b̂)/b̂
S(ĝ− q̂2/b̂)

0

 . (3.2)

The steady state (2.13) corresponds to q = (1, 1, 1) and the buoyancy flux per unit
width is Sf bwg′ = f1̂ , where the dimensionless flux is denoted by ̂ ≡ ĝq̂/b̂.

We now consider the linear stability of the steady state in response to the
introduction of small perturbations in the source conditions. Thus we write q =
(1, 1, 1) + εq1, where ε is a small ordering parameter. We assume a harmonic
perturbation at the source with angular frequency ω (so that T = 1/ω) and the
linearised solution can be written as q1 = exp(φ(ξ) + iτ)ψ(ξ). To determine linear
stability, we must find the behaviour of the dependent variables in the far field
(Woodhouse et al. 2016). The linearised governing equations are given by

A
dψ
dξ
+

(
A

dφ
dξ
+ C

1
ξ
+ iI
)
ψ = 0, (3.3)

where I is the identity matrix and the matrices A and C are given by

A=

 0 1 0
−S 2S 0
−Sf Sf Sf

 and C =

 1 0 0
−S 2S −S
0 0 0

 . (3.4a,b)

We seek expansions in the far field (ξ � 1) of the form

φ =−iλξ + σ log ξ +
γ

ξ
. . . and ψ =ψ0 +

1
ξ
ψ1 +

1
ξ 2
ψ2 . . . (3.5a,b)

We substitute (3.5) into (3.3) and equate successive powers of ξ−1. At O(1) we find
that λ = λi, where 1/λ are eigenvalues of the matrix A and that ψ0 = eRi are the
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associated eigenvectors. The eigenvalues, λi, and left and right eigenvectors, denoted
eLi and eRi, respectively (i= 1, 2, 3), are given by

λ1 = 1/Sf , eT
L1 = (Sf (S− Sf ), Sf (Sf − 1), (Sf − S)2 + S(1− S)), (3.6)

eT
R1 = (0, 0, 1), (3.7)

λ2,3 = 1±

√
S2 − S

S
, eT

L2,3 = (−Sλ2,3, 1, 0), (3.8)

eT
R2,3 = (λ2,3(Sfλ2,3 − 1), Sfλ2,3 − 1, Sfλ2,3(λ2,3 − 1)). (3.9)

We observe that
eT

L1A eR1 = Sf ((Sf − S)2 + S(1− S)), (3.10)

an expression that vanishes when Sf =S±
√

S2 − S (i.e. when two of the characteristics
coincide). Also we find that

eT
LiA eRi =−2S(λi − 1)(Sfλi − 1) for i= 2, 3. (3.11)

This expression vanishes when S = 1. It will be shown below when S = 1 or when
Sf = S±

√
S2 − S that the subsequent analysis fails and that these cases require special

attention; in these situations the system of governing equations (3.2) is no longer
hyperbolic.

At O(1/ξ), we apply the solvability condition and this yields

σieLiA eRi + eLiC eRi = 0, (3.12)

for i= 1, 2, 3. Thus we deduce that provided eLiA eRi is non-vanishing,

σ1 =
S(Sf − 1)

(S− Sf )2 + S(1− S)
(3.13)

and σ2,3 =−2+
S(2S− 1)± (Sf − 2S)

√
S2 − S

2S(S∓
√

S2 − S− Sf )
. (3.14)

We note straightaway that this perturbative solution has failed when Sf =

S ±
√

S2 − S since σ1 and one of σ2 and σ3 are not defined at this value; this
condition corresponds to the coincidence of two of the characteristic curves. However,
when S > 1 and Sf 6= S ±

√
S2 − S, the solutions grow or decay in the far field in

proportion to ξ σi . These solutions due to a harmonic disturbance of the source are
linearly stable when σi 6 0 for i = 1, 2, 3 and these inequalities are satisfied within
regions of the (S, Sf ) plane that we label as R1 and R2, as depicted in figure 1.
Recall that we anticipate that Sf > 1 and so we focus on region R1, although the
other region of stability, R2, is included for completeness. In particular, region R1 is
given by

1 6 Sf 6
2S(5S+ 1)+ (10S+ 1)

√
S2 − S

15S+ 1
. (3.15)

Notably, when Sf = 1, the steady plume is linearly stable when

S >
1
2
+

√
3

3
. (3.16)
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Stable (R2)

2.0

FIGURE 1. The regions R1 and R2 within the plane of shape factors, (S,Sf ), for which the
steady line plume solution (2.13) is stable to harmonic disturbances to the source (shaded
region, bordered by dashed lines). Also plotted are the parameter values for which the
governing system of equations are ill-posed (solid lines).

(cf. Woodhouse et al. (2016) for axisymmetric plumes). Note further that if the shape
factors for the momentum and buoyancy fluxes are equal (S= Sf ), then linear stability
requires

S >
1
2
+

3
√

5
10

. (3.17)

We observed above that particular values of the shape factors require special
attention in order to determine their linear stability. First we examine the linear
stability when S = 1 and Sf 6= 1. In this situation the eigenvalues are degenerate,
λ2 = λ3 = 1, and so the system admits the following two eigenvalues and sets of
vectors at leading order,

λ1 = 1/Sf , eT
L1 = (1,−1,−1+ 1/Sf ), eT

R1 = (0, 0, 1), (3.18a−c)

λ2 = 1, eT
L2 = (1,−1, 0), eT

R2 = (1, 1, 0). (3.19a−c)

At O(1/ξ), the solvability criterion (3.12) determines the growth rate σ1= 1/(Sf − 1),
but σ2 is not determined because all the terms in (3.12) vanish. Thus we must proceed
to higher order, for which we first find that ψT

1 = i(σ2 + 1)(1, 0,−Sf /(1− Sf )). Then
at O(1/ξ 2), the solvability condition is given by

eT
L1((σ2 − 1)A+ C)ψ1 = 0, (3.20)

and this leads to σ2=−1 and σ2= (2Sf − 1)/(1− Sf ). Thus when S= 1, linear stability
requires that Sf 6 1/2.

When Sf = S ±
√

S2 − S, we need a different approach, because the eigenspace
is degenerate (due to the coincidence of two of the characteristic curves) and the
consequential singularities are not removable. In this case we construct the following
series for φ(ξ) and ψ(x) when ξ � 1,

φ =−iλξ + νξ 1/2
+ σ log ξ + · · · and ψ =ψ0 +

1
ξ 1/2

ψa +
1
ξ
ψ1 + · · · . (3.21a,b)
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Unsteady turbulent line plumes 111

At leading order, we find two distinct eigenvalues, each of which have left and right
eigenvectors. If we suppose that λ1 = λ2 (see (3.7) and (3.9)) then the eigenvectors
associated with this eigenvalue are

eT
L1 = (−S/Sf , 1, 0) and eT

R1 = (0, 0, 1), (3.22a,b)

while the eigenvectors associated with eigenvalues λ3 are still given by (3.9). We
substitute the revised series (3.21) into (3.3) and equate successive powers of ξ−1/2.
At O(ξ−1/2) we find that

ψT
a =

iνSf

2(1− Sf )
(1, Sf , 0). (3.23)

The solvability criterion at O(ξ−1) leads to

eT
L1(σA+ C)eR1 +

1
2νeT

L1Cψa = 0, (3.24)

and this implies that ν2
= 2i/Sf . Furthermore we find that

ψT
1 =−

iSf

2(Sf − 1)2
(σ (Sf − 1)− 1, Sf (σ (Sf − 1)+ Sf − 2), 0). (3.25)

Finally we apply the solvability criterion at O(ξ−3/2) to deduce

σ =−
(4S2

f − 3Sf − 2)
8Sf (Sf − 1)

. (3.26)

