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Orbital integrals on GLn ×GLn/GL2n

Hang Xue
Abstract. We study harmonic analysis on the symmetric space GLn ×GLn/GL2n . We prove several
standard results, e.g. Shalika germ expansion of orbital integrals, representability of the Fourier
transform of orbital integrals and representability of spherical characters. These properties are not
expected to hold for symmetric spaces in general.

1 Introduction

In the relative Langlands program, one often seeks to establish a comparison of two
relative trace formulae in order to establish a connections between period integrals on
the one hand, and special values of L-functions on the other. In [Guo96] such a result,
as a generalization of Waldspurger’s formula for toric periods, was conjectured for
automorphic representations of GL2n(AF), with the period integrals corresponding to
the subgroups GLn(AF) ×GLn(AF) or GLn(AE), where E/F is a quadratic extension
of number fields. The case of GLn(AF) ×GLn(AF) is referred to as “linear periods”
and was first introduced and studied by Jacquet and his collaborators [FJ93, JR96].
This note seeks to establish the necessary analytic properties of relative orbital integrals
arising from the geometric side of the corresponding relative trace formula to pursue
this conjecture.

Let F be a p-adic field of characteristic zero and η ∶ F× → {±1} be a nontrivial
quadratic character. Let G = GL2n ,F and H = GLn ,F ×GLn ,F with an embedding

(h1 , h2) ↦ (h1
h2
) , h1 , h2 ∈ GLn ,F .

Put

θ(g) = (1n
−1n

) g (1n
−1n

) .

Then, H = {g ∈ G ∣ θ(g) = g}. Let

S = {g−1θ(g) ∣ g ∈ G} ⊂ G

This is a closed subvariety of G over F and H acts on S by conjugation. We prove some
standard harmonic analysis results on S, e.g., density of regular semisimple orbital
integrals, representability of Fourier transform of orbital integrals, representability of
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Orbital integrals on GLn ×GLn/GL2n 859

spherical characters, etc. Note that these results are not expected for general symmetric
spaces, as indicated by various counterexamples of Rader and Rallis [RR96]. This
means that the symmetric space S is of a particular good shape in this regard.
Our argument follows closely the traditional route. The new ingredient is a detailed
study of the nilpotent orbital integrals, which is needed in verifying the homogeneity
properties of the nilpotent orbital integrals. This study leads to some very interesting
linear algebra problems. One of them is the following: classify pairs of n × n matrices
(A, B) with AB being nilpotent, up to the equivalence relation

(A, B) ∼ (A′ , B′) ⇔ ∃ h1 , h2 ∈ GLn(F), s.t. A′ = h−1
1 Ah2 , B′ = h−1

2 Bh1 .

This innocent looking problem is in fact equivalent to the classification of nilpotent
orbits and is (surprisingly) not easy, c.f. Section 3 for a solution.

Due to the very nature of the subject, this paper is leaning toward the technical
side. We describe our results more precisely in the rest of the introduction for the
convenience of future reference. The most applicable result perhaps is Theorem 1.5
which asserts that the spherical characters arising in this context are represented by
locally integrable functions.

Elements of S are all of the form

(a b
c d) , a2 = d2 = 1n + bc, ab = bd , dc = ca.

We say that an element x ∈ S is θ-semisimple (respectively, θ-regular semisimple) if
it is semisimple (respectively, regular semisimple) in GLn ,F (in the usual sense) and
det(a2 − 1n) /= 0. We say that an element x ∈ G is θ-semisimple (respectively, θ-regular
semisimple) if its image in S is so.

Let f ∈ C∞c (G) and g ∈ G be a θ-semisimple element. We define the θ-semisimple
orbital integral

O(g , η, f ) = ∫
(H×H)g/H×H

f (h1 gh2)η(det h2)dh1dh2 ,

where (H × H)g = {(h, h′) ∈ H × H ∣ hgh′ = g}. This integral is absolutely conver-
gent. Let D(G)H×H ,η be the space of left H-invariant and right (H, η)-invariant
distributions on G. Then O(g , η, ⋅) ∈ D(G)H×H ,η for all θ-regular semisimple
g ∈ G.

Theorem 1.1 The set {O(g , η, ⋅) ∣ g ∈ Gis θ-regular semisimple} is weakly dense in
D(G)H×H ,η . This means that if f ∈ C∞c (G) and O(g , η, f ) = 0 for all θ-regular
semisimple g ∈ G, then λ( f ) = 0 for all λ ∈ D(G)H×H ,η .

We also consider the tangent space of S at the point represented by the identity
element in G. This is a vector space s together with an action of the group H. By way
of analogy with the group case, we will refer to it as the “Lie algebra” of S. Explicitly
it can be described as follows. We have s = Mn ,F × Mn ,F , considered as a subspace of
M2n ,F consisting of matrices of the form

(0 X
Y 0) , X , Y ∈ Mn ,F .
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The group H acts on s by conjugation. An element in s is θ-semisimple or θ-regular
semisimple if it is so in M2n ,F . The locus of θ-semisimple and θ-regular semisimple
elements in s are denoted by sθ−ss and sθ−reg respectively.

Let γ ∈ sθ−ss and f ∈ C∞c (s), we define an orbital integral

O(γ, η, f ) = ∫
Hγ/H

f (h−1γh)η(det h)dh,

where Hγ = {h ∈ H ∣ h−1γh = γ}. The integral is absolutely convergent.
Let D(s)H ,η be the (H, η)-invariant distributions on s. Then O(γ, η, ⋅) ∈ D(s)H ,η

for all θ-regular semisimple γ in s.

Theorem 1.2 The set {O(γ, η, ⋅) ∣ γ ∈ sθ−reg} is weakly dense in D(s)H ,η .

Let us fix an H-invariant inner product on s by ⟨γ, δ⟩ = Trγδ, where on the right
hand side the product and the trace are taken in M2n ,F . Thus, we can speak of
the Fourier transform of elements in C∞c (s) and hence the Fourier transform of
distributions on s. The following result is proved in [Zha15, Theorem 6.1].

Proposition 1.3 Let γ ∈ s be θ-regular semisimple. Then the Fourier transform of the
distribution O(γ, η, ⋅) is represented by a locally integrable (H, η)-invariant function
on s. This function is locally constant on sθ−reg.

We will define “θ-nilpotent orbital integrals” in this note and prove the following
result.

Proposition 1.4 The Fourier transform of θ-nilpotent orbital integrals are represented
by locally integrable functions on s. This function is locally constant on sθ−reg.

This proposition is the technical heart of the note. The hard part is that, as
opposed to the case of the classical orbital integrals or the nonsplit analogue of this
paper treating orbital integrals on GLn(E)/GL2n(F) [Guo98], the naive integration
on the θ-nilpotent orbits is not absolutely convergent in our case and some subtle
regularization process is needed to define “θ-nilpotent orbital integrals.”

A standard consequence of this proposition is the representability of the rela-
tive spherical characters. Let π be an irreducible representation of G. Assume that
HomH(π,C) /= 0 and HomH(π̃, η) /= 0 where π̃ is the contragredient of π. Fix nonzero
elements l ∈ HomH(π,C) and l̃η ∈ HomH(π̃, η). Define a distribution on G by

Jπ( f ) = ∑
φ

l(π( f )φ) l̃η(φ̃), f ∈ C∞c (G).

Here, φ runs through a basis of π while φ̃ runs through the dual basis. Then Jπ ∈
D(G)H×H ,η .

Theorem 1.5 The distribution Jπ is represented by a left H-invariant and right (H, η)-
invariant locally integrable function on G.

We end this introduction with a question. Let (G , H) be a general symmetric space
in the sense that G is a reductive group over F and H is the fixed point in G of an
involution. Rader and Rallis [RR96] showed using many counterexamples that the
results in this note in general do not hold for (G , H). That is, regular semisimple orbital
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integrals might not be weakly dense in the space of all invariant distributions; the
spherical characters might not be representable by a locally integrable functions. Apart
from the case treated in this note, we only know that these good properties hold for
the following pairs.
– The classical group case: (H × H, H). This is the celebrated result of Harish-

Chandra.
– The Galois case: (ResE/F H, H)where E/F is a quadratic field extension. This is due

to Hakim [Hak94].
– The linear case: (A×, B×)where E/F is a quadratic field extension and A is a central

simple algebra over F containing E and B the centralizer of E in A. This is due to
[Guo98] in if A = M2n ,F and the general case follows from the same argument. It is
unfortunate that no published proof is available.

The question is: Can you characterize symmetric spaces with these good properties in
terms of their geometric properties or combinatorial invariants?

This note is organized as follows. We start with the semisimple descent of
orbital integrals in Section 2. In Sections 3–7, we are going to work on the Lie
algebra s. We study θ-nilpotent orbital integrals in Sections 3 and 4. We define
all orbital integrals in Section 5. Then, we establish the Shalika germ expansion
in Section 6 and prove that they are linearly independent in Section 7. The-
orem 1.2 and Proposition 1.4 are also proved simultaneously with linear inde-
pendence of Shalika germs. In Section 8, we deduce the results on the level of
groups from the results on the Lie algebras. In particular, we prove Theorem 1.1.
Finally in the last section, we prove Theorem 1.5, the local integrability of spherical
characters.

Notation We always take F to be a p-adic field of characteristic zero. Let oF be the ring
of integers and ϖF a uniformizer.

Let X be a scheme over F. Usually, we simply write X for X(F) unless there are
ambiguities. One notable exception is with the categorical quotient in which case we
always distinguish the notation of the scheme from its set of F-points (see below). On
the scheme X, we always use the Zariski topology while on the set of F-points X(F) we
always use the analytic topology.

