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Grant and Lebo (2016) and Keele, Linn, and Webb (2016) provide diverging recommendations to analysts

working with short time series that are potentially fractionally integrated. While Grant and Lebo are quite

positive about the prospects of fractionally differencing such data, Keele, Linn, and Webb argue that

estimates of fractional integration will be highly uncertain in short time series. In this study, I simulate

fractionally integrated data and compare estimates from the general error correction model (GECM),

which disregards fractional integration, to models using fractional integration methods over thirty-two simu-

lation conditions. I find that estimates of short-run effects are similar across the two models, but that

models using fractionally differenced data produce superior predictions of long-run effects for all sample

sizes when there are no short-run dynamics included. When short-run dynamics are included, the GECM

outperforms the alternative model, but only in time series that consist of under 250 observations.

1 Introduction

Political science has seen a boom in the use of the general error correction model (GECM) for time-
series analysis in recent years. While this has been a welcome development, the GECM is not
appropriate for any and all temporal data. In that vein, Grant and Lebo’s (2016) contribution in
this volume provides an important service by highlighting areas where practitioners have mis-
takenly applied and misinterpreted results based on the GECM. Similarly, Keele, Linn, and
Webb’s (2016) contribution provides a much-needed discussion of the interpretation of the
results of the GECM, as well as suggestions for how to proceed based on the univariate properties
of time series under study.

While there is some consensus between the two studies, they provide diverging recommendations
in other areas. Where the dialogue is perhaps least helpful is in providing guidelines for practi-
tioners working with short time series. This is unfortunate, since short time series are quite common
in political science and are often analyzed with the GECM. Given that the present dialogue arose in
response to the mistaken application of the GECM, it is doubly important to provide clear rec-
ommendations for practitioners working with “typical” data.

One of the primary issues of contention concerns the applicability of fractional integration
methods to short time series. Grant and Lebo are quite positive about the prospects of fractionally
differencing such data, suggesting that estimates of d are unbiased “even with N as small as 40”
(Grant and Lebo 2016, 26), with the implication being that fractional differencing can successfully
be applied to relatively short time series. Meanwhile, Keele, Linn, and Webb offer a more reserved
assessment. While they do agree that testing for fractional integration and fractionally differencing
or using a fractional error correction model is appropriate for relatively long time series, they offer
a pragmatic limitation for the use of the method with shorter time series: Estimating fractional
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integration in short time series is a highly uncertain endeavor, with the implication being that the
method is not a feasible alternative for such data.

Keele, Linn, and Webb provide simulation evidence to support their claim, that is, that in short
time series the estimate of fractional integration is highly uncertain. However, in their simulation
analysis they do not provide a comparison with the most relevant counterfactual: namely, whether
assuming that data are stationary or integrated while they are actually fractionally integrated is
preferable to employing an uncertain estimate of fractional integration and proceeding accordingly.

This is a critical point, both for empirical and theoretical reasons. Empirically, there is consid-
erable evidence that many commonly used time series in political science are fractionally integrated
(e.g., Box-Steffensmeier and Smith 1996; Byers, Davidson, and Peel 2000; Lebo, Walker, and
Clarke 2000), while theoretically, we often have good reason to assume that time series in political
science are fractionally integrated (Granger 1980; Box-Steffensmeier and Tomlinson 2000; Lebo
and Weber 2015). The applicability of fractional integration methods to short time series is, thus, of
considerable importance to applied researchers.

In this article, I provide some evidence as to the suitability of fractional integration methods for
common sample sizes in political science. I generate two fractionally integrated variables x and y
and consider four potential bivariate relationships between them: that there is no relationship
between the two variables, and either dx ¼ dy ¼ 0:4 or dx ¼ dy ¼ 0:8, or that there is a long-run
cointegrating relationship between x and y, and either dx ¼ dy ¼ 0:4 or dx ¼ dy ¼ 0:8.1 I simulate
data for samples of sizes 50, 100, 250, or 1000, and consider the possibility that each of the variables
follow an ARFIMA(0,d,0) or ARFIMA(1,d,0) process. Finally, I compare estimates of the short-
run and long-run effects of x on y from a GECM which doesn’t consider the possibility that the
data are fractionally integrated, and an ECM after fractional differencing, which furthermore
considers the potential for fractional cointegration. I refer to the former strategy as GECM,
while I refer to the latter strategy as FIM for the remainder of the article.

