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NIP FOR THE ASYMPTOTIC COUPLE OF THE FIELD
OF LOGARITHMIC TRANSSERIES

ALLENGEHRET

Abstract. The derivation on the differential-valued field Tlog of logarithmic transseries induces on its
value group Γlog a certain map �. The structure Γ = (Γlog, �) is a divisible asymptotic couple. In [7] we
began a study of the first-order theory of (Γlog, �) where, among other things, we proved that the theory
Tlog = Th(Γlog, �) has a universal axiomatization, is model complete and admits elimination of quantifiers
(QE) in a natural first-order language. In that paper we posed the question whether Tlog has NIP (i.e., the
Non-Independence Property). In this paper, we answer that question in the affirmative: Tlog does have NIP.
Our method of proof relies on a complete survey of the 1-types of Tlog, which, in the presence of QE, is
equivalent to a characterization of all simple extensions Γ〈α〉 of Γ. We also show that Tlog does not have
the Steinitz exchange property and weweigh in on the relationship between models of Tlog and the so-called
precontraction groups of [9].

§1. Introduction. In [7] we began a study of the model-theoretic and algebraic
properties of (Γlog, �), the asymptotic couple of the differential-valued field Tlog
of logarithmic transseries. This paper is intended to be its sequel. Here we give a
complete survey of the space of 1-types over amodel of the theoryTlog = Th(Γlog, �)
and use that to show that Tlog has the Non-Independence Property (NIP), largely
settling a question we raised in [7, Section 8].
Throughout, m and n range over N = {0, 1, 2, . . . }. As usual, Z is the ring of
integers, Q is the field of rational numbers, and R is the field of real numbers. In
this paper, like its prequel [7], we study asymptotic couples such as (Γlog, �) as
independent objects of interest, completely removed from any differential-valued
fields from which they may arise. A complete discussion of differential-valued fields
such as Tlog and how they give rise to asymptotic couples is outside the scope of
this paper. We refer the interested reader to [4] for the complete story as to how
asymptotic couples such as (Γlog, �) fit into the broader ecosystem of asymptotic
differential algebra. For the reader’s convenience, we begin with a definition of
(Γlog, �), completely independent of Tlog:
Let

⊕
n Ren be a vector space over R with basis (en). Then

⊕
n Ren can be made

into an ordered group using the usual lexicographic order, i.e., by requiring for
nonzero

∑
i ri ei that∑

ri ei > 0 ⇐⇒ rn > 0 for the least n such that rn �= 0.
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36 ALLENGEHRET

Let Γlog be the above ordered abelian group
⊕
n Ren. It is often convenient to

think of an element
∑
ri ei as the vector (r0, r1, r2, . . .). For an arbitrary ordered

abelian group Γ we set Γ�= := Γ \ {0}. We follow Rosenlicht [18] in taking the
function

� : Γ�=log → Γlog
defined by

(0, . . . , 0︸ ︷︷ ︸
n

, rn︸︷︷︸
�=0

, rn+1, . . .) �→ (1, . . . , 1︸ ︷︷ ︸
n+1

, 0, 0, . . .)

as a new primitive, calling the pair (Γlog, �) an asymptotic couple (the asymptotic
couple of Tlog).
In Figure 1 we attempt to visualize the asymptotic couple (Γlog, �). As with
any dense linear order, we can picture the underlying divisible ordered abelian
group Γlog as an infinite line stretching from left to right. Additionally we include a
distinguished vertical stick to indicate the location of 0 = (0, 0, 0, . . .). To represent
the important subset Ψlog = �(Γ

�=
log), we draw a collection of vertical sticks to the

right of 0. The convergent and shrinking nature of this collection is intended to
suggest that both
(a) the induced ordering (Ψlog, <) is isomorphic to that of the natural numbers
(N, <), and

(b) the distance between two adjacent sticks is much bigger than the distance
between the next two adjacent sticks.

Indeed, the difference between, say, the first and second elements of Ψlog is

(1, 1, 0, . . .)− (1, 0, . . .) = (0, 1, 0, . . .),
which is infinitely larger (i.e., is a member of a larger archimedean class, a notion
defined in 1.2 below) than the difference between the second and third elements of
Ψlog, which is

(1, 1, 1, 0, . . .)− (1, 1, 0, . . .) = (0, 0, 1, 0, . . .).
Most of our intuition for this structure and its elementary extensions comes from
drawing pictures of this form (for example, see Figure 2). Our choice of drawing the
infinite set Ψlog in this way was inspired by the illustrations from [6, Chapter 10].
In [7] we gave a complete axiomatization for the first-order theory Th(Γlog, �)
and proved that it is model complete; see Definition 2.6 below. This followed from

Figure 1. Illustration of (Γlog, �).
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exhibiting quantifier elimination for Th(Γlog, �) in a natural language Llog which
we recall in Section 3.6. Finally, we showed that the discrete subset Ψlog is stably
embedded in the structure (Γ, �). In this paper, we continue our study of themodel-
theory of (Γlog, �) by demonstrating that it has NIP, a form of model-theoretic
tameness.
In Section 2,we recall from [7] some definitions and elementary properties relating
to H -asymptotic couples and we introduce a few preliminary ideas mostly in the
generality of divisibleH -asymptotic couples with asymptotic integration, construed
as LAC -structures, where LAC is the natural language of asymptotic couples. This
section can be viewed as a continuation of Sections 3 and 4 from [7]. The main idea
from this section to be used later is Lemma 2.12, a new embedding lemma that adds
transfinitely many “copies of Z” to an existing Ψ-set. The fact that one can do the
construction as in Lemma 2.12 is already apparent from [7, Lemmas 4.11, 4.12],
but we make this construction explicit because of its utility in classifying simple
extensions in Section 3.
In Section 3, we specialize to models of Tlog = Th(Γlog, �) in an enriched
language Llog. There we prove Theorem 3.6 which gives all the possibilities for
the isomorphism types of simple extensions Γ〈α〉 for models Γ |= Tlog. In the pres-
ence of quantifier elimination, this is the same thing as giving all the possibilities
for 1-types. Roughly speaking, we show that all simple extensions are controlled by
at most countably many Dedekind cuts of a certain form in the set Ψ.
In Section 4, we give explicit examples of the various possibilities of simple
extensions mentioned in Theorem 3.6. This shows that Theorem 3.6 doesn’t merely
place a bound on the possibilities of simple extensions, but really does give precisely
those simple extensions that actually occur.
In Section 5we derive Corollary 5.1 fromTheorem 3.6which says that the number
of 1-types over a model of size κ is bounded by the cardinal ded(κ)ℵ0 (where ded(κ)
is defined in 1.1 below).
In Section 6, we give the definition of the model-theoretic notion of NIP and
prove NIP for Tlog using a counting-types and absoluteness swindle. It is a fact that
theories with the independence property (IP) always have 2κ-many 1-types over a
model of size κ. By a forcing result of Mitchell [15], it is consistent with ZFC that
ded(κ)ℵ0 < 2κ for some cardinal κ and so the theory Tlog must have NIP. Our basic
references for NIP are [20] and [1].
In Section 7, we tie up some loose ends and raise an additional question. In
particular, we show that the theory of Tlog does not have the so-called Steinitz
exchange property. This follows from the ideas in Section 3. We also demonstrate
a way to produce new �-maps given a divisible H -asymptotic couple (Γ, �) with
asymptotic integration. Finally, we weigh in on the relationship between divisible
H -asymptotic couples with asymptotic integration and the divisible precontraction
groups of Kuhlmann (see [9, 10]). In parallel with [2, Section 5], we show that
it is impossible to definably reconstruct the �-map of a model of Tlog from the
underlying precontraction group.
Finally, in Section 8 we give a list of remaining questions and issues.

1.1. Set theory conventions. We assume the reader is familiar with the basic
concepts and definitions from set theory (for example, see [12] or [8]). Throughout,

https://doi.org/10.1017/jsl.2016.59 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2016.59


38 ALLENGEHRET

κ, � will denote infinite cardinals and �, � will denote (possibly finite) ordinals.
We define

ded(κ) := sup{� : there is a linear order of size � which has a dense subset of size κ},
where dense is in the sense of the usual order topology. In general we have that
κ < ded(κ) ≤ ded(κ)ℵ0 ≤ 2κ for all κ with equality if κ = ℵ0. Furthermore,
ded(κ) ≤ ded(�) if κ ≤ �.
1.2. Ordered set conventions. By “ordered set” we mean “totally ordered set.”
Let S be an ordered set. Below, the ordering on S will be denoted by ≤, and a
subset of S is viewed as ordered by the induced ordering. We put S∞ := S ∪ {∞},
∞ �∈ S, with the ordering on S extended to a (total) ordering on S∞ by S < ∞.
Suppose that B is a subset of an ordered set extending S. We put S>B := {s ∈ S :
s > b for every b ∈ B} and we denote S>{a} as just S>a ; similarly for ≥, <, and
≤ instead of >. For a, b ∈ S ∪ {∞} and B ⊆ S we put

[a, b]B := {x ∈ B : a ≤ x ≤ b}.
If B = S, then we usually write [a, b] instead of [a, b]S . Given subsets S0, S1 ⊆ S,
we say the pair (S0, S1) is a cut in S, if S0 = S<S1 and S1 = S>S0 and we say that
an element x of an ordered set extending S realizes the cut (S0, S1) if S0 = S<x and
S1 = S>x . We say that S is a successor set if every element x ∈ S has an immediate
successor y ∈ S, that is, x < y and for all z ∈ S, if x < z, then y ≤ z. For example,
N and Z with their usual ordering are successor sets.
We say that S is a copy of Z (respectively, copy of N) if (S,<) is isomorphic to
(Z, <) (respectively, (N, <)).
Suppose that G is an ordered abelian group. Then we set G �= := G \ {0}, G< :=
G<0 and G> := G>0. We define |g| := max{g,−g} for g ∈ G . For a ∈ G , the
archimedean class of a is defined by

[a] := {g ∈ G : |a| ≤ n|g| and |g| ≤ n|a| for some n ≥ 1}.
The archimedean classes partition G . Each archimedean class [a] with a �= 0 is
the disjoint union of the two convex sets [a] ∩ G< and [a] ∩ G>. We order the set
[G ] := {[a] : a ∈ G} of archimedean classes by

[a] < [b] :⇐⇒ n|a| < |b| for all n ≥ 1.
We have [0] < [a] for all a ∈ G �=, and

[a] ≤ [b] :⇐⇒ |a| ≤ n|b| for some n ≥ 1.
1.3. Model theory conventions. ThroughoutL will denote a one-sorted language
and T will be a complete L-theory with infinite models. We will work in this general
setting when discussing model-theoretic issues (such asNIP).Wewill often consider
a model M |= T and a cardinal κ(M) > |L| such that M is κ(M)-saturated and
strongly κ(M)-homogeneous. Such a model is called a monster model of T . In
particular, every model of T of size ≤ κ(M) has an elementary embedding intoM.
“Small” will mean “of size < κ(M).” A will always denote a small parameter set in
M. IfM is a parameter set underlying an elementary submodel ofM, then we denote
this elementary submodel also byM . For a parameter set A, we let 〈A〉 denote the
L-substructure ofM generated by A. Similarly we letM 〈A〉 denote 〈M ∪A〉. Note
that if T has a universal axiomatization and is model complete, then 〈A〉 is always
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a small elementary substructure of M. We let Sn(A) denote the space of n-types
over A.

