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1. Introduction
Let M be a closed C∞ Riemannian manifold. Given a diffeomorphism f ∈ Diffr (M) and
r ∈ [1, ∞], s ∈ [0, r], the Cs-centralizer of f is defined as

Zs(f ) = {g ∈ Diffs(M) : g ◦ f = f ◦ g}.

By definition, f is conjugate to itself by any element g ∈ Zs(f ). In other words, the
centralizer of f is in fact the group of symmetries of f, where ‘symmetries’ can be
interpreted classically as: changes of coordinates do not break the dynamics of the system.
The centralizer of f always contains the integer powers of f. One says that f has trivial
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Cs-centralizer if Zs(f ) = {f n}n∈Z, and f has virtually trivial Cs-centralizer if the cyclic
group <f > := {f n}n∈Z is a finite index subgroup of Zs(f ).

The centralizers of diffeomorphisms play important roles in several topics of dynamical
systems. For instance, people attempt to classify diffeomorphisms up to differentiable
conjugacies, especially in the study of circle diffeomorphisms [He]. On the other hand, the
property of the centralizer of a diffeomorphism can give some consequences in foliation
theory; see, for instance, [B]. Moreover, the centralizer of a diffeomorphism is closely
related to the study of higher-rank abelian actions on manifolds; see, for instance, [DK, H,
HW].

Smale [Sm1, Sm2] proposed the famous conjecture that typical diffeomorphisms have
trivial centralizer, and considered it as one of the mathematical problems of this century.

Conjecture 1.1. There exists a residual subset U ⊆ Diffr (M), such that every f ∈ U has
trivial Cr -centralizer.

The history of this conjecture goes back to the work of Kopell [Ko] proving that
Diffr (S1) (r ≥ 2) admits an open and dense subset in which each element has trivial
centralizer. This conjecture has been solved for the case r = 1 in [BCW, BCVW]. It is still
wide open for general case when r > 1. Palis and Yoccoz studied Anosov diffeomorphisms
[PaYo2] and proved that C∞-open dense Anosov diffeomorphisms have trivial centralizer.
See also [Fi, PaYo1, RV] for other related results.

Since hyperbolic systems are not dense, it is natural to study the centralizer problem
for Cr , r > 1, diffeomorphisms under a weaker hyperbolicity assumption. In 1970s,
Brin and Pesin proposed the notion of partial hyperbolicity to weaken the notion of
hyperbolicity; see §2.1 for a precise definition. There are only some partial results
in this direction. Burslem [Bur] showed that C1-open and dense partially hyperbolic
diffeomorphisms have discrete centralizer. Recently, under a volume-preserving assump-
tion, [DWX] showed that for some classical C1 open class of Cr partially hyperbolic
diffeomorphisms, the centralizer is either small (virtually trivial) or exceptionally large
(contains a non-discrete Lie group); see related results in [BG]. It is still unknown whether
the results in [DWX] or [BG] can be generalized to the general non-volume-preserving
case.

In this paper we will classify the centralizer for a classical open class of partially
hyperbolic systems on T3, without assuming a volume-preserving condition. More pre-
cisely, we consider derived-from-Anosov (DA) systems on T3. For a partially hyperbolic
diffeomorphism f on T3, we denote its linear part Lf : π1(T

3) = Z3 → Z3 induced by f
on the fundamental group of T3 by Lf . If Lf ∈ GL(3, Z) is Anosov (hyperbolic), that is,
f is homotopic to an Anosov automorphism, then f is called a DA diffeomorphism.

The study of partially hyperbolic DA diffeomorphisms originated from Mañé [M]. Par-
tially hyperbolic DA diffeomorphisms have been studied extensively in their topological
aspects (see. for instance. [BBI1, Ha, HaPo, Po]) as well as their measure-theoretic aspects
(see, for instance, [BFSV, GS, HaU, PTV, U, VY]).

In this paper we essentially classify the centralizer of any Cr , 1 < r ≤ ∞, partially
hyperbolic DA diffeomorphisms on T3.
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THEOREM 1.2. Let f ∈ Diff∞(T3) be a partially hyperbolic derived-from-Anosov diffeo-
morphism. Then one has the following dichotomy:
• either the C∞ centralizer of f is virtually trivial, and

#{g ∈ Z∞(f ) : g is homotopic to the identity} ≤ |det(Lf − Id)|;
• or f is C∞-conjugate to Lf , thus Z∞(f ) ∼= Z∞(Lf ).