Let G be an algebraic group over F and V be a G-variety over F, i.e., V admits an
action of G. This action is sometimes denoted by g ⋅ v or gv where g ∈ G and v ∈ V. If
x ∈ V, we denote by Gx the stabilizer of x in G. If C is a subset of V and g ∈ G, then
we let C g the subset consisting of all elements of the form g ⋅ v where v ∈ C, and we let
CG = ∪g∈G C g . Thus, if x ∈ V, then xG stands for the orbit of x. The adjoint action of G
on its Lie algebra (or subgroup of G acting on subspaces of the Lie algebra of G) is denoted
by Ad.

We denote by q ∶ V → V//G, or simply V//G, the categorical quotient. We should
note that (V//G)(F) is usually not the same as V(F)//G(F) and we always write
V//G for the scheme instead of its F-points. A subset of U of V(F) is called saturated if
U = q−1(q(U)).

We use capital letters to denote various groups and symmetric spaces. We use the
corresponding Gothic letters to denote their Lie algebras, e.g., if G is an algebraic
group, then without saying to the contrary, g stands for the Lie algebra of G. Ele-
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ments in the groups or symmetric spaces are usually denoted using lower case Latin
letters, while elements in the Lie algebras are usually denoted by lower case Greek
letters.

2 Semisimple descent

First, we consider some general setup. Let G be a reductive group over F, X be a G-
variety over F and x ∈ X be G-semisimple point, i.e., the orbit xG of x is closed. We
let N X

x be the normal space of xG at x. It admits a natural action of Gx and we call
(Hx , N X

x ) the sliced representation at x. By [AG09], there exist the following data
which we refer to as the analytic slice at x. We use analytic topology throughout.

(1) An G-invariant open neighborhood U of xG in X with an G-equivariant retraction
map p ∶ U → xG .

(2) An Gx -equivariant embedding ψ ∶ p−1(x) → N X
x with an open and saturated

image such that ψ(x) = 0.

If y ∈ p−1(x) and z = ψ(y), then we have

(1) (Gx)z ≃ Gy and N Nx
z ≃ N X

y as representations of (Gx)z and Gy and
(2) y is G-semisimple in X if and only if z is Gx -semisimple in N X

x .

The analytic slice at x is denoted by (U , p, ψ).
Let us now specialize to the case X = s or S with the conjugation action of H.
First consider the case X = s. The categorical quotient s//H is an n-dimensional

affine space over F. The canonical map s→ s//H is given by

( a
b ) → Tr ∧i ab, i = 1, . . . , n.

More precisely it maps ( a
b ) to the coefficients of the characteristic polynomial

of ab. Each fiber of s→ s//H is a collection of of finitely many orbits.
Let γ ∈ sθ−ss and Gγ = {g ∈ G ∣ g−1γg = γ} be its stabilizer in G and then Hγ = H ∩

Gγ . Let gγ , hγ be the Lie algebras of them respectively. The involution θ preserves Gγ ,
and hence gγ . Let sγ be the (−1)-eigenspace of θ in gγ . Then, gγ = hγ ⊕ sγ and Hγ
acts on sγ . By [AG09, Proposition 7.2.1], the sliced representation at x is isomorphic
to (Hγ , sγ). By [JR96], up to conjugation by H, the θ-semisimple element γ takes the
following form

γ =
⎛
⎜⎜⎜
⎝

X
0r

1n−r
0r

⎞
⎟⎟⎟
⎠

,

where X ∈ GLn−r(E). It is not hard to check that the symmetric pair (Gγ , Hγ) is of
the form

(G1 , H1) × (G2 , H2),
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where

G1 ≃ {x = (a Xc
c a ) ∈ GL2n−2r(E) ∣ aX = Xa, Xc = cX} ,

and

H1 ≃ {h = (a
a) ∣ aX = Xa} .

The symmetric space (G2 , H2) is isomorphic to (GL2r , GLr ×GLr). The sliced rep-
resentation sγ is isomorphic to s1 × s2 on which H1 × H2 acts componentwise. The
action of H2 on s2 is of the same shape as the action of H on s, but of a smaller size.
The space s1 with the action by H1 is indeed isomorphic to the usual conjugation action
of H1 on its Lie algebra.

We now consider the case X = S. Let g ∈ G be θ-semisimple and x = g−1θ(g) ∈ S.
The centralizer Gx is stable under the involution θ and the fixed point of θ is precisely
Hx . Then (Gx , Hx) form a symmetric space. Let Sx = {g−1θ(g) ∣ g ∈ Gx} and sx be
its tangent space at 1. Then we have gx = hx ⊕ sx . Again by [AG09, Proposition 7.2.1],
the sliced representation at x is isomorphic to (Hx , sx). According to [JR96, Proposi-
tion 4.1], x is H-conjugate to an element of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a a − 1r
1s

−1n−r−s
a + 1r a

1s
−1n−r−r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where a ∈ GLr(F) is semisimple in the usual sense and det(a2 − 1r) /= 0. Then it
follows that the symmetric space (Gx , Hx) is a product

(G1 , H1) × (G2 , H2) × (G3 , H3),

where (G2 , H2) and (G3 , H3) are of the same shape of (G , H) but of smaller sizes and

G ≃
⎧⎪⎪⎨⎪⎪⎩
( b (a + 1r)c
(a − 1r)c b )

'''''''''''
ab = ba, ac = ca

⎫⎪⎪⎬⎪⎪⎭
, H ≃ {(b

b) ∣ ab = ba} .

The sliced representation sx is isomorphic to s1 × s2 × s3 where H1 × H2 × H3 acts
componentswise. Here, (H1 , s1) is isomorphic to the adjoint action of H1 on its Lie
algebra, and (H2 , s2), (H3 , s3) are of the same shape as (H, s) but of smaller sizes.

The following proposition connects the orbital integrals on S or s near a θ-
semisimple point x to the orbital integrals on the sliced representation at x. This
procedure will be referred to as semisimple descent.

Proposition 2.1 Let X = s or S and x ∈ X be θ-semisimple. There exists an open
neighborhood ωx ⊂ ψ(p−1(x)) of 0 ∈ N X

x with the following property: if f ∈ C∞c (X),
then there is an fx ∈ C∞c (N X

x ) so that for all θ-regular semisimple z ∈ ωx , z = ψ(y)with
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y ∈ p−1(x), we have

∫
Hy/H

f (h−1 yh)η(det h)dh = ∫
Hz/Hx

fx(h−1zh)η(det h)dh(2.1)

Proof This is stated in [Zha15, Proposition 5.20]. We give a short proof here as we
will make use of the explicit construction (not merely the existence) of fx later.

As usual the proof begins with the following compactness result.
Cl aim. Let ωx ⊂ ψ(p−1(x)) be a saturated subset whose image in (Xx//Hx)(F) is

relatively compact. Let ω ⊂ X be a compact subset. Then the closure of

{h ∈ H ∣ ψ−1(ωx)h ∩ ω /= ∅}

is compact in Hx/H.
The proof of this claim is clear. We consider the diagram

H ×Hx p−1(x) i ��

j
��

X × (N X
x //Hx)

Hx/H

The horizontal arrow is a closed embedding. The set in the claim is contained in the
compact set ji−1(ω × ωγ).

With this claim at hand, we proceed as follows. Let f ∈ C∞c (X) and ω = supp f . Let
C be an open compact subset of Hx/H which contains the closure of the set in the
claim. Choose a function α ∈ C∞c (H) such that

∫
Hx

α(hg)dh = 1C(g).

Put

fx(z) = ∫
H

f (h−1ψ−1(z)h)η(det h)α(h)dh, z ∈ ωγ .

Then, fx ∈ C∞c (ωx) and we view fx as a function on N X
x . Let z ∈ ωx be θ-regular

semisimple and y = ψ−1(z) ∈ p−1(x). Then y ∈ X is θ-regular semisimple and (Hx)z =
Hy . A little computation gives

∫
(Hx)z/Hx

fx(h−1zh)η(det h)dh = ∫
Hy/H

f (h−1 yh)η(det h)dh.

This proves the proposition. ∎

3 The nilpotent cone

LetN ⊂ s be the nilpotent cone, i.e., the closed subvariety of s consisting of all elements
whose orbit closure contains 0 ∈ s. Elements or orbits contained in N are called θ-
nilpotent.

Lemma 3.1 The nilpotent cone consists of elements in s that are nilpotent in g in the
usual sense.
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Proof An element ξ = ( X
Y ) ∈ s is contained in the nilpotent cone if and only

if its image in the categorical quotient s//H is 0. The later condition means that the
coefficients of the characteristic polynomial of XY are all zero (except for the leading
one), i.e., XY is nilpotent. This is again equivalent to that ξ is nilpotent in g. ∎

To analyze the θ-nilpotent orbits, it would be better to use a more canonical
formulation. Let V = V+ ⊕ V− be a Z/2Z-graded vector space with homogeneous
components V± and dim V± = n. Then, we have

s ≃ Hom(V+ , V−) ⊕Hom(V−, V+), H ≃ GL(V+) ×GL(V−).

The nilpotent cone in s consists of pairs of endomorphism ξ = (X , Y) ∈ End(V),
X ∈ Hom(V+ , V−) and Y ∈ Hom(V−, V+) such that XY and hence Y X are both
nilpotent. This condition is equivalent to saying that ξ = (X , Y) ∈ End(V) is nilpotent.

Let θ ∈ H be the element which acts on V± by ±1. Then θ acts on gl(V) by sending
Z ∈ gl(V) to Ad(θ)Z = θZθ. It is clear that h and s are eigenspaces of Ad(θ) of
eigenvalue 1 and −1, respectively.

Let ξ = (X , Y) ∈ N. Then we have a filtration on V given by

0 = W0 ⊂ W1 ⊂ W2 ⊂ ⋯ ⊂ Ws−1 ⊂ Ws = V , Wi = Kerξ i .(3.1)

We may view V as an F[ξ]-module and V is a direct sum of indecomposable F[ξ]-
submodules. By [KP79, Section 4], one can choose the generators of these submodules
to be homogeneous. More concretely, let U be such an indecomposable submodule of
dimension a over F. Then, we can choose a homogeneous element u ∈ U so that

u, ξu, ξ2u,⋯ξa−1u

form a F-basis of U. It follows that for each i, we have

Wi = W+
i ⊕ W−

i , W±
i = Wi ∩ V± .