The results indicate that the choice of estimation strategy depends on the quantity of interest and
whether or not there are short-run dynamics at play. If the analyst is primarily interested in short-
run effects, the two models perform similarly across most simulation conditions. However, if the
analyst is primarily interested in long-run effects, the relative performance of the two methods
differs based on whether short-run dynamics are present. If no short-run dynamics are included,
the FIM performs equally well or outperforms the GECM, with the benefits of using FIM
increasing with sample size. However, if there are (unknown) short-run dynamics, the relative
performance of the models differs by sample size. With short time series (T< 250), short-run
dynamics interfere with the estimation of fractional integration and the GECM provides marginally
better predictions of the long-run effect of x on y. However, as the sample size grows, testing for
fractional integration and fractionally differencing data becomes the better strategy to follow.

2 Simulation Design

To compare the performance of the GECM and the FIM with fractionally integrated data, I
simulate data for two variables, y and x.2 Following Nielsen (2004, 2010), the data-generating
process is based on the triangular model

yt � �xt ¼ ð1� LÞ�ðd�bÞe1t; ð1Þ

xt ¼ ð1� LÞ�de2t; ð2Þ

where t ¼ 1; 2; . . .T indexes time period, L is the lag operator, � is the relationship between x and y,
and ðe1t; e2tÞ are I(0) processes, possibly with short-run dynamics. Throughout the study I assume

1I limit the analysis to cases in which x and y are fractionally integrated of the same order, since these are cases in which
analysts are likely to erroneously conclude that the two variables are either both stationary or both contain a unit root.

2Replication materials are available online as Helgason (2016).
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that e1t and e2t are uncorrelated, so that x is weakly exogenous to y, by design. The fractional
integration order of x is d (denoted I(d)), while the fractional integration order of the linear com-
bination yt � �xt is d–b (denoted Iðd� bÞ). If � 6¼ 0 and d > b > 0, the two variables are
cointegrated. I consider several alternative parameter combinations for the above model, varying
�, d, b, T, and the properties of ðe1t; e2tÞ.

2.1 Cointegrating Relationship

I consider four combinations of �, d, and b, which determine the relationship between x and y. In
each of the cases, I set d¼ 0.4 or d¼ 0.8, which matches two of the five specifications considered by
Keele, Linn, and Webb (2016, 18). I chose the value of b so that it covers cases in which there is no
cointegrating relationship between the variables (b¼ 0), where there is a cointegrating relationship
between them and a linear combination of the two variables is stationary (b¼ d), and in which a
cointegrating relationship between them exists, but their linear combination is itself fractionally
integrated (d > b > 0).

1. �¼ 0, d¼ 0.4, and b¼ 0. In this case, there is no cointegration relationship between the two
variables. Thus, x and y are both Ið0:4Þ variables and there is no linear combination
between them that is integrated of a lower order than d. Since d< 0.5, the variables are
mean reverting with finite variance.

2. �¼ 0, d¼ 0.8, and b¼ 0. This case is identical to the above case, except d> 0.5, so the
variance of the series is not finite.

3. � ¼ 0:5, d¼ 0.4, and b¼ 0.4. In this case, there is a cointegrated relationship between the
two variables. Thus, while x and y are both Ið0:4Þ, the linear combination y� 0:5x is I(0).

4. � ¼ 0:5, d¼ 0.8, and b¼ 0.6. This case is identical to the above case, except that the
variance of the two series is not finite (d> 0.5) and the linear combination of x and y is
itself fractionally integrated of order Ið0:2Þ.

2.2 Sample Size

I consider four possible sample sizes, T ¼ 50; 100; 250; 1000. Sample sizes of 50 and 100 are
commonly found in series used in political science, a sample size of 250 is the threshold under
which Keele, Linn, and Webb (2016, 27) recommend practitioners consider fitting simpler models
to their data, while a sample size of 1000 or longer is more and more common in the age of data
analytics.

2.3 Short-Run Dynamics

One of the points of disagreement between the two papers concerns the extent to which short-run
dynamics complicate the estimation of fractional integration. Keele, Linn, and Webb (2016, 21)
provide simulation evidence that demonstrates how shifting from an ARFIMA(0,d,0) model to an
ARFIMA (p,d,q) model biases estimates of d and results in inflated rejection rates of the null
hypotheses that d¼ 0. Meanwhile, Grant and Lebo (2016, 25) argue that most time series used
in political science are well described by a simple (0,d,0) model and that concerns over the effects of
short-run dynamics are, thus, uncalled for.