For the centralizer of the partially hyperbolic DA diffeomorphisms with lower regularity,
we get the following theorem. And Theorem 1.2 is a direct corollary of this theorem.

THEOREM 1.3. Let f ∈ Diffr (T3) (r > 1) be a partially hyperbolic derived-from-Anosov
diffeomorphism. Then f satisfies one of the following properties:
• the Cr centralizer of f is virtually trivial and

#{g ∈ Zr (f ) : g is homotopic to the identity} ≤ |det(Lf − Id)|;
• f is Anosov, and Cr−ε-conjugate to Lf for any ε > 0.

Unlike in [BG, DWX], the proofs of our main results do not depend on the
measure-theoretic properties of the center foliation. Instead we study the accessibility
and topological information of the stable and unstable foliations, which allow us to get rid
of the volume-preserving assumption in [BG, DWX].

Remark 1.4.
(1) In the second case of Theorem 1.3, the loss of regularity comes from Journé’s

theorem [J]. If r is not an integer, then f is Cr -conjugate to Lf . Thus Zr (f ) ∼=
Zr (Lf ) = Z∞(Lf ), which is virtually Z2.

(2) When Zr (f ) is virtually trivial, one has #{g ∈ Zr (f ) : g is homotopic to the
identity} ≤ #(Zr (f )/<f >), and the inequality could be strict provided that Zr (f )

contains elements homotopic to −IdT3 , or g with gn0 = f and n0 > 1.
(3) From the proof, we can see that the dichotomy in both theorems comes from whether

f is accessible. If f is accessible, then Zr (f ) is virtually trivial. Otherwise, f is forced
to be smoothly conjugate to its linear part Lf .

(4) The reason why we discuss virtual triviality rather than triviality of the cen-
tralizer is that this property is more likely to be robust; for example, the class
of systems which satisfies the dichotomy in our paper forms an open subset in
the group of Cr diffeomorphisms on T3. See [DWX] and references therein for
more results on ‘virtual triviality of centralizer or rigidity’ for partially hyperbolic
diffeomorphisms.

In particular, our result implies that the centralizer of every diffeomorphism constructed
by Mañé in [M] is virtually trivial. A direct corollary is that Cr -open densely, the
Cr -centralizer of a partially hyperbolic diffeomorphism which is homotopic to an Anosov
automorphism on T3 is trivial, which can be achieved by perturbing different fixed points
to have different center Lyapunov exponents.

Question 1.5. Does Theorem 1.3 hold when r = 1?
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We do not know the answer to this question. Our proof strongly relies on the recent
results in [GS, HaS] where r > 1 is crucial in their arguments.

Remark 1.6. If f is C1-smooth and accessible, then Z1(f ) is virtually trivial. See Remark
3.9 and Theorem 3.16 in §3. As accessible partially hyperbolic diffeomorphisms with
one-dimensional center form a C1-open and dense subset [Di, DoW, HHU], it follows
that for a C1-open dense set of partially hyperbolic DA diffeomorphisms on T3, the C1

centralizer is trivial.

Question 1.7. Suppose that M is a closed 3-manifold and PHr (M) is the set of Cr partially
hyperbolic diffeomorphisms on M. Let U r ⊂ PHr (M) be defined by

U r := {f ∈ PHr (M) : Zr (f ) is trivial}.
Does U r contain an open dense subset in PHr (M) for every r > 1?

2. Preliminaries
In this section we collect the notions and results used in this paper.

2.1. Domination and partial hyperbolicity. A Df -invariant splitting T M = E ⊕ F is
dominated, if there exists N ∈ N such that

‖Df N |E(x)‖ · ‖Df −N |F(f n(x))‖ ≤ 1
2 for any x ∈ M .

dim(E) is called the index of the dominated splitting.
The following well-known result tells us that the dominated bundles are invariant under

the diffeomorphisms in the centralizer.

PROPOSITION 2.1. [DWX, Lemma 13] Let f ∈ Diff1(M) admit a dominated splitting of
the form T M = E ⊕ F . Then for any g ∈ Z1(f ), one has Dg(E) = E and Dg(F) = F .

