
Web-based configuration assistants

GIUSEPPE ATTARDI, ANTONIO CISTERNINO,and MARIA SIMI
Dipartimento di Informatica, Università di Pisa, Italy

(Received October 1, 1997;Accepted February 7, 1998!

Abstract

Configuration assistants are tools for guiding the final user in simple configuration tasks, such as product assembling
and customization or study plans generation. For their wide availability, web-based configuration assistants are valu-
able in fields such as electronic commerce and information services. We describe a general approach for building
web-based configuration assistants: from a high-level description of the configuration constraints and of the basic
items, given in a declarative language, the hypertext files for user guidance and the Java code for constraint checking
are generated. We claim that the general approach ofprocess-orientedconfiguration, where the user is guided through
the configuration process by an explanatory hypertext, as opposed toproduct-orientedconfiguration, where one starts
from a high-level description of the product of the configuration, is better suited for many application domains.

Keywords: Configuration Assistants; Process-oriented Configuration; Electronic Commerce

1. INTRODUCTION

In the terminology of expert systems, configuration sys-
tems are a subclass of design systems, whose task is to as-
semble a product out of a set of predefined parts according
to problem-specific constraints~Hayes-Roth et al., 1983!.
Examples of configuration problems are computer equip-
ment configuration~McDermott, 1982; Barker & O’Connor,
1989!, software configuration, timetables generation and
scheduling, and product configuration in different domains
~Tiihonen et al., 1996!.

The complexity of a configuration task arises from hav-
ing to cope with many and interacting design decisions,
whose consequences cannot readily be assessed, and with
constraints of different nature. Configuration problems are
therefore a challenging domain for expert system technology.

For simpler configuration tasks, we can envision inter-
active configuration assistants which guide the user step by
step through design decisions and exploit their knowledge
of domain constraints and of constraints deriving from pre-
vious choices. Aconfiguration assistant~CA! is an inter-

active tool for configuring systems, which does not make
choices on user’s behalf but assists the user in assembling a
consistent product. Ideal targets for this kind of system are
applications where the user wants to retain control on the
configuration choices, yet he or she must be made aware of
the available alternatives and supplied with necessary in-
formation to perform the right choices. A configuration as-
sistant typically addresses sales persons or end-users rather
than experts in the configuration domain.

The applicability of this kind of system is restricted by
some simplifying assumptions, reflected in the configura-
tion model we adopt. Nevertheless, the range of configura-
tion problems that can be dealt in this way is significant.
For example, configuration tasks that are amenable to this
simplified vision are study plans compilation or the assem-
bling of a product from a catalogue of components, like a
complex piece of modular furniture~kitchen furniture for
instance!, or a personal computer.

Configuration assistants of this kind running on the Web
open opportunities in many fields, including electronic com-
merce, for the wide availability and the possibility of re-
mote access and use~see http:00www.volvocars.com for an
example!. The system does not need to be installed on the
user computer in order to be used and portability problems
do not need to be addressed. This is also an application do-
main where a Java solution~Gosling, 1996! has clear ad-

Reprint requests to: Giuseppe Attardi, Dipartimento di Informatica, Uni-
versità di Pisa, Corso Italia 40, I-56125 Pisa, Italy. E-mail:$attardi, cis-
terni, simi%@di.unipi.it.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing~1998!, 12, 321–331. Printed in the USA.
Copyright © 1998 Cambridge University Press 0890-0604098 $12.50

321

https://doi.org/10.1017/S0890060498124058 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124058

vantages over a server-based solution with constraint
checking done on the server side. All the job of the config-
uration assistant can be done locally, at the client’s side, by
downloading the necessary Java code. Communication with
the server can be reduced to tasks such as user validation,
statistics gathering, or archiving.

The major problem with product configuration systems
is to maintain product information up-to-date. The cost of
long-term management and maintenance of product knowl-
edge, as product models and configuration constraints evolve,
may seriously impair the advantages of configuration sys-
tems. For this reasonsingle-useconfiguration systems, which
do not clearly separate configuration knowledge from the
configuration program are doomed to failure. Ageneral-
useconfiguration model, which facilitates the development
of configuration applications in different domains, and for
different product classes, is the only viable alternative~Män-
nistö, et al., 1996; Tiihonen & Soininen, 1997!.

In this paper, we describe our general configuration model,
characterized asprocess-oriented, in contrast to aproduct-
orientedapproach. In fact, the aim is guiding the user step
by step through the configuration process rather than start-
ing from a high-level description of the product to be
configured.

Most configuration models in the literature areproduct-
oriented: their task is described as the synthesis, more or
less automatic, of a set of objects satisfying a set of pre-
defined constraints~Stumper, 1997!. In Klein et al., 1994,
the configuration task is described as model construction,
the constraints being expressed as a set of logic formulas
defining a theory; any model of the theory is a legitimate
configuration. An alternative approach is described in Fal-
tings and Weigel~1994!, where configuration is described
as a constraint satisfaction problem.