There is one final important special case to consider, namely when both shape
factors are set equal to unity, S = Sf = 1, a case that can only hold if the plume
adopts piecewise constant velocity and density profiles (i.e. ‘top-hat’ profiles). In this
situation there is only one eigenvalue, λ= 1 and a degenerate eigenspace. There are
two independent left and right eigenvectors associated with this single eigenvalue, so
we write

eT
R = (1, 1, a) and eT

L = (1+ b,−1,−b), (3.27a,b)

where a and b are real-valued. We substitute the series (3.21) into (3.3) and equate
in successive powers of O(ξ−1/2). At each order of which we apply a solvability
condition which must hold for all values of a and b, in addition to calculating the
appropriate terms in the expansion of ψ . Thus we find that

ψ0 = (1, 1, 1), ψa = (iν/2, 0, 0) and ψ1 = (i(σ + 1), 0,−i), (3.28a−c)

while the solvability conditions imply

ν2
= 4i and σ =−5/4. (3.29a,b)

The implication of these last two derivations and results (3.26) and (3.29) for
the special cases Sf = S ±

√
S2 − S and S = Sf = 1 are that small disturbances grow

exponentially in the far field: when S= Sf = 1 the growth of the dependent variables
is proportional to exp(

√
2ξ)/ξ 5/4, while when Sf = S±

√
S2 − S and S 6= 1, the growth
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is proportional to exp(
√
ξ/Sf )ξ

σ (where σ is given by (3.26)). Reinserting the
dimensional dependences for a harmonic disturbance of angular frequency ω, we find
that the exponent of the exponential growth of the perturbation is proportional to ω1/2

and thus disturbances of high frequency grow with a larger exponent. Consequently,
since a general disturbance, such as an instantaneous change of source buoyancy flux
(see § 4), will feature all frequencies, the model is ill-posed because it will not be
possible to resolve their dependence.

We may then summarise our findings from this investigation. If both shape factors
are set to unity then the system of equations for the line plume are ill-posed and
moreover ill-posedness remains if two of the characteristic curves coincide (so that
Sf = S ±

√
S2 − S). When the system is well-posed, there is the further constraint of

linear stability, which here we define as bounded spatial evolution in the far field. This
limits possible values of the shape factors S and Sf to lie within the regime depicted
in figure 1 for which none of the growth rates are positive. In particular when Sf = 1,
the models are linearly unstable when 1 < S < S∗ ≡ 1/2 +

√
3/3 and linearly stable

when S> S∗.
To confirm these predictions of linear stability we compute numerical solutions to

the nonlinear governing equations (3.2) driven by a harmonic disturbance of small
amplitude to the source condition. Our numerical method uses the central upwind
scheme of Kurganov, Noelle & Petrova (2001) with a third-order total variation
diminishing Runge–Kutta time stepping scheme and an adaptive time step that
ensures that the Courant–Friedrichs–Lewy (CFL) number remains fixed at 1/2 to
maintain numerical stability (see Woodhouse et al. (2016) for the application of this
technique to axisymmetric plumes). We found that some numerical solutions required
a relatively high spatial resolution to yield accurate results over our relatively large
domains, but the run times are not excessively long. (For example, with a spatial
resolution of 10−1, a domain size of 103 and runs over 103 dimensionless time units,
the numerical integration took 10 hours on a single processor desktop machine.)

We compare the predictions of linear stability to the numerical results by initiating
the variables in the steady state, q(ξ , 0) = (1, 1, 1), together with a small harmonic
disturbance at the origin, q(0, τ )= (1,1,1+ εeiτ ). The magnitude of the perturbation ε,
is chosen to be 10−2 or 10−3 so that the perturbations to the dependent fields remain
sufficiently small throughout the entire domain and the dynamics are accurately
captured by the linearised governing equations for which we have analytical
predictions of the growth rate (see (3.14)). This perturbation is initiated at τ = 0
and we compute over sufficient times to ensure that the higher harmonic transients
associated with the initiation are advected out of the region of interest. We choose
various values of the shape factors to illustrate the stability properties. First we
examine Sf = 1 and various values of S (figure 2); we observe that the largest
far-field growth rate, σ3 in this case, accurately captures the numerical results for
both an unstable value (S= 1.05) and for two stable values (S= 1.1 and S= 1.15).

Next, in figure 3 we compare the far-field growth rates for the situation in which
the two shape factors are equal (S= Sf ). In this figure we show results for unstable
parameter values (S = Sf = 1.1) and for stable values (S = Sf = 1.2), and again we
observe that the theoretical analysis accurately captures the far-field growth rates. We
also present brief numerical evidence to illustrate the stability boundary in region R2
(see figure 3). To this end we examine (S, Sf ) = (1.4, 0.5) for which the evolution
is linearly stable and (S, Sf )= (1.5, 0.5) for which the evolution is linearly unstable.
Once more we find that the computationally determined growth/decay rates in the far
field are accurately matched by the theoretical analysis.
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FIGURE 2. (Colour online) The rescaled volume flux per unit width, q̂(ξ , τ ), as a function
of dimensionless distance from source, ξ , for the perturbed boundary condition q(0, τ )=
(1, 1, 1+ εeiτ ) and various values of the shape factor, S, while Sf = 1 in each case: (a,b)
τ = 790 and S= 1.05; (c,d) τ = 699 and S= 1.1; (e, f ) τ = 640 and S= 1.15. Also plotted
in (b), (d) and ( f ) are the theoretically predicted growth/decay rates.

Finally we examine the special case of S= 1. In this situation the governing system
of partial differential equations is parabolic and exhibits just two independent sets of
characteristic curves. In this case, it is simple to derive analytical expressions for the
perturbed variables (see appendix B), which provide the complete linearised solutions
and which confirm the far-field dependence; in particular it is demonstrated that
the linearised solutions only decay in the far field if Sf < 1/2 as determined above
(see (3.20)). We also note that since the system is parabolic, we may no longer
independently specify the values of all of the dependent variables at the source and
that the numerical solution of the governing equations requires a different strategy
since the problem is no longer hyperbolic. Henceforth we do not consider this special
case further and restrict our attention to pairs of values of the shape factors drawn
from the stable regions R1 and R2 as depicted in figure 1.

4. Plume dynamics in response to an abrupt change in buoyancy flux
We now consider the unsteady, nonlinear evolution that occurs when the source

buoyancy flux per unit width changes abruptly from f0 to f1 at τ = 0. We find that
the ratio of the old to the new buoyancy flux, F = f0/f1, is an important parameter
in the dynamic response of the plume to the abrupt change in the source condition.
Prior to the change in source conditions, the plume is in a steady state given by
(2.13) with f1 replaced by f0. After the new buoyancy flux has been imposed for
sufficient time, the line plume will adjust to a new steady state given by (2.13). In
this calculation we analyse the unsteady adjustment between these two steady states,
which we show corresponds to a disturbance that is advected through the domain from
the source. Furthermore we show that this adjustment occurs in a self-similar way and
we construct the underlying similarity solutions, which we demonstrate depend on the
ratio of the buoyancy fluxes, F , and the shape factors, S and Sf .
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FIGURE 3. (Colour online) The rescaled flux per unit width, q̂(ξ , τ ), as a function of
dimensionless distance from source, ξ , for the perturbed boundary condition q(0, τ ) =
(1, 1, 1+ εeiτ ) and various values of the shape factors: (a) τ = 700 and S= Sf = 1.1; (b)
τ = 592 and S = Sf = 1.2; (c) τ = 620, S = 1.4 and Sf = 0.5; (d) τ = 1450, S = 1.5 and
Sf = 0.5. Also plotted in (a–d) are the theoretically predicted growth/decay rates.

First we show the results from direct numerical integration of the governing
equations (3.2) in a regime for which the model is well-posed and linearly stable
(see § 3 and figure 2): we choose shape factors (S, Sf ) = (1.1, 1) and examine the
response to different changes in the buoyancy flux per unit width. In all the cases
plotted in figure 4, namely F = 0.1, 2 and 10, we see that the solution transitions
from one steady state to another through the unsteady propagation of a growing
region through the domain, and that the half-width of the line plume is independent
of buoyancy flux when it has attained the steady state. We observe that when the
source buoyancy flux is increased (F < 1), the plume width increases throughout the
transient region and that a shock emerges at the leading edge (figure 4a). Conversely,
for reductions in buoyancy flux (F > 1) that are relatively small, the plume narrows
throughout the transient region, the leading and trailing edges connect continuously
to the steady state (figure 4b). Furthermore, when the reduction in the buoyancy flux
becomes sufficiently large, there is an internal jump in the flow fields (compare the
results for F = 2 and F = 10, figures 4(b) and 4(c) respectively). We now analyse
this motion in terms of similarity solutions and show how the adjustment from one
steady state to another and the propagation of the transient region through the domain
occur in a self-similar way.