A diffeomorphism f ∈ Diffr (M) is partially hyperbolic if there exist a Df -invariant
splitting T M = Es ⊕ Ec ⊕ Eu and N ∈ N such that the following statements hold.
• Uniform contraction and expansion. For any x ∈ M , one has

‖Df N |Es(x)‖ ≤ 1
2 and ‖Df −N |Eu(x)‖ ≤ 1

2 .

• Domination. For any x ∈ M , one has

‖Df N |Es(x)‖ · ‖Df −N |Ec(f N (x))‖ ≤ 1
2 ,

‖Df N |Ec(x)‖ · ‖Df −N |Eu(f N (x))‖ ≤ 1
2 .

It is clear that the set of all Cr partially hyperbolic diffeomorphisms is an open subset of
Diffr (M) in the Cr -topology. If either the strong stable bundle Es or the strong unstable
bundle Eu is trivial, we say f is weakly partially hyperbolic.

Not every manifold supports a partially hyperbolic diffeomorphism. For instance, there
are no partially hyperbolic diffeomorphisms on S3 [BI].
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2.2. Dynamical coherence. For a partially hyperbolic diffeomorphism f, by [HPS],
there always exist f -invariant foliations F s and Fu tangent to the bundles Es and Eu

respectively, and such foliations are unique. f is called dynamically coherent if there
exist f -invariant foliations Fcs and Fcu tangent to Ecs := Es ⊕ Ec and Ecu := Ec ⊕ Eu,
respectively. By taking the intersection of Fcs and Fcu, one gets an invariant foliation
Fc tangent to Ec. The dynamical coherence of a partially hyperbolic DA diffeomorphism
on T3 has been substantially investigated; see, for instance, [BBI1, BBI2, BI, FiPoSa,
HaPo, Po].

Two transverse foliations F , G on R3 have global product structure if for any x, y ∈ R3,
the leaf F(x) intersects the leaf G(y) at a unique point. Following [Fe, Br], one says that
a foliation F on R3 is quasi-isometric if there exist a, b > 0 such that for any x ∈ R3 and
y ∈ F(x), one has dF (x, y) ≤ a · d(x, y) + b, where dF (·, ·) denotes the distance on the
leaves of F and d(·, ·) denotes the Euclidean distance. A foliation F that satisfies this
property is also called quasi-geodesic.

The following result gives the dynamical coherence of a partially hyperbolic hyperbolic
DA diffeomorphism and further geometrical properties of the invariant foliations.

THEOREM 2.2. [BI, Ha, Po] Let f ∈ Diff1(T3) be a partially hyperbolic diffeomorphism
with the partially hyperbolic splitting TT3 = Es ⊕ Ec ⊕ Eu. Assume that Lf is Anosov.
Then one has the following statements:
• f has unique foliations Fcs and Fcu tangent to Es ⊕ Ec and Ec ⊕ Eu, respectively;
• the lifts of the foliations Fcs and Fu to R3 have global product structure;
• the lifts of the foliations F s , Fc, Fu to R3 are quasi-isometric;
• each leaf of Fc is dense in T3;
• Lf has simple spectrum.

Remark 2.3. [BI, Key Lemma 2.1] gives the existence of two-dimensional foliations
transverse to Eu and Es respectively which is exactly the assumption of [Po,
Theorem 1.2].

Notation 2.4. Throughout this paper, for any foliation F on T3, we will denote by F̃ the
lift of F to R3. We denote by dF̃ (·, ·) the distance in a F̃-leaf, and

F̃r (x) = {y ∈ F̃(x) : dF̃ (x, y) < r}.
And we assume the center Lyapunov exponent of Lf is larger than zero, that is, the
stable dimension of Lf as an Anosov diffeomorphism is 1. Otherwise, we only need to
consider f −1.

As a consequence of the global product structure for the lifted foliations, one has the
following result whose proof can be found in [Po, Proposition 6.8].

COROLLARY 2.5. Let f be as in the assumption of Theorem 2.2. Then there exists a
constant K > 0 such that for any r > 0, any x ∈ R3, any y ∈ F̃u

r (x) and any w ∈ F̃cs(x),
one has that F̃u

r+K(w) ∩ F̃cs(y) �= ∅.
The analogous result with respect to the strong stable and center unstable foliations

holds.
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Combining with the result from the previous section, one has the following corollary.