§2. More asymptotic integration.
2.1. Asymptotic couples. In general, an asymptotic couple is a pair (Γ, �) where
Γ is an ordered abelian group and � : Γ�= → Γ satisfies for all α, � ∈ Γ�=,
(AC1) α + � �= 0 =⇒ �(α + �) ≥ min(�(α), �(�));
(AC2) �(rα) = �(α) for all r ∈ Z�=, in particular, �(−α) = �(α);
(AC3) α > 0 =⇒ α + �(α) > �(�).
If in addition for all α, � ∈ Γ,
(HC) 0 < α ≤ � ⇒ �(α) ≥ �(�),
then (Γ, �) is said to be of H -type, or to be anH -asymptotic couple.
The primary example of an H -asymptotic couple is the object (Γlog, �) defined
in Section 1. Asymptotic couples were introduced by Rosenlicht in [16–18] to study
differential-valued fields. The prefixH in “H -asymptotic couple” is in honor of the
pioneers of the subject: Borel, Hahn, Hardy, and Hausdorff.
Asymptotic couples commonly show up in nature as the value groups of certain
kinds of valued differential fields (the so-called asymptotic fields). In this case, the
map � : Γ�= → Γ is induced by the logarithmic derivative on the field and the
map id+� : Γ�= → Γ is induced by the derivative. This is the motivation for
the terminology “asymptotic integration” as well as the notations α† and α′ (all
introduced below). For the complete story see [4].
For the rest of this subsection (Γ, �) will be an arbitrary asymptotic couple andα, �
will range over Γ. By convention we extend� to all of Γ by setting �(0) :=∞. Then
�(α + �) ≥ min(�(α), �(�)) holds for all α, � ∈ Γ, and construe � : Γ→ Γ∞ as
a (nonsurjective) valuation on the abelian group Γ. If (Γ, �) is ofH -type, then this
valuation is convex. The following property of valuations is immediate and will be
used often:
Fact 2.1. If �(α) < �(�), then �(α + �) = �(α).
Let LAC be the natural language of asymptotic couples; LAC = {0,+,−, <,
�,∞} where 0,∞ are constant symbols, + is a binary function symbol, −, � are
unary function symbols and < is a binary relation symbol. We consider an asymp-
totic couple (Γ, �) as an LAC -structure with underlying set Γ∞ and the obvious
interpretation of the symbols of LAC , with∞ as a default value:

−∞ = 	 +∞ =∞+ 	 =∞+∞ = �(0) = �(∞) =∞
for all 	 ∈ Γ.
For α ∈ Γ�= we shall also use the following notation:

α† := �(α), α′ := α + �(α).

The following subsets of Γ play special roles:

(Γ�=)′ := {	 ′ : 	 ∈ Γ�=}, (Γ>)′ := {	 ′ : 	 ∈ Γ>},
Ψ := �(Γ�=) = {	† : 	 ∈ Γ�=} = {	† : 	 ∈ Γ>}.

For an arbitrary asymptotic couple (Γ′, �′) we may occasionally refer to the set
ΨΓ′ := �′((Γ′)�=) as “the Ψ-set of (Γ′, �′)” and to the function �′ as “the �-map
of (Γ′, �′).”
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Note that by (AC3) we have Ψ < (Γ>)′. It is also the case that (Γ<)′ < (Γ>)′:
Lemma 2.2. The map 	 �→ 	 ′ = 	 + �(	) : Γ�= → Γ is strictly increasing.
In particular:
(1) (Γ<)′ < (Γ>)′, and
(2) for � ∈ Γ there is at most one α ∈ Γ�= such that α′ = � .
Proof. This follows from [4, Lemma 6.5.4(iii)]. �
We say that an asymptotic couple (Γ, �) has asymptotic integration if

Γ = (Γ�=)′.

The primary example of an asymptotic couple with asymptotic integration is
(Γlog, �).

2.2. Asymptotic integration. In this subsection (Γ, �) will be an arbitrary divisible
H -asymptotic couple with asymptotic integration. We will construe (Γ, �) as an
LAC -structure. Asymptotic integration allows us to define the functions

∫
, s, and


 on Γ:

Definition 2.3. For α ∈ Γ we let ∫ α denote the unique element � ∈ Γ�=
such that � ′ = α and we call � =

∫
α the integral of α. This gives us a function∫

: Γ→ Γ�= which is the inverse of 	 �→ 	 ′ : Γ�= → Γ.Wedefine the successor function
s : Γ→ Ψ by α �→ �(∫ α). Finally, we define the contraction map 
 : Γ< → Γ< by
α �→ ∫

�(α).

Example 2.4. For the asymptotic couple (Γlog, �) defined in Section 1, we give
explicit formulas for the integral and successor functions in [7, Examples 2.9 and
3.10]. For the reader’s convenience we restate them here and also give the formula
for the contraction map:
(1) (Integral) For α = (r0, r1, r2, . . .) ∈ Γlog, take the unique n such that rn �= 1
and rm = 1 for m < n. Then the formula for α �→ ∫

α is given as follows:

α = (1, . . . , 1︸ ︷︷ ︸
n

, rn︸︷︷︸
�=1

, rn+1, rn+2, . . .) �→
∫
α = (0, . . . , 0︸ ︷︷ ︸

n

, rn−1, rn+1, rn+2, . . .) : Γlog → Γ �=log.

(2) (Successor) For α = (r0, r1, r2, . . .) ∈ Γlog, take the unique n such that rn �= 1
and rm = 1 for m < n. Then the formula for α �→ s(α) is given as follows:
α = (1, . . . , 1︸ ︷︷ ︸

n

, rn︸︷︷︸
�=1

, rn+1, rn+1, . . .) �→ s(α) = (1, . . . , 1︸ ︷︷ ︸
n+1

, 0, 0, . . .) : Γlog → Ψlog ⊆ Γlog.

(3) (Contraction) For α = (r0, r1, r2, . . .) ∈ Γ<log, take the unique n such that
rn < 0 and rk = 0 for k < n. Then the formula for α �→ 
(α) is given as
follows:

α = (0, . . . , 0︸ ︷︷ ︸
n

, rn︸︷︷︸
<0

, rn+1, . . .) �→ 
(α) = (0, . . . , 0︸ ︷︷ ︸
n+1

,−1, 0, 0, . . .) : Γ<log → Γ<log.

To get a feel for how the functions
∫
, s , and 
 behave in general, we record here

some of their elementary properties.
Lemma 2.5. For all α, � ∈ Γ:
(1)

∫
α = α − sα;

(2) α ∈ (Γ<)′ =⇒ α < sα;
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(3) α ∈ (Γ>)′ =⇒ α > sα;
(4) α < � < (Γ>)′ =⇒ sα ≤ s� ;
(5) (Γ<)′ < α < � =⇒ sα ≥ s� ;
(6) � = �(α − �) iff � = s(α);
(7) α < � < 0 =⇒ 
(α) ≤ 
(�);
(8) α < 0 =⇒ [α] > [
(α)];
(9) α < 0 =⇒ 
(α) + �(
(α)) = �(α).
Proof. (2) is [7, Lemma 3.3], (6) is [7, Lemma 3.7], and (8) is [4,
Lemma 9.2.18(iii)]. The rest follow easily from the definitions and previously stated
properties of H-asymptotic couples. �
The primary LAC -theory of interest is T0:

Definition 2.6. Let T0 be the LAC -theory whose models are the divisible
H -asymptotic couples with asymptotic integration such that

• Ψ as an ordered subset of Γ has a least element s0,
• s0 > 0,
• Ψ as an ordered subset of Γ is a successor set,
• for each α ∈ Ψ, the immediate successor of α in Ψ is sα, and
• 	 �→ s	 : Ψ→ Ψ>s0 is a bijection.
In [7] we showed that the LAC -theory T0 is complete and model complete. In
particular, T0 = ThLAC (Γlog, �). We also showed that for models (Γ, �) of T0, the
set Ψ is stably embedded in (Γ, �).
In Figure 2 we illustrate a “typical” model of T0. Here the set Ψ no longer has
order type (N, <), but in fact has the order type of (N, <) followed by copies of
(Z, <).Here the copies of (Z, <) are indexedby the linear order (N, <), but in general
the copies of (Z, <) may be indexed by any linear order. This is clear because the
ordered set (Ψ, <) is elementarily equivalent to the ordered set (N, <). The dashed
line located at “supΨ” serves to indicate the boundary between (Γ<)′ and (Γ>)′. In
particular, (Γ>)′ = Γ>Ψ and (Γ<)′ = Ψ↓ (the downward closure of the set Ψ in Γ).
The function s : Γ→ Ψis definedon all of Γ, butwe illustrate here that its restriction
to Ψ really does make it an actual successor function 	 �→ s	 : Ψ→ Ψ>s0. Finally,
for the sake of completeness, we have included the function p in this illustration.
The function p is defined to be the inverse to 	 �→ s	 : Ψ→ Ψ>s0, and we extend it
to a function on the rest of Γ∞ by having it take the value∞ everywhere else. We
will formally add s and p to our language in Section 3, but we include them here
because they are definable in models of T0.