A line plume generated by an instantaneous change of buoyancy flux at the source
has no externally imposed length or time scales. We therefore expect the adjustment to
occur as a similarity solution in which vertical length scales are geared to the distance
travelled by the buoyancy-induced motion. (In dimensional terms, z∼ f 1/3

1 t.) Thus we
seek solution to (3.2) for q as functions of y= ξ/τ . In fact it is convenient to seek
solutions in terms of (B(y), Q(y), G(y)) = (b̂, q̂/y, ĝ/y2) and under these definitions,
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FIGURE 4. (Colour online) The rescaled width ξ b̂(ξ), volume flux q̂(ξ) and buoyancy
flux ̂ (ξ ) as functions of the dimensionless distance from source, ξ , for various ratios of
the source buoyancy flux, F imposed upon the system at τ = 0. (a) F = 0.1 and τ =
2, 4, 6, 8, 10; (b) F = 2 and τ = 2, 4, 6, 8, 10; (c) F = 10 and τ = 1, 2, 3, 4. In all
computations, S= 1.1 and Sf = 1.
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we find that the similarity functions satisfy

y

 −1 1 0
−SQ2/B2 2SQ/B− 1 0
−Sf GQ/B2 Sf G/B Sf Q/B− 1

 d
dy

B
Q
G

=
 −Q(2− 1/B)

S(G− 3Q2/B)+Q
G(2− 3Sf Q/B)

 . (4.1)

We denote QT
= (B,Q,G) and symbolically write this equation as yD dQ/dy= b for

matrix D and vector b, which are functions of Q. The similarity equations and bound-
ary conditions feature only the shape factors, S and Sf , and the buoyancy ratio F .

We note that this system (4.1) admits a simple solution in which all of the
dependent fields are constant (B, Q, G) = (1/2, 1/(3Sf ), (2S − Sf )/(3SS2

f )). This
solution corresponds to a ‘separable’ similarity solution, an analogous form of
which has been identified for axisymmetric plumes (Scase et al. 2006; Craske
& van Reeuwijk 2016) and line jets (Craske 2017). However, as will be shown
below, this simple solution does not satisfy the boundary conditions associated with
an instantaneous change in buoyancy flux and so does not represent the ensuing
dynamics. Instead, one must compute a spatially varying solution for Q in order to
establish the similarity solution.

In the far field, y� 1, the similarity solution adopts the steady state associated with
the old buoyancy flux. Thus

(B,Q,G)→ (1,F 1/3/y,F 2/3/y2) as y→∞. (4.2)

Conversely, at the origin the solution adopts the steady state associated with the new
buoyancy flux. Thus

(B,Q,G)→ (1, 1/y, 1/y2) as y→ 0. (4.3)

Both the behaviour in the far field (4.2) and near field (4.3) are, by construction, exact
solutions to the similarity equations (4.1). More general solutions can only diverge
from these exact forms at either discontinuities (‘shocks’) or at locations at which the
matrix D is singular. In terms of the dimensionless variables, if a shock is located at
ξs = ysτ , then denoting W = Q/B, we find that the jump conditions (2.12) are given
by

[B(W − 1)]y
+
s

y−s
= 0, [BW(SW − 1)]y

+
s

y−s
= 0 and [G(Sf W − 1)]y

+
s

y−s
= 0. (4.4a−c)

The matrix D is singular when W = 1/µ, where µ=µ1≡ Sf or µ=µ±≡ S±
√

S2 − S.
From the near-source solution (4.3), we thus deduce that the location closest to the
source at which the solution can transition from its form with the new buoyancy
flux is yl = µ− (provided S −

√
S2 − S < Sf ), while the location furthest from the

source beyond which the solution has adjusted completely to the old buoyancy flux is
yu=F 1/3µ+ (provided F 1/3(S+

√
S2 − S)> Sf ). These correspond, respectively, to the

slowest moving characteristic associated with the new buoyancy flux and the fastest
characteristic associated with the old flux, originating from the source.

To integrate the similarity equations (4.1), we must numerically compute the
solutions close to singular points of the governing system and it is valuable to use
local series expansions for the dependent variables so that the numerical integration
may avoid passing through these points. Thus we analyse the behaviour local to
y= yc at which the dependent variables Q=Q0 ≡ (B0, B0/µ̂,G0), where µ̂=µ± and
B0 and G0 are as yet undetermined. (We note that the expansion for the singular
points at which µ̂ = µ1 takes a different form and must be treated separately.)
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We introduce the following expansion series for the dependent variables and functions
of it,

(Q, D, b)= (Q0, D0, b0)+ (y− yc)(Q1, D1, b1)+ (y− yc)
β(Qβ, Dβ, bβ)+ · · · , (4.5)

where β > 0 is not an integer. We substitute (4.5) into (4.1) and equate in successive
powers of (y− yc). At O(1) we find that

ycD0Q1 = b0. (4.6)

The matrix D0 is singular and admits vectors rT
= (1, 1, Sf G0(1−µ±)/(B0(Sf −µ±)))

and lT
= (1, 1− 2µ±, 0) such that D0 r= 0 and lTD0 = 0. The solvability condition is

lTb0 = 0 and this implies that

G0 =
1+ (µ± − 1)B0

µ3
±

. (4.7)

The solution for Q1 is then given by

QT
1 =

(
0,

1− 2B0

ycµ±
,−

(Sf −µ±(2− Sf )B0 − (2µ2
±
− (2+ Sf )µ± + Sf )B2

0)

ycµ3
±

B0(Sf −µ±)

)
+KrT,

(4.8)
where K is an as yet undetermined constant. At O(y − yc) we enforce a further
solvability condition and this yields

yclTD1Q1 = lT
1 b1, (4.9)

which leads to two solutions for the constant K, given by

K1 =
B0 − 1

yc(µ± − 1)
and K2 =

B0(Sfµ± − 2µ2
±
+ Sf )+ 2µ2

±
− (2Sf − 1)µ± − 2Sf

2ycµ±(µ± − 1)(Sf −µ±)
.

(4.10a,b)
Next we consider the non-integer powers: at O((y − yc)

β−1), we find βycD0Qβ = 0,
which has solution Qβ =Kβr, where Kβ is a constant. At O((y− yc)

β), we find that

yclT(DβQ1 + βD1Qβ)= lTbβ . (4.11)

On substituting for each of the values of K (see (4.8) and (4.10)), we find two values
for β (denoted β1 and β2), given by

β1 =
1
β2
=

B0(3Sfµ± − 2µ2
±
− Sf )+ 2Sf −µ±

2B0µ±(Sf −µ±)
. (4.12)

The constant Kβ remains undetermined and may be varied to generate different
admissible solutions. The power series expansion in integer powers may be
straightforwardly continued to higher powers if required, which leads to algebraically
lengthy expressions that are conveniently handled using computer algebra.

Using the same methodology we may examine the behaviour close to a point y= yc

at which W(yc)= 1/µ1 (and µ1= Sf ). We seek expansions for the dependent variables
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close to the location and find that

B
Q
G

 =


B0

B0

Sf

B0Sf (S− 1)+ (Sf − S)
S2

f S(Sf − 1)

+
(y− yc)

yc(Sf − 1)


B0 − 1

−
(B0(Sf − 2)+ 1)

Sf

−
2(B0Sf (S− 1)− Sf + S)

(S2
f S)


+Kβ(y− yc)

β

0
0
1

+ · · · , (4.13)

where the exponent is given by

β =
B0Sf (S− 1)+ Sf − S

B0(S(S− 1)− (S− Sf )2)
. (4.14)

It is notable that the leading-order term for G in the expansion (4.13) becomes
unbounded at Sf = 1 because at that value of the shape factor, discontinuities in this
field are advected with the local velocity field (i.e. a contact discontinuity, as noted
in § 2).