Given that the two papers disagree on whether short-run dynamics are a cause for concern, I err
on the side of caution and consider both processes with and without short-run dynamics below. In
the baseline specification, I assume that there are no short-run dynamics present, and that the two
error processes are Gaussian white noise. Formally,

ejt ¼ ejt;

ejt � NIDð0; 1Þ for j ¼ 1; 2:
ð3Þ

Fractional Integration Methods and Short Time Series 61
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In the alternative specification, I assume that the errors each follow an AR(1) process with � ¼ 0:5.
Formally,

ejt ¼ 0:5ej;t�1 þ ejt;

ejt � NIDð0; 1Þ for j ¼ 1; 2:
ð4Þ

Altogether there are, thus, 4� 4� 2 ¼ 32 simulation conditions over which the GECM and FIM
will be compared. I ran 500 simulations for each of the conditions, generating the series using the
ARFIMA package in R.

2.4 Estimation

In estimating the models, I follow a simplified version of the pretesting strategy suggested in Section
5 of Keele, Linn, and Webb (2016). Below, I delineate the processes for the GECM and FIM and
highlight how they differ.3

For the GECM, I treat series as either I(0) or I(1) and, thus, disregard the potential for fractional
integration. If both x and y are I(1) and are jointly I(0), I estimate a GECM. If they are both I(1)
and jointly I(1), I estimate a GECM in first differences. If x and y are both I(0), I estimate a GECM.
If one of the variables is I(1) and the other is I(0), I first difference the integrated variable and
estimate a GECM on the transformed data. For each of the cases, I specify the model as a
GECM(1,1,1), that is,

�yt ¼ �1yt�1 þ �0�xt þ �1xt�1; ð5Þ

thus only including the immediate change in (a potentially transformed) x and the first lag of y and
x. Although I concur with De Boef and Keele’s (2008) recommendation that analysts should follow
a general to specific modeling strategy, the GECM(1,1,1) is the model most often estimated by
practitioners, and as such, provides a critical comparison.

For the FIM, I begin by fitting an ARFIMA(p,d,q) model to x, y, and the residual, decm, from
regressing y on x, using Sowell’s (1992) exact maximum-likelihood estimate of d, which is imple-
mented in the ARFIMA package in R. In keeping with the discussion on short-run dynamics above,
the models considered for selection differ across treatments. When there are no short-run dynamics
(� ¼ 0), I assume the analyst proceeds according to Grant and Lebo’s (2016) suggestion and dis-
regards the potential that short-run dynamics are present. Thus, p ¼ q ¼ 0 and only the
ARFIMA(0,d,0) model is considered. However, when short-run dynamics are included (� ¼ 0:5),
I assume the analyst does not know the order of short-run dynamics and estimates four models:
ARFIMA(0,d,0), ARFIMA(1,d,0), ARFIMA(1,d,1), and ARFIMA(0,d,1), selecting the best model
based on the Akaike information criterion (AIC). Cases with short-run dynamics, thus, also include
uncertainty about whether the series have autoregressive or moving average components. I save the
prewhitened residuals from the best ARFIMA model for each variable and use in all subsequent
models.

I proceed based on the estimates of d for x, y, and decm, and their respective 95% confidence
intervals. If the confidence intervals of d̂x and d̂y overlap, I compare the intervals to the confidence
interval for d̂cecm

. If the interval for d̂cecm

is strictly lower than the intervals for d̂x and d̂y , I conclude
that x and y have a cointegrating relationship. Accordingly, I estimate a fractional error correction
model (FECM) based on the two-step Engle–Granger strategy using the prewhitened variables,
including the lag of the estimated fractional error correction term, decmt�1. Formally, I fit the model

�dyyt ¼ �1�
decm decmt�1 þ �0�

dxxt þ �1�
dxxt�1 ð6Þ

3For tractability, I do not test for structural breaks or stochastic volatility, and I assume it is known how many times a
series has to be differenced to become stationary. I also do not estimate an intercept in any of the models. While these
are important components of any time-series analysis, I do not expect these tests to affect the comparison between the
GECM and FIM.
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to the data. If the interval for d̂cecm

overlaps either of the other two intervals or if the intervals for d̂x
and d̂y do not overlap, I conclude that the variables are not cointegrated and estimate an error
correction model using the prewhitened variables, that is,

�dyyt ¼ �1�
dyyt�1 þ �0�

dxxt þ �1�
dxxt�1: ð7Þ

Finally, the estimated coefficients from the GECM and FIM, as well as the selected ARFIMA
models for x, y, and decm, are saved for each of the simulated samples.