Our approaches differ from these because, given the in-
teractive nature of a configuration assistant, and the fact that
the user performs all the choices, the configuration process
does not do any search in a solution space; the CA is strictly
deterministic and thus very efficient.

Our model has been used as the basis for the implemen-
tation of a generic tool for developing domain-specific con-
figuration assistants running on the Web. A configuration
application is generated starting from a high-level descrip-
tion of the basic components and the constraints expressed
in a declarative form. The hypertext files for user guidance
and the Java code for constraints checking are automati-
cally generated from this high-level description. The re-
duced cost of delivering a specific configuration assistant
and the efficiency and compactness of the generated code
are clear advantages of this approach.

The tool has been used to generate specific configuration
assistants in the domain of study plans compilation and sub-
mission~the CompAss application!. CompAss has been used
to generate study plans by students of the Faculty of Letters
and Philosophy, and of the Faculty of Sciences at the Uni-
versity of Pisa.

2. THE CONFIGURATION MODEL

2.1. Process-oriented configuration

The standard way to think of a configured product is as an
assembly of basic components matching a set of structural
and functional requirements. As an alternative approach, we
focus on the process of posing a series of relevant ques-
tions, with the goal of completely identifying a correctly
configured object fulfilling user’s requirements.

The metaphor we have in mind is an experienced sales-
person posing a series of questions to the customer, accord-
ing to some standard pattern. According to the answers
received, the vendor gains an increasingly accurate idea of
the customer’s needs, until he or she is able to propose a
specific product. If the product is complex and needs to be
assembled from a catalogue of components, the vendor uses
his or her knowledge of the configuration constraints to guide
further choices among the available options.

We can identify two sorts of questions in this dialogue:
general questions concerning the strategy in the selling pro-
cess, functionality of the product, or user’s needs, prefer-
ences and profile; specific questions whose purpose is to
make the user perform selections from a catalogue. Both of
them, together with configuration constraints, contribute to
the resulting configured object.

The interaction going on between vendor and customer
can be seen as the analogue of the configuration process.
The correctness and completeness of the configured prod-
uct is guaranteed by the fact that an experienced salesper-
son is able to propose a sufficient number of questions to
allow the customer to select from the catalogue all the items
that are needed to assemble a product satisfying structural
and functional constraints.

A graph, calledchoice graph, is introduced, which can
be seen as a representation of the vendor strategy in posing
questions to the customer. Each node of the graph repre-
sents a possible answer to a general question proposed by
the vendor. Configuration constraints are associated to each
node and are used to suggest possible selections from the
catalogue.

Consider, for example, the task of configuring a personal
computer. We can describe the process according to the graph
in Figure 1.

The constraints associated at each choice node could be
for example as illustrated in Figure 2.

Starting with the root node, a number of items from the
catalogue are added to the configuration either because they
are required for all PCs~as the motherboard, case, and
mouse! or because they are selected by the user~as for CPU,
memory, hard disk, and monitor!. In fact, the user is prompted
to select among available options in order to satisfy com-
position constraints associated to PCs. More items are added
as a consequence of the user performing a choice between
the foreseen use of the PC: whether it is intended for game
playing, multimedia applications, or office work. Finally,

322 G. Attardi, A. Cisternino, and M. Simi

https://doi.org/10.1017/S0890060498124058 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124058

optional components are selected, depending in part on pre-
vious choices. The details of the language for expressing
constraints will be presented in Section 3.

A configuration domainis fully defined by the set of ba-
sic components, the item set, andconfiguration constraints
specific to a configuration application. The basic items we
consider are structured objects with attributes.

The process-orientedconfiguration model relies on the
choice graph~CG!, which is a directed acyclic rooted graph.

Theconfiguration processstarts in the root of the graph,
with an empty configuration. Following an edge of the graph
corresponds to choosing a possible user alternative in the
configuration process, and moving to a successive choice
node. Within a choice node, in order to fulfill a configura-
tion constraint the user may be asked to select among a set
of possible items. Traversing the graph, the user builds a
configuration, accumulating choices and selecting items
within choice nodes.

Fig. 1. Configuring a personal computer.

Fig. 2. Constraints associated with the nodes of the choice graph.

Web-based configuration assistants 323

https://doi.org/10.1017/S0890060498124058 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124058

A valid configurationis a set of basic items, and a set of
user choices, matching a given set of constraints.

The model provides two different notions of valid con-
figuration,partial andfinal. A partial configuration can only
be checked for correctness but not for completeness; a final
configuration must be correct and complete; for example, it
must include all the required items. Correspondingly, a sys-
tem implementing this model can check partial configura-
tions during the configuration process, warning the user as
soon as some constraint is violated. At the end of the pro-
cess the system checks the final configuration.