COROLLARY 2.6. Let f be a C1-partially hyperbolic diffeomorphism homotopic to a linear
Anosov. Assume that f has the splitting of the form T M = Es ⊕ Ec ⊕ Eu, then for any
g ∈ Z1(f ), each invariant foliation F∗ of f is invariant under g for ∗ = s, cs, c, cu, u.

Proof. By the classical stable manifold theorem and Theorem 2.2, there exist unique
invariant foliations F s , Fu, Fcs and Fcu tangent to Es , Eu, Ecs , and Ecu respectively. For
any g ∈ Z1(f ), by Proposition 2.1, one has that g(F∗) is an f -invariant foliation tangent
to E∗ for ∗ = s, u, cs, cu; therefore, one has g(F∗) = F∗ for ∗ = s, u, cs, cu. Finally, on
has

g(Fc) = g(Fcs) ∩ g(Fcs) = Fcs ∩ Fcs = Fc.

For a diffeomorphism on the torus, if its linear part is Anosov, then it is semi-conjugate
to its linear part.

THEOREM 2.7. [Fr, W2] Let f ∈ Diff1(Td) and assume that Lf is Anosov. Consider a
lift F of f to the universal cover Rd . Then there exists a unique continuous surjective map
H : Rd → Rd such that:
• H ◦ F = Lf ◦ H ;
• H(x + z) = H(x) + z, for any z ∈ Zd and any x ∈ Rd .

As a consequence, one has the following corollary.

COROLLARY 2.8. Let f ∈ Diff1(Td) whose linear part Lf is Anosov and F be a lift of f
to Rd . Then there exists a continuous surjective map H : Rd → Rd such that:
• H ◦ F = Lf ◦ H ;
• H(x + z) = H(x) + z for any x ∈ Rd and any z ∈ Zd ;
• for any g ∈ Z1(f ) and any lift G of g to Rd , if F ◦ G = G ◦ F , then H ◦ G = Lg ◦ H .

Proof. Let H : Rd → Rd be the continuous surjective map given by Theorem 2.7 such
that H ◦ F = Lf ◦ H and H − IdRd is Zd -periodic. Consider the map Ĥ = L−1

g ◦ H ◦ G

which satisfies that Ĥ − IdRd is Zd -periodic. Then one has

Ĥ ◦ F = L−1
g ◦ H ◦ G ◦ F = L−1

g ◦ H ◦ F ◦ G = L−1
g ◦ Lf ◦ H ◦ G

= Lf ◦ L−1
g ◦ H ◦ G = Lf ◦ Ĥ .

By the uniqueness property in Theorem 2.7, one has Ĥ = H which gives H ◦ G =
Lg ◦ H .

Furthermore, the semi-conjugation preserves certain foliations.

THEOREM 2.9. [Ha, HaPo, Po, U] Let f be a C1-partially hyperbolic diffeomorphism
on T3 which is homotopic to an Anosov automorphism Lf with two positive Lyapunov
exponents. Denote by F∗ and W∗ the foliations of f and Lf respectively, for ∗ =
s, u, cu, cs, c. Let h be the semi-conjugacy between f and Lf , in formula: Lf ◦ h = h ◦ f .
Then one has the following properties.
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(1) For any x ∈ T3 and ∗ = cu, cs, c, one has h(F∗(x)) = W∗(h(x)).
(2) For any x ∈ T3, the map h|F s (x) : F s(x) → Ws(h(x)) is a homeomorphism.
(3) For any x ∈ T3, the pre-image h−1(h(x)) is a segment (could be trivial) contained in

Fc(x). In particular, for any center leaf Wc(y), there exist at most countably many
points whose pre-images under h are non-trivial center segments.

Remark 2.10.
(1) This result is obtained in [Ha, U] assuming absolute partial hyperbolicity, and it is

extended to general partially hyperbolic setting in [Po, Appendix A] (see also [HaPo,
§3]).

(2) The last item implies that f must have fixed points.
(3) Each center leaf of f is dense in T3.

2.3. Centralizer of linear Anosov automorphisms. The following result comes from
[AP] (see also [W1]).

THEOREM 2.11. [AP] Let L be a linear Anosov map on T3 and h be a homeomorphism on
T3. If h ◦ L = L ◦ h, then h is affine.