We now construct the similarity solutions and demonstrate that they generate the
nonlinear evolution computed directly from the governing partial differential equations.
We illustrate three separate forms of solutions by first analysing Sf = 1, S= 1.1 and
various values of the changes in buoyancy flux, F . These reveal the generic forms
of the solutions if |Sf − S| <

√
S2 − S and the shape factors are drawn from region

R1 (see figure 1). In appendix D we analyse the nonlinear motion when the shape
factors are drawn from region R2 (figure 1). For these cases we find some additional
features in the motion that arise due to an instantaneous change in buoyancy flux and
we also construct the underlying similarity solutions (appendix D). In the results that
follow (see figures 5, 7 and 10), we demonstrate that the solutions computed through
the direct numerical integration of the governing equations (3.2) are indistinguishable
from the similarity solutions that are computed using the methods described below.

4.1. Increase in buoyancy flux: F < 1
When there is an instantaneous increase in buoyancy flux at the source, the unsteady
pulse that propagates through the domain features a shock at its leading edge (y= ys),
at which the solution jumps from a faster moving state to the original buoyancy flux.
The trailing edge corresponds to the slowest moving characteristic associated with the
new flux (y= yl) and in between there exists a location (y= y∗) at which the system is
singular (W = 1). Our method of constructing the solution numerically is as follows:
we form a local series expansion for |y − yl| � 1, which entails the undetermined
constant, Kβ , and given this value, we integrate the equations until y= y∗1 at which
W=1/Sf =1 and B=B∗1. We also choose a location for the shock at the leading edge,
ys, and using the shock conditions (4.4), integrate backwards to y= y∗2 at which W=1
and B = B∗2. We then adjust Kβ and ys until y∗1 = y∗2 and B∗1 = B∗2. The solution
is plotted in figure 5(a) for F = 0.1, in which we see that the plume broadens as it
adjusts from the old steady state to the new and features the shock at its leading edge.
We also find that as F is decreased, the width of the transition zone also decreases.
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FIGURE 5. (Colour online) (a–c) The similarity solutions for the width B(y), volume flux
yQ(y) and buoyancy flux J(y) = y3G(y)Q(y)/B(y) = ̂ , for a line plume in response to
an instantaneous change in source strength as functions of the similarity variable y (solid
lines) and their evaluation from direct numerical integration of (3.2) (dotted lines) for (a)
F = 10, (b) F = 0.5, (c) F = 0.1. In this case S= 1.1 and Sf = 1. Also plotted are various
important locations within the solution (yl, y∗, ysi, yc, ys and yu). Note that the similarity
solution and numerical integration are virtually indistinguishable.

4.2. Weak decreases in buoyancy flux: 1<F <Fm(S) when S< 9/8
When the buoyancy flux at the source instantaneously decreases (F > 1), then the
leading edge of the region within which the solution transitions from the old to
the new flux is located at y = yu, corresponding to the fastest moving characteristic
associated with the old flux originating from the source at τ = 0. Furthermore the
solution is continuous at its leading edge. The transient zone then lies between yl
and yu. We compute the similarity solution numerically by integrating separately from
yl and yu towards locations at which W = 1. These numerical solutions are initiated
by using the series expansions, each of which feature an undetermined constant
multiplying the terms with non-integer powers. We adjust the constants until we find
a solution for W = 1 at y = y∗ and B is continuous. We note from figure 5(b) for
F = 0.5 that the plume narrows and accelerates as the buoyancy flux increases from
its near-source value to its value in the far field.

4.3. Strong decreases in buoyancy flux: Fm(S) <F and S< 9/8
When the decrease in buoyancy flux at the source is sufficiently large and S< 9/8, the
similarity solution attains the singular value of W = 1/µ+ both at the farmost extent
of the transition zone (y = yu), but also at some interior location (y = yc) at which
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FIGURE 6. The regimes of similarity solutions in the (S,F) plane for Sf = 1. Also plotted
is the buoyancy flux ratio at source, at which internal shocks first appear, Fm, as a function
of the shape factor S (solid line). The value S= 1/2+

√
3/3 is plotted (dashed line) and

this corresponds to the threshold for linearly stable solutions, while solutions with internal
shocks are not found for S> 9/8.

the dependent variables are continuous. However, complete flow solutions can only be
constructed consistently by introducing an internal shock at y= ysi (ysi < yc), at which
W and B are discontinuous. The solutions also pass through the critical point y= y∗
(y∗ < ysi) at which W = 1 and B is continuous before connecting with the solutions
emanating from yl.

The solution is most easily constructed numerically as follows. Values of four
variables are assumed, namely the location yc and B(yc)=B0 at which W(yc)= 1/µ+,
the location of the internal shock, ysi, and the value of the constant, Kβ , multiplying
the non-integer powers in the series expansion close to yl. Given these choices, we
integrate from y = yc to y = yu, using series expansions to initiate the numerical
integration and evaluate N1 = B(yu)− 1 and N2 = G(yu)− F 2/3/y2

u. We also integrate
from y = yc to y = ysi at which point we apply the shock conditions to evaluate
the jump in values of B and W. We then integrate to y = y∗2 at which W(y∗2) = 1
and B(y∗2) = B∗2. We also integrate from y = yl to y = y∗1 at which W(y∗1) = 1 and
B(y∗1) = B∗2, and then evaluate N3 = y∗1 − y∗2 and N4 = B∗1 − B∗2. We iteratively
adjust the values of yc, B0, ysi and Kβ until N1=N2=N3=N4= 0. A typical solution
in plotted in figure 5(c), in which the narrowing of the plume is evident in addition
to the internal shock across which the dependent variables change discontinuously.

The ratio of the buoyancy fluxes at which an internal jump first appears depends
upon the shape factor, S and is denoted Fm(S). When 16F <Fm, solutions without an
internal jump are found. Instead, when F =Fm the solution exhibits a discontinuous
gradient at the internal singular point y= yc and the series expansion switches from
featuring K2 to K1 (4.10). In this way, we can evaluate Fm and it is plotted in figure 6.
The limiting case occurs when the gradients of W and B vanish at y= yc, which from
(4.8) and (4.10) occurs at B0= 1/2 and µ+= 3/2 (and consequentially S= 9/8). Thus
we find that only continuous solutions arise for F > 1 when S> 9/8. The regimes of
solutions are depicted in figure 6.
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FIGURE 7. (Colour online) (a–c) The rescaled width ξ b̂(ξ), volume flux q̂(ξ) and
buoyancy flux ̂ (ξ ) as functions of the dimensionless distance from source, ξ , for an
instantaneous increase in the buoyancy flux per unit width at the origin (F = 0.1) at
dimensionless times τ = 2, 4, 6 and 8. (d) The similarity solution for B(y), Q(y) and
J(y) as functions of the similarity variable, y (solid lines), and the results from the
direct numerical integration of the governing equations (3.2) (dotted lines). Note that the
two solutions are virtually indistinguishable. Also shown are three important locations
(yl, ysi, ys) in the construction of the similarity solution. In these computations, S = 1.2
and Sf = 1.2.

4.4. Other similarity solutions

The similarity solutions that we have constructed in §§ 4.1–4.3 are representative of
those found for shape factors drawn from region R1 of figure 1. In this subsection we
illustrate the results for one additional pair of shape factors drawn from this region,
namely S= Sf = 1.2. For these values there is no longer the possibility of a contact
discontinuity since Sf 6= 1 (see (2.12) and (4.4)) and we find that at locations where
W = 1/Sf , the similarity solution for the reduced gravity remains finite (see (4.13)).