The choice graph is a representation of the configuration
knowledge, which is very convenient for generating a graphic
interface to the CA. A possibility is a hypertextual interface
where a node of the graph is displayed as a single hypertext
unit, with selection buttons for available options which the
user is prompted to select, and links to other pages, corre-
sponding to successor nodes.

The possibility of automatic generation of the CA, in-
cluding its user interface and documentation, has been suc-
cessfully exploited in the CompAss system. This feature of
the model is especially important for dynamic configura-
tion domains, where the catalogue of components or the con-
straints change frequently.

An important modeling issue, in defining the choice graph,
is what should correspond to choice points and what should
correspond to constrained selections within a choice node.
Figure 3 shows a choice graph for the computer domain,
where the configuration expert has decided to offer differ-
ent paths, meant to match different customer profiles and
needs.

Free selection from catalogueis offered for the experi-
enced customer, who knows the rules for putting together a
computer, or for the customer who wants to buy a spare com-
ponent. The constraints associated to this node allow the
user to choose what he or she wants, without any guidance.

Nonprofessional PC users may prefer preassembled PC
offers, where they need only to choose among a limited num-
ber of alternative packages and a few optional components,
for example, the monitor. The nodes that correspond to pre-
assembled computer models, Model 1 and Model 2 in the
example, define all the items needed for each model. In this
solution the user, with appropriate advice, only has to make
high-level choices~the model! and the CA adds automati-
cally to the configuration the items that are required.

As an intermediate possibility, a customer may be guided
to configure his or her PC, by selecting the main compo-
nents, starting with the CPU. Within the CPU node, he or
she will be asked to select all required components for such
CPU. Next he or she will be offered the choice among dif-
ferent software and later among optional components. Be-
cause these are also suitable for thepreassembled PCs, the
nodeOptionalsof the graph is shared.

The configuration model itself does not commit to any
specific design solution, since no general design rule ap-
plies to different configuration domains and user catego-

ries. The model itself is flexible enough to accommodate
different solutions.

Formalization of the configuration model

In the following, we will introduce formal definitions of
choice graph, configuration, and configuration process.

Let I be the set of basic items of the configuration do-
main. A choice graph can be formally defined as

G 5 ^S,N,7,: &

with S is the set of nodes in the graph~choice nodes!; N is a
binary relation among the nodes in the graph denoting the
edges of the graph.7 and : correspond to two different
classes ofconstraint functionsassociated to the nodes of
the graph: built-in functions of general use~calledcompo-
sition functions! and domain-specific functions~calledcus-
tom functions!. Constraint functions are predicates used to
check that the items selected in a node fulfill configuration
constraints. We will denote with7j and:j the functions as-
sociated to nodesj .

Composition predicates are functions of type:

f: J 3 $ partial, final % r $t, f %.

They take as input a setJ of items, and return the valuetrue
or false. The last parameterpartial0final is to make the
constraint-checking behavior different in the case of partial
or final configurations. These functions check a configura-
tion with respect to constraints local to a choice node; for
example, they are used for checking whether a required item
has been included.

Custom functions are functions of type:

f: J 3 $ partial, final % r $t, f,w%.

They take as input a setJ of items, and check global prop-
erties of the set of items selected so far; for example, the
number of items in a configuration or the need to avoid du-
plicate items. These functions are usually domain depen-
dent. The result, in addition totrueandfalse, may also be a
warning.

Constraint functions, invoked with parameterpartial, pro-
vide for incremental constraint checking. On the other hand,
some constraints can only be checked on the final configu-
ration; this is done invoking the constraint functions with
parameterfinal. The validation component of the CA may
thus operate according to two different modes: in incremen-
tal mode, it gives immediate feedback on wrong user ac-
tions during the configuration process; in final mode, it
provides for final validation of all the constraints.

A configurationK 5 @C1,C2, . . .Cn# , is a sequence of
choice components. A choice componentCi is a pair^si , Ii &,
wheresi [Sis a choice node of the graph andIi is the set of

324 G. Attardi, A. Cisternino, and M. Simi

https://doi.org/10.1017/S0890060498124058 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124058

items, possibly with repetitions, selected in nodesi during
the configuration process.

A configuration process starts in the root node of the graph
with an empty configuration,K0 5 @ # . A configuration is
incrementally built as a result of user or system actions of
different types:choose, add_item, delete_item. Here is how
a configurationK is affected by the actions:

choose~s! r K + ^s,$ %&

add_item~i,s! r K @^s, I &/^s, I ø $i %&#

delete_item~i,s! r K @^s, I &/^s, I 2 $i %&#

The “+” operator is to be interpreted as list concatenation.
K @x/y# is configurationK with the x component replaced
by y. TheI 2 $i % is the deletion of one occurrence of thei th
element fromI.

Let us formally definevalidity of a partial and final con-
figuration.