Therefore, we have two filtrations

0 = W±
0 ⊂ W±

1 ⊂ W±
2 ⊂ ⋯ ⊂ W±

s−1 ⊂ W±
s = V±.(3.2)

Note that while the filtration (3.1) is strictly increasing, these two filtration might not
be strictly increasing.

We put r?
i = dim W ?

i /W ?
i−1 where ? stands for +, −, or empty. Note that ξ induces an

injective map Wi+1/Wi → Wi/Wi−1 for i = 1, . . . , s − 1. It follows that r i ≥ r i+1 for all
i. Moreover, since ξ induces injective maps W±

i+1/W±
i → W∓

i /W∓
i−1, we conclude that

r±i ≥ r∓i+1 for all i. By suitably choosing bases of these successive quotients and lifting
them to V±, we may assume that the maps W±

i+1/W±
i → W∓

i /W∓
i−1 induced by ξ are

all of the form (1r±i+1
0 ), where 0 stands for the zero matrix of size (r∓i − r±i+1) × r±i+1.

Let P = MN be the parabolic subgroup of GL(V) stabilizing the filtration (3.1),
and P+ = M+N+ be the parabolic subgroup of H stabilizing both filtrations (3.2).
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We have

M+ ≃
s−1
∏
i=0

GL(W+
i+1/W+

i ) ×
s−1
∏
i=0

GL(W−
i+1/W−

i ).

Lemma 3.2 We have

P ∩ H = P+, M ∩ H = M+, N ∩ H = N+.

Proof It follows from the definition that P ∩ H ⊃ P+. If h ∈ H ∩ P, then h(W±
i ) ⊂

Wi . But h(W±
i ) ⊂ V±. It follows that h(W±

i ) ⊂ Wi ∩ V± = W±
i . This proves P ∩ H =

P+. One can similarly prove the other two equalities. ∎

Lemma 3.3 The following assertions hold.
(1) We have

Ad(N+)ξ = ξ + [n, n] ∩ s,(3.3)

where [−,−] stands for the Lie algebra bracket of n.
(2) For any h ∈ H, if Ad(h)(n ∩ s) ⊂ n ∩ s, then h ∈ P+.

Proof By [How74, Lemma 2(b)], Ad(N)ξ = ξ + [n, n]. Note that Ad(θ)ξ = −ξ. Then
both sides of (3.3) are (−1)-eigenspaces of Ad(θ). This proves the first assertion.

By [How74, Lemma 2(d)], if g ∈ G and Ad(g)ξ ⊂ n, then g ∈ P. Note that ξ ∈ n ∩ s.
Then the second assertion follows from Lemma 3.2. ∎

Lemma 3.4 The P+-orbit of ξ in s is an (Zariski) open subset of n ∩ s consisting of
elements Z with the properties that

Z∣W±

i+1/W
±

i
∶ W±

i+1/W±
i → W∓

i /W∓
i−1 , i = 1, . . . , s − 1

is injective.

Proof Since Ad(N+)ξ is the coset ξ + [n, n] ∩ s in n ∩ s, it is enough to consider the
image of Ad(M+)ξ in

n ∩ s/[n, n] ∩ s,

which is isomorphic to
s−1
⊕
i=1

Hom(W+
i+1/W+

i , W−
i /W−

i−1) ⊕
s−1
⊕
i=1

Hom(W−
i+1/W−

i , W+
i /W+

i−1).

As explained before, ξ induces an injective map W±
i+1/W±

i → W∓
i /W∓

i−1 for all i

and with suitable choice of basis, this map is represented by the matrix (1r±i+1
0 ).

Moreover, by choosing suitable bases, any injective map W±
i+1/W±

i → W∓
i /W∓

i−1 can
be represented by a matrix of this form. It follows that the image of Ad(P+)ξ
in Hom(W±

i+1/W±
i , W∓

i /W∓
i−1) is the subset of all injective maps. This proves the

lemma. ∎

We thus have the following classification of θ-nilpotent orbits.
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Lemma 3.5 The set of θ-nilpotent orbits in N is in one-to-one correspondence with the
set of two sequences of integers r±i , i = 1, . . . , s, such that

n = r±1 +⋯+ r±s , r±1 ≥ r∓2 ≥ r±3 ≥ ⋯, r+1 + r−1 > r+2 + r−2 > ⋯ > r+s + r−s > 0.(3.4)

Proof To each ξ ∈ N, we have constructed as above two sequences of vector space
W±

i , i = 1, . . . , s. We simply put r±i = dim W±
i /W±

i−1 and they satisfy (3.4).
Conversely, given any two sequences of integers r±i satisfying (3.4), one can find

an element ξ ∈ N so that dim W±
i /W±

i−1 = r±i . This can be achieved as follows. We are

going to write s explicitly as matrices of the form ( X
Y ) as before. First, write X as

a blocked matrix where rows correspond to the partition n = r+1 ⋯+ r+s and columns
correspond to the partition n = r−1 +⋯+ r−s . Similarly, write Y as a blocked matrix
where rows correspond to the partition n = r−1 +⋯+ r−s and columns correspond to
the partition n = r+1 ⋯+ r+s . Then, ξ is the matrix of following form. All the block
entries of X and Y are zero except for the (i , i + 1) entry. The (i , i + 1) entry of X and
Y are of size r+i × r−i+1 and r−i × r+i+1, respectively and we have r±i ≥ r∓i+1. The (i , i + 1)

entry of X and Y are of the form (1r±i+1
0 ) where 1r±i+1

stands for the identity matrix of

size r+i+1 in X and size r−i+1 in Y, and 0 stands for the zero matrix. It is not hard to check
that this ξ is the desired θ-nilpotent matrix. ∎

We now study the stabilizer M+ξ of ξ in M+. If the H-orbit represented by ξ were to
support an (H, η)-invariant distribution, then η ○ det would have to be trivial on M+ξ .

We have two chains of injective maps induced by the element ξ:

W ε
s /W ε

s−1 ↪⋯↪ W∓
3 /W∓

2 ↪ W±
2 /W±

1 ↪ W∓
1 ,(3.5)

where ε = + or − according to the parity of s. For each i, the map W±
i+1/W±

i →
W∓

i /W∓
i−1 is either an isomorphism or (genuine) injective and it is an isomor-

phism if and only if dim W±
i+1/W±

i = dim W∓
i /W∓

i−1. We call the integer i a jump
if dim W±

i+1/W±
i < dim W∓

i /W∓
i−1 (either the + one or the − one, the inequality

does not have to hold for both filtrations). To unify treatment, we call s a jump if
dim W ε

s /W ε
s−1 /= 0.

Lemma 3.6 Suppose that the orbit represented by ξ supports an (H, η)-invariant
distribution. Then all jumps are even integers, i.e., we have the strict inequality rε

i > r−ε
i+1

(ε = + or −) in (3.4) only when i is even.

Proof Let i be the smallest jump in one of the chains of injective maps (3.5), say the
one ends with W+

1 . The last a few terms in the filtration looks like

W(−1)i

i+1 /W(−1)i−1

i ↪ W(−1)i−1

i /W(−1)i−2

i−1
∼7→⋯ ∼7→ W+

1 ,

where the leftmost arrow is injective but not an isomorphism. We construct a basis
of V as follows. Choose linearly independent elements in W±

s so that its image in
W±

s /W±
s−1 is a basis. Then the image under ξ of these elements in W∓

s−1 are also linearly
independent. We extend them to a set of linearly independent elements in W∓

s−1 so
that the image in W∓

s−1/W∓
s−2 forms a basis. We repeat this process for all W±

j ’s. Then,
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we get a basis of V. Among elements in this basis, we can find w j ∈ W(−1) j−1

j so that
ξ(w j) = w j−1, j = 1, . . . , i, and w i is not in the image of W−

i+1 under ξ. Choose λ ∈ F×
with η(λ) = −1 and let h ∈ GL(M+) be an element such that it acts as multiplication
by λ on w1 , . . . , w i and trivially on all elements of the basis of V. Then by construction
h ∈ M+ξ and η(det h) = (−1)i . Since η ○ det is trivial on M+ξ , i has to be even. We may
repeat this process for all other jumps. ∎

Example 3.7 To facilitate understanding, we suggest the following example. Let us
consider the case n = 4 and the nilpotent element ξ ∈ s given by the following matrix.

ξ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1
0 1

0 0
0

0 0 1 0
0 0 0

0 1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, V+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗
∗
∗
∗
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, V− =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
0
0
∗
∗
∗
∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Simple computation gives

W+
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗
∗
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, W+
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗
∗
∗
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, W+
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗
∗
∗
∗
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

; W−
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
0
0
∗
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, W−
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
0
0
∗
∗
∗
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, W−
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
0
0
∗
∗
∗
∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Moreover, (r+1 , r−2 , r+3 ) = (2, 2, 1) and (r−1 , r+2 , r−3 ) = (1, 1, 1). The elements w and h that
we chose in the proof of Lemma 3.6 is

w =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
0
1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
λ

1
λ

1
1

λ
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, det h = λ3 .

It is straightforward to check that h commutes with ξ. According to our terminology,
in the sequence r+1 = r−2 > r+3 , 2 and 3 are jumps, which are not all even. The orbit
represented by ξ does not support any (H, η)-invariant distribution.
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4 Nilpotent orbital integrals

In this section, we are going to show that the necessary condition in Lemma 3.6 that
a nilpotent orbital integral supports an (H, η)-invariant distribution is also sufficient.
Moreover, these (H, η)-invariant distributions extend to an (H, η)-invariant distri-
bution on s.