In particular, Adler and Palais’ result implies that for each Anosov diffeomorphism f
on T3, there exists a homeomorphism h on T3 such that for any g ∈ Z0(f ), one has that
h ◦ g ◦ h−1 is affine. Corollary 2.8 tells us that such results hold for semi-conjugacy to
Anosov case.

The following result gives the rank of the group of linear automorphisms commuting
with an Anosov automorphism, and it comes from [DWX, KKS].

LEMMA 2.12. [KKS, Proposition 3.7] Consider a matrix L ∈ SL(n, Z) whose character-
istic polynomial is irreducible over Z. Then the group G(L) = {L1 ∈ SL(n, Z) : LL1 =
L1L} is abelian. Moreover, G(L) is virtually Zr+c−1, where r is the number of real
eigenvalues of L and 2c is the number of complex eigenvalues of L.

In our paper all the linear Anosov maps we consider have real simple spectrum. It is easy
to see that these linear Anosov maps are irreducible in the sense that their characteristic
polynomials are irreducible over Z.† Therefore, their centralizers are virtually Z2 by
Theorem 2.11 and Lemma 2.12.

COROLLARY 2.13. Let f ∈ Diff1(T3) be a partially hyperbolic diffeomorphism
with Anosov linear part Lf ∈ GL(3, Z). Then the C0-centralizer Z0(Lf ) of Lf is
virtually Z2.

Moreover, the non-trivial elements in the centralizer is also Anosov.

LEMMA 2.14. Let A ∈ SL(3, Z) be an Anosov automorphism. For any B ∈ SL(3, Z), if
AB = BA, then either B = Id or B is Anosov.

† Otherwise, one should have ±1 as the eigenvalue, contradicting to the hyperbolicity of the maps.
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Proof. If B ∈ SL(3, Z) has eigenvalues of modulus 1, then 1 is an eigenvalue of B since
det(B) = 1. And there exists a rational vector 0 �= v such that Bv = v. For any eigenvector
w of B with respective to 1, one has that BAw = ABw = Aw, which implies that the
eigenvector space of B with respect to 1 is invariant under A; in particular. the rational
vector Av is also an eigenvector of B with respect to the eigenvalue 1 and is not collinear
to v, since A is Anosov and v is rational. Then the two-dimensional linear space generated
by Av and v has rational slope and is contained in the eigenspace of B with respect to
the eigenvalue 1. Once again, as A is Anosov (in particular, irreducible), the linear space
generated by Av and v is not A-invariant, which implies that each vector in R3 is in the
eigenspace of B with respect to eigenvalue 1. Hence B is the identity.

2.4. Regularity. Now, we collect some regularity lemmas showing that if a homeomor-
phism is differentiable along pairs of transverse foliations up to certain order, then the
homeomorphism is differentiable.

LEMMA 2.15. [J] Let M be a closed manifold and h be a homeomorphism on M. Assume
that there exist two transverse continuous foliations F and G on M with Cr -leaves, and h
is uniformly Cr when restricted to leaves of F and G. Then h is Cr−ε for any ε > 0.

Remark 2.16. If r is not an integer, then h is Cr . If r is an integer, then h is Cr−1+Lip.

One says that a foliation F with C1-leaves is expanding for f ∈ Diff1(M) if F is
f -invariant and there exists N ∈ N such that ‖Df −N |TxF(x)‖ ≤ 1

2 , for any x ∈ M .

LEMMA 2.17. [Go2, Lemma 2.4] Let f , g be two Cr -diffeomorphisms on a closed
manifold M . Let F , G be one-dimensional expanding foliations with Cr -leaves for f and g,
respectively. Assume that there exists a homeomorphism h on M such that:
• h ◦ f = g ◦ h and h(F) = G;
• h and its inverse are uniformly C1 along the leaves of F and G, respectively.
Then h is uniformly Cr along the leaves of F and h−1 is uniformly Cr along the leaves
of G.

2.5. Accessibility. Given a partially hyperbolic diffeomorphism f ∈ Diff1(M) and a
point x ∈ M , the accessible class Acc(x) of x is defined as the set of points which can
be joined to x by paths which are concatenations of paths in a strong stable or strong
unstable manifold. By definition, Acc(x) is saturated by strong stable and strong unstable
leaves. One says that f is accessible if any two points x, y ∈ M can be connected by a path
γ which is a concatenation of paths in strong stable or strong unstable manifolds of f ; in
other words, the accessible class of a point is the whole manifold.