2.5 Evaluation

When evaluating the performance of the models above, we are primarily interested in two fac-
tors—the short-run, or immediate, effect of x on y and the long-run, or cumulative, effect of x and
y. Both factors are likely to be important in political science for substantive understanding and
theory testing. Capturing and comparing the short-run effect is straightforward, as the estimate of
�0 in models 5, 6, and 7 directly reports the quantity of interest. For each of the thirty-two con-
ditions, I compare the absolute bias in the estimated coefficient

Absolute bias ¼ j�̂0 � �0j; ð8Þ

and the coverage of the 95% confidence interval around the point estimate (Carsey and Harden
2013).

Comparing the long-run, or cumulative, effect is not as straightforward. The coefficients of a
fractionally differenced series are calculated using binomial expansion, which is infinite for frac-
tional exponents. This means that fractionally integrated series do not have a finite long-run multi-
plier which can be compared across different models. Thus, when evaluating long-run effects with
such data, it is necessary to truncate the forecasting period over which changes can occur and limit
the estimate of the long-run effect to a finite time period (Cowpertwait and Metcalfe 2009).

Below, I report the prediction error for each of the conditions at t¼ 10, based on the model
estimates.4 To calculate the true long-run effect, I simulate a one-unit shock to x at t¼ 1 and
calculate the path of y from t¼ 1 to t¼ 10 using the true parameter values and the arfima.sim
function in R. For the FIM I proceed analogously, except I use estimated parameter values to
simulate the path of y. For the GECM, I set xt�1 ¼ yt�1 ¼ 0 so the system is in equilibrium at t¼ 0,
simulate a one-unit shock to x, and trace out the path of �y from t¼ 1 to t¼ 10.

I report different quantities for series based on the value of d. For conditions in which
dx ¼ dy ¼ 0:8, I report the prediction error for the value of y ten periods into the future, ytþ10. Formally,

PredictionError ¼ ŷtþ10 � ytþ10: ð9Þ

For conditions in which dx ¼ dy ¼ 0:4, I report the prediction error for the cumulative change in y ten

periods into the future,
P10

t¼1 �yt. Formally,

PredictionError ¼
X10
t¼1

d�yt �
X10
t¼1

�yt: ð10Þ

3 Results

Figure 1 shows the results for the immediate effect of x on y for the GECM and FIM in each of the
thirty-two simulation conditions. Overall, the results are remarkably consistent, with the
mean absolute bias being comparable for the two models in each of the thirty-two conditions.
Thus, regardless of sample size, the true relationship between the two variables, and the inclusion of

4While the choice of t¼ 10 is arbitrary, the results are substantively similar for other forecasting horizons. Since frac-
tional integration primarily affects the persistence of shocks over time, there is less (more) divergence between estimates
from the two models for shorter (longer) time horizons.
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ARFIMA (0,d,0) ARFIMA (1,d,0)

95% 94% 94% 90% 94% 85% 95% 82%

93% 93% 95% 95% 94% 94% 97% 97%

94% 95% 96% 96% 95% 94% 96% 96%

95% 95% 95% 94% 97% 93% 95% 96%

97% 98% 95% 95% 93% 92% 94% 92%

94% 95% 96% 96% 96% 95% 96% 95%
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N
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−
β|

Fractional Model
General Error Correction Model

Fig. 1 Immediate effect of x on y.
Notes. Results for immediate effects of x on y for the 32 simulation conditions. Each row corresponds to

one of the four cointegration relationships, while the columns correspond to whether short-run dynamics are
included (right) or not (left). Within each panel, the distribution of estimates are shown for each of the four
sample sizes for the GECM and FIM. The boxplots show the distribution of absolute bias—an absolute bias
closer to 0 is better. Below each boxplot, the coverage probability of a 95% confidence interval is shown. A

value lower than 95% indicates that the estimated standard errors are too small, while a value over 95%
indicates that they are too large. Estimated coverage probabilities closer to 95% are preferable. Each model
summary is based on 500 simulations.
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short-run dynamics, the two models provide consistent and comparable estimates in terms of
absolute bias. As is to be expected, the bias becomes smaller as the sample size increases, while
the presence of short-run dynamics does not seem to cause more biased estimates.