Definition 1 ~Validity of partial configuration). A par-
tial configurationK 5 @C1,C2, . . .Cn# is valid if the follow-
ing properties are satisfied:

1. The sequence@s1,s2, . . .sn# is a path on the choice
graph, starting from the root node.

2. Let7j 5 $ f1, . . . , fk% the set of composition constraint
functions associated to nodesj . For eachj 5 1, . . . ,n,
there must exist a partitionPj 5 $ p1, . . . ,pk% of the set
of items Ij such thatfh~ ph, partial ! 5 t, for eachh 5
1, . . . ,k, i.e., anyfh must be satisfied by a set of items
in the partition.

3. LetHj 5 Ij ø . . .ø In, i.e., the set of items inK selected
in nodesj and its successor nodes. For eachj 51, . . . ,n,
and eachg in :j it must be the case thatg~Hj , par-
tial ! 5 t or g~Hj , partial ! 5 w. n

Definition 2 ~Validity of final configuration). A final
configurationK is valid if the following properties are sat-
isfied ~with 7j , Hj , defined as before!:

1. The sequenceK 5 @C1,C2, . . .Cn# forms a complete
path on the choice graph, starting from the root node
and ending in a leaf node.

2. For eachj, there must exist a partitionPj 5 $ p1, . . . ,pk%
of the set of itemsIj such thatfh~ ph, final ! 5 t, for h5
1, . . . ,k.

3. For eachj and eachg in :j it must be the case that
g~Hj , final ! 5 t. n

Three conditions are thus required to be met:~1! selected
choice nodes must lie on a path on the choice graph, origi-
nating in the root node;~2! for each node, composition func-
tions are checked on the items selected in the node; and
~3! for each node, custom functions are checked on the items
selected in the node itself and its successors.

Note that composition predicates in7j are not checked
independently on the set of itemsIj : an item used to satisfy
a constraint cannot be used to satisfy another constraint; this
is the reason why we look for a partition of the itemsIj sat-
isfying all composition functions.

3. THE CONFIGURATION LANGUAGE

To build a configuration application, we need a language for
describing the various aspects of the configuration domain:
the structure of the items, the item data base, the custom con-
straint functions, and thechoice graph, with associated con-
figuration constraints.

3.1. The components data base

The item structureconsists in an item definition~similar to
a struct of the language C!. The items themselves are
described in theitem data base, according to the defined
item structure. At least one field is required in an item de-
scription: thename field. The name field is a variable-size
description of the item to be used by the applet at run time
in communicating with the user. Additional fields can be
specified, in the item structure, to represent other properties
of the items specific of the domain.

For each field, it is possible to specify whether the field
is staticor dynamic. The main difference is that the value of
static fields is loaded from the item data base, while the value
of the dynamic fields is computed from other fields or en-
tered by the user at run time. The name field is necessarily
static. It is also possible to specify whether the field must
be saved in the data base where the final configuration is
stored.

When a user selects an item, during the configuration pro-
cess, the system adds an instance of the data base item with
the same name to the configuration. The values of the static
fields are copied from those stored in the data base; dy-
namic fields are filled according to an action associated to
the field. Different instances of the same data base item may
appear in a configuration; in this case they agree on the name
but they may differ in the values of dynamic fields.

In the domain of the computer hardware, static fields are
the name of the component, and for example the price and
the code identifying the item within the catalogue. A dy-
namic field is, for instance, a Boolean flag is indicating
whether a customer already owns the item.

Each entry in theitem data basemay contain, in addition
to the descriptive fields mentioned above, a documentation
field, which is used by the CA for item documentation
purposes.

3.2. The constraints language

The choice graph, with associated configuration constraints,
is defined in a special declarative language designed for this

Web-based configuration assistants 325

https://doi.org/10.1017/S0890060498124058 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124058

purpose. The language supports the definition of two types
of blocks: list blocksandchoice blocks.

A list block is simply a way to define a group of items so
that it can be referred by name. The operator “#” is the way
to refer to all the items belonging to a definedlist block; for
example,#ref refers to a block namedref , which could
be defined as

ref @item1, item2, . . . , item n# .

An item in a list block can in turn be a reference to an-
other list block.

A choice block corresponds to a node in the choice graph
and defines composition constraints for a node. A choice
block can have, for example, the following structure:

Personal computer {
[Motherboard, Case], /* 1 */
[CPU 200Mz, CPU 333Mz] (1), /* 2 */
[8Mb RAM](2+) /* 3 */
OR(Game PC, Multimedia PC)=> /* 4 */
[CD-ROM, Sound card, Speakers,

3D Video Card],
[Power UPS] (1–), /* 5 */
CHOICE(CRT monitor, LCD monitor) /* 6 */

} Max_cost(3000); /* 7 */

A block description includes a list ofconstraints, speci-
fying items that are necessarily needed for the block and
items that are needed depending on the configuration state,
i.e. the presence of other items or previous choices. For ex-
ample line1 says that the itemsMotherboard andCase
are always required for a personal computer. Line4 says
that items on the right of the “5.” operator are to be in-
cluded in the configuration only if the user has declared to
be interested in a PC for playing computer games or in a
Multimedia PC. The conditions for inclusion are expressed
by means of logical operators: AND~all of them!, OR~some
of them!, NOT ~none of them!.