We compute the response of the line plume to an instantaneous increase in the
source buoyancy flux (F = 0.1) (figure 7a–c). The dynamics are broadly similar to
when Sf = 1 (figure 4a) and show that the transient response is led by a shock at the
leading edge, where the dependent variables change discontinuously from the previous
steady states. Furthermore the plume broadens as the fluid decelerates from velocities
determined by the new buoyancy flux to those set by the previous state. The local
buoyancy flux increases before decreasing to match the far field. The main difference
that we observe when Sf >1 is that the buoyancy flux increases less and remains finite
(see figure 7c).

This response is also captured accurately by the corresponding similarity solution
(figure 7d). We construct it using identical techniques to those described in § 4.1 and
we thus determine the solution for yl < y< ys.

Finally, in appendix D we compute similarity solutions for shape factor drawn
from region R2 of figure 1. Due to the reordering of the characteristic velocities
for values of the shape factors from this region, these similarity solutions feature
different phenomena from those reported above but continue to accurately capture
direct numerical solutions of the governing equations when the source buoyancy flux
is either increased or decreased instantaneously.
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5. Summary and conclusions

In this study we have developed a well-posed, integral model for the unsteady
motion of line plumes and have demonstrated the need to account for the variation of
the vertical velocity and the reduced gravity across the plume, rather than assuming
they adopt ‘top-hat’ distributions. This introduces shape factors, S and Sf , that are
related to the variance of the distribution of vertical velocity and the covariance of
the distributions of vertical velocity and reduced gravity, respectively. Both shape
factors are equal to unity if these fields adopt ‘top-hat’ profiles and crucially this
leads to an ill-posed system of time-dependent equations. Such a system cannot be
used for computing temporally varying flows. This result extends to line plumes
what has been established for axisymmetric plumes (Scase & Hewitt 2012; Craske
& van Reeuwijk 2016; Woodhouse et al. 2016). We have also demonstrated that
ill-posedness can arise when Sf = S ±

√
S2 − S. With the additional constraint of

linear stability, which requires perturbations to decay in the far field, we showed
that this restricts the admissible values of the shape factors to certain regions
of the (S, Sf )-plane (figure 1). We calculated the asymptotic growth/decay rates
in the far field in response to a sustained harmonic disturbance to ‘pure’ plume
source conditions and confirmed these predictions by direct numerical integration of
the governing system of three partial differential equations that express mass and
buoyancy conservation and the balance of vertical momentum. It is interesting to note
that these distributions of velocity and reduced gravity, captured here through shape
factors, play a significant role in unsteady integral models, but not in the steady states
which are essentially determined through dimensional reasoning. We also comment
that since these deductions are based upon the far-field behaviour, we anticipate that
the results will carry over to the stability of steady states for ‘forced’ and ‘lazy’ line
plumes in which the source conditions are not in ‘pure’ plume balance (see van den
Bremer & Hunt (2014)). Solutions with such source conditions adjust to solutions
generated by ‘pure’ plume conditions sufficiently far from source and thus the same
far-field deductions about linear stability follow (see § 3).

When there is an instantaneous change in the buoyancy flux per unit width at the
source, the line plume adjusts from one steady state to another though a transient
‘pulse’ that advects through the domain. This nonlinear adjustment occurs in a
self-similar way. We determined the similarity solutions that underlie this motion;
these are functions of the similarity variable for which the vertical length, z, is
geared linearly to time, t. Essentially the self-similarity arises because there are no
externally imposed length or time scales in the flow, other than the buoyancy flux per
unit width at the source. We showed how the nonlinear adjustment is a function of
the ratio of the old to new buoyancy fluxes and the shape factors. For instantaneous
increases in the buoyancy flux per unit width, we found that the transient response
is led by a shock over which the dependent variables are discontinuous. The plume
broadens and slows toward the leading edge as the dynamics adjust to meet the
previously established steady state. Conversely, for an instantaneous decrease in
buoyancy flux per unit width, we found that the plume narrows and accelerates. The
similarity solutions feature internal shocks and critical points at which the gradients
of dependent variables change discontinuously. We showed that the similarity forms
could be computed by integrating the three coupled ordinary differential equations
that arise from the governing system and described the numerical strategies required
for applying the appropriate boundary conditions for various values of the shape
factors and ratio of old to new buoyancy fluxes per unit width at the source.
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Models of unsteady line plumes are closely related to their axisymmetric
counterparts, although the geometrical change leads to several differences in their
behaviour. The integral models for line and axisymmetric plumes both feature two
shape factors (cf. Woodhouse et al. 2016) and the magnitude of these factors leads to
situations in which steady solutions may be linearly stable or unstable, as well as the
governing equations exhibiting ill-posedness (Scase & Hewitt 2012). In this study we
have analysed variations of both shape factors, adding to the more restrictive study by
Woodhouse et al. (2016) of axisymmetric plumes, which analysed just the variation
of S. Furthermore the thresholds of stability differ in each of the two configurations.
For instantaneous changes of the buoyancy flux per unit width at the source, we have
shown that the line plumes adjust to the new steady state via similarity solutions.
Analogous behaviour was found for axisymmetric plumes (Woodhouse et al. 2016),
but for line plumes the gearing between temporal and spatial scales, which underpins
the self-similarity form, differs from their axisymmetric counterparts.

Measurements of plumes are often used to infer geophysical characteristics of the
source. For example, observations of line plumes generated by volcanic activity in
submarine (such as lava extrusion during seafloor spreading events which produce
hydrothermal plumes in the ocean, e.g. Baker et al. (1995)) and subareal (such as
fissure eruptions that produce line plumes of volcanic gases and ash, e.g. Glaze,
Baloga & Wimert (2011)) settings are used to determine the fluxes of mass and
heat from the intruding magmatic source. Arguably the simplest observation to
make is to image the visible edge of the plume. Our analysis demonstrates that the
development of transient pulses that propagate through the plume preserve information
on the unsteady source condition. Thus image sequences, appropriately averaged and
analysed, could be utilised to indicate temporal variations in the source conditions
and provide greater insight into the geological processes that produce plumes in the
oceans and atmosphere of Earth and other planets.

This study has determined the conditions required to produce well-posed integral
models of line plumes through uniform environments based upon the assumption
of a constant entrainment coefficient (Morton et al. 1956). Other researchers (e.g.
Kaminski et al. 2005; Craske & van Reeuwijk 2016) have adopted different closures
and while we have examined the linear stability of steady line plumes modelled
by extending Craske (2017) to include buoyancy effects (appendix C), it would be
interesting to explore more completely the resultant difference in the well-posedness
and stability properties for unsteady dynamics and the nonlinear self-similar response.
This analysis can be carried out using the same analytical frameworks described
above. Moreover it would be interesting to explore these ideas through laboratory
experimentation and numerical simulation of the Navier–Stokes equations in this
two-dimensional geometry. Future studies could also apply this well-posed model to
a range of unsteady applications, including the important situation in which the line
plume ascends through a density-stratified environment and intrudes around its neutral
buoyancy elevation.

Appendix A. Derivation of governing equations

The equations modelling the evolution of a turbulent line plume in a uniform
environment are the two-dimensional versions of the expressions derived in axisymme-
tric geometry by Woodhouse et al. (2016). The equations model the evolution of the
two-dimensional velocity field u = (u, w) and the reduced gravity g′, which in this
appendix is linearly related to the field C that gives rise to a density difference,
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which is advected by the fluid motion. (For example, the field C could represent
the salinity or temperature of the fluids.) The environment through which the plume
ascends is of uniform density ρ0 (and C = 0) and the density of the plume is
given by ρp = ρ0 −1ρC so that the reduced gravity is g′ =1ρC/ρ0. The motion is
turbulent and we decompose the fields into mean and fluctuating parts, u= û+u′ and
C= Ĉ+C′, in which the caret notation represents the mean and the prime represents
the fluctuating part. The temporal averaging is over the relatively rapid time scale of
the turbulent eddies so that the mean variables are functions of both space and time.
As in § 2, the coordinate axes are aligned so that x is horizontal and z is vertical
(and positive upwards).