Figure 2. A typical model of T0.
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For the rest of this section we continue with our standing assumption that (Γ, �)
is an arbitrary divisibleH -asymptotic couple with asymptotic integration.However,
it may be useful for the reader to keep in mind the specific case when (Γ, �) |= T0.
Definition 2.7. We say B ⊆ Ψ is an s-cut of Ψ if B is an upward closed subset
of Ψ such that s(Ψ \B) ⊆ (Ψ \B). Let sded(Ψ) be the collection of all s-cuts of Ψ.
We define a linear ordering ≤ on sded(Ψ) by B0 ≤ B1 iff B0 ⊇ B1.
Remark 2.8. We defined s-cuts here as “right cuts” only for notational conve-
nience in Lemma 2.12. Given an s-cut B of Ψ, we identify it with the cut (Ψ<B ,B)
in Ψ.

Definition 2.9. For α, � ∈ Ψ, we define α � � to mean snα < � for all n, and
define α � � to mean � � α. It follows that if α � � , then there is a B ∈ sded(Ψ)
such that α < B � � . Finally, we define the equivalence relation ∼s on Ψ:

α ∼s � :⇐⇒ α �� � and � �� α
and we call the equivalence class α/ ∼s of α the s-class of α. If (Γ, �) |= T0, then
the s-class of α is thought of as the copy of Z or initial copy of N that α lives on.

For divisible H -asymptotic couples with asymptotic integration, it is useful to
have the following stratification in mind:

Γ�=

	 	→[	]
����
[Γ�=]

[	] 	→�(	)
����

archimedean classes

Ψ

�(	) 	→�(	)/∼s
����

Ψ-set

Ψ/ ∼s s-classes on the Ψ-set

Definition 2.10. Let (Γ, �) and (Γ1, �1) be asymptotic couples. An embedding

h : (Γ, �)→ (Γ1, �1)
is an embedding h : Γ→ Γ1 of ordered abelian groups such that

h(�(	)) = �1(h(	)) for 	 ∈ Γ�=.
If Γ ⊆ Γ1 and the inclusion Γ → Γ1 is an embedding (Γ, �) → (Γ1, �1), then we
call (Γ1, �1) an extension of (Γ, �), and we also indicate this by (Γ, �) ⊆ (Γ1, �1).
The proof of quantifier elimination for the theory of (Γlog, �) in [7] is built upon
an arsenal of embedding lemmas for divisibleH -asymptotic couples (not necessarily
with asymptotic integration). For the purposes of the current section, we only need
to recall the following embedding lemma [7, Lemmas 4.11 and 4.12] which adds a
single copy of Z to Ψ (and adds a single point to Ψ/ ∼s):
Lemma 2.11. Let B ∈ sded(Ψ) be such that B �= Ψ. Then there is a divisible
H -asymptotic couple (ΓB ,�B) ⊇ (Γ, �) with a family (�k)k∈Z in ΨB satisfying the
following conditions:
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(1) (ΓB ,�B) has asymptotic integration;
(2) Γ<B < �k < B, and sB(�k) = �k+1 for all k;
(3) ΨB = Ψ ∪ {�k : k ∈ Z};
(4) for any embedding i : (Γ, �)→ (Γ∗, �∗) into a divisible H -asymptotic couple
with asymptotic integration and any family (�∗k )k∈Z inΨ∗ such that i(Γ<B ) <
�∗k < i(B) and s

∗(�∗k ) = �
∗
k+1 for all k, there is a unique extension of i to an

embedding (ΓB ,�B )→ (Γ∗, �∗) sending �k to �∗k for all k;
(5) if (Γ, �) is a model of T0, then so is (ΓB ,�B).

Sketch of Proof. The underlying abelian group of the extension (ΓB ,�B ) will
be ΓB := Γ⊕⊕k∈Z Q�k . The ordering and �-map are then defined on ΓB in such
a way as to guarantee that (4) holds. If B = ∅, then this is [7, Lemma 4.11], and if
B �= ∅, then this is [7, Lemma 4.12]. �
In Figure 3, we illustrate an instance of the construction that is done in
Lemma 2.11 (over a model of T0). Technically speaking, here B (as a set) is the two
rightmost copies of Z, however, we think of B as indicating the cut between existing
copies of Z where a new copy of Z (namely, (�k)k∈Z) is to be added.
As for the universal property, suppose i : (Γ, �)→ (Γ∗, �∗) is an embedding as in
(4) from Lemma 2.11 above. The uniqueness of the extension of i to an embedding
(ΓB ,�B )→ (Γ∗, �∗) depends heavily on the specification of the family (�∗k )k∈Z in
Ψ∗ and in particular the requirement that �k �→ �∗k for all k:

(Γ∗, �∗) and (�∗k )k∈Z

(ΓB ,�B) and (�k)k∈Z

∃!
��

(Γ, �)

i

����������������������������������

In fact, if we were to drop the requirement that the extension of i to an embedding
(ΓB ,�B ) → (Γ∗, �∗) has the property that �k �→ �∗k for all k ∈ Z, then there

Figure 3. Example of Lemma 2.11 in action.
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would always be infinitely many distinct extensions of i to embeddings (ΓB ,�B)→
(Γ∗, �∗):

(Γ∗, �∗)

(ΓB ,�B)

∃∞
��

(Γ, �)

i

����������������������������

This follows fromLemma 2.11 by considering the reindexing (�∗k+l )k∈Z of the family
(�∗k )k∈Z by an arbitrary l ∈ Z.
In the lemma below we add transfinitely many copies of Z to Ψ. We think of the
extension (Γ�, ��) of (Γ, �) constructed in that lemma as adding �-many copies of
Z to Ψ in the s-cuts specified by �.

Lemma 2.12. Let � : � → sded(Ψ) \ {Ψ} be an increasing function. Then there is
a divisible H -asymptotic couple (Γ�, ��) ⊇ (Γ, �) with a family (�k,�)k∈Z,�<� in Ψ�
satisfying the following conditions:

(1) (Γ�, ��) has asymptotic integration;
(2) Γ<�(�) < �k,� < �(�), and s�(�k,�) = �k+1,� for all k ∈ Z and � < �;
(3) �k,�0 < �l,�1 for all k, l ∈ Z and �0 < �1 < �;
(4) Ψ� = Ψ ∪ {�k,� : k ∈ Z, � < �};
(5) for any embedding i : (Γ, �) → (Γ∗, �∗) into a divisible H -asymptotic cou-
ple with asymptotic integration and any family (�∗k,�)k∈Z,�<� in Ψ∗ such that
i(Γ<�(�)) < �∗k,� < i(�(�)) and s

∗(�∗k,�) = �
∗
k+1,� for all k ∈ Z and � < �, and

�∗k,�0 < �
∗
l,�1
for all k, l ∈ Z and �0 < �1 < �, then there is a unique extension

of i to an embedding (Γ�, ��) → (Γ∗, �∗) sending �k,� to �∗k,� for all k ∈ Z

and � < �;
(6) if (Γ, �) is a model of T0, then so is (Γ�, ��).

Proof. We will prove this by transfinite induction on �.
(� = 0). In this case we set (Γ�, ��) := (Γ, �) and we are done.
(� = �+1).By the inductivehypothesis,wecanconstruct anextension (Γ���, ����)
of (Γ, �) which satisfies properties (1)–(5) for the function � � � : � → sded(Ψ).
Claim 2.13. �(�) is an s-cut in Ψ���.

Proof of Claim. By the inductive hypothesis,Ψ��� = Ψ∪{�k,�0 : k ∈ Z, �0 < �},
so it suffices to prove that �k,�0 < �(�) for all k ∈ Z and �0 < �. This is clear because
�k,�0 < �(�0) by (3) for (Γ���, ����) and �(�0) ≤ �(�) because � is increasing. �
Since �(�) is also an s-cut in Ψ���, we can use Lemma 2.11 to add a copy of Z to
(Γ���, ����) at �(�). Thus we set (Γ�, ��) := ((Γ���)�(�), (����)�(�)). As an exten-
sion of (Γ, �), it is clear that (Γ�, ��) satisfies properties (1)–(4). Property (5)
is satisfied because (Γ���, ����) satisfies property (5) over (Γ, �) and (Γ�, ��)
satisfies the universal property of Lemma 2.11 over (Γ���, ����).
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(� limit ordinal). By the inductive hypothesis, for all �0 < �1 < � we can construct
extensions (Γ���i , ����i ) of (Γ, �) (i = 1, 2) such that there is a unique embedding
i�0,�1 : (Γ���0 , ����0 )→ (Γ���1 , ����1 ) over (Γ, �) such that �k,� �→ �k,� for all k ∈ Z

and � < �0.

(Γ���0 , ����0 )
i�0 ,�1 �� (Γ���1 , ����1 )

(Γ, �)

�� 		������������

Thus without loss of generality we may assume that for all �0 < �1 < � we have an
increasing chain:

(Γ, �) ⊆ (Γ���0 , ����0 ) ⊆ (Γ���1 , ����1 ).
Therefore we may set (Γ�, ��) := (

⋃
�<� Γ���,

⋃
�<� ����) and it is clear that this

extension satisfies properties (1)–(4). Suppose that i : (Γ, �) → (Γ∗, �∗) is an
embedding such that (Γ∗, �∗) is a divisible H -asymptotic couple with asymptotic
integration and there is a family (�∗k,�)k∈Z,�<� in Ψ∗ satisfying the properties listed
in (5). Then for each � < � there is a unique extension of i to an embedding
i� : (Γ, �) ⊆ (Γ���, ����)→ (Γ∗, �∗) sending �k,�0 to �

∗
k,�0
for all k ∈ Z and �0 < �.