For a partially hyperbolic diffeomorphism f, the bundles Es and Eu are jointly
integrable, if there exists an f -invariant foliation tangent to Es ⊕ Eu everywhere. In this
case, we call f su-integrable or su-jointly-integrable.

It has been proved in [Di] that if f is accessible, then Es ⊕ Eu is not jointly integrable.
Moreover, if f has one-dimensional center, then there exists a point x ∈ M with the local
accessibility property as follows.
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LEMMA 2.18. [Di, HHU] Let f be a C1-partially hyperbolic diffeomorphism on M. If f is
accessible and the center bundle is one-dimensional, then there exist r0 > 0, r1 > 0 which
can be arbitrarily small, and x ∈ M such that fir any center curve I c

r1
(x) centered at x of

radius r1, there exist xs , xsu, xsus ∈ M and xc ∈ I c
r1

(x) such that:
• xs ∈ F s

r0
(x) and xsu ∈ Fu

r0
(xs),

• xsus ∈ F s
r0

(xsu) and xc ∈ Fu
r0

(xsus),
where F∗

r (z) denotes the r-neighborhood of z in the leaf F∗(z) for ∗ = s, u.
Moreover, let I c(x, xc) denote the set of all points located between x and xc in I c

r1
(x).

Then Acc(x) contains an open set U close to x, that is,

U ⊆
⋃

y∈I c(x,xc)

⋃
z∈F s

loc(y)

Fu
loc(z) ⊆ Acc(x).

Each point in U can be connected to x by a local su-path contained in a small
neighborhood of x.

If a diffeomorphism f : M → M is partially hyperbolic, and π : M̃ → M is a covering
map, then any lift f̃ : M̃ → M̃ is also partially hyperbolic. And the partially hyperbolic
splitting on M̃ is defined by pulling back the splitting on M:

T M̃ = π∗(Es) ⊕ π∗(Ec) ⊕ π∗(Eu).

The following result tells us that the accessibility is preserved under lifts of the manifold.

LEMMA 2.19. Let f ∈ Diff1(M) be an accessible partially hyperbolic diffeomorphism,
and assume that the center bundle is one-dimensional. Consider a covering map π : M̃ →
M from a connected manifold M̃ to M, and a lift f̃ of f to M̃ . Then f̃ is accessible.

Proof. Notice that the lifts of the strong stable and unstable foliations to M̃ are the strong
stable and unstable foliations of f̃ . Since f is accessible, Lemma 2.18 shows that there
exists x ∈ M with the local accessibility property.

This implies for every x̃ ∈ π−1(x), that the accessibility class Acc(x̃) with respect to f̃

contains an open set close to x̃. If an accessible class contains an open set, then it is open.
Thus Acc(x̃) is open for every x̃ ∈ π−1(x).

On the other hand, for every ỹ ∈ M̃ , since π(y) ∈ M can be connected to x by an
su-path, ỹ can be connected to a point x̃ ∈ π−1(x) by an su-path. This implies

M̃ =
⋃

x̃∈π−1(x)

Acc(x̃).

Since M̃ is connected and each Acc(x̃) is open, we must have M̃ = Acc(x̃) for every
x̃ ∈ π−1(x). Thus f̃ is accessible.

The following result gives equivalence conditions for the joint integrability of strong
stable and unstable distributions.

THEOREM 2.20. ([GS, Theorem 1.1] and [HaS]) Let f be a Cr (r > 1) partially hyperbolic
diffeomorphism on T3 whose linear part Lf is Anosov. The following statements are
equivalent.
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• Strong stable and unstable distributions of f are jointly integrable.
• Each periodic orbit of f has same center Lyapunov exponent as Lf , and f is Anosov.
• f is not accessible.

Remark 2.21.
• Under the volume-preserving assumption, Hammerlindl and Ures [HaU] proved that

the first and third items are equivalent; in particular, f is topological Anosov;
• The equivalence of the first and second items is obtained in [GS] under the

volume-preserving setting. Then the volume-preserving condition is removed by
[HaS] and the third equivalent item is obtained in [HaS].