Line 2 is an example of a construct that prescribes the
selection of a number of items out of a list of items; in par-
ticular, the example says that exactly one item out must be
selected from the given list of available CPUs. Lines3 and
5 are similar with different number restrictions: in the first
casetwo or moreitems are required, in the second caseat
most oneitem is accepted. Line6 defines the successors of
the current node in the choice graph, i.e., the available
choices at this level.

Thus, a choice block defines the items required for the
node in the configuration. The type of standard controls that
are generated concern the admissibility of items~i.e., an-
swers the question “is it correct that this item is in the cur-
rent configuration”?! or the presence of items~i.e., answers
the question “is this required item present in the current con-
figuration”?!. These constraints are translated in a set of
built-in composition constraint functions, as detailed below.

Other kinds of constraints which are often needed, such
as “The cost of the configuration must be at most XXX$”,

are implemented bycustom constraints functions, which are
typically application dependent: these can be defined by the
user or supplied by a library. Custom constraint functions
appear at the end of a choice block~as in line7 above! and,
as specified above, apply to all the items in the block and
successor blocks.

The first choice block, appearing in the constraint file,
corresponds to the root of the choice graph. More formally,
each constraint in a choice block has the following structure1:

^item list&@(^n&@162#)#

that is anitem list, optionally followed by a numeric restric-
tion such as~n!, ~n1!, or ~n2!. A item list may be uncon-
ditioned or conditioned, and has the following form:

@AND | OR | NOT (^item list&) 5.# [^item list&]

The antecedent part, when present, expresses a condition
under which theitem list in the consequent is returned. If
the condition is false the empty list is returned; if the con-
dition is missing the item list is always returned. The items
in an item list may include single items, item lists~possibly
referred to by name!, and also conditional item lists. The
item list in the antecedent may also be a list of names of
choice nodes.

The evaluation of a Boolean condition applied to an item
list proceeds as follows:

1. The item list is evaluated with respect to the current
configuration and choice block; this results in a list of
items which may be different in different configura-
tion states;

2. The Boolean condition is evaluated on the resulting
list:

AND ~ i1, i2, . . . ,ik! returns t only if all the items
i1, i2, . . . ,ik are among the items included in the con-
figuration up to the previous choice node;

OR ~i1, i2, . . . ,ik! if at least one of them is present
among them;

NOT ~i1, i2, . . . ,ik! if none of them is present.

The constraint function generated is one of a set of built-in
control functions:Nec~for simple item lists without num-
ber restrictions, meaning that all the items are necessary!,
Atleast, Atmost, Exactly ~for numerically restricted selec-
tion from the item list!.

3.3. Composition constraint functions

Let K be the current configuration,s a choice block, and
type the checking mode~ partial or final !. For checking a

1The terminal symbols of the language are in bold. Square brackets are
used for optional syntactic constructs. The “6” is used for alternatives.

326 G. Attardi, A. Cisternino, and M. Simi

https://doi.org/10.1017/S0890060498124058 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124058

constraint in blocks, the following built-in functions are
used, depending on the constraint type.

If the constraint is a simple item list, the constraint func-
tion which is used is

Nec~S~K,s, item_list!,J, type!.

If the constraint is an item list with numeric restrictions:

item_list~n! : Exactly~n, S~K, s, item_list!, J, type!

item_list ~n1! : AtLeast~n, S~K, s, item_list!, J, type!

item_list ~n2! : AtMost~n, S~K, s, item_list!, J, type!

Checking a configuration means to devise, for each choice
block s, a partition of the items selected ins, satisfying all
the constraint functions associated tos. These functions take
as input a setJ of selected items, corresponding to an ele-
ment of a partition, and check the corresponding constraint
against this set. An error is generated if no partition of the
items selected inscan be found, satisfying all the constraint
functions associated tos. In what follows, the items inJ are
only identified by their names. Moreover, #J means the num-
ber of items inJ. The behavior of the constraint functions
can be described as follows:

Nec~L, J, partial/final ! 5 t if L 5 B or L 5 J; f otherwise.

AtLeast~n, L, J, partial ! 5 t if L 5 B or J # L; f otherwise.

AtLeast~n, L, J, final ! 5 t if L 5 B or #J $ n

andJ # L; f otherwise.

AtMost~n, L, J, partial/final ! 5 t if L 5 B or #J # n

andJ # L; f otherwise.

Exactly~n, L, J, partial ! 5 t if L 5 B or #J # n

andJ # L; f otherwise.

Exactly~n, L, J, final ! 5 t if L 5 B or #J 5 n

andJ # L; f otherwise.

3.4. Custom functions

For the definition and enforcement of domain-specific con-
straints, the user can define special custom functions, in ad-
dition to the standard composition constraints resulting from
the constraint file.