Thus, it is clear that i� := ∪�<� i� : (Γ�, ��)→ (Γ∗, �∗) is an extension of i sending
�k,� to �∗k,� for all k ∈ Z and � < �. Uniqueness of i� follows from the observation
that the restriction of i� to each (Γ���, ����) is uniquely determined by the universal
property that each (Γ���, ����) enjoys (by induction).
Finally, (6) is immediate from the above construction. �
In Figure 4, we illustrate an instance of the construction done in Lemma 2.12
(over a model of T0). Here we have the increasing function � : 4→ sded(Ψ) where
�(0) < �(1) = �(2) < �(3). Since �(1) = �(2), (�k,1), the copy of Z corresponding
to �(1), gets added to the same cut in Ψ as (�k,2) the copy of Z corresponding to
�(2). However, the construction ensures that (�k,1) gets added entirely to the left
of (�k,2).
For use in Section 3, we also recall here an important relationship between the
functions s and �:

Figure 4. Example of Lemma 2.12 in action.
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Proposition 2.14 ([7, Corollary 7.2]). Let (Γ∗, �∗) be an H -asymptotic couple
with asymptotic integration that extends (Γ, �). Suppose 	∗ ∈ Ψ∗ is such thatΨ < 	∗.
Then s(α) = �∗(α − 	∗) for all α ∈ Γ.
Note that Lemmas 2.11 and 2.12 both give ways to construct such an exten-
sion (Γ∗, �∗) as in Proposition 2.14. Proposition 2.14 and Fact 2.1 also give1 the
following useful way of computing values of the �-map:

Corollary 2.15 ([7, Lemma 3.4]). For every α, � ∈ Γ, if sα < s� , then
�(� − α) = sα.
As an application of Corollary 2.15 and Fact 2.1, we obtain the following
formulas for computing the �- and s-values in models of T0:

Lemma 2.16 ([7, Lemma 6.4 and Corollary 6.5]). Suppose (Γ, �) |= T0. Let
n ≥ 1, α1 < · · · < αn ∈ Ψ, and let α =

∑n
j=1 qjαj for q1, . . . , qn ∈ Q �=. Then

(1)
∑n
j=1 qj = 0 =⇒ �(α1) = s(α1),

(2)
∑n
j=1 qj �= 0 =⇒ �(α) = s0,

(3)
∑n
j=1 qj = 1 =⇒ s(α) = s(α1),

(4)
∑n
j=1 qj �= 1 =⇒ s(α) = s0.

Lemma 2.16 was useful in proving [7, Corollary 7.2]: in models of T0, the subset
Ψ of Γ is stably embedded in (Γ, �). We use it here in Section 4 below.

§3. Simple extensions. For a model (Γ, �) of T0, we define the function p :
Ψ>s0 → Ψ to be the inverse to the function 	 �→ s	 : Ψ → Ψ>s0. We extend p to a
function Γ∞ → Γ∞ by setting p(α) :=∞ for α ∈ Γ∞ \Ψ>s0.
Next let Llog = LAC ∪ {s, p, �1, �2, �3, . . .} where s , p, and �n for n ≥ 1 are
unary function symbols. All models of T0 are considered as Llog-structures in the
obvious way, again with ∞ as a default value, and with �n interpreted as division
by n.
We let Tlog be the Llog-theory whose models are the models of T0. By adding
function symbols s, p, �1, �2, . . . we have guaranteed that Tlog has a universal
axiomatization, has quantifier elimination, is complete and is model complete; see
Section 5 of [7].
For the rest of this section we let M = (M, �, s, p, . . .) be a monster model of
Tlog. All other models considered will be small submodels of M. In particular, we
consider an arbitrary Γ = (Γ, �, s, p, . . .) of cardinality ≤ κ < κ(M). The element
α will range over M and we will assume α �∈ Γ to avoid some trivial cases. Note
that the set Ψ = ΨΓ will always contain the initial copy of N together with at most
κ-many copies of Z, whereas the set ΨM \Ψ is the union of all copies of Z in ΨM

that aren’t part of Ψ.
When considering simple extensions Γ〈α〉 of Γ (in the language Llog), it is useful
to know whether the ordered abelian group Γ ⊕ Qα is already closed under the
primitives � and s . If it is not closed, then we want to know how badly Γ⊕Qα fails
to be closed under � and s . This motivates defining

Q �=α − Γ := {qα − 	 : q ∈ Q �= and 	 ∈ Γ}
1In [7], Corollary 2.15 is actually established first and then used to prove Proposition 2.14.
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as well as the following subsets of ΨM:

�(Q �=α − Γ) := {�(qα − 	) : q ∈ Q �= and 	 ∈ Γ},
s(Q �=α − Γ) := {s(qα − 	) : q ∈ Q �= and 	 ∈ Γ},

TΓ(α) := �(Q �=α − Γ) ∪ s(Q �=α − Γ).
Note that �(Q �=α − Γ) = �(α − Γ) := {�(α − 	) : 	 ∈ Γ} by (AC2).
Since TΓ(α) is defined using the primitives � and s , and α �∈ Γ, it is clear that
TΓ(α) ⊆ ΨM. If TΓ(α) ⊆ Ψ = ΨΓ, then the ordered abelian group Γ ⊕ Qα is
already closed under the primitives � and s . However, if TΓ(α) \Ψ is nonempty,
then Γ ⊕ Qα is not closed under � and s and then we are interested in the
possibilities of the set TΓ(α) \Ψ.
As we will show below in Corollary 3.4, the set TΓ(α) \ Ψ is either empty, or
contains a single element in ΨM \Ψ. At any rate, since TΓ(α) ⊆ Γ〈α〉, all elements
of TΓ(α) \Ψmust get added to Γ in order to have any chance at closing off under s
and �.

Remark 3.1. In fact, TΓ(α)\Ψ also measures the failure of Γ⊕Qα to be closed
under p in the following way: if p(qα− 	) ∈ ΨM \Ψ, then qα− 	 ∈ ΨM \Ψ and in
particular, s(qα − 	) ∈ ΨM \Ψ. For such a qα − 	, p(qα − 	) and s(qα − 	) will
be on the same copy of Z in ΨM \Ψ. Thus if Γ ⊕ Qα is not closed under p, then
this failure is already recognized by the fact that Γ⊕Qα isn’t closed under s .

In view of Proposition 2.14 which relates the functions � and s through a trans-
lation by an external parameter, it may come as no surprise that �(Q �=α − Γ) and
s(Q �=α − Γ) are very similar as the following two lemmas show:
Lemma 3.2. Let Δ be either�(Q �=α−Γ) or s(Q �=α−Γ). Then for �0 ∈ M, �1 ∈ Δ
such that �0 < �1, we have �0 ∈ Ψ iff �0 ∈ Δ. In particular, Δ ∩ Ψ is a downward
closed subset of Ψ and Δ \Ψ consists of at most one element � ; furthermore, such �
realizes the cut (Δ ∩Ψ,Ψ \ Δ) in Ψ.
Proof. First, consider the case that Δ = �(Q �=α − Γ) = �(α − Γ) and let
�0 ∈ M and �1 ∈ Δ be arbitrary such that �0 < �1. Then �1 = �(α − 	1) for some
	1 ∈ Γ. First suppose that �0 ∈ Ψ. Then there is 	0 ∈ Γ such that �0 = �(	0) <
�(α − 	1) = �1. Note that

�0 = �(	0) = �(	0 − (α − 	1)) = �(α − (	0 + 	1)) ∈ Δ.
Conversely, if �0 ∈ Δ, then �0 = �(α − 	0) for some 	0 ∈ Γ. It then follows from
�0 = �(α − 	0) < �(α − 	1) = �1 that

�0 = �(α − 	0) = �((α − 	0)− (α − 	1)) = �(	1 − 	0) ∈ Ψ.
Next, consider the case that Δ = s(Q �=α − Γ) and let �0 ∈ M and �1 ∈ Δ be
arbitrary such that �0 < �1. Then �1 = s(q1α − 	1) for some q1 ∈ Q �= and 	1 ∈ Γ.
We will also take 	∗ ∈ ΨM such that 	∗ > ΨΓ〈α〉. First suppose that �0 ∈ Ψ. Then
�0 = �(	0) for some 	0 ∈ Γ and thus �0 = �(	0) < s(q1α − 	1) = �1. Then by
Proposition 2.14,

�0 = �(	0) = min(s(q1α − 	1), �(	0)) = min(�(q1α − 	1 − 	∗), �(	0))
= �(q1α − 	1 − 	∗ − 	0) = s(q1α − (	1 + 	0)) ∈ Δ.
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Conversely, if �0 ∈ Δ, then �0 = s(q0α − 	0) for some q0 ∈ Q �= and 	0 ∈ Γ. Then
�0 = s(q0α − 	0) < s(q1α − 	1) = �1, and it follows that

�0 = �(α − q−10 	0 − q−10 	∗) < �(α − q−11 	1 − q−11 	∗)
and so

�0 = �(q−11 	1 − q−10 	0 + (q−11 − q−10 )	∗).
If q0 = q1, then �0 ∈ Ψ. Otherwise,

�0 = �

(
− q−11
q−11 − q−10

	1 +
q−10

q−11 − q−10
	0 − 	∗

)

= s

(
− q−11
q−11 − q−10

	1 +
q−10

q−11 − q−10
	0

)
∈ Ψ.

�
Lemma 3.3. s(Q �=α − Γ) ∩ Ψ = �(Q �=α − Γ) ∩ Ψ. Furthermore,
s(Q �=α − Γ)� �(Q �=α − Γ) consists of at most one element.
Proof. Suppose �0 ∈ s(Q �=α−Γ)∩Ψ. Let q ∈ Q �= and 	0 ∈ Γ be such that �0 =
s(qα − 	0). Let 	1 ∈ Γ be such that s(	1) > �0 = s(qα − 	0). Then Corollary 2.15
implies

�(qα − (	1 + 	0)) = �(	1 − (qα − 	0)) = s(qα − 	0) = �0
and so �0 ∈ �(Q �=α − Γ) ∩Ψ.
Next we consider two cases. First suppose s(Q �=α−Γ)∩Ψ is cofinal in Ψ. Since it
is also downward closed in Ψ, it is necessarily the case that Ψ = s(Q �=α−Γ)∩Ψ ⊆
�(Q �=α − Γ) ∩Ψ ⊆ Ψ, so we get equality throughout.
Otherwise, by Lemma 3.2 we can take � ∈ Ψ such that s(Q �=α − Γ) < �. Let
	 ∈ Γ be arbitrary such that�(α− 	) ∈ �(Q �=α−Γ)∩Ψ. Then by choice of � ∈ Ψ
we have

s(α − 	 + �)︸ ︷︷ ︸
∈s(Q�=α−Γ)

< � < s(�).

Thus by Corollary 2.15 we have

�(α − 	) = �((α − 	 + �)− �) = s(α − 	 + �) ∈ s(Q �=α − Γ),
and we conclude that �(Q �=α − Γ) ∩Ψ ⊆ s(Q �=α − Γ) ∩Ψ.
Finally, suppose s(Q �=α − Γ) \Ψ = {�} where � ∈ ΨM \Ψ. Then we will show
that�(Q �=α−Γ) ⊆ Ψ∪{�}. Take 	∗ ∈ ΨM such that 	∗ > ΨΓ〈α〉 and take q ∈ Q �=

and 	 ∈ Γ such that � = s(qα− 	) = �(qα− 	 − 	∗). Let � ∈ Γ be arbitrary. Note
that

�(qα − 	 − �) = �((qα − 	 − 	∗)− (� − 	∗))
≥ min(�(qα − 	 − 	∗), �(� − 	∗))
= min(s(qα − 	), s(�))
= min(�, s(�)).