Let us keep the notation from Section 3. Let O be a θ-nilpotent orbit in s repre-
sented by an element ξ. Then attached to ξ is a parabolic subgroup P+ = M+N+ of H.
We also have two sequences of integers r±1 ≥ r∓2 ≥ r±3 ≥ ⋯. We assume that all the jumps
in these two sequences are even integers. By Lemma 3.6, this is a necessary condition
for O to support an (H, η)-invariant distribution.

Let 2i1 < ⋯ < 2ia be the set of all jumps in the sequence r+1 ≥ r−2 ≥ ⋯. Let 2 j1 < ⋯ <
2 jb be the set of all jumps in the sequence r−1 ≥ r+2 ≥ ⋯. Note that we either have 2ia = s
and W−

s /W−
s−1 /= 0, or 2ia < s and all W ε

i+1/W ε
i = 0 if i ≥ 2ia , where ε is an appropriate

sign. We have a similar assertion for the jump 2 jb . Then the space n ∩ s/[n, n] ∩ s is
isomorphic to

2ia

⊕
i=1

Hom(W(−1)i

i+1 /W(−1)i

i , W(−1)i−1

i /W(−1)i−1

i−1 )

⊕
2 jb

⊕
i=1

Hom(W(−1)i+1

i+1 /W(−1)i+1

i , W(−1)i

i /W(−1)i

i−1 ).

Let us define some determinant functions. Let us write an element in n ∩ s/[n, n] ∩ s

as a sequence

m = (x1 , . . . , x2ia ; y1 , . . . , y2 jb),

with

x i ∈ Hom(W(−1)i

i+1 /W(−1)i

i , W(−1)i−1

i /W(−1)i−1

i−1 ),

y i ∈ Hom(W(−1)i+1

i+1 /W(−1)i+1

i , W(−1)i

i /W(−1)i

i−1 ).

Note that if i is odd, then both r±i+1 = r∓i by the assumption that all jumps are even
integers. Moreover,

ξ∣W±

i+1/W
±

i
∶ W±

i+1/W±
i → W∓

i /W∓
i−1

is an isomorphism. To shorten notation, we put ξ∓i = ξ∣W±

i+1/W
±

i
. Define

det+2i−1(x2i−1) = det x2i−1(ξ+2i−1)−1 , det−2i−1(y2i−1) = det y2i−1(ξ−2i−1)−1 ,

and

detn(m) = det+1 (x1)det+3 (x3)⋯det+2 ja−1(x2 ja−1)det−1 (y1)det−3 (y3)⋯det−2 jb−1(y2 jb−1).

Lemma 4.1 For p ∈ P+ and u ∈ n ∩ s, we have

η(detn(pup−1)) = η(det p)η(detn u).

Proof This follows from the definition of detn. ∎
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Let n′ be the subspace of n ∩ s generated by [n, n] ∩ s and

⊕
i even

Hom(W+
i+1/W+

i , W−
i /W−

i−1) ⊕ ⊕
i even

Hom(W−
i+1/W−

i , W+
i /W+

i−1).

Let f ∈ C∞c (s), we define a function f̃ ∈ C∞c (n ∩ s/n′) as

f̃ (m) = ∫
n′

f (m + u)du.(4.1)

Before we proceed, let us recall the following result due to Godement and Jacquet
[GJ72, Theorem 3.3] (taking the representation π to be η ○ det). Note that the holomor-
phy is a consequence of the fact that E/F is a quadratic extension of nonarchimedean
local fields and η is nontrivial.

Lemma 4.2 Let φ ∈ C∞c (Mn(F)). Put

Z(s, η, φ) = ∫
GLn(F)

φ(h)∣det h∣s η(det h)dh,

where dh stands for the multiplicative measure on GLn(F). Then this integral is
convergent if Rs ≫ 0 and has a meromorphic continuation to the whole complex plane.
It is holomorphic at all s ∈ R.

The function f̃ is a function in the variables

m = (x1 , x3 , . . . , x2 ja−1; y1 , y3 , . . . , y2 jb−1).

Let s = (s1 , s3 , . . . , s2 ja−1) and t = (t1 , t3 , . . . , t2 jb−1) be complex numbers. Put

detn,s ,t(m) =∣det+1 (x1)∣s1 ∣det+3 (x3)∣s3⋯∣det+2 ja−1(x2 ja−1)∣s2 ja−1

∣det−1 (y1)∣t1 ∣det−3 (y3)∣t3⋯∣det−2 jb−1(y2 jb−1)∣t2 jb−1 .

Consider the integral

Z(s, t, η, f̃ ) = ∫ f̃ (m)η(detn(m))detn,s ,t(m)dm,

where the domain of integration is n ∩ s/n, which is identified with

⊕
i odd

Hom(W−
i+1/W−

i , W+
i /W+

i−1) ⊕ ⊕
i odd

Hom(W+
i+1/W+

i , W−
i /W−

i−1).

By Lemma 4.2, the integral Z(s, t, η, f̃ ) is convergent when the real part of s i and
t i s are large enough and Z(s, t, η, f̃ ) has meromorphic continuation to C

ia+ jb , which
is holomorphic at the points where all s i and t i ’s are integers. We define

μ̃O( f ) = Z(s, t, η, f̃ )
'''''''''''s i=r−i , for all i

t i=r+i , for all i

.

The point is that for the variable coming from one of the decreasing sequences, we
evaluate this integral at the point given by the corresponding integer in the other
sequence.
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Lemma 4.3 For any f ∈ C∞c (s), and any p ∈ P+, we have

μ̃O(Ad(p) f ) = δP+(p)η(det p)μ̃O( f ).(4.2)

Proof The invariance by elements in N+ is straightforward to check. One has to
prove (4.2) for elements in M+. We may even assume that m ∈ GL(W+

i+1/W+
i ). The

other cases can be derived from this one or follow from the same argument.
Elementary computation shows that

δP+(m) = ∣det m∣−(r
+

i ⋯+r+1 )+r+i+2+⋯+r+s .

If i is odd, then in computing the integration over n′, after changing variables, we
obtain

∣det m∣−(r
−

i−1+⋯+r−1 )+r−i+2+⋯+r−s .

In computing the integration Z(s, t, η, f̃ ), by changing the variable, we obtain another
term

∣det m∣−r+i η(det m).

Note that we have r±1 = r∓2 , r±3 = r∓4 , etc. Thus, we conclude

−(r+i ⋯+ r+1 ) + r+i+2 +⋯+ r+s = −(r−i−1 +⋯+ r−1 ) + r−i+2 +⋯+ r−s + (−r+i ).

This proves (4.2) when i is odd. The case i being even is similar. ∎
Let us now choose an open compact subgroup K of H so that H = P+K. Let us put

fK(γ) = ∫
K

f (γk)η(det k)dk, μO( f ) = μ̃O( fK).(4.3)

Proposition 4.4 The distribution on s given by f ↦ μO( f ) is (H, η)-invariant. More-
over, the linear form μO extends the (H, η)-invariant distribution on O to an (H, η)-
invariant distribution on s supported on O.

Proof The first assertion follows from Lemma 4.3 and [How74, Proposition 4]. Even
though [How74, Proposition 4] does not involve the extra character η, the same
argument goes through without change.

If f is a compactly supported function on O, so is fK . By Lemma 3.4, the support
of f̃K defined by (4.1) is a compact subset of

∏
i odd

GLr+i (F) × ∏
i odd

GLr−i (F).

It follows that the integral Z(s, t, η, f̃K) is convergent for all s and t. When evaluated
at s i = r−i and t i = r+i , this convergent integral gives precisely the (convergent) integral
of f along the orbit O. This proves the second assertion. ∎
Corollary 4.5 A θ-nilpotent orbit O supports an (H, η)-invariant distribution if and
only if the necessary condition in Lemma 3.6 is satisfied. If O supports an (H, η)-
invariant distribution, then this distribution extends to an (H, η)-invariant distribution
on s.

Proof This is merely a combination of Lemma 3.6 and Proposition 4.4. ∎
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In the following, we call a θ-nilpotent orbit that supports an (H, η)-invariant
distribution or any element contained in it visible. We let N0 be the subset of N
consisting of visible θ-nilpotent orbits. From the discussion above, the set

{μO ∣ O ⊂ N0}

is a natural basis of the space of (H, η)-invariant distributions on s supported on N.
Let us put dO = dim N+.

Lemma 4.6 Let f ∈ C∞c (s) and for any t ∈ F× we put ft(X) = f (t−1 X). Let O ⊂ N0
then we have

μO( ft) = ∣t∣dO η(t)n μO( f ), μO( f̂t) = ∣t∣2n2−dO η(t)n μO( f̂ )

Proof We just need to prove the first equality. The second one on the Fourier
transform follows from the first one easily. Suppose that O is represented by ξ and
gives rise to the sequences of integers r±1 ≥ r∓2 ≥ ⋯. It follows from the definition of μO

that

μO( ft) = ∣t∣dim n′+2(r+1 r−1 +r+3 r−3 +⋯)η(t)n μO( f ).

It is thus enough to prove that

dim N+ = dimn
′ + 2(r+1 r−1 + r+3 r−3 +⋯).(4.4)

We have

dim N+ =
n
∑
i=1

∑
j≥i+1

r+i r+j + r−i r−j .(4.5)

To organize the terms on the right hand side of (4.4) into a better form, let us write
2(r+1 r−1 + r+3 r−3 +⋯) as

r+1 r+2 + r+3 r+4 +⋯+ r−1 r−2 + r−3 r−4 +⋯

Then the right hand side becomes

∑
i odd

⎛
⎝

r+i r−i+1 + r−i r+i+1 + ∑
j≥i+2

(r+i r−j + r−i r+j )
⎞
⎠
+ ∑

i even
∑

j≥i+1
(r+i r−j + r−i r+j ).(4.6)

Let i be an integer. In computing the dimension of N+, the terms involving r+i
are r+i (r+i+1 + r+i+2r+i+3 +⋯). If i is odd, then on the right hand side of (4.4), the terms
involving r+i are

r+i r+i+1 + r+i (r−i+2 + r−i+3 +⋯).