2.6. Equivalent conditions for su-integrability of an Anosov map. In this part, we collect
the consequences of su-joint-integrability for Anosov diffeomorphisms on T3, which is
proved in [GRZ, GS].

THEOREM 2.22. [GS, Theorem 5.1] Let f be a Cr (r > 1) partially hyperbolic and Anosov
diffeomorphism on T3. Let h be the conjugacy between f and Lf . Then the following
statements are equivalent:
• f is su-integrable;
• f is not accessible;
• h preserves the strong stable and strong unstable foliations;
• the center Lyapunov exponent of any periodic point p of f coincides with the center

Lyapunov exponent of Lf ;
• h is differentiable along the center leaves of f.

Remark 2.23. When the conjugacy preserves the strong foliations, one can show that h and
h−1 is uniformly Hölder continuous along the leaves of strong foliations (see for instance
Lemma 2.3 in [GS]).

Now, we state the following result which is essentially [GS, Proposition 4.1]. For
completeness, we will give the proof in Appendix A.

THEOREM 2.24. Let g be a Cr (r > 1) Anosov diffeomorphism on T3 and let h ∈
Homeo(T3) such that h ◦ g = Lg ◦ h. Assume that:
• there exists a Dg-invariant continuous splitting Es ⊕ Ec ⊕ Eu;
• g is uniformly contracting along Es and is uniformly expanding along Ec ⊕ Eu;
• there exist g-invariant foliations Fc, Fu and F su tangent to Ec, Eu and Es ⊕ Eu

respectively;
• Lg is partially hyperbolic;
• h sends Fc, Fu to the center, strong unstable foliations of Lg respectively;
• the holonomy map given by Fu restricted to each unstable leaf between two local

plaques tangent to Ec at a uniform bounded distance is uniformly C1.
Then the Lyapunov exponent along Ec of any periodic point p is the same as the center
Lyapunov exponent of Lg , and h is uniformly C1 along the leaves of Fc.
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Remark 2.25. In the statement of Theorem 2.24, we do not assume the splitting Ec ⊕ Eu

is dominated.

3. Centralizer of partially hyperbolic DA diffeomorphism: Proofs of Theorems 1.2
and 1.3
In this section we give the proof of our main theorems. We denote by L : Diffr (T3) →
GL(3, Z) the linearization operator, that is, for every g ∈ Diffr (T3), L(g) = Lg is the
action induced by g on π1(T

3) = Z3. For every f ∈ Diffr (T3), L induces a group
homomorphism

L : Zr (f ) −→ GL(3, Z),

g �−→ Lg .

The image of Zr (f ) by L satisfies

L(Zr (f )) = {Lg : g ∈ Zr (f )} ⊆ GL(3, Z) ∩ Z0(Lf ),

which is a subgroup in both GL(3, Z) and Z0(Lf ).
Let

Zr
0(f ) = {g ∈ Zr (f ) : g is homotopic to the identity}.

Then Zr
0(f ) is subgroup of Zr (f ). In particular, one has

Zr (f )/Zr
0(f ) ∼= L(Zr (f )).

In §3.1, we show that L(Zr (f )) is abelian and virtually Z2 or Z. Then we prove that
Zr

0(f ) is finite in §3.2. The index of Zr
0(f ) satisfies

#Zr
0(f ) ≤ |det(Lf − IdR3)|.

Recall that L(Zr (f )) always contains < Lf >∼= Z which is induced by <f > ⊆ Zr (f ).
If L(Zr (f )) is virtually Z, then we show Zr (f ) is virtually trivial, which is the first case
of Theorem 1.3. Finally, we discuss the case where L(Zr (f )) is virtually Z2 in §3.3, and
we show that f is smoothly conjugate to Lf in this case.

3.1. Preliminary lemmas. The lifts of two commutable diffeomorphisms may not be
commutable. The following result tells us that the lifts of the centralizer of partially
hyperbolic DA diffeomorphisms, up to finite iterates, are still in the centralizer of the lifted
diffeomorphism.

LEMMA 3.1. Let f be a C1-partially hyperbolic diffeomorphism on T3 whose linear part
Lf is Anosov, and let F be a lift of f to R3.