The fluid motion is incompressible, which is given by

∂ û
∂x
+
∂ŵ
∂z
= 0. (A 1)

It is assumed that the plume is relatively narrow so that horizontal length scales of
the motion are much smaller than vertical length scales (cf. Linden 2000; Woodhouse
et al. 2016). As a consequence, we deduce from the horizontal balance of momentum
that the horizontal pressure gradient must vanish. Thus, to leading order, the vertical
pressure gradient is the same both within the plume and outside it, and given by

∂ p̂
∂z
=−ρ0g, (A 2)

where p̂ is the mean pressure and g the magnitude of the gravitational acceleration.
Then on the further assumptions that the density differences are sufficiently small for
the motion to be in the Boussinesq regime, that viscous processes are negligible and
that streamwise fluctuations are much smaller than the mean flow (ŵ′2� ŵ2), we find
that the vertical balance of momentum is given by

∂ŵ
∂t
+
∂

∂x
(û ŵ)+

∂

∂z
(ŵ2)=

1ρg
ρ0

Ĉ+
∂Jm

∂x
, (A 3)

where Jm = −û′w′ is the Reynolds stress per unit mass. Finally the concentration
field satisfies the following equation on the assumptions that molecular diffusivity is
negligible and that streamwise transport due to the cross-correlation of the fluctuations
is much smaller than the mean transport (ŵ′C′� ŵĈ),

∂Ĉ
∂t
+
∂

∂x
(û Ĉ)+

∂

∂z
(ŵĈ)=

∂Jb

∂x
, (A 4)

where Jb =−û′C′ is the Reynolds flux. For notational ease, henceforth we drop the
carets from the dependent variables, û, ŵ and Ĉ.

We now integrate (A 3) and (A 4) across the half-width of the plume, where the
edge of the plume, x= b(z, t) is defined below. This yields

∂

∂t

∫ b

0
w dx+

∂

∂z

∫ b

0
w2 dx=

1ρg
ρ0

∫ b

0
C dx+Jmb +wb

(
∂b
∂t
+wb

∂b
∂z
− ub

)
, (A 5)

∂

∂t

∫ b

0
C dx+

∂

∂z

∫ b

0
wC dx=Jbb +Cb

(
∂b
∂t
+wb

∂b
∂z
− ub

)
, (A 6)
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where the suffix b denotes evaluation of the variable at the edge of the plume x= b.
In deriving (A 5) and (A 6) we have used the symmetry condition that the horizontal
velocity field, u, vanishes at x= 0. These equations are the two-dimensional versions
of the axisymmetric balances presented by Craske & van Reeuwijk (2016) and
Woodhouse et al. (2016), although in the latter study, boundary terms evaluated at
the edge of the plume were assumed to vanish.

The edge of a plume is defined as the location at which the concentration falls to
some fraction, ε, of the centreline value; very often ε= e−1 (see, for example, Turner
(1973), Scase et al. (2006)). Thus

C(b(z, t), z, t)= εC0(z, t), where C0 =C(0, z, t), (A 7)

and then we find that

∂C
∂t

∣∣∣∣
b

+
∂C
∂x

∣∣∣∣
b

(
∂b
∂t
+wb

∂b
∂z

)
+wb

∂C
∂z

∣∣∣∣
b

= ε

(
∂C0

∂t
+w(0, z, t)

∂C0

∂z

)
. (A 8)

We use (A 4) evaluated at the centreline and the edge to simplify (A 8) and thus we
find

∂C
∂x

∣∣∣∣
b

(
∂b
∂t
+wb

∂b
∂z
− ub

)
= ε

∂Jb

∂x

∣∣∣∣
0

−
∂Jb

∂x

∣∣∣∣
b

. (A 9)

Then, by defining

ue
∂C
∂x

∣∣∣∣
b

= ε
∂Jb

∂x

∣∣∣∣
0

−
∂Jb

∂x

∣∣∣∣
b

, (A 10)

we establish the evolution equation for the edge of the plume, namely

∂b
∂t
+wb

∂b
∂z
= ub + ue. (A 11)

We note that the edge of the plume does not move as a kinematic interface that is
merely advected with the velocity field, because such a condition would require ue= 0.
Instead, the turbulent processes lead to an inflow across the interface and increase the
volume flux per unit width transported by the plume (Turner 1986). This is the key
feature of the dynamics and the entrainment velocity is defined by (A 10). We also
note that one could define the edge as the location at which the mean vertical velocity
drops to some value of the centreline velocity and then derive an alternative expression
to (A 11) for the entrainment velocity based on the Reynolds stress, rather than the
Reynolds flux. Immediately from (A 1) and (A 11), we deduce that

∂b
∂t
+
∂

∂z

∫ b

0
w dx= ue. (A 12)

We may now complete the width-integrated model by evaluating the terms in (A 5)
and (A 6) that are evaluated at the boundary x = b (and denoted with the suffix
b). First, however, we comment that these boundary terms are relatively small in
magnitude, and this has been used by Craske & van Reeuwijk (2016) and Woodhouse
et al. (2016) to neglect the equivalent of them from their axisymmetric models. It
will be shown though, that in addition to being relatively small in magnitude, they
may exactly vanish. If the vertical velocity, concentration and turbulent fluxes are
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self-similar across the plume, so that

w(x, z, t)=W0(z, t)h1(x/b), C(x, z, t)=C0(z, t)h2(x/b), (A .13a,b)

Jm(x, z, t)=W0(z, t)2h3(x/b) and Jb(x, z, t)=W0(z, t)C0(z, t)h4(x/b), (A .14a,b)

where hi (i = 1–4) are the similarity functions and h1(0) = h2(0) = 1, then we
deduce that the entrainment velocity is proportional to the vertical velocity along the
symmetry axis, W(z, t), and thus proportional to the mean vertical velocity. In terms
of these similarity functions,

ue =W0
h2(1)h′4(0)− h′4(1)

h′2(1)
. (A 15)

It has been shown experimentally that in a steady state, the mean vertical velocity
and reduced gravity within a line plume adopt Gaussian distributions (e.g. Rouse et al.
1952; Anwar 1969) and may be written

w(x, z, t)=W0(z, t)exp(−µ2x2/b2), (A 16)
g′(x, z, t)=G0(z, t)exp(−γ 2µ2x2/b2), (A 17)

where µ and γ are constants. These empirical results suggest that h1 and h2 may be
taken as Gaussians and that the concentration threshhold (A 7) ε = exp(−µ2γ 2). If
we further assume that the similarity functions, h3 and h4, are proportional to h′1 and
h′2, respectively, which corresponds to an eddy diffusivity closure for the turbulent
fluxes, Jm and Jb, then we find that the boundary term in (A 6), namely Jbb +Cbue,
vanishes. Furthermore the boundary term in (A 5), Jmb +wbue, is negligible provided
the threshold, ε, is small or that γ is close to unity (so that the distributions of
vertical velocity and reduced gravity are not too different). In physical terms these
results mean that the location of edge of the plume evolves so that the vertical flux
concentration field is conserved within the plume. Also it means that the fluid, which
is entrained into the plume with small, but non-vanishing, vertical velocity adds to
the vertical momentum, but this is balanced by the ‘drag’ experienced at the edge
of the plume. Thus we deduce the three governing equation for line plumes that
express conservation of mass (2.1), the balance of streamwise momentum (2.2) and
by substituting C= ρ0g′/1ρ, the conservation of buoyancy (2.3).