If i is even, then we have

r+i (r+i+1 + r+i+2 +⋯).

Note that we have r±1 = r∓2 , r±3 = r∓4 etc. So we conclude that for a fixed i, the terms
in (4.5) and in (4.6) involving r+i coincide. Similarly, we can conclude that the terms
involving r−i coincide. Thus we conclude that (4.5) and (4.6) are the same, i.e., the
identity (4.4) holds. This proves the lemma. ∎
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Again to facilitate understanding, we suggest the following example.

Example 4.7 Let O be the nilpotent orbit represented by

ξ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1
0 1

0
1

0 1
0 1

0 1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

We have r+1 = r−2 = r+3 = r−4 = 1 and r−1 = r+2 = 2 > r−3 = r+4 = 0. So this orbit is visible. The
spaces [n, n] ∩ s, n ∩ s/[n, n] ∩ s, and n′ look like the following, respectively

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ∗
0 ∗

0 ∗
0

0 ∗
0 ∗

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ∗
0

0
∗

0 ∗ ∗
∗ ∗

0 ∗
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ∗
0 ∗

0 ∗
0

0 ∗
0 ∗

0 ∗
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

In this case, direct computation shows that we have μO( ft) = ∣t∣10 μO( f ). This is
compatible with Lemma 4.6.

5 Orbital integrals

In this section, we define all orbital integrals on s, not necessarily θ-semisimple or
θ-nilpotent.

Let γ ∈ s and γ = γs + γn be the Jordan decomposition of γ in g, γs being semisimple
and γn being nilpotent (in the usual sense). Since θ(γs) and θ(γn) are still semisimple
and nilpotent respectively in g and θ(γ) = −γ, we conclude that γs , γn ∈ s. Note that
γsγn = γnγs , we conclude that γn ∈ sγs and is θ-nilpotent in sγs . Assume that γn is
visible in sγs and its orbit is denoted by Oγn . Let f ∈ C∞c (s) and h ∈ H. Let us define a
function

f1(h) = μOγn
( f (h−1(γs + ⋅)h).
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Lemma 5.1 As a function in h ∈ H, f1 is compactly supported on Hγs /H.

Proof If for some h ∈ H, f1(h) /= 0, then there is some y ∈ Hγs such that h−1(γs +
y−1γn y)h ∈ supp f which is a compact set. Note that h−1γs h is θ-semisimple in s and
h−1 y−1γn yh is θ-nilpotent in s. So hγs h−1 is the semisimple part of h−1(γs + y−1γn y)h
and hence lies in some compact subset C of s. As the orbit of γs is closed, it follows
that y lies in some compact subset of Hγs/H. This proves the lemma. ∎

It follows from the definition that f1(yh) = η(det y) f1(h) if y ∈ Hγs . We then put

O(γ, η, f ) = ∫
Hγs /H

f1(h)η(det h)dh.

This integral is absolutely convergent. It is not hard to check that if the restriction f to
the orbit of γ is compactly supported, then O(γ, η, f ) agrees with the integral on the
orbit of γ.

We now connect the orbital integral on s with the orbital integral on sγs . We keep
the notation from (the proof of) Proposition 2.1 in Section 2. We have the analytic slice
(U , p, ψ) at γ. Let f ∈ C∞c (s) and we have constructed an fγs ∈ C∞c (sγs). According
to the definition, we have

fγs(ξ) = ∫
H

f (h−1ψ−1(ξ)h)η(det h)α(h)dh, ξ ∈ ωγ .

Lemma 5.2 We have μOγn
( fγs) = O(γ, η, f ).

Proof When we restrict it to the nilpotent cone in sγs , the function fγs equals

∫
H

f (h−1(γs + ⋅)h)η(det h)α(h)dh.

From this and the definition of O(γ, η, f ) we conclude that

μOγn
( fγs) = ∫H

f1(h)η(det h)α(h)dh = ∫
Hγs /H

f1(h)η(det h)1C(h)dh

= O(γ, η, f ).(5.1) ∎

We finish the definition of orbital integrals with the following lemma.

Lemma 5.3 If γn is not visible in sγs , then the orbit if γ in s does not support any
(H, η)-invariant distribution.

Proof An obvious necessary condition that the orbit represented by γ supports
an (H, η)-invariant distribution is η(det h) = 1 if h ∈ Hγ . If h ∈ Hγ , i.e., h−1γh = γ,
then h−1γs h + h−1γn h = γs + γn . As h−1γs h is θ-semisimple and h−1γn h is θ-nilpotent,
we conclude h−1γs h = γs and h−1γn h = γn by the uniqueness of the Jordan decom-
position. Therefore, Hγ is a subgroup of Hγs that stabilizes γn . Then the condi-
tion η(det h) = 1 if h ∈ Hγ is precisely that γn represents a visible θ-nilpotent orbit
in sγs . ∎

6 The germ expansion

We study an analogue of the Shalika germ expansion in this section.
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Proposition 6.1 There is a unique (H, η)-invariant real valued function ΓO on sθ−reg
for each nilpotent orbit O ⊂ N0 with the following properties.
(1) For any f ∈ C∞c (s), there is an H-invariant neighborhood U f of 0 ∈ s such that

O(γ, f ) = ∑
O⊂N0

ΓO(γ)μO( f ).(6.1)

for all θ-regular semisimple γ ∈ U f .
(2) For all t ∈ F× and all ξ ∈ sθ−reg, we have

ΓO(tγ) = ∣t∣−dO η(t)n ΓO(γ).

Proof It follows from [RR96, Proposition 1.2] that there are functions Γ′O on sθ−reg
for each O ⊂ N0 with property (1). Note that if Γ′′O is another set of functions satisfying
(1), then Γ′O and Γ′′O have the same germs at 0 ∈ s (i.e., they equal in a small neigh-
borhood of 0). We first explain that Γ′O can be chosen to be real valued, at least when
γ is close to 0 ∈ s. In fact, since μO’s form a basis of (H, η)-invariant distributions
on s that are supported on N, for each O ⊂ N0 we can find a function fO so that
μO( fO′) = δO,O′ (Kronecker delta). It is obvious that fO’s can be chosen to be real
valued. For this particular choice, we have O(γ, fO) = Γ′O(γ) when γ lies in a small
neighborhood of 0. Indeed, this can be taken as the definition of Γ′O(γ). As fO is
real, it follows that Γ′O(γ) can be taken to be real. We need to prove that among these
functions, we can choose a unique ΓO for each O ⊂ N with property (2).

Let t ∈ F× be fixed. We claim that as a function of γ, ΓO(tγ) and ∣t∣−dO η(t)n ΓO(γ)
have the same germs at 0. Indeed, on the one hand, we have

O(γ, ft) = ∑
O⊂N0

Γ′O(γ)∣t∣dO η(t)n μO( f )

when γ lies in a small neighborhood (depending on f and t) of 0 ∈ s. On the other
hand,

O(γ, ft) = O(t−1γ, f ) = ∑
O⊂N0

Γ′O(t−1γ)μO( f ).

when γ lies in a small neighborhood (depending on f and t) of 0 ∈ s. Comparing these
two, we conclude that Γ′O(tγ) and ∣t∣−dO η(t)n Γ′O(γ) have the same germs at γ = 0.

Thus, we put

ΓO(γ) = lim
t→0

∣t∣dO η(t)n Γ′O(tγ).

It is straightforward to check that ΓO(γ) does satisfy property (2). Of course, in
order that ΓO satisfies property (2), it has to be of this form. Thus, this function is
unique. ∎

The function ΓO in the lemma is called the Shalika germ indexed by O.
We now consider the Shalika germ expansion around an arbitrary θ-semisimple

element γ ∈ s. We keep the notation from Section 2. The space sγ with an action of
Hγ is isomorphic to s1 × s2 with an action of H1 × H2, where the action of H1 on s1 is
isomorphic to the conjugation of H1 on its Lie algebra and the action of H2 on s2 is
of the same shape as the action of H on s but of a smaller size. Note that according to

https://doi.org/10.4153/S0008414X21000122 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000122


876 H. Xue

the decomposition s = s1 × s2, γ = (γ(1) , 0) where γ(1) ∈ s1 is a central element in s1.
A θ-nilpotent orbit in sγ is of the form O(1) ×O(2) where O(1) is a nilpotent orbit in s1
(in the usual sense) and O(2) is a θ-nilpotent oribt in s2. The orbit O is visible in sγ if
and only if O(2) is visible in s2. Let {O1 , . . . ,Or} be the set of nilpotent orbits in sγ . We
thus have the Shalika germs on sγ , indexed by the θ-nilpotent orbits in sγ , which on
s1 is given by the one defined in [Kot05, Section 17] and on s2 is given by the one we
have just defined. Let {ξ1 , . . . , ξr} be a complete set of representatives of θ-nilpotent
elements in sγ and ξ i ∈ Oi . We denote the Shalika germ on sγ indexed by Oi by Γγ

i .

Corollary 6.2 Let f ∈ C∞c (s). Then there is a neighborhood U f of γ in sγ so that for
any ξ ∈ U f ∩ sθ−reg, we have

O(ξ, η, f ) =
r
∑
i=r

Γγ
i (ξ)O(γ + ξ i , η, f ).

Proof Let us keep the notation from Section 2 Proposition 2.1. We have constructed
an fγs ∈ C∞c (sγs). Apply Proposition 6.1 (germ expansion on s2 near 0) and [Kot05,
Theorem 17.5] (germ expansion on s1 near a central element), we have

Osγ(ξ, η, fγ) =
r
∑
i=1

Γγ
i (ξ)μsγ

Oi
( fγ),

where the upper script sγ indicates that these are orbital integrals on the space sγ .
Applying Proposition 2.1 to the left hand side and the equality (5.1) to the right hand
side, we obtain the desired result in the corollary. ∎

7 Linear independence of Shalika germs

The goal of this section is to prove the linear independence of Shalika germs that
we defined in the last section and the density of θ-regular semisimple integrals on
s simultaneously. We follow the argument of [Kot05, Section 27] closely.