But since � �∈ Ψ and s(�) ∈ Ψ, we actually get �(qα− 	 − �) = min(�, s(�)). Since
q �= 0 and as � ranges over Γ, 	 + � will also range over Γ, together with (AC2) this
argument shows that �(Q �=α − Γ) ⊆ Ψ ∪ {�}. �
It follows that TΓ(α) occurs in only three different ways:
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Corollary 3.4. Exactly one of the following is true:

(1) TΓ(α) = [s0, �]Ψ = Ψ≤� ⊆ Ψ for some � ∈ Ψ.
(2) TΓ(α) = B where B ⊆ Ψ is nonempty, downward closed and is such that
s(B) ⊆ B (i.e., Ψ \ B ∈ sded(Ψ)).

(3) TΓ(α) = B ∪{�} where B ⊆ Ψ is nonempty, downward closed and is such that
s(B) ⊆ B and � ∈ ΨM \Ψ and B < � < (Ψ \ B).

In particular, |TΓ(α) \Ψ| ≤ 1.
Note that if TΓ(α) ⊆ Ψ for a particular Γ and α ∈ M, then Γ ⊕ Qα as an
ordered abelian subgroup of M is closed under the functions � and s . In fact, it
follows from Remark 3.1 that Γ ⊕Qα is also closed under p. Thus (Γ ⊕Qα,�) is
an Llog-substructure ofM which extends Γ and hence also is a model of Tlog since
Tlog has a universal axiomatization. In this case, Γ〈α〉 = (Γ ⊕Qα,�).
The following observation illustrates how the inductive step in Theorem 3.6 below
will work:

Observation 3.5. Suppose that Γ0 ⊆ Γ1 ⊆ M are models of Tlog and that α ∈
M \ Γ1. Then TΓ0(α) ⊆ TΓ1(α). In particular, if TΓ0(α) = B0 ∪ {�0} as in case (3)
of Corollary 3.4 above, and if Γ1 = Γ0〈�0〉 = Γ0 +

∑
n Qs

n�0 +
∑
n Qp

n�0 also has
the property that TΓ1(α) = B1 ∪ {�1} as in case (3) of Corollary 3.4, then it must be
the case that �0 ∈ B1 and thus sn�0 < �1 for all n.
Theorem 3.6. Letα ∈ M. ThenΓ〈α〉 is isomorphic overΓ to one of the following:
(1) Γ� for some increasing � : n → sded(Ψ) \ {Ψ} and some n,
(2) Γ� ⊕Qα for some increasing � : n → sded(Ψ) \ {Ψ} and some n,
(3) Γ� ⊕Qα for some increasing � : 
 → sded(Ψ) \ {Ψ}.
Proof. We will recursively construct a sequence of extensions Γ =: Γ0 ⊆ Γ1 ⊆
Γ2 ⊆ · · · ⊆ Γ〈α〉 of models of T inside M. This sequence will either be finite or
have order type 
 + 1 and the last element of the sequence will be Γ〈α〉.
We will inductively assume that each Γn constructed so far is isomorphic to some
Γ� for some increasing � : n → sded(Ψ)\{Ψ}. This is true for n = 0 since Γ0 = Γ =
Γ� for the empty increasing function � : 0→ sded(Ψ) \ {Ψ}. Given Γn for n < 
,
if α ∈ Γn, then we are done, i.e., Γ〈α〉 = Γn and so Γ〈α〉 ∼= Γ� for some increasing
� : n → sded(Ψ) \ {Ψ}. Otherwise, consider the set TΓn (α). If TΓn (α) ⊆ ΨΓn then
we set Γn+1 := Γn ⊕ Qα and we are done, i.e., Γ〈α〉 = Γn+1 ∼= Γ� ⊕ Qα for some
increasing � : n → sded(Ψ) \ {Ψ}.
Otherwise, we are in the case whereTΓn (α) = B∪{�}whereB ⊆ Ψn is nonempty,
downward closed and is such that s(B) ⊆ B and � ∈ ΨM \ Ψn and B < � <
(Ψn \B) = Ψ\B. In this case we set Γn+1 := Γn〈�〉, i.e., we add to Γn the element � ,
andwith it, the entire copy ofZ that� lives on, soΓn+1 = Γn+

∑
n Qp

n�+
∑
n Qs

n� .
Thus Γn+1 ∼= (Γn)(Ψn\B). By Observation 3.5 we actually have Γn+1 ∼= Γ�′ for some
increasing �′ : n + 1→ sded(Ψ) \ {Ψ}. Now that we’ve constructed Γn+1, we keep
going.
Note thatwe either terminate the construction at a finite n or else

⋃
n Γn is isomor-

phic to Γ� inside Γ〈α〉 for some increasing � : 
 → sded(Ψ), by Observation 3.5.
In the latter case, we note that Γ
 := (

⋃
n Γn)⊕Qα (as an ordered abelian group) is

automatically closed under� and s by construction and so we are done: Γ〈α〉 = Γ

and so Γ〈α〉 ∼= Γ� ⊕Qα for some increasing � : 
 → sded(Ψ) \ {Ψ}. �
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§4. Examples. In this section, we give explicit examples of extensions of models
of Tlog which realize each type of simple extension in Theorem 3.6.
First, we recall the useful notion of pseudocauchy sequences and pseudolimits from
valuation theory, given here only in the special context of asymptotic couples with
valuation map �:

Definition 4.1. Let (Γ, �) be an asymptotic couple and � �= 0 a limit ordinal.
A sequence (α�)�<� in Γ is a pseudocauchy sequence, or pc-sequence, in (Γ, �) if for
some index �0 < � we have

�0 < � < � < � < � =⇒ �(α� − α�) < �(α� − α�).
For α ∈ Γ, the sequence (α�)�<� in Γ is said to pseudoconverge to α, and α is a
pseudolimit of (α�)�<� if for some index �0 < � we have

�0 < � < � < � =⇒ �(α − α�) < �(α − α�).
The basic connection between pc-sequences and model theory is the following:
Lemma 4.2. Let (Γ, �) be an asymptotic couple, � �= 0 a limit ordinal, and (α�)�<�
a pc-sequence in Γ. Then there is an elementary extension (Γ∗, �∗) of (Γ, �) and an
element α ∈ Γ∗ such that (α�)�<� pseudoconverges to α.
Proof. Suppose (α�)�<� is a pc-sequence in Γ, with � �= 0 a limit ordinal. Let
�0 < � be as in Definition 4.1. Consider the partial type given by all formulas of the
form

�(x − α�) < �(x − α�)
for �0 < � < �. Since every finite subset of this type is realized in (Γ, �), this type
will be realized by an element α in an elementary extension (Γ∗, �∗) of (Γ, �).
It easily follows that α is a pseudolimit of the sequence (α�)�<� . �
4.1. Example 1. Consider theLlog-substructure (Γ

Q
log, �) of (Γlog, �) with under-

lying group ΓQlog :=
∑
n Qen. In [7] we showed that (Γ

Q
log, �) |= Tlog, and in fact,

(ΓQlog, �) is a prime model of Tlog. Let α be the element

α :=
√
2e2 = (0, 0,

√
2, 0, . . .) ∈ Γlog \ ΓQlog.

An arbitrary element of Q �=α − ΓQlog looks like
(q0, q1, q2 + q

√
2︸ ︷︷ ︸

�=0,1

, q3, . . .),

where q ∈ Q �= and qn ∈ Q, where qn = 0 for all but finitely many n. Since the third
entry q2 + q

√
2 can never be 0 or 1, a computation using Example 2.4 shows that

�(Q �=α − ΓQlog) = s(Q �=α − ΓQlog) = {s0, s20, s30}
and thus

T(ΓQlog,�)
(α) = {s0, s20, s30} = [e0, e0 + e1 + e2]Ψ

(ΓQlog ,�)
⊆ Ψ(ΓQlog,�).

Therefore
(ΓQlog, �)〈α〉 = (ΓQlog ⊕Qα,�),

where the direct sum is taken inside Γlog and � is the restriction of the �-map of
(Γlog, �). This is an example of (2) from Theorem 3.6 with n = 0, and (1) from
Corollary 3.4.
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4.2. Example 2. The idea for this example is to adjoin the vector(
1,
1
2
,
1
3
,
1
4
,
1
5
, . . .

)
to the asymptotic couple (Γlog, �). This can be made precise using the notions of
pc-sequences and pseudolimits as follows:
Consider the sequence (αN )N<
 := (

∑N
i=0(1 + i)

−1ei)N<
 in (Γlog, �). If N0 <
N1 < 
, then

αN0 − αN1 = −∑N1i=N0+1(1 + i)−1ei , and thus:
�(αN0 − αN1 ) =

∑N0+1
i=0 ei = s

N0+10, for all N0 < N1 < 
. (I)

This shows that (αN )N<
 is a pc-sequence in (Γlog, �). By Lemma 4.2, we get an
elementary extension (Γ∗, �∗) of (Γlog, �) and an element α ∈ Γ∗ such that α is a
pseudolimit of (αN )N<
 . In some sense α can be thought of as the vector above,
especially when it comes to doing calculations. It follows from (I) and the definition
of pseudolimit that

�(α − αN ) = sN+10, for all N < 
. (II)

Let 	 =
∑
n qnen ∈ Γlog be arbitrary, where qn ∈ Q for all n. Then take the unique

N < 
 such that qn = (1 + n)−1 iff n < N . Next letM < 
 be arbitrary and note
that

�(	 − αN+M ) = �
(∑

n qnen −
∑M+N
n=0 (1 + n)

−1en
)

= �
(∑

n≥N qnen −
∑N+M
n=N (1 + n)

−1en
)

= �
(
(qN − (1 +N)−1)︸ ︷︷ ︸

�=0

eN +
∑
n>N q

∗
n en

)
(for some q∗n ∈ Q)

=
∑N
n=0 en = s

N0.