A.1. Alternative unsteady models
The unsteady formulation presented above utilises a model of the boundary of the
plume, x = b(z, t), which does not evolve purely kinematically, but rather evolves
due to turbulent fluxes across it that are encompassed in the entrainment velocity, ue.
Other studies have advocated different approaches for modelling the unsteady motion
of plumes and jets. For example, Craske (2017), for line jets, and Craske & van
Reeuwijk (2016), for axisymmetric jets and plumes, do not model the interface, b(z, t),
but rather the volume and specific momentum fluxes per unit width and the buoyancy
per unit width associated with the plume, denoted by Q̃, M̃ and G̃, respectively, and
defined by

Q̃=
∫
∞

0
w dx, M̃ =

∫
∞

0
w2 dx, and G̃=

∫
∞

0
g′ dx. (A 18a−c)
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With this approach, there is no model for the edge of the plume, so the integrals in
(A.18) extend to the far field, and no integrated expression for conservation of mass
akin to (A 12) is obtained directly. Instead, Craske & van Reeuwijk (2016) and Craske
(2017) form an expression for the conseravtion of energy, which for a line plume is
given by multiplying (A 3) by 2w and integrating to yield

∂

∂t

∫
∞

0
w2 dx+

∂

∂z

∫
∞

0
w3 dx=−2

∫
∞

0
Jm
∂w
∂x

dx+ 2
∫
∞

0

1ρg
ρ0

Cw dx. (A 19)

Craske (2017) presented governing equations for line jets and so the balance of
energy did not feature the final term of (A 19). Extending his suggested closure for
the turbulent terms to line plumes, we find the following coupled system of governing
equations:

∂Q̃
∂t
+
∂M̃
∂z
= G̃, (A 20)

∂M̃
∂t
+ γm

∂

∂z

(
M̃2

Q̃

)
= δm

M̃3

Q̃3
+ 2θm

M̃G̃

Q̃
, (A 21)

∂G̃
∂t
+ θm

∂

∂z

(
M̃G̃

Q̃

)
= 0. (A 22)

In these expressions there are three factors (here assumed constant) given by

γm =
Q̃

M̃2

∫
∞

0
w3 dx, θm =

Q̃

G̃M̃

∫
∞

0
wg′ dx and δm =−

2Q̃3

M̃3

∫
∞

0
Jm
∂w
∂x

dx.

(A 23a−c)
Under this description of the dynamics, a typical width scale of the line plume is
proportional to Q̃2/M̃, and one can derive an evolution for this quantity from (A 20)
and (A 21). It is not equivalent to the width of the plume unless the dependent fields
are given by ‘top-hat’ profiles. Also, as explained by Craske & van Reeuwijk (2016),
the rate at which this flow mixes with the environment is determined by the closure
for the work done by the turbulent stresses (and expressed through δm (A.23c)). The
three governing equations (A 20)–(A 22), which respectively represent the balance of
momentum, energy and buoyancy, share many features with those analysed in the
main body of this paper. In particular they feature two shape factors, γm and θm, the
magnitudes of which determine whether the governing system of partial differential
equations is strictly hyperbolic and the linear stability of the steady state, as shown
in appendix C.

A.2. Shape factors
The empirical Gaussian distributions of the dependent fields (A 16) and (A 17) allow
the shape factors, S and Sf , to be determined straightaway. We find

S=
(

2
π

)1/2
µ erf(µ

√
2)

(erf(µ))2
, (A 24)

Sf =

(
4γ 2

π(γ 2 + 1)

)1/2
µ erf(µ(γ 2

+ 1)1/2)
erf(µ)erf(µγ )

. (A 25)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

69
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.698


128 A. J. Hogg, E. J. Goldsmith and M. J. Woodhouse

0 0.5 1.0 1.5 2.0
1.0

1.2

1.4

1.6

1.8

FIGURE 8. (Colour online) The shape factor, Sf , as a function of the scaled width
parameter, µ, for various ratios γ (see (A 25)). Also plotted are the parameter values,
(µ, Sf ), for each value of γ at which the line plume equations first become linearly stable
to harmonic disturbances at the source to their steady state.

(Note that S = Sf when γ = 1.) We plot the shape factor, Sf , as function of µ for
various values of the ratio, γ in figure 8. We note that for these Gaussian distributions,
both shape factors exceed unity. However, when µ = 1, which corresponds to the
choice of the half-width being the e-folding length scale in the distribution (A 16),
this leads to S = 1.0724. This value of S is not sufficiently large to yield a stable
response to harmonic disturbances of the source (see (3.14)). We also plot as a discrete
point on each curve in figure 8, the value of µ at which the shape factors S and Sf

first lie within the region R1 of figure 1, which corresponds to a stable response of
the governing equations to a harmonic disturbance at the source of the steady line
plume. We note that if the vertical velocity and reduced gravity fields have Gaussian
distributions, the half-width must be further from the centreline than the e-folding
length scale, and the velocity at the edge less than 1/e of the maximum, for the
governing system to be stable.

Appendix B. Linearised perturbation when S= 1

In this appendix we derive the solution for the linearised evolution of perturbations
to the steady line plume solutions (3.2) when the shape factor S = 1. This analysis
confirms the asymptotic forms in the far field deduced in § 3 and moreover presents a
simple analytical expression for the dependent variables. Denoting the perturbation by
q1= (b1(ξ), q1(ξ), g1(ξ))eiτ , we find from (3.2) that the linearised governing equations
are given by

∂q1

∂ξ
+

(
1
ξ
+ i
)

b1 = 0, (B 1)

−
∂b1

∂ξ
+ 2

∂q1

∂ξ
+

1
ξ
(−b1 + 2q1 − g1)+ iq1 = 0, (B 2)

−Sf
∂b1

∂ξ
+ Sf

∂q1

∂ξ
+ Sf

∂g1

∂ξ
+ ig1 = 0. (B 3)
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Then writing Φ = q1 − b1 and eliminating between these partial differential equations
(B 1)–(B 2), we find that(

Sf
∂

∂ξ
+ i
)(

ξ
∂

∂ξ
+ iξ + 2

)
Φ + Sf

∂Φ

∂ξ
= 0. (B 4)

Provided Sf 6= 1, this has a solution that is bounded at the origin,

Φ = ce−iξM
(

3Sf − 2
Sf − 1

, 4;
i(Sf − 1)ξ

Sf

)
, (B 5)

where c is a constant, which can be set equal to unity without loss of generality,
and M(a, b; z) is a Kummer function of the first kind (Abramowitz & Stegun 1964).
The dependent variables b1, q1 and g1 can be derived from Φ using (B 1)–(B 3); in
particular we find that

q1 =
e−iξ

ξ

∫ ξ

0
Φ(s)(1+ is)eis ds, (B 6)

g1 =

(
ξ
∂

∂ξ
+ iξ + 2

)
Φ, (B 7)

where we have chosen to enforce q1(0) = 0. It is noteworthy that because the
governing system is parabolic when S = 1 we cannot impose independent values of
all the dependent variables at the origin. For example, if g1(0)= 1 then Φ(0)= 1/2
and so not both of b1 and q1 can vanish.

The far-field behaviour (ξ � 1) is determined by the asymptotic behaviour of Φ
(and M; see Abramowitz & Stegun (1964)) and thus given by

q1 ∼−ie−iξ

(
Sf

Sf − 1

)a−1
Γ (4)

Γ (4− a)
ξ 1−a, (B 8)

where a= (3Sf − 2)/(Sf − 1). Algebraic growth or decay in the far field is determined
by the sign of 1 − a = (2Sf − 1)/(1 − Sf ), a result that confirms the analysis of § 3
and the result (3.20). Stability thus requires that Sf < 1/2.