Lemma 7.1 The set of all orbital integrals is weakly dense in D(s)H ,η .

Proof Recall that weak density means that if all orbital integrals of f ∈ C∞c (s) vanish,
then D( f ) = 0 for all (H, η)-invariant distributions D on s. For any space V on which
H acts, we let

VH ,η = V/{h.v − η(h)v ∣ h ∈ H, v ∈ V}

be the (H, η)-coinvariance. Then, D( f ) = 0 for all (H, η)-invariant distributions D
on s means that the image of f in C∞c (s)H ,η is zero.

Let us consider the categorical quotient

q ∶ s→ s//H.

Let x be an element in (s//H)(F). Restriction a function f ∈ C∞c (s) to the fiber
q−1(x) gives a surjective H-equivariant map

C∞c (s) → C∞c (q−1(x)).
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Passing to the (H, η)-coinvariance, we obtain a surjective map

C∞c (s)H ,η → C∞c (q−1(x))H ,η .

As x ranges over all points in (s//H)(F), we obtain a map

C∞c (s)H ,η → ∏
x∈(s//H)(F)

C∞c (q−1(x))H ,η .(7.1)

By [Kot05, Lemma 27.1] this map is injective.
Recall that s//H is identified with an n-dimensional affine space over F. When

x is the origin of (s//H)(F), the fiber q−1(x) is the nilpotent cone N. Thus the
dual space of C∞c (q−1(0))H ,η is finite dimensional and a basis is provided by all
visible θ-nilpotent orbital integrals. The case of general x ∈ (s//H)(F) is quite similar.
The dual space of C∞c (q−1(x))H ,η is finite dimensional and a basis is provided by
orbital integrals where the orbits are contained q−1(x) and support (H, η)-invariant
distributions.

It follows that if f ∈ C∞c (s) so that all orbital integrals vanish, then its image in
C∞c (q−1(x))H ,η vanishes for all x ∈ (s//H)(F). Thus, the image of f in C∞c (s)H ,η
also vanishes by the injectivity of (7.1). This is equivalent to saying that D( f ) = 0 for
all (H, η)-invariant distribution D on s. ∎

Lemma 7.2 The functions ΓO’s for O ⊂ N0 are linearly independent if and only if their
restrictions to an arbitrary small neighborhood of 0 ∈ s are still linearly independent.

Proof Let U be a small neighborhood of 0 ∈ s. We may assume that U is a lattice in
s, or in other words, U is an oF -module.

Now, we use homogeneity of Shalika germs. The additive semigroup of non-
negative integers acts on U ∩ sθ−reg, with j acting by multiplication by the scalar ϖ2 j

F ,
and therefore acts on the space of functions on U ∩ sθ−reg (the action of j transforming
a function f (X) into f (ϖ2 j

F X)). By homogeneity of Shalika germs, c.f. Proposition 6.1,
the restriction of ΓO to U ∩ sθ−reg transforms under the character j ↦ ∣ϖF ∣− jdOη(ϖF) j

on our semigroup. But in any representation of our semigroup, vectors transforming
under distinct characters are linearly independent. Thus, in order to prove linear
independence of the restrictions of Shalika germs to U ∩ sθ−reg, it is enough to fix a
non-negative integer d and prove linear independence of the restrictions of the Shalika
germs for all θ-nilpotent orbits with dO = d. But all these germs are homogeneous of
the same degree, namely d, so it is clear that any dependence relation that holds on the
subset U ∩ sθ−reg will also hold on the whole set sθ−reg. ∎

The following lemma relates the linear independence of the Shalika germs to the
density of θ-regular semisimple orbital integrals.

Lemma 7.3 The following assertions are equivalent.

(1) The Shalika germs ΓO, O ⊂ N0 are linearly independent.
(2) The θ-nilpotent orbital integrals μO’s lie in the weak closure of the set of θ-regular

semisimple orbital integrals in D(s)H ,η .
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Proof (1) ⇒ (2). Let f ∈ C∞c (s) and assume that the θ-regular semisimple orbital
integrals O(γ, η, f ) are all zero. Then it follows from the Shalika germ expansion that

∑
O⊂N

μO( f )ΓO(γ) = 0

for any θ-regular semisimple γ ∈ U f where U f is a small neighborhood of 0 ∈ s. Since
ΓO’s are linear independent, by the previous lemma, they are linearly independent even
when restricted to U f . Thus we conclude that μO( f ) = 0 for all O.

(2) ⇒ (1). Suppose that we have a linear relation

∑
O⊂N0

aOΓO(γ) = 0, for all γ ∈ sθ−reg .

As μO’s form a basis of the space of (H, η)-invariant distributions on s supported on
N, we may choose a test function f ∈ C∞c (s) so that μO( f ) = aO for all O ⊂ N. Thus,
using the Shalika germ expansion, we conclude that there is a small neighborhood U f
of 0 ∈ s so that

O(γ, η, f ) = ∑
O⊂N0

μO( f )ΓO(γ) = ∑
O⊂N0

aOΓO(γ) = 0

for all θ-regular semisimple γ ∈ U f . The set (U f )H contains an open and closed
neighborhood V of N. Let f ′ = f 1V . Then, we have that O(γ, η, f ′) = 0 for all θ-
regular semisimple γ. Moreover, since V is an open and closed neighborhood of N,
we have that μO( f ) = μO( f ′) for all O ⊂ N. Now by assertion (2), the θ-nilpotent
orbital integrals μO’s all lie in the weak closure of the θ-regular semisimple orbital
integrals. Since O(γ, η, f ′) = 0 for θ-regular semisimple γ, we conclude that aO =
μO( f ) = μO( f ′) = 0. This proves (1). ∎

The next lemma allows us to use induction.

Lemma 7.4 Let γ ∈ sθ−ss. Suppose that Γγ
O

’s are linearly independent. Then for all ξ
whose θ-semisimple part is γ the orbital integral O(ξ, η, f ) lies in the weak closure of
the set of all θ-regular semisimple orbital integrals.

Proof Let Nγ be the nilpotent cone of sγ and for each nilpotent orbit O ⊂ Nγ , we
fix an element ξO ∈ O. Then by the Shalika germ expansion at γ, there is a small
neighborhood U f of γ in sγ , so that for all θ-regular semisimple ξ ∈ U f ,

O(ξ, η, f ) = ∑
O⊂Nγ ,0

Γγ
O
(ξ)O(γ + ξO , η, f ).

As Γγ
O

’s are linearly independent and they remain linearly independent when restricted
to U f , we conclude that if O(ξ, η, f ) = 0 for all θ-regular semisimple ξ ∈ U f , we have
O(γ + ξO , η, f ) = 0 for all O ⊂ Nγ ,0. This proves the lemma. ∎

We now prove the linear independence of Shalika germs and the density of θ-
regular semisimple orbital integrals simultaneously.

Theorem 7.5 The followsing assertions hold.
(1) The Shalika germs ΓO’s, O ⊂ N0, are linearly independent.
(2) The set of θ-regular semisimple orbital integrals are weakly dense in D(s)H ,η .
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Proof We argue by induction on n, i.e., the size of s.
First we show that, under the inductive hypothesis, the two assertions in the

proposition are equivalent. In fact, if the second assertion holds, then the first holds by
Lemma 7.3. If the first assertion holds, then θ-nilpotent orbital integrals lie in the weak
closure of θ-regular semisimple orbital integrals. When combined with the induction
hypothesis and Lemma 7.4, this implies that all orbital integrals lie in the weak closure
of the θ-regular semisimple orbital integrals. This proves that two assertions in the
proposition are equivalent. We will prove the second assertion under the induction
hypothesis.

Put

C1 = { f ∈ C∞c (s) ∣ all orbital integrals of f vanish};
C2 = { f ∈ C∞c (s) ∣ all θ-regular semisimple orbital integrals of f vanish}.

By Lemma 7.4 and the induction hypothesis, the set C2 consists of all functions f ∈
C∞c (s) such that all orbital integrals, except the θ-nilpotent orbital integrals, vanish.
Thus, the dual space of C2/C1 is spanned by all μO’s, O ⊂ N0.

By Lemma 7.1, C1 consists of all f ∈ C∞c (s) such that I( f ) = 0 for all (H, η)-
invariant distribution I. Thus, it is clear that C1 is closed under the Fourier transform.
Since the Fourier transform of θ-regular semisimple orbital integrals are represented
by (H, η)-invariant locally integrable functions on sθ−reg by Proposition 1.3, we con-
clude that C2 is also preserved under the Fourier transform. Thus Fourier transform
induces an isomorphism of C2/C1 onto itself. Therefore, the dual space of C2/C1 is
also spanned by μ̂O’s.

By Lemma 4.6, μO and μ̂O have the homogeneity properties

μO( ft) = ∣t∣dO μO( f ), μ̂O( ft) = ∣t∣2n2−dO μ̂O( f ).

The proof of Lemma 4.6, or more precisely (4.5) shows that dO < n2 for all O ⊂ N0.
Therefore, dO < 2n2 − dO′ for any O,O′ ⊂ N0. We thus have two spanning sets of the
dual space of C2/C1, all being homogeneous, but with different scaling factors from
each set. Therefore, C2/C1 = 0 and this proves the proposition. ∎

Corollary 7.6 The Fourier transform of μO is represented by a locally integrable
function in s for all O ⊂ N0.