In light of (II), this computation shows that α ∈ Γ∗ \ Γlog. Using Fact 2.1 and the
definition of pseudolimit, the above computation also shows that

�(Q �=α − Γlog) = ΨΓlog .
To compute s(Q �=α − Γlog), let q ∈ Q �= and 	 =

∑
n qnen ∈ Γlog be arbitrary.

Take the unique N < 
 such that qn = q(1 + n)−1 − 1 iff n < N . Then we have
qαN+1−	 = e0+· · ·+eN−1+(q(1 +N)−1 − qN )︸ ︷︷ ︸

�=1

eN+
∑
n>N

q∗n en (for some q∗n ∈ Q)

and thus s(qαN+1 − 	) = sN0. Furthermore, (II) implies that
[qα − qαN+1] < [eN ].

Thus, with q̃ := |1− q(1 +N)−1 + qN |/2 ∈ Q>, we have that

qαN+1 − 	 − q̃eN < qα − 	 = (qα − qαN+1) + (qαN+1 − 	) < qαN+1 − 	 + q̃eN ,
with all three quantities contained either entirely within ((Γ∗)<)′ or entirely within
((Γ∗)>)′. Thus by (4) and (5) of Lemma 2.5, it follows that s(qα − 	) = sN0. This
computation shows that

s(Q �=α − Γlog) = ΨΓlog .
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We conclude that
T(Γlog,�)(α) = ΨΓlog

and so
(Γlog, �)〈α〉 = (Γlog ⊕Qα,�)

where the direct sum is being taken in (Γ∗, �∗) and� is the restriction of the�-map
of (Γ∗, �∗). This is an example of (2) from Theorem 3.6 with n = 0, and (2) from
Corollary 3.4.

4.3. Example 3. In this example, we let (Γ, �) be an arbitrary model of Tlog and
we fix an extension (Γ�, ��) for some increasing � : n → sded(Ψ) for some n ≥ 1.
Consider an element α ∈ Γ� such that

α := 	 +
n−1∑
j=0

αj,

where 	 ∈ Γ and αj ∈ (spanQ(�k,j)k∈Z)�=, i.e., each αj is constructed from a
nontrivial linear combination of �k,j ’s from the jth copy of Z that was added to Γ
in Γ�. We will show that α has the property that Γ〈α〉 = Γ�, and so it is in some
sense a “primitive element” for the extension Γ� of Γ.
First, since Γ〈α〉 = Γ〈α − 	〉, we may replace α with α − 	. Thus α =∑n−1j=0 αj .
By the Q-linear independence of the (�k,j)k∈Z,j<n (see Lemma 6.8 of [7]), we may
uniquely write α =

∑N
l=0 ql�l for someN > 0, with q0, . . . , qN ∈ Q �= and (�l )l≤N ⊆

(�k,j)k∈Z,j<n are such that �0 < · · · < �N .
Next, if

∑N
l=0 ql = 0, then�(α) = s�0 ∈ Γ〈α〉, otherwise s((

∑N
l=0 ql)

−1α) = s�0
(by Lemma 2.16). Thus (sk�0)k∈Z ⊆ Γ〈α〉 and α − q0�0 =

∑N
l=1 ql�l ∈ Γ〈α〉. In

this way, we have “stripped off” the least �k,j in α and we have recovered the first
copy of Z in the construction of Γ� . Continuing in this manner we can recover all
the other copies of Z.
It is also clear that all such “primitive elements” of Γ� must take this form. This
simple extension is an example of (1) in Theorem 3.6.

4.4. Example 4. Finally we give an example of a simple extension of type (3)
from Theorem 3.6. Let (Γ, �) be an arbitrary model of Tlog and we fix an extension
(Γ�, ��) for some increasing � : 
 → sded(Ψ) inside M. Let (�k,j)k∈Z,j<
 be the
elements from the copies of Z’s that were added to Γ in Γ�.
Next define the element αn :=

∑n
j=0 �1,j − �0,j ∈ Γ��(n+1) ⊆ Γ� ⊆ M. Note that

from Example 3 above we have Γ〈αn〉 = Γ��(n+1). Also note that by Lemma 2.16,
(1), we have that

�(αn−αm) = �
(∑n

j=m+1 �1,j − �0,j
)
= s(�0,m+1) = �1,m+1, for all m < n < 
,

(III)
and so the sequence (αn)n<
 is a pc-sequence. By saturation ofM, we can take an
element α that is a pseudolimit of (αn).
We claim that Γ〈α〉 is of the form Γ� ⊕ Qα. First, note that by (III) and the
definition of pseudolimit, it follows that

�(α − αn) = �1,n+1, for all n < 
. (IV)
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Thus by Fact 2.1, (IV), and Lemma 2.16, (1), we get

�(α) = �((α − α0) + α0) = min(�(α − α0), �(α0)) = min(�1,1, �1,0) = �1,0.
From this it is clear that in fact α0 = �1,0 − �0,0 = �1,0 − p�1,0 ∈ Γ��1 ⊆ Γ〈α〉.
In general, if we show that α0, . . . , αm ∈ Γ��(m+1) ⊆ Γ〈α〉, then we may consider
the pc-sequence (αn −

∑m
j=0 αm)n≥m+1 which pseudoconverges to α −∑mj=0 αm in

Γ〈α〉. Then we can recover �1,m+1 and thus alsoαm+1 similar to above by computing
�(α −∑mj=0 αm).
Thus we have shown Γ� ⊆ Γ〈α〉, from which it follows from the proof of
Theorem 3.6 that in fact Γ〈α〉 = Γ� ⊕Qα.

§5. Counting types in Tlog. In this section, we derive a consequence of
Theorem 3.6 necessary for proving NIP for Tlog in Section 6 below:
Corollary 5.1. If (Γ, �) |= Tlog, then |S1(Γ)| ≤ ded(|Γ|)ℵ0 .
Under the assumptions of Section 3, it follows from the quantifier elimination
for Tlog that two elements α, � ∈ M \ Γ have the same type over Γ iff α and � have
the same isomorphism type over Γ, i.e., iff there is an isomorphism Γ〈α〉 ∼= Γ〈�〉
over Γ which sends α to � . This is how Corollary 5.1 will follow from Theorem 3.6.
However first we must be aware of the following:

TournantDangereux 5.2. Supposeα, � ∈ M\Γhave the property that Γ〈α〉=
Γ ⊕ Qα and Γ〈�〉 = Γ ⊕ Q� , which is a special case of (2) from Theorem 3.6. In
this simplest of cases, it may be tempting to conclude that α and � realize the same
type over Γ if and only if α and � realize the same cut over Γ. However, this is not
true in general. Consider the following scenario: Let �, s� ∈ Ψ = ΨΓ〈α〉 = ΨΓ〈�〉
be two adjacent members of the common Ψ-set. Consider the following sets of
archimedean classes of Γ:

C0 := {[	] : 	 ∈ Γ and �(	) = s�} < C1 := {[	] : 	 ∈ Γ and �(	) = �}.
It could be the case that both α, � > 0 and C0 < [α], [�] < C1, which would
guarantee that they realize the same cut over Γ.However, it is possible that�(α) = �
whereas �(�) = s� and in this case α and � wouldn’t realize the same type over Γ.
To account for this phenomenon, we need to take a small detour.

5.1. Two more embedding lemmas: a detour. In this subsection (Γ, �) is a divis-
ible H -asymptotic couple. Here we recall two additional embedding lemmas for
H -asymptotic couples which will help us deal with the issue raised in 5.2 above. The
first is [4, Lemma 9.8.1]:
Lemma 5.3. Let i : Γ→ G be an embedding of ordered abelian groups inducing a
bijection [Γ]→ [G ]. Then there is a unique function�G : G �= → G such that (G,�G )
is anH -asymptotic couple and i : (Γ, �)→ (G,�G ) is an embedding.
Proof. The unique �G : G �= → G is defined by �G(g) := i(�(	)) for g ∈ G �=

and 	 ∈ Γ�= with [g] = [i(	)]. �
Corollary 5.4. Suppose (Γ⊕Qα,�α) and (Γ⊕Q�,��) are twoH -asymptotic
couple extensions of (Γ, �) such that
(1) [Γ⊕Qα] = [Γ], and
(2) α and � realize the same cut over Γ.
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Then the isomorphism i : Γ⊕Qα → Γ⊕Q� of ordered abelian groups over Γ which
sends α to � is also an isomorphism i : (Γ⊕Qα,�α)→ (Γ⊕Q�,��) of asymptotic
couples over (Γ, �).

Proof. By (1) we have that�α((Γ⊕Qα)�=) = Ψ and by (2) that [Γ⊕Q�] = [Γ].
Given 	0 + qα ∈ Γ⊕Qα �=, let 	1 ∈ Γ�= be such that [	0 + qα] = [	1]. It follows from
condition (2) that [	1] = [	0 + q�]. Thus i(�α(	0 + iα)) = �α(	0 + iα) = �(	1) =
�� (	0 + q�) = ��(i(	0 + qα)), using Lemma 5.3 for (Γ⊕Q�,��). �
The second embedding lemma is a divisible variant of [4, Lemma 9.8.7]:

Lemma 5.5. Let (C0, C1) be a cut in [Γ�=] and let � ∈ Γ be such that � < (Γ>)′,
	† ≤ � for all 	 ∈ Γ�= with [	] ∈ C1, and � ≤ �† for all � ∈ Γ�= with [�] ∈ C0. Then
there exists an H-asymptotic couple (Γ ⊕ Qα,�α) extending (Γ, �), with α > 0,
such that:

(1) [α] realizes the cut (C0, C1) in [Γ�=], and �α(α) = � ;
(2) given any embedding i of (Γ, �) into a divisible H -asymptotic couple (Γ1, �1)
and any element α1 ∈ Γ>1 such that [α1] realizes the cut ({[i(�)] : [�] ∈ C0},
{[i(�)] : [�] ∈ C1}) in [i(Γ�=)] and �1(α1) = � , there is a unique extension
of i to an embedding j : (Γ⊕Qα,�α)→ (Γ1, �1) with j(α) = α1.

Corollary 5.6. Suppose (Γ⊕Qα,�α) and (Γ⊕Q�,��) are twoH -asymptotic
couple extensions of (Γ, �) such that:

(1) �α((Γ⊕Qα)�=) = Ψ = �� ((Γ⊕Q�)�=),
(2) α > 0 and � > 0,
(3) �α(α) = ��(�), and
(4) [α] �∈ [Γ], [�] �∈ [Γ], and [α] and [�] realize the same cut over [Γ];
then necessarilyα and� realize the same cut overΓ and the isomorphism i : Γ⊕Qα →
Γ ⊕ Q� of ordered abelian groups over Γ which sends α to � is also an isomorphism
i : (Γ⊕Qα,�α)→ (Γ⊕Q�,��) of asymptotic couples over (Γ, �).