Custom constraint functions are meant for checking prop-
erties of the configuration which depend on the properties
of the single items. They are used for example to impose
conditions on aggregate values or to set lower or upper bound
to values in the configuration.

For example, in the computer hardware domain~Fig-
ure 4!, the choice nodes labelled “Price limited x” could be

introduced to constrain the maximum price allowed for a
configuration. To check a constraint of the configuration such
as this one, we use a custom constraint function that com-
putes the sum of the prices of a set of items, as given in
their price field, and compares the result to the limit price,
given as argument to the custom function. To allow for more
flexibility and locality, custom functions are applied to the
items selected in the node where the function is introduced
and to those selected in its successor nodes, rather than to
all the items in the configuration. In Figure 4, we show the
choice graph of Figure 3 after the introduction of two addi-
tional nodes,Price limited 1 and Price limited
2; with this extension an additional constraint about the price
is imposed to all the configured PCs.

The custom functions are defined in a scripting language,
which is a simplified version of Java. The library supplied
by the scripting language offers a set of aggregate functions
to easily define standard conditions like the upper bound,
the uniqueness of items, etc.

A custom function returns one of three values$t, f,w%,
where thew value is introduced to signal a warning condi-
tion. In our example of computer hardware, we can use the
warning to alert the user that the cost of the items selected
so far is close to the limit price.

4. GENERATION OF A CONFIGURATION
APPLICATION

A configuration application is generated by using a com-
piler, which takes as input the following data files: theitem
structurefile, the item datafile, the custom functionsfile,
and theconstraint file, which defines the choice graph. All
these specifications are given in input, as separate text files
in human readable form, to the CA generator.

The compiler is divided in two modules: C1 and C2~Fig-
ure 5!. The first module is needed for generating the Java
code for the applet and the items data base. The second mod-
ule of the compiler generates a binary representation of the
constraints and the HTML files for documentation and user
guidance.

More specifically, the module C1 of the compiler takes
as input three of the data files described above~the item
structure, the items data, and thecustom constraints func-
tions! and produces three files which are used in the second
step of the compilation process: a Java program, informa-
tion about the items in HTML form and the binary version
of the items data base. The generated Java applet depends
on the configuration domain only for the item structure and
the custom constraint functions; these elements are Java
classes generated by the compiler and later combined with
the rest of the applet. The applet will also use the items data
base and a binary representation of the configuration con-
straints. The Java code includes theitem Java classand the
custom constraint functions Java classes. The item class is
the class that describes the format of the item data base and
offers to the configuration applet a set of methods for read-

Web-based configuration assistants 327

https://doi.org/10.1017/S0890060498124058 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124058

ing, writing, and accessing item components. The custom
constraints functions classes are a Java version of the cus-
tom constraint functions. These classes are managed by a
Java class that maps the function calls to the proper functions.

The module C2 of the compiler takes as input the con-
straints file, the items information, and the items data base.
It generates HTML files and the binary version of the
constraints.

The HTML files generated are to be used in user inter-
face of the configuration assistant. In particular, a set of

HTML skeleton files are generated out of the choice graph:
for each node in the graph a file is generated with selection
icons for the items in the node and hypertextual links to the
items descriptions. The file also contains a few lines of text,
which synthetically describe the node constraints~for ex-
ample “Choose at least three items out of the following:”!,
which can be enriched with additional text deemed useful
to guide the user during the configuration process. In addi-
tion, the file contains choice icons and hyperlinks to other
HTML files in correspondence of available choices.

Fig. 3. Alternative configuration strategies.

Fig. 4. Price limited configurations.

328 G. Attardi, A. Cisternino, and M. Simi

https://doi.org/10.1017/S0890060498124058 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124058

Acompact binary representation of the choice graph is also
generated by C2 and it is the primary data structure used by
the applet for checking the validity of a configuration.

5. COMMUNICATION WITH THE SERVER

The system uses a custom server to store configurations in
a data base. The server, written in Java, uses the JDBC in-
terface to interact with the data base.

The configuration assistant runs on the client machine af-
ter the downloading of the CA applet from the http server.
When the user has completed the configuration process and
the final configuration has been validated, the CA applet
submits the configuration to the server; the server accepts
the connection, generates a unique identifier for the config-
uration, and generates a HTML page that contains the con-
figuration and its unique identifier. The client receives back
this HTML page as result of the configuration process and
can decide to print it locally or simply take note of the iden-
tifier for future use.

At the moment, we provide this simple mechanism of au-
thentication of the configurations generated by our CA. To
check that a configuration is really generated by our system
it is sufficient to find a configuration stored in the server
data base with a given identifier. We plan to support other
authentication mechanisms to allow a more sophisticated
authentication that can be suitable for electronic commerce.
This is not a simple task because all authentication mecha-
nisms adopt a model based on physical tokens or on elec-

tronic certificates. Both these approaches require that the
user has a browser and an authentication token.