Proof We need to make use of Howe’s finiteness theorem for s, established by Rader
and Rallis in [RR96, Theorem 6.7]. We do not need the statement this theorem here,
but rather a standard consequence of it, i.e., the uniformity of the germ expansion. Let
L ⊂ s be a lattice, i.e., an open compact subgroup of s. Then Howe’s finitenss theorem
implies that there is a neighborhood UL such that the germ expansion

O(γ, η, f ) = ∑
O⊂N0

ΓO(γ)μO( f )

holds for all f ∈ C∞c (s/L) and all θ-regular semisimple γ ∈ UL .
Now let L ⊂ s be a lattice. There is a lattice L′ in s (in fact the dual lattice of L) so

that f̂ ∈ C∞c (s/L′) for all f ∈ C∞c (L). Therefore, there is a neighborhood UL of 0 ∈ s
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so that

O(γ, η, f̂ ) = ∑
O⊂N0

ΓO(γ)μO( f̂ )

holds for all θ-regular semisimple γ ∈ UL and all f ∈ C∞c (L). By Theorem 7.5 and
Lemma 7.2, ΓO’s, O ⊂ N0, when restricted to UL′ , are linearly independent. Therefore,
we can choose a θ-regular semisimple γO for each O ⊂ N0 so that matrix

(ΓO(γO′))O,O′⊂N0

is invertible. We then conclude that there are constants cO, so that

μO( f̂ ) = ∑
O′⊂N0

cO′O(γO′ , η, f̂ )

holds for all f ∈ C∞c (L).
By Proposition 1.3, there is a locally constant function KγO′

on sθ−reg which is
locally integrable on s so that the distribution on s given by f ↦ O(γO′ , η, f̂ ) is
represented by KγO′

. It follows that for all f ∈ C∞c (L) we have

μO( f̂ ) = ∫
s

f (γ)
⎛
⎝ ∑
O′⊂N0

cO′KγO′
(γ)

⎞
⎠

dγ.

We put KO,L(γ) = ∑O′⊂N0 cO′KγO′
(γ) for γ ∈ sθ−reg. This function is locally constant

on sθ−reg and is locally integrable on s.
We now choose another lattice L1 so that L ⊂ L1. Then we get another function

KO,L′ . We claim that KO,L1(γ) = KO,L(γ) if γ ∈ L and is θ-regular semisimple. In fact
both functions, when restricted to L, represent the distribution f ↦ μO( f̂ ). Then, we
conclude by the local constancy of them.

It follows that there is a well-defined function KO on s, which is locally constant
on sθ−reg and locally integrable on s, so that KO(γ) = KO,L(γ) if L is a lattice in s and
γ ∈ L. It is then clear that KO represents the distribution f ↦ μO( f̂ ) on s. ∎

8 Density of regular semisimple orbital integrals

We explain how to establish the results on the level of G in this section.
We fix an H-invariant neighborhood ω of 0 ∈ s and a neighborhood Ω of 1 ∈ S so

that the the exponential (rational) map exp ∶ s→ Ω is defined and is a homeomor-
phism. Let f ∈ C∞c (G). We put f̃ (g−1θ(g)) = ∫H f (hg)dh and f♮ ∈ C∞c (ω) given by
f♮(γ) = f̃ (exp(γ)). We extend f♮ to a function on s via extension by zero.

We consider the H × H action on G by left and right multiplication and the
conjugation action of H on S. We say that an element x ∈ S or rather the H-orbit of x
is θ-unipotent if it is unipotent in G. We say that g ∈ G is θ-unipotent if x = g−1θ(g)
is so in S. Let Y ⊂ S be the variety of θ-unipotent elements in S. By [JR96, Lemma 4.1],
the exponential map induces an H-equivariant isomorphism Y → N and thus induces
a bijection on the set of H-orbits in Y and that in N. Let u1 , . . . , ur , ur+1 , . . . , us be a
complete set of representatives of θ-unipotent orbits in G. Let Oi be the θ-nilpotent
orbits in s represented by exp−1(u−1

i θ(u i)) and we may label these u i ’s so that Oi
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is visible precisely when 1 ≤ i ≤ r. Therefore u i represents a θ-unipotent orbit in G
which supports a left H-invariant and right (H, η)-invariant distribution precisely
when 1 ≤ i ≤ r. We denote this distribution by O(u i , η, ⋅) and call it a θ-unipotent
orbital integral on G. If f ∈ C∞c (G), we have

O(u i , η, f ) = μOi ( f♮).

We call the θ-unipotent elements u1 , . . . , ur or their orbits visible.
The following proposition is the Shalika germ expansion of orbital integrals on G.

Proposition 8.1 Let f ∈ C∞c (G). There is a neighborhood U f ⊂ Ω of 1 ∈ S so that if
g ∈ G is a θ-regular element in G with g−1θ(g) ∈ U f , g−1θ(g) = exp(X) where X ∈ ω,
then

O(g , η, f ) =
r
∑
i=1

ΓOi (X)O(u i , η, f ).(8.1)

Proof This follows from the definition of O(u i , η, f ) and the Shalika germ expan-
sion on s, i.e. Proposition 6.1. ∎

Remark 8.2 Due to the lack of a symmetric space version of the Howe’s finiteness
theorem, we are not able to obtain the “uniformity” of the Shalika germ expansion on
G. This is however well expected. More precisely let K be an open compact subgroup
of K, we expect that there is an open neighborhood UK of 1 ∈ G so that the germ
expansion (8.1) holds for all f ∈ C∞c (K/G/K).

Let x ∈ S be θ-semisimple. Let Nx ⊂ sx be the nilpotent cone and the map Nx →
Sx , ξ ↦ x exp(ξ) is Hx -equivariant and induces a bijection between the θ-nilpotent
orbits in sx and the orbits in Sx represented an element y such that the semisimple
part of y is x. Let us recall the explicit construction of an analytic slice of x ∈ S given
in [Zha15, Section 5.3]. Recall first from Section 2 that an analytic slice at x ∈ S is a
triple (U , p, ψ), where U is an H-invariant neighborhood of the orbit xH in S, the map
p ∶ U → xH is an H-equivariant retraction and ψ is an Hx -equivariant embedding of
p−1(x) into the normal space N S

x of xH in S at x. By [Zha15, Section 5.3], we can take
p−1(x) to be a small neighborhood of x in Sx and identify N S

x with sx . The map ξ ↦
x exp(ξ) define an Hx -equivariant homeomorphism from a neighborhood of 0 ∈ N S

x
to p−1(x) and we can and will take ψ to be the inverse of this map.

Let g ∈ G and x = g−1θ(g). Let x = xs xu = xu xs be the Jordan decomposition of x
in G (with obvious notation). Then one checks readily that xs , xu ∈ S. Let O ⊂ Nxs be a
visible θ-nilpotent orbit and assume that xu is contained in the image of O under the
exponential map. Let f ∈ C∞c (G) and f̃ ∈ C∞c (S). We define f1 ∈ C∞(H) by

f1(h) = μsxs
O
( f̃ (h−1(xs exp(⋅))h)).

The right hand side is interpreted as follows. Fix an h ∈ H and an H-invariant
neighborhood U of 0 ∈ sx . We assume that U is compact modulo H and the expo-
nential map is defined on U. Define a compactly supported function on U by ξ ↦
f̃ (h−1(xs exp(ξ))h) when ξ ∈ U and extend it to sx by zero. It is clear that the orbital
integral is independent of the choice of U as it depends only on the value of the
integrand when ξ ∈ Nx . Then the right hand side stands for the orbital integral of this

https://doi.org/10.4153/S0008414X21000122 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000122


882 H. Xue

function along O on sxs . The same proof of Lemma 5.1 shows that the image of supp f1
in Hxs /H is compact. We put

O(g , η, f ) = ∫
Hx/H

f1(h)η(det h)dh.

The same argument the proof of Lemma 5.2 gives that

O(g , η, f ) = μsxs
O
( f̃xs),(8.2)

where f̃xs is the function constructed in Proposition 2.1 from f̃ . Again the same proof
of Lemma 5.3 gives that if xn is not contained in the image of a visible θ-unipotent
orbit, then the orbit of g does not support any distribution that is left H-invariant and
right (H, η)-invariant.

Theorem 8.3 The set of θ-regular semisimple orbital integrals is weakly dense in the set
of left H-invariant and right (H, η)-invariant distributions on G.

Proof As in the case of invariant distributions on s, the set of all orbital integrals is
weakly dense in D(G)H×H ,η . This is the symmetric space version of Lemma 7.1 and
can be proved by the same argument. Thus we need to prove that if f ∈ C∞c (G), and
O(g , η, f ) = 0 for all θ-regular semisimple g ∈ G, then all orbital integrals of f vanish.
Let x ∈ S be θ-semisimple. We have a function f̃ ∈ C∞c (S) and we let f̃x ∈ C∞c (sx)
be the function constructed in Proposition 2.1. Then by Proposition 2.1, all θ-regular
semisimple orbital integrals of f̃x near 0 ∈ sx vanish. Thus, by Theorem 7.5 (apply for
sx ), we conclude that all θ-nilpotent orbital integrals of f̃x vanish. By the equality (8.2),
we conclude that O(g , η, f ) = 0 if the θ-semisimple part of g−1θ(g) is x. This shows
that all orbital integrals of f vanish and proves the theorem. ∎

Remark 8.4 It is expected that the orbital integrals O(g , η, ⋅) on G are all tempered
distributions, i.e. they extend continuously to the Harish-Chandra Schwartz space
on G, c.f. [Clo91]. The proof of this would rely on the “uniformity” of Shalika germ
expansions, which in term rely on the Howe’s finiteness theorem on the symmetric
spaces, c.f. Remark 8.2.

9 Spherical characters

We prove the local integrability of spherical characters in this section. This is a
standard consequence of the germ expansion and the local integrability of the Fourier
transform of θ-nilpotent orbital integrals.

Let π be an irreducible admissible representation of G. Assume that HomH(π,C) /=
0 and HomH(π̃, η) /= 0 where π̃ is the contragredient of π. Fix nonzero elements l ∈
HomH(π,C) and l̃η ∈ HomH(π̃, η). Define a distribution on G by

Jπ( f ) = ∑
φ

l(π( f )φ) l̃η(φ̃), f ∈ C∞c (G).