5.2. Back to counting types. For the rest of this section,M will be a monster model
of Tlog and Γ will be a small submodel of M of size κ. As a warmup to proving
Corollary 5.1, we first prove the following:

Lemma 5.7. There are at most ded(κ)-many types of the form tp(α|Γ) where
α ∈ M \ Γ has the property that Γ〈α〉 = Γ⊕Qα insideM.

Proof. We have to count the isomorphism types of elements α ∈ M\Γ that have
the property that Γ〈α〉 = Γ⊕Qα. Let α ∈ M \Γ have this property. There are two
cases to consider:
Case 1: [Γ ⊕ Qα] = [Γ]. In this case the isomorphism type of α over Γ is
determined completely by it’s cut over Γ by Corollary 5.4. Thus there are at most
ded(κ)-many types that fall into this case.
Case 2: [Γ⊕Qα] �= [Γ]. In this case, there will be some 	 ∈ Γ, q ∈ Q �= such that
	 + qα > 0 and [	 + qα] �∈ [Γ]. In this case, the isomorphism type of α over Γ is
completely determined by this choice of 	 ∈ Γ, q ∈ Q �=, the cut that [	+qα] realizes
in [Γ] and the element � ∈ Ψ such that�(	 + qα) = �, by Corollary 5.6. Thus there
are at most κ · ℵ0 · ded(κ) · κ = ded(κ)-many types that fall into this case. �
Proof of Corollary 5.1. Let α ∈ M \ Γ. Then by Theorem 3.6, we have three
cases:
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Case 1: Γ〈α〉 ∼= Γ� for some increasing � : n → sded(Ψ), for some n. In this
case, the isomorphism type of α over Γ is completely determined by the map �
and the specific element of Γ� which maps to α. Since |Γ� | = |Γ|, for each n this
gives ded(κ)n · κ = ded(κ)-many isomorphism types over Γ. In total, Case 1 gives∑
n<
 ded(κ) = ded(κ)-many types.
Case 2: Γ〈α〉 ∼= Γ�⊕Qα for some increasing � : n → sded(Ψ), for some n. In this
case, the isomorphism type ofα over Γ is determined by themap � and then the type
ofα over the image of Γ� inM. By Lemma 5.7, Case 2 gives

∑
n<
 ded(κ)

n ·ded(κ) =
ded(κ)-many types.
Case 3: Γ〈α〉 ∼= Γ� ⊕ Qα for some increasing � : 
 → sded(Ψ). In this case, the
isomorphism type of α over Γ is also determined by the map � and then the type
of α over the image of Γ� in M. By Lemma 5.7, Case 3 gives ded(κ)ℵ0 · ded(κ) =
ded(κ)ℵ0 -many types. �

§6. NIP. In this section we derive the main result of this paper as an immediate
consequence of Corollary 5.1:

Theorem 6.1. Tlog and T0 have NIP.
For the rest of this section,T is an arbitrary first-order theorywithmonstermodelM.

Definition 6.2. Let R ⊆ Mm+n = Mm × Mn be a definable relation. We say
that R, and any LM-formula φ(x, y) that defines R, has the independence property
(or IP) if there are (ai)i∈N ⊆ Mm and (bI )I⊆N ⊆ Mn such that

R(ai , bI )⇐⇒ i ∈ I, for all i ∈ N and I ⊆ N.

Otherwise we say thatR, and anyLM-formula φ(x, y) that definesR, does not have
the independence property (or has NIP).
We say that T has NIP if every definable relation R ⊆ Mm+n for every m, n
has NIP.

Definition 6.3. Define the stability function of T to be the function

gT (κ) = sup
M |=T,|M |=κ

∣∣∣∣∣⋃
n<


Sn(M )

∣∣∣∣∣ = sup
M |=T,|M |=κ

∣∣S1(M )∣∣ .
The main result concerning NIP and the function gT (κ) is the following:

Proposition 6.4. If T has NIP, then

gT (κ) ≤ ded(κ)|T | for all κ,
and if T has the independence property, then

gT (κ) = 2κ for all κ.

Proposition 6.4 is a global form of [19, Theorem 4.10]. For additional accounts,
also see [1, Section 4] or [20, 2.3.4].
In the presence of the Generalized Continuum Hypothesis (GCH), we have
ded(κ) = 2κ for all κ and so we cannot get a converse to Proposition 6.4. However,
if we dare to reject CH, then we have [15, Corollary 4.3] at our disposal:

Proposition 6.5. Con(ZF) → Con(ZFC, 2ℵ0 = ℵ
1 , 2ℵ1 = ℵ+
1 , and
ded(ℵ1) < 2ℵ1 ).
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Note that if we are in amodel of ZFCwhere 2ℵ0 = ℵ
1 , 2ℵ1 = ℵ+
1 andded(ℵ1) < 2ℵ1
are true, then it follows that ded(ℵ1) ≤ ℵ
1 and so

ded(ℵ1)ℵ0 ≤ ℵℵ0

1 = (2

ℵ0 )ℵ0 = 2ℵ0·ℵ0 = 2ℵ0 = ℵ
1 < ℵ+
1 = 2ℵ1 .
In other words:
Corollary 6.6 (Mitchell). Con(ZF)→ Con(ZFC and ded(ℵ1)ℵ0 < 2ℵ1 ).
By absoluteness of NIP, Proposition 6.4, and Corollary 6.6, we get:
Proof of Theorem 6.1. Since Tlog is countable in a recursive language with a
recursively enumerable axiomatization, the statement “Tlog has NIP” is an arith-
metic statement, i.e., viaGödel numbering this statement is expressible by a sentence
in Peano arithmetic. Any proof of such a sentence from ZFC + (ded(ℵ1)ℵ0 < 2ℵ1)
can be converted into a (possibly much longer) proof from ZFC. Now, suppose we
are in a model of ZFC + (ded(ℵ1)ℵ0 < 2ℵ1). Then in such a model it follows from
Corollary 5.1 that gTlog (ℵ1) ≤ ded(ℵ1)ℵ0 < 2ℵ1 . Then by Proposition 6.4, it follows
that Tlog has NIP in that particular model, i.e.,

ZFC + (ded(ℵ1)ℵ0 < 2ℵ1 ) � Tlog has NIP
and thus

ZFC � Tlog has NIP,
or in other words, Tlog has NIP. It follows that T0 also has NIP since every model
of T0 can be expanded into a model of Tlog. �

§7. Other results.
7.1. The Steinitz exchange property. Given an arbitrary theory T , a parameter
set A and an element a inM, we say that a is algebraic over A if a belongs to a finite
A-definable subset ofM. Then we define the algebraic closure of A inM as the set

acl(A) := {a ∈ M : a is algebraic over A}.
Definition 7.1. A theory T is said to have the Steinitz exchange property if for
all sets A and all elements a, b ∈ M, if a �∈ acl(A) and b �∈ acl(A), then

a ∈ acl(A ∪ {b})⇐⇒ b ∈ acl(A ∪ {a}).
If a theoryT has the Steinitz exchange property, then the algebraic closure operator
acl will be a so-called pregeometry. For more on the role of pregeometries in model
theory, we refer the reader to [13, Chapter 8]. For our theory Tlog, the algebraic
closure operator will not be a pregeometry:
Proposition 7.2. Tlog does not have the Steinitz exchange property.
Proof. Since Tlog has a universal axiomatization and is model complete, we have
that for all A, acl(A) = 〈A〉. Let Γ be a small model and construct an elementary
extension Γ� of Γ for some � : 2 → sded(Ψ) inside M. Let (�k,0) and (�k,1) be the
two copies of Z which were added to Γ in Γ� . Let a = �0,0 and b = �0,0 + �0,1.
By calculations done in Section 4, we have acl(Γ ∪ {b}) = Γ〈b〉 = Γ� whereas
acl(Γ ∪ {a}) = Γ〈a〉 = Γ��1. �
7.2. Applications of Section 2. In this subsection we let (Γ, �) be a divisible
H -asymptotic couple with asymptotic integration, construed as an LAC -structure
in the obvious way. We let 
 denote the contraction map on (Γ, �). The material
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in this subsection naturally would belong in Section 2 as it applies in general to
arbitraryH -asymptotic couples with asymptotic integration. However, we chose to
relegate it to Section 7 because it was not relevant for Section 3 and because of its
relevance in the next subsection.
We begin with the following application of Proposition 2.14:
Corollary 7.3. For any q ∈ Q>, and for all α ∈ Γ such that |α| > (1 + q)|s0|,
s(α) = �(α).
Corollary 7.3 and its proof below indicates the functions s and� agree sufficiently
far away from the convex hull of {0}∪{s0}∪Ψ>s0. At the moment this observation
isn’t very fruitful for models of T0 since most of the action happens around this
set anyway. However, for other asymptotic couples, such as the so-called closed
asymptotic couples of [3], this can be useful in further relating the roles of s and �.

We begin first with a lemma which further clarifies the relationship between
s0, 0, and Ψ in an H-asymptotic couple:
Lemma 7.4. s0 �= 0 and thus either s0 < 0 or 0 < s0. For every q ∈ Q>, if s0 < 0,
thenΨ < (1− q)s0, and if 0 < s0, thenΨ < (1 + q)s0.
Proof. Since

∫
0 �= 0, it follows that 0− ∫ 0 �= 0 and thus s0 �= 0. If s0 < 0, then

(−qs0)′ = −qs0 + �(−qs0) = −s0 +�(s0) = (1− q)s0 ∈ (Γ>)′
and thus Ψ < (1− q)s0 by (AC3). If 0 < s0, then for q ∈ Q>,

(qs0)′ = qs0 + �(qs0) = (1 + q)s0 ∈ (Γ>)′,
and likewise Ψ < (1 + q)s0. �
Proof of Corollary 7.3. Suppose q ∈ Q> and α ∈ Γ is such that |α| > (1 + q)

|s0|. Let (Γ∗, �∗) be an H -asymptotic couple with asymptotic integration that
extends (Γ, �) which contains an element 	∗ ∈ Ψ∗ such that Ψ < 	∗. If s0 < 0,
then s0 < 	∗ < 0 and thus |α| ≥ (1 + q)|	∗|. Otherwise, if s0 > 0, then s0 <
	∗ < (1 + q′)s0 for every q′ ∈ Q> and thus |α| ≥ (1 + q)|	∗| as well in this case.
In both cases, [α − 	∗] = [α] and thus s(α) = �∗(α − 	∗) = �∗(α) = �(α) by
Proposition 2.14. �
As another application of s-cuts, Definition-Lemma 7.5 below gives a method
of producing a new �-map from an old �-map, while keeping the underlying
ordered divisible abelian group and original contraction map the same. Recall that

 + � ◦ 
 = � is the defining relation for the contraction map 
 on Γ< in the
asymptotic couple (Γ, �).