A similar story can be told in terms of the coverage probabilities. For most of the conditions,
the coverage probability is close to 95%, indicating that in the long run the true effect of x on y is
captured in 95 out of 100 confidence intervals, which corresponds to the definition of a 95%
confidence interval (Carsey and Harden 2013, 93). The only model and condition for which the
coverage probabilities deviate significantly from the 95% threshold is the GECM estimates of the
null relationship with dx ¼ dy ¼ 0:4 and no short-run dynamics (top-left panel). As the sample
size increases, the coverage probability of the estimates becomes smaller, indicating that the
confidence intervals estimated by the model are overly confident and that the null hypothesis
of no effect is rejected too often. Since the absolute bias for the same model and condition is
comparatively small, this suggests that the fault lies primarily with standard errors that are too
small.

When we turn our attention to the prediction error for the long-term effect of x on y, a different
story emerges. Figure 2 shows the prediction error for the cumulative effect of x on y at t¼ 10, when
dx ¼ dy ¼ 0:4. Aside from the evaluation metric, the setup of the figure follows the same scheme as
Fig. 1. Several results are of interest.

When there is no relationship between the variables and there are no short-run dynamics (upper-
left panel), the FIM is considerably closer to the true cumulative effect,

P10
t¼1 �yt ¼ 0, although

ARFIMA (0,d,0) ARFIMA (1,d,0)

−2

0

2

−2

−1

0

1

2

N
ull (d=0.4)

C
ointegration (d=0.4)

50 100 250 1000 50 100 250 1000
Sample size

P
re

di
ct

io
n 

er
ro

r a
t t

=1
0

Fractional Model
General Error Correction Model

Fig. 2 Cumulative effect of x on y at t¼ 10 when dx ¼ dy ¼ 0:4.
Notes. Results for cumulative effect of x on y at t¼ 10 for the 16 simulation conditions in which
dx ¼ dy ¼ 0:4 (Equation 10). The setup is based on the scheme described in Fig. 1.
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both models get closer to the true effect as the sample size increases. This is not the case when there

is a cointegrating relationship between the variables (lower-left panel). Although the prediction

error for the two models is similar for T¼ 50, the prediction error for the FIM improves consid-

erably as the sample size increases and approaches the true cumulative effect,
P10

t¼1 �yt ¼ 1:4.
However, the GECM consistently underpredicts the cumulative effect of x on y. This is to be

expected since the GECM fails to account for the long-term persistence of the two variables.
Turning our attention to the right column, we see that the inclusion of short-run dynamics has

the expected effect on the prediction error. When there is no relationship between the variables

(upper-right panel), the prediction error increases (the boxes on the boxplots become larger),

although it continues to be centered on the true cumulative effect, 0. However, when there is a

cointegrating relationship (lower-right panel), both models perform poorly at small sample sizes.

As was the case when no short-run dynamics were included, the FIM approaches the true cumu-

lative effect,
P10

t¼1 �yt ¼ 2:7, when the sample size increases, while the GECM provides ever more

precise predictions of the wrong effect.
The results for the effect of x on y at t¼ 10, when dx ¼ dy ¼ 0:8, are shown in Fig. 3.5 When

there is no relationship between the two variables and no short-run dynamics (upper-left panel), the

ARFIMA (0,d,0) ARFIMA (1,d,0)

−1
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=1
0

Fractional Model
General Error Correction Model

Fig. 3 Long-run effect of x on y at t¼ 10 when dx ¼ dy ¼ 0:8.
Notes. Results for long-run effect of x on y at t¼ 10 for the 16 simulation conditions in which dx ¼ dy ¼ 0:8
(Equation 9). The setup is based on the scheme described in Fig. 1.

5Note that unlike Fig. 2 this figure reports the effect of a one-unit shock to x at t¼ 1 on the value of y at t¼ 10, that is,
not the cumulative effect on y from t¼ 1 to t¼ 10.
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predictions from both models center on the true effect, ytþ10 ¼ 0, although the prediction error for
the FIM is considerably smaller than the GECM. Estimates from both models get more precise as
the sample size increases, as is to be expected.