6. CompAss: A CONFIGURATION ASSISTANT
FOR PLANS OF STUDY COMPILATION

CompAss~COMPilazione ASSistita di piani di studio! is a
system to assist students in the task of producing a study
plan. CompAss and its associated support tools have been
developed in the context of a pilot project for the Faculty of
Letters and Philosophy of the University of Pisa and have
been further developed and extended for use in other courses
of study within the university.

Plans of study approval is a time consuming job for all
the courses of study in the university, due to the high num-
ber of submissions each year~around 4000 for the Faculty
of Letters and Philosophy! and the high rate of incorrect
submissions. One of the requirements was that students could
use any computer located in the various departments of the
faculty to compile plans of study; data had to be collected
in one single place for archival. The Java solution was the
obvious choice and offers additional advantages such as the
possibility of using the system from home.

The Web page of the CompAss configuration assistant is
vertically divided in two parts~Figure 6!. The right part
contains thenavigation frame. The left part contains thecon-
figuration frameand anapplication specific tool bar.

The navigation frame is a HTML frame displaying a nor-
mal hypertextual document; it displays the available choices
together with any informative text deemed useful to guide
the user to do the right choices during the configuration pro-
cess. Documentation on the items can be obtained by click-
ing on the “i” round icon.

Special icons associated to choice points and to items are
used to perform configuration actions: intermediate choices
or item selections; when these icons are selected they send
messages to the configuration program, thevalidator, which
is a Java Applet associated to the configuration frame.

The configuration frame on the left contains the Java ap-
plet managing the configuration. The applet receives input
by direct interaction in its client area~handled through events
in the AWT! or by selection of special icons in other frames
~the navigation frame and the tool bar frame!. Whenever a
configuration action is performed the applet reacts by check-
ing the current partial configuration, accepting the change
or prompting the user if any configuration constraints is
violated.

Tool icons in the toolbar denote general utility or appli-
cation specific actions available to operate on the partial
configuration displayed in the configuration frame~i.e., item
deletion, final configuration validation, abortion of the con-
figuration process, printing, or submission of the final
configuration!.

Interaction between HTML pages and the Java applet is
implemented by using JavaScript to post the events of icon
selection to the configuration applet. With this solution, the

Fig. 5. Generation of a configuration application.

Web-based configuration assistants 329

https://doi.org/10.1017/S0890060498124058 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124058

interface can exploit all the power of the HTML language
and standard browsing capabilities, while still allowing user
interaction with the Java program.

In this configuration application, the basic items are the
courses offered by the faculty; the constraints file imple-
ments the rules for plan of study formation; it includes a
choice graph where nodes correspond to choices such as the
course of study, the orientation, the field of specialization
and so on, together with the necessary constraints. A con-
figuration is a legitimate plan of study, i.e., a list of courses
which a student plans to take, fulfilling all the requirements
imposed by the faculty.

The official submission of the plan must be done on pa-
per forms, since it requires a signature by the student. Our
current solution is that the plan is printed locally, after com-
pletion and verification by CompAss, and automatically sent
to the server and registered in a temporary area. When the
student submits the plan to the secretary’s office, the plan is
retrieved and transferred to the archives of submitted plans.
CompAss saves a lot of work for secretaries who previ-
ously had to type in the plans from the paper forms submit-
ted by students and eliminates the routine work of the faculty
committees which had to verify and approve the plans.

The plan of study manager running on the server accepts
communications from several CompAss clients, receives data

from plans of study, generates HTML pages, stores data in
a data base, and gathers statistics on the number of users
and on the pattern of use of the system. An instance of Com-
pAss can be seen at the Web address http:00compass.di.
unipi.it.

7. CONCLUSIONS AND FUTURE WORK

We have described a model for a process-oriented config-
uration and a general tool for generating configuration as-
sistants for the Web; the strategy has been successfully
exploited in the specific configuration domain of study plans
compilation.

We believe that other configuration applications are ame-
nable to this simple paradigm. Future work will be to ex-
periment in different domains in order to define exactly the
range of applications that are worth tackling with this ap-
proach and to come out with a general enough configura-
tion language.

We also plan to enhance the configuration language by
introducing specializations of the basic item data structure
and thus the possibility to define different kinds of items
through inheritance. We also plan to introduce a support for
three-dimensional visualization of configured products, using
as a basis the current tree structured display of the config-

Fig. 6. The user interface of CompAss.

330 G. Attardi, A. Cisternino, and M. Simi

https://doi.org/10.1017/S0890060498124058 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124058

uration. We are developing a graphic editor for the choice
graph, to give to the configuration expert a higher level tool
to define configuration constraints.

Finally, we want to add provisions for security, thus de-
velop new models for submission of the configurations and
user authentication, to make the system suitable for elec-
tronic commerce.