Definition-Lemma 7.5. Let B ∈ sded(Ψ) and ε ∈ Γ be such that �(ε) ∈ B.
Define the (B, ε)-shift of � to be the function �̃ : Γ∞ → Γ∞ such that

�̃(α) =

⎧⎪⎨⎪⎩
�(α) if �(α) < B,
�(α) + ε if �(α) ∈ B,
∞ if α = 0.

Then (Γ, �̃) is a divisible H -asymptotic couple with asymptotic integration such
that 
 + �̃ ◦ 
 = �̃ on Γ<.
Proof. We’ll first show (HC). Suppose 0 < α < � and�(α) ∈ B and�(�) < B.
Then by Corollary 2.15, �(�(�) − �(α)) = s�(�) < B whereas �(ε) ∈ B.
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By (HC) for (Γ, �), it follows that [ε] < [�(α)−�(�)] and thus�(α)−�(�) ≥ −ε
since �(α) − �(�) > 0. From this we get �̃(α) = �(α) + ε ≥ �(�) = �̃(�). All
other cases are trivial.
(AC2) is clear.
For (AC1), first suppose that α, � are such that [α] > [�]. Then �̃(α + �) =
�̃(α) ≥ min(�̃(α), �̃(�)) by (HC) and (AC2). Otherwise, assume that [α] = [�]
and �(α) = �(�) < B and�(α+�) ∈ B. Then by a similar argument as for (HC)
using [ε] < [�(α + �) − �(α)], we can show that �̃(α + �) = �(α + �) + ε ≥
�(α) = min(�̃(α), �̃(�)). All other cases are trivial.
Instead of verifying (AC3), by [4, Lemma 6.5.5] it is sufficient to show that the
map 	 �→ 	 + �̃(	) : Γ> → Γ is strictly increasing. The main case to consider is
0 < α < � where �(α) ∈ B and �(�) < B. In this case, [�] > [α], [ε] and so

�(α) < (� − α − ε)′ = � − α − ε+ �(� − α − ε) = � − α − ε+ �(�)
by (HC) and (AC3) for (Γ, �). Rearranging terms gives usα+�(α)+ε < �+�(�),
or rather α + �̃(α) < � + �̃(�).
To show that (Γ, �̃) has asymptotic integration, let Ψ̃ := �̃(Γ�=). Suppose towards
a contradiction that there is 	 ∈ Γ such that 	 = sup Ψ̃. Since �̃(B) is cofinal in Ψ̃,
we have that 	 = sup �̃(B) = sup�(B) + ε = supΨ + ε. Thus 	 − ε = supΨ, a
contradiction because (Γ, �) has asymptotic integration.
For the claim about the contraction mapping, note that for all α ∈ Γ, �(
(α)) =
s�(α). Thus �(α) < B iff �(
(α)) < B. �
As a special case of Definition-Lemma 7.5, we note that the (Ψ, ε)-shift of � is
just a shift (Γ, �+ε) in the sense of [18, p. 978, Lemma(2)]. See also [4, Section 6.5].
In general, if (Γ, �̃) is a (B, ε)-shift of (Γ, �), then we do not expect these
asymptotic couples, as LAC -structures, to be elementarily equivalent. Indeed, if
(Γ, �) |= T0, then the (Ψ,−s0)-shift (Γ, �̃) will not be a model of T0 because
min Ψ̃ = 0 in that case. However, we do have the following:

Proposition 7.6. Suppose (Γ, �) |= T0 and B ∈ sded(Ψ) is such that B �= Ψ and
ε ∈ Γ is such that �(ε) ∈ B. Then the (B, ε)-shift (Γ, �̃) is also a model of T0.
Proof. (Γ, �̃) is a divisible H -asymptotic couple with asymptotic integration
such that 
 + �̃ ◦ 
 = �̃. Let s̃ be the successor function of (Γ, �̃). It is clear that
Ψ̃ is a successor set with least element s0 = s̃ > 0, since the order types of Ψ and
Ψ̃ are the same and these Ψ-sets have at least the first copy of N in common.

Claim 7.7. Suppose α is such that �(α) ∈ B. Then s̃(�̃(α)) = s�(α) + ε.
Proof of Claim. By the relation s� = �
, which holds in every H -asymptotic
couple with asymptotic integration, and the fact that 
̃ = 
, we have

s̃(�̃(α)) = �̃(
̃(α)) = �̃(
(α)) = �(
(α)) + ε = s(�(α)) + ε. �
By the claim it follows that each α ∈ Ψ̃ has immediate successor s̃(α) and that
	 �→ s̃	 : Ψ̃→ Ψ̃>s0 is a bijection. �
7.3. Relation to precontraction groups. In this subsection we will make a remark
about the relationship between our asymptotic couples and the precontraction
groups of Kuhlmann. Precontraction groups arise as the value groups of certain
ordered exponential fields, and in this way they are similar in spirit to asymptotic
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couples which arise as the value groups of certain valued differential fields. We refer
the interested reader to [9,10] for a treatment of the model theory of precontraction
groups and to [11] for their connection to ordered exponential fields. For our
purposes, it suffices to recall the definition:

Definition 7.8. A precontraction group is a pair (Γ, 
) where Γ is an ordered
abelian group and 
 : Γ→ Γ satisfies for all α, � ∈ Γ:
(1) 
(α) = 0⇐⇒ α = 0;
(2) α ≤ � =⇒ 
(α) ≤ 
(�);
(3) 
(−α) = −
(α);
(4) [α] = [�] and sign(α) = sign(�) =⇒ 
(α) = 
(�).
If in addition, for all α ∈ Γ�=:
(5) |α| > |
(α)|
then (Γ, 
) is said to be a centripetal precontraction group. Finally, we say that a
precontraction group (Γ, 
) is divisible if the underlying ordered abelian group Γ is
divisible.
We let LPG = {0,+,−, <, 
} denote the natural first-order language of precon-
traction groups and construe all precontraction groups (Γ, 
) as LPG -structures in
the obvious way.

If (Γ, �) is a divisible H -asymptotic couple with asymptotic integration, then
we may associate to (Γ, �) a divisible centripetal precontraction group (Γ, 
PG ) by
defining for all α ∈ Γ,


PG(α) =

⎧⎪⎨⎪⎩

(α) if α < 0,
0 if α = 0,
−
(−α) if α > 0,

where 
 =
∫
� : Γ< → Γ< is the contraction map of (Γ, �) as defined in

Definition 2.3. Thus every divisible H -asymptotic couple with asymptotic integra-
tion yields a divisible centripetal precontraction group as a reduct. Conversely, it is
worth considering whether this process is reversible, i.e., given a divisible centripetal
precontraction group (Γ, 
PG ), can one define a �-map on Γ in the LPG -structure
(Γ, 
PG ) such that (Γ, �) is a divisible H -asymptotic couple with asymptotic inte-
gration and such that the contraction map of (Γ, �) is 
PG |Γ<. It turns out this is
impossible for models of T0:

Proposition 7.9. In no precontraction group (Γ, 
) can one define, even allowing
parameters, a function� : Γ�= → Γ such that (Γ, �) is amodel ofT0 and 
+�◦
 = �
on Γ<.
Proof. Suppose (Γ, �) |= T0 is such that we can define � in (Γ, 
). We may
assume that (Γ, �) isℵ0-saturated. TakeB ∈ sded(Ψ) large enough so that it is to the
right of the Ψ-set of the definable closure of all the finitely-many parameters needed
from Γ to define � in (Γ, 
). Consider any (B, ε)-shift �̃ of � such that �(ε) ∈ B.
Then (Γ, �) ≡ (Γ, �̃) and (Γ, 
) = (Γ, 
̃). By completeness ofT0, the same formula
that defines � in (Γ, 
) must define �̃ in (Γ, 
̃) and so � = �̃, a contradiction. �
Our method of proof for Proposition 7.9 mirrors the proof given in
[2, Proposition 5.1] for the corresponding result about closed asymptotic couples.
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A closed asymptotic couple is a divisibleH -asymptotic couple with asymptotic inte-
gration such that (Γ<)′ = Ψ (see [3]). There they use essentially the same trick with
(B, ε)-shifts, except they consider iterates of � instead of iterates of s . However,
by Corollary 7.3, one can see that this is essentially the same notion for elements
α � 0.
Furthermore, it seems likely that this trick can be used for any theory Th(Γ, �)
of interest, where (Γ, �) is a divisible H -asymptotic couple with asymptotic inte-
gration. Provided that the first order theory of (Γ, �) is preserved under sufficiently
subtle (B, ε)-shifts, the same proof can be used. This leads us to the following:

Conjecture 7.10. In no nontrivial precontraction group (Γ, 
) can one define, even
allowing parameters, a function � : Γ�= → Γ such that (Γ, �) is an H -asymptotic
couple and 
 + � ◦ 
 = � on Γ<.

§8. Conclusion. We concludewith a list of unresolved issues and things left to do:
(1) Settle Conjecture 7.10.
(2) Describe all definable functions Γ→ Γ∞, where (Γ, �) is a model of Tlog.
(3) Give a more concrete proof of NIP for Tlog which avoids an absoluteness
argument.

(4) Is Tlog distal? Distal theories form a subclass of NIP theories which in some
sense are purely unstable. See [21] for a definition of distality.

(5) Is (Γ, �) quasi-weakly-o-minimal, i.e., any definable subset is a finite boolean
combination of convex sets and 0-definable sets? For more information on
this property in the o-minimal setting, see [5].

(6) Is (Γ, �) d-minimal, i.e., any definable subset of Γ is a union of an open
set and finitely many discrete sets? See [14, Section 3.4] for a discussion of
d-minimality in the context of expansions of the real field.
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