However, when there is a cointegrating relationship between the two variables (lower-left panel),
the two models provide diverging predictions. As in Fig. 2, the FIM provides predictions closer to
the true effect, ytþ10 ¼ 0:27, which get progressively more accurate as the sample size increases.
Predictions from the GECM, however, overpredict the value of y ten periods into the future, and
provide ever more precise estimates of the wrong effect as the sample size increases. This is to be
expected, since the GECM treats the data as Iðd ¼ 1Þ, rather than Iðd ¼ 0:8Þ, and, thus, overesti-
mates the persistence of shocks to the two variables.

The right column of Fig. 3 shows that the inclusion of short-run dynamics increases the average
prediction error considerably. When there is no relationship between the two variables (upper-right
panel), the variability in predictions increases, although they remain centered on the true effect,
ytþ10 ¼ 0. However, when there is a cointegrating relationship between the two variables (lower-
right panel), the GECM outperforms the FIM at small sample sizes, while the FIM provides
progressively better predictions and converges to the true effect ytþ10 ¼ 0:56, when T¼ 1000.

4 Conclusion

How should practitioners working with short time series that are potentially fractionally integrated
proceed? The current simulation study contributes to the dialogue between Grant and Lebo (2016)
and Keele, Linn, and Webb (2016) by comparing the performance of the GECM to fractional
integration models (FIMs) for different sample sizes, different relationships between x and y, and
with or without short-run dynamics. Several recommendations can be made based on the study.

First, the two methods provide similar estimates of the short-run effect of x on y across most of
the simulation conditions. Estimates from both the FIM and the GECM have similar absolute bias
and become less biased as the sample size increases, and the 95% coverage probability in most of
the conditions is close to the desired 95% value. If primary interest is in the immediate effect of x on
y, analysts should be able to use either method to recover the true effect. This is perhaps unsur-
prising, yet helpful to show as part of this discussion, since the presence of fractional integration
primarily affects the persistence of shocks to a series over time, rather than the immediate effect
itself.

Second, when there are no short-run dynamics (and the analyst assumes so a priori), the FIM
performs equally well or outperforms the GECM over each of the sixteen simulation conditions
with no short-run dynamics. While both models provide unbiased predictions when there is no
relationship between the two variables, the predictions from the FIM are more precise, as they
cluster more closely around the true effect for all models. However, when there is a cointegrating
relationship between the two variables, predictions from the FIM are never worse than predictions
from the GECM and they become progressively more accurate as the sample size increases. Thus, if
primary interest is in the long-run effect of x on y and there are negligible short-run dynamics,
analysts can use fractional integration methods, importantly, even for samples as small as T¼ 50.

Third, when relatively mild short-run dynamics are present (and the analyst does not know the
order of short-run dynamics), the models perform differently based on the sample size. For small
samples (T¼ 50 when interest is in the cumulative effect of x on y at t¼ 10 and T¼ 50 or T¼ 100
when interest is in the effect of x on y at t¼ 10), the GECM provides more accurate predictions
than fractional integration methods and is less prone to produce wildly inaccurate predictions.
Meanwhile, when the sample size increases, the FIM provides progressively better predictions.
Thus, if primary interest is in the long-run cumulative effect of x on y and there are (unknown)
short-run dynamics, analysts should only use fractional integration methods for samples with more
than 250 observations.6

6Note that the short-run dynamics included are fairly mild and I expect the FIM to perform even worse if there are more
complex dynamics at play—accordingly, the sample size requirements should be greater in such cases.
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Collectively, these results suggest that the presence or not of short-run dynamics in political time

series is critical for whether analysts should use fractional integration methods in short time series

or apply simpler methods. If Grant and Lebo’s (2016, 25) claim, that most time series used in

political science are well described by a simple (0,d,0), is empirically accurate, the prospects for

fractional integration methods in short time series are quite positive. However, if more complex

short-run dynamics are at play, analysts should proceed carefully when they have short time series

and provide estimated effects based on different assumptions about the underlying data-generating

process. Any inferences made from such an analysis must be limited, as suggested by Keele, Linn,

and Webb (2016, 28). Finally, when practitioners have relatively long time series (T> 250), there

are clear benefits to using fractional integration methods to allow for the possibility that the

underlying data-generating process is fractionally integrated.

Conflict of interest statement. None declared.
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