Then for any g ∈ Z1(f ), there exist an integer 0 < l ≤ |det(Lf − IdR3)| and a lift Ĝ

of gl such that F ◦ Ĝ = Ĝ ◦ F . Furthermore, if g is homotopic to the identity, then l can
be chosen as a factor of |det(Lf − IdR3)|.
Proof. Let p1, . . . , pk ∈ T3 be all the fixed points of Lf . It is classical that k =
|det(Lf − Id

R3)|. Let H : R3 → R3 be the semi-conjuacy between F and Lf given by
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Theorem 2.7, and let h : T3 → T3 be the map induced by H. Then the set of fixed points
of f is contained in

⋃k
i=1 h−1(pi) and each h−1(pi) is f -invariant. By Theorem 2.9,

each h−1(pi) is a compact center segment (could be trivial). By the Brouwer fixed point
theorem, f has fixed points in each h−1(pi). Let Ii ⊂ h−1(pi) be the shortest connected
and compact center segment (could be trivial) containing all fixed points of f in h−1(pi).
Then the two endpoints of Ii are fixed points of f.

Let π : R3 → T3 be the canonical covering map. Without loss of generality, one can
assume that p1 is the projection of 0 ∈ R3 under π , that is, π(0) = p1.

Since g ∈ Z1(f ), by Corollary 2.6, g preserves the center foliation of f. As the set
of fixed points of f is g-invariant, for each i ∈ {1, . . . , k}, there exists j ∈ {1, . . . , k}
such that g(Ii) = Ij which defines a permutation on {1, . . . , k}. Therefore, there exists
0 < l ≤ k such that gl(I1) = I1. If gl preserves the orientation of the center bundle, then
the two endpoints of I1 are fixed points of f and gl . If gl reverses the orientation of the
center bundle, then gl has a unique fixed point in I1 which is also a fixed point of f since
gl(I1) = f (I1) = I1 and g ∈ Z1(f ). To summarize, f and gl have a common fixed point
q1 ∈ I1. Notice that q̂1 = H−1(0) ∩ π−1(q1) is a fixed point of F. Since q1 is a fixed point
of gl , there exists a lift Ĝ of gl such that Ĝ(̂q1) = q̂1. Observe that F ◦ Ĝ ◦ F−1 ◦ Ĝ−1 is
a lift of the identity map on T3 and has a fixed point q̂1, hence F ◦ Ĝ = Ĝ ◦ F .

Now, we assume that g is homotopic to the identity. Let G be a lift of g to R3. Since
f ◦ g = g ◦ f , there exists n ∈ Z3 such that F ◦ G = G ◦ F + n. Since Lf is Anosov,
the linear map Lf − Id

R3 is invertible. Let m = (Lf − Id
R3)−1n ∈ Q3. Then there exists

an integer l > 0 which is a factor of |det(Lf − IdR3)| such that l · m ∈ Z3. Since g is
homotopic to the identity, then F ◦ Gl = Gl ◦ F + ln. Now, let Ĝ = Gl − l · m which is
a lift of gl , and one has

F ◦ Ĝ = F ◦ (Gl − lm) = F ◦ Gl − Lf (lm) = F ◦ Gl − ln − lm

= Gl ◦ F − lm = Ĝ ◦ F ,

which ends the proof.

The following result discusses the existence of common fixed points for lifted dynamics.

LEMMA 3.2. Let f be a C1-partially hyperbolic diffeomorphism on T3 whose linear part
Lf is Anosov, and let g ∈ Z1(f ). Assume that there exist a lift F of f to R3 and a lift G of
g to R3 such that F ◦ G = G ◦ F . Then F and G have a common fixed point, that is, there
exists p ∈ R3 such that F(p) = G(p) = p.

Proof. By Corollary 2.6, the center foliation of F is G-invariant. Let H : R3 → R3 be the
continuous surjective map given by Corollary 2.8 such that:
• H ◦ F = Lf ◦ H and H ◦ G = Lg ◦ H ;
• H − Id

R3 is Z3-periodic.
As Lf and Lg have a unique fixed point 0 ∈ R3, all the fixed points of F and G are
contained in H−1(0). By Theorem 2.9, H−1(0) is a compact and F-invariant center
segment.
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As F commutes with G, the set of fixed points of F is G-invariant and vice versa. If F
reverses the orientation of the center bundle, by