ACKNOWLEDGMENTS
Many people have contributed in various ways to the development
of the CompAss application for plans of study and to the CompAss
project in general. We wish to thank, in particular, the project man-
ager, Vincenzo Macrì; and the many people who contributed the ex-
pert knowledge about study plans: Cesare Letta, Dipartimento di
Scienze Storiche del MondoAntico; Mirko Tavoni, Dipartimento di
Lingue e Letterature Romanze; Paolo Rossi, Dipartimento di Fi-
sica; Theo van Boxel for the graphics design; and Andrea Riboldi
for the icons of the graphical interface.

REFERENCES
Barker, V.E., & O’Connor, D.E.~1989!. Expert systems for configuration

at Digital: XCON and beyond.Communications of the ACM 32(3), 298–
318.

Faltings, B., & Weigel, R.~1994!. Constraint-based knowledge represen-
tation for configuration systems. Technical Report No. TR-94.059, Dé-
partement d’Informatique, Laboratoire d’IntelligenceArtificielle, EPFL,
Lausanne, Switzerland.

Gosling, A.J.~1996!. The Java Programming Language. Addison Wesley
Publishing Co., Reading, Massachusetts.

Hayes-Roth, F., Waterman, D.A., & Lenat, D.B.~Eds.!, ~1983!. Building
Expert Systems. Addison Wesley Publishing Company, Reading, Mas-
sachusetts.

Klein, R., Buchheit, M., & Nutt, W.~1994!. Configuration as model con-
struction: The constructive problem solving approach. InProc. Third
Int. Conf. on Artificial Intelligence in Design, AID ’94, pp. 201–218.
Kluwer, The Netherlands.

Männistö, T., Peltonen, H., & Sulonen, R.~1996!. View to product con-
figuration knowledge modelling and evolution. InConfiguration Pa-
pers from the AAAI Fall Symposium, ~Faltings, B. & E.C. Freuder, Eds.!,
pp. 111–118. AAAI Press, Boston, MA.

McDermott J.~1982!. R1: A rule-based configurer of computer systems.
Artificial Intelligence 19(1), 39–88.

Stumper, M.~1997!. An overview of knowledge-based configuration.AI
Communications 10, 111–125.

Tiihonen, J., Soininen, T., Männistö, T., & Sulonen, R.~1996!. State of the
practice in product configuration—a survey of 10 cases in the Finnish
industry. InKnowledge Intensive CAD, First Edition ~T. Tomiyama,
M. Mäntylä, S. Finger, Eds.! pp. 95–114. Chapman & Hall, London.

Tiihonen, J., & Soininen, T.~1997!. Product configurators—information
system support for configurable products. Technical Report TKO-
B137, Helsinki University of Technology, Laboratory of Information
Processing Science. Also published inIncreasing Sales Productivity
through the Use of Information Technology during the Sales Visit, A
Survey of the European Market, Hewson Consulting Group.

Giuseppe Attardi is associate professor at the Diparti-
mento de Informatica of the University of Pisa, where he
teaches Computer Graphics and Java programming. He has
worked at the MIT Artificial Intelligence Laboratory, at the
International Computer Science Institute in Berkeley and
at the Sony Research Laboratory in Paris. He has been
project leader of several European ESPRIT projects. He par-
ticipated to the development of Omega, a calculus of de-
scriptions for knowledge representation and reasoning,
and of the first MIT window system. He has worked on
actor languages and concurrency, and developed ECoLisp,
and Embeddable Common Lisp. He also developed CMM
~Customisable Memory Manager! a garbage collector for
C11. He is currently working on the technique of catego-
risation by context, for automatically classifying Web doc-
uments. Prof. Attardi is an editor of Computational
Intelligence and has served as member of several program
committees, including IJCAI, ECAI, ECOOP and KR.

Antonio Cisternino received a Diploma degree in com-
puter science from the University of Pisa in 1997. He is cur-
rently a fifth year student towards a Laurea degree in
computer science. He participated in the development of sev-
eral projects including CompAss and Sentinel~a security
mechanism for Windows95!. His main research interests are
Web programming and agent programming. He is also ac-
tive in the RoboCup domain.

Maria Simi is associate professor of Artificial Intelligence
at the Dipartimento di Informatica of the University of Pisa.
She was visiting scientist at the MIT Artificial Intelligence
Laboratory~1978–1981! and at the ICSI, Berkeley~1993!.
She has been working and published scientific results in the
following areas: memory management in systems with con-
texts, programming methodologies based on abstract data
types, programming by demonstration, description logics and
taxonomic reasoning, context based knowledge representa-
tion and reasoning, and expert systems. Prof. Simi is a found-
ing member of the Italian Association for Artificial
Intelligence~AI*IA ! and a member of the steering commit-
tee from 1988 to 1991. She is a member of the advisory
board of the journal “ESRA0Expert Systems research and
Application” and of the Editorial Board of the journal “Ar-
chivi & Computers”.

Web-based configuration assistants 331

https://doi.org/10.1017/S0890060498124058 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124058