When Sf = 1 the solution takes a different form from (B 5); we find that, up to an
arbitrary multiplicative constant,

Φ = e−iξ J3((1− i)
√

2ξ)
ξ 3/2

, (B 9)

where J3 is a Bessel function of third order (Abramowitz & Stegun 1964). In the far
field (ξ � 1) we find that

q1 ∼
ieiπ/8

2
√

π

e−iξ+(1+i)
√

2ξ

ξ 5/4
. (B 10)

This confirms the analysis of § 3 and the result (3.29), which shows that the system
is ill-posed when both the shape factors are equal to unity.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

69
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.698


130 A. J. Hogg, E. J. Goldsmith and M. J. Woodhouse

Appendix C. Linear stability of alternative models of line plumes
In this appendix, we apply the methodology of § 3 to investigate the linear stability

of pure plume solutions of the governing equations developed for line jets by Craske
(2017), extended to linear plumes and given by (A 20)–(A 22) on the assumption that
the shape factors θm and γm and the energy closure coefficient, δm are constants. It is
convenient to substitute for the dependent variables as follows:

Q̃= θmΛ
2f 1/3

1 zq̃(ξ , τ ), M̃ =Λf 2/3
1 zm̃(ξ , τ ) and G̃=Λf 2/3

1 g̃(ξ , τ ), (C 1a−c)

where 2f1 is the dimensional buoyancy flux per unit width delivered by the source
and Λ3

= δm/(θ
2
m(γm − 2θm)). The dimensionless independent variables are τ = t/T

and ξ = z/(Λf 1/3T), where T is a dimensional time scale of the motion (which in the
calculation that follows is set by the angular frequency of the harmonic disturbance to
the source). The expressions are the equivalent of (2.13); the factors multiplying q̃=
(q̃, m̃, g̃) are the steady state that results from the sustained imposition of the steady
flux at the source. The expressions feature the two shape factors in the governing
equation (A 20)–(A 22), namely γm and θm and the parameter, δm, that emerges from
the simple closure of the magnitude of the turbulent terms. The governing equations
can then be written in compact form

∂ q̃
∂τ
+

 0 1 0
−γmm̃2/q̃2 2γmm̃/q̃ 0
−θmm̃g̃/q̃2 θmg̃/q̃ θmm̃/q̃

 ∂ q̃
∂ξ

=
1
ξ

 g̃− m̃
(γm − 2θm)m̃3/q̃3

+ 2θmm̃g̃/q̃− γmm̃2/q̃
0

 . (C 2)

The steady state corresponds to q̃= (1, 1, 1).
We explore the linear stability of the steady state to harmonic perturbation at the

source. As in § 3, we non-dimensionalise times with respect to the angular frequency
of the perturbation and write q̃= (1, 1, 1)+ εq̃1, where ε is a small ordering parameter.
Then following § 3, we study the linearised response in the far field, by substituting
q̃= exp(φ(ξ)+ iτ)ψ(ξ). Then the governing equation (C 2) is given by

A
dψ
dξ
+

(
A
∂φ

∂ψ
+ C

1
ξ
+ iI
)
ψ = 0, (C 3)

where the matrices A and C are given by

A=

 0 1 0
−γm 2γm 0
−θm θm θm

 and C =

 0 −1 1
4θm − 2γm γm − 4θm 2θm

0 0 0

 . (C 4a,b)

The amplitude of the disturbance grows or decays algebraically in the far field (ξ� 1)
with exponent σi (i=1,2,3). The determination of these exponents follows the method
set out in § 3 and relies upon the eigenvectors of A (which are identical to (3.7) and
(3.9) on replacing S and Sf with γm and θm, respectively). This leads to the following
results:

σ1 =
2θ 2

m − 3θm + γm

θ 2
m − 2θmγm + γm

, (C 5)
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FIGURE 9. The regions of the plane of shape factors, (γm, θm), for which the steady
line plume solution (C 1) is linearly stable to harmonic disturbances to the source (shaded
region, corresponding to σi < 0, i= 1–3). Also plotted are the parameter values for which
the governing system of equations is ill-posed (solid lines).

σ2,3 =
±(3θm − γm)(γ

2
m − γm)

1/2
− 6θ 2

m + 6θmγm − γ
2
m

2γm(θm − γm ∓ (γ 2
m − γm)1/2)

. (C 6)

Thus there are regions in the (γm, θm)-plane for which the pure plume solution is
linearly stable and these are depicted in figure 9. Furthermore the system is ill-posed
when θm = γm ± (γ

2
m − γm)

1/2 and this includes the special case of θm = γm = 1 that
corresponds to an assumption of ‘top-hat’ profiles for the dependent variables.

Overall the results for this alternative system of governing equations share
qualitative similarities with those analysed in the main body of the text, although
there are quantitative differences. The systems both feature two shape factors and are
ill-posed if top-hat profiles are assumed. Linear stability occurs for regions within the
plane of shape factors determined by this analysis (see figures 1 and 9).

Appendix D. Instantaneous changes in buoyancy flux per unit width at the source
(Sf < S−

√
S2 − S)

When the shape factors are drawn from the region R2 (see figure 1) in which
Sf < S−

√
S2 − S and the governing equation is both well-posed and stable, additional

phenomenology can occur during the unsteady adjustment of the plume arising from
an instantaneous change in buoyancy flux at the origin. To illustrate these effects we
select (S, Sf ) = (1.1, 0.5) and we examine both an increase F = 0.1 and a decrease
F = 5 in the buoyancy flux at the source.

First we compute the solutions by direct numerical integration of the governing
system of (3.2) and the results are plotted in figures 10. As for the previous examples
(§ 4), the nonlinear adjustment from one state to another proceeds via an unsteady
pulse that advects through the domain. We note that an increase in buoyancy flux leads
to a broadening of the plume as the flow decelerates to match the far field, pre-existent
conditions and conversely the plume narrows for a decrease in buoyancy flux as the
plume accelerates to match the far field. In addition, however, when the source flux
increases (F < 1) there are now two shocks in the profiles of the dependent variables
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FIGURE 10. (Colour online) (a–c), (e–g) The rescaled width ξ b̂(ξ), volume flux q̂(ξ)
and buoyancy flux ̂ (ξ ) as functions of the dimensionless distance from source, ξ , at
dimensionless times τ = 2, 4, 6 and 8 for (a–c) an instantaneous increase in the buoyancy
flux per unit width at the origin (F = 0.1), and (e–g) an instantaneous decrease in the
buoyancy flux per unit width at the origin (F = 5). (d,h) The similarity solutions for B(y),
Q(y) and J(y) as functions of the similarity variable, y (solid lines) and the results from
the direct numerical integration of the governing equations (3.2) (dotted lines) for (d) F =
0.1 and (h) F = 5. Note that the similarity solution and the direct numerical integration
are virtually indistinguishable. Also shown are important locations in the construction of
the similarity solution: (d) (yl, ysi, ys) and (h) (yl, y∗, yu). In these computations, S = 1.1
and Sf = 0.5.

for an increase in buoyancy flux (e.g. F = 0.1, figure 10(a–c), one of which is at the
leading edge of the transition zone and the other of which is at an interior location.
Also, for a decrease in buoyancy flux (e.g. F = 5, figure 10e–g), there is only a
continuous solution whereas those flows in § 4.3 generate an internal shock.

We may construct the similarity solutions for a flow with an increased source
strength F < 1 as follows. These solutions first diverge from the conditions associated
with the new source at y= yl = Sf at which location B= 1, Q= 1/Sf and G= 1/S2

f
(see (4.3)). There is an internal shock at y = ysi and a shock at the leading edge
at y = ys, beyond which the dependent variables adopt their far-field forms (4.2);
both ysi and ys are unknown and must be determined as part of the solution. We
form the solution by guessing values for ysi and ys and then integrating from y= ys
to y = yl, using the shock conditions (4.4) to evaluate the change in the variables
across the two discontinuities. We then iteratively adjust the unknown values until
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B(yl) − 1 and Q(yl) − 1/Sf vanish. The similarity solution for F = 0.1 is plotted in
figure 10(d), together with results from the numerical integration of the governing
partial differential equations, which we note are virtually indistinguishable.

When the buoyancy flux at the origin is instantaneously decreased, F > 1,
the similarity solution varies continuously between y = yl = Sf and y = yu =

F 1/3(S +
√

S2 − S). For y < yl, the solution is given by (4.3), while for y > yu, it is
given by (4.2). Between yl and yu, there is a location y= y∗ at which (4.1) is singular
and W = 1/µ−. The solution close to y = yl is given by the power series (4.13),
while the solution close to yu is given by (4.5), and these allow the dependent
variables to be integrated away from the singular points. Both series expansions
feature an undetermined constant multiplying a term featuring the non-integer power.
The solution is then constructed by iteratively adjusting these constants until a
continuous solution is found such that W = 1/µ− at y = y∗. The solution is plotted
in figure 10(h) and we again observe that the similarity solution and numerical
integration are indistinguishable.
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