Here, φ runs through a basis of π while φ̃ runs through the dual basis. Then, Jπ ∈
D(G)H×H ,η .
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To state the germ expansion for Jπ , let us recall the following setup. Let x =
g−1θ(g) ∈ S be a θ-semisimple element. Consider the map

H ×Gx × H → G , (h1 , g , h2) ↦ h1x gh2 .

Let Ux be the open subset in Gx consisting of elements g ∈ Gx such that the above
map is submersive at (1, g , 1). Let Ωx be the image of H ×Ux × H in G. Then, Ux is a
bi-Hx -invariant neighborhood of 1 in Gx and Ωx is a bi-H-invariant neighborhood
of x in G. By standard theory of Harish-Chandra, there is a surjective map

C∞c (H ×Ux × H) → C∞c (Ωx), α ↦ fα ,(9.1)

with the property that

∫
H×Ux×H

α(h1 , g , h2)β(h1x gh2)dh1dgdh2 = ∫
Ωx

fα(g)β(g)dg ,

for all β ∈ C∞c (Ωx). According to [JR96, Section 5.1, p. 103], there is a unique left Hx -
invariant and right (Hx , η)-invariant distribution Jx on Gx such that

Jπ( fα) = Jx(βα),

for all α ∈ C∞c (H ×Ux × H), where

βα(g) = ∫
H
∫

H
α(h1 , g , h2)η(det h2)dh1dh2 , g ∈ Gx .

Recall that we have defined a test function βα ,♮ ∈ C∞c (sx) at the beginning of Section 8.
The germ expansion of Jπ refers to the following theorem.

Theorem 9.1 Let the notation be as above. There are constants cO for each visible Hx -
orbit O in the nilpotent cone Nx , such that

Jπ( fα) = ∑
O⊂Nx

cO μ̂O(βα ,♮)

for all α ∈ C∞c (H ×Ux × H). The sum ranges over all visible θ-nilpotent orbits O in Nx .

The distributions μ̂O are locally integrable functions on sx by Corollary 7.6.
Therefore, Theorem 9.1 implies the following result.

Theorem 9.2 The distribution Jπ is represented by a left H-invariant and right (H, η)-
invariant locally integrable function on G.

Theorem 9.1 is almost proved in the literature. It is established in [RR96, Theo-
rem 7.11] near the identity element and in [Hak94, Theorem 2] near all semisimple
elements for the Galois symmetric pairs. The general case can be established essentially
by the same argument and is given in [Guo98]. It is unfortunate that [Guo98] is never
published. For completeness, we briefly outline the argument in the rest of this section
and refer the readers to [Hak94, RR96] for details. The readers may want to have these
papers at hand. The germ expansion holds for spherical characters on all symmetric
spaces. The argument outlined below also works in the general setting. We remark that
the references usually consider only bi-H-invariant distributions, but the argument
works without change in our setup. We also remark that even though [Hak94] aims at
proving results for the Galois symmetric pairs in odd residue characteristic, Sections
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2–7 of it are actually devoted to results of general symmetric spaces in arbitrary residue
characteristic. There are misprints in the second paragraph on page 3 of [Hak94],
where Section 7 should be Section 8, and Section 5 later in the paragraph should be
Section 6.

We introduce more notation. Let L ⊂ gx be a θ-stable lattice with a decomposition
L = L+ ⊕ L− where L+ ⊂ hx and L− ⊂ sx . Suppose that L is ee in the sense of [RR96,
p. 158] (we do not need the precise definition). The exponential map maps L onto an
open compact subgroup K of Gx . Write K+ = exp L+ ⊂ Hx . We may also assume that
L is small enough so that η is trivial on K+. By [RR96, Corollary 7.3], (K , K+) is a
Gelfand pair.

Let us now recall Howe’s parametrization of K̂, the set of irreducible smooth
representation of K. We put K 1/2 = exp( 1

2 L) and K 1/2
+ = exp( 1

2 L+). The various 1/2
appearing here and below are all to take care of the complications arise in the case of
residue characteristic two. They do not play any roles in the case of odd residue char-
acteristic. Let E(K/K+) be the set of irreducible representations of K with a nonzero
K+-fixed vector. If the residue characteristic is two, the group K 1/2

+ acts on E(K/K+)
by conjugation and we let E1/2(K/K+) be the set of K 1/2

+ -orbits in E(K/K+). If the
residue characteristic is odd, then K = K 1/2, K+ = K 1/2

+ and E(K/K+) = E1/2(K/K+).
If μ ∈ E(K/K+) we define

ϕμ(k) = ⟨μ(k)e , e⟩

where e ∈ μ is the unique unit K+-fixed vector. Let d = {μ1 , . . . , μm} is an orbit in
E1/2(K/K+). We then put

ϕd =
m
∑
i=1

ϕμ i .

Let d(d) = dim μ for any μ ∈ d. We view ϕd either as a bi-K+-invariant function on K
or a function on Sx supported in the image of K.

Let L⊥− be the dual lattice of L− in sx , i.e., the annihilator of L− with respect to ⟨−,−⟩.
As L− is stable under the action of K 1/2

+ , so are L⊥− and sx/L⊥−. Thus, we can consider
the K 1/2

+ -orbits in sx/L⊥−. IfO is such an orbit, we let κO ∈ C∞c (sx) be the characteristic
function of it.

Proposition 9.3 There is a bijection between E1/2(K/K+) and the set of K 1/2
+ -orbits in

sx/L⊥− which sends d ∈ E1/2(K/K+) to Od ⊂ sx/L⊥−. Under this bijection, we have

d(d)ϕd(exp X) = (volL⊥−)−1κ̂Od
(X)

for all X ∈ L−.

This is the combination of Propositions 7.8 and 7.10(2) of [RR96].
Let Ngx be the cone of nilpotent matrices in gx . We fix any norm ∥⋅∥ on gx . Let S1

be the unit ball in gx , and

V(ε) = {X ∈ S1 ∣ ∥X − n∥ ≤ ε for some n ∈ Ngx ∩ S1}.
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We also put

FV(ε) = {λX ∣ λ ∈ F , X ∈ V(ε)}.

Lemma 9.4 Let ε > 0 be sufficiently small and R > 0 be sufficiently large. Let d ∈
E1/2(K/K+). Assume that Jx(ϕd) /= 0 and that that there is a Z ∈ Od with ∥Z∥ ≥ R.
Then Od ⊂ FV(ε).

This is [Hak94, Theorem 4].
Let U0 ⊂ sx be an open and closed neighborhood of zero such that exp U0 is

contained in the image of Ux . The spherical character Jx is left Hx -invariant and
therefore can be viewed as a distribution on Sx . Restrict Jx to exp U0 and pull it
back via the exponential map we obtain a distribution on U0. Extending it by zero
to all sx . We denote this distribution by J0. Note that we have Jx( f ) = J0( f♮) for all
f ∈ C∞c (Gx).

Lemma 9.5 Let ε > 0 be sufficiently small and R > 0 be sufficiently large. Let Z ∈
sx with ∥Z∥ > R, and let fZ ∈ C∞c (sx) be the characteristic function of Z + L⊥−. If
Ĵ0( fZ) /= 0, then there is an n ∈ Nx so that ∥Z − n∥ ≤ ε∥n∥.

Proof Let O be the K 1/2
+ -orbit of −Z in sx/L⊥− and d ∈ E1/2(K/K+) be the K 1/2

+ -orbit
of representations corresponding to O as in Proposition 9.3. We have

κO = ∑
Z′∈O/L⊥

−

fZ′ .

Note that Z′’s are all the K+-orbit of −Z, J0 is (Hx , η)-invariant and η is trivial when
restricted to K+. It follows that

d(d)Jx(ϕd) = (volL⊥−)−1 ⋅ #O/L⊥− ⋅ Ĵ0( fZ).

Therefore, if Ĵ0( fZ) /= 0, then Jx(ϕd) /= 0. As ∥Z∥ > R, by Lemma 9.4 we have Z ∈
FV(ε). In other words, there is a λ ∈ F× and n1 ∈ Ngx so that ∥λ−1Z − n1∥ ≤ ε. Put
n = λn1 ∈ Ngx , we conclude that ∥Z − n∥ ≤ ε∥n∥. Following the same argument as in
the second paragraph of the proof of [RR96, Theorem 7.11] we can even choose n ∈ Nx .
This proves the lemma. ∎

We now finish the proof of Theorem 9.1. Lemma 9.5 tells us that Ĵ0 ∗ κL⊥
−

is
contained in

C(ε, R) = B(0, R) ∪ {Z ∈ sx ∣ ∥Z − n∥ ≤ ε∥n∥ for some n ∈ Nx}.(9.2)

Here, ∗ stands for the usual convolution of functions and distributions. Let

J(ε, R, L⊥−) = {(H, η)-invariant distributions D with supp (D∣C∞c (sx/L⊥−)) ⊂ C(ε, R)} .

With this notation, we have Ĵ0 ∗ κL⊥
−
∈ J(ε, R, L) ∗ κL⊥

−
. Let ω be an Hx -invariant

open and closed subset of sx , compact modulo Hx , and D(ω)H ,η be the space of
(Hx , η)-invariant distributions supported on ω. By Howe’s finiteness theorem [RR96,
Theorem 6.8], if ε is small enough and R is large enough, then

J(ε, R, L⊥−) ∗ κL⊥
−
= D(ω)H ,η ∗ κL⊥

−
.
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By [RR96, Proposition 6.9], if L is sufficiently small and hence L⊥− is sufficiently large,
then D(ω)H ,η ∗ κL⊥

−
is spanned by the θ-nilpotent orbital integrals. Therefore, we can

find constants cO so that

Ĵ0 ∗ κL⊥
−
= ∑

O⊂Nx

cO (μO ∗ κL⊥
−

) .

Theorem 9.1 follows by taking inverse Fourier transform. For details, see the last
paragraph of the proof of [RR96, Theorem 7.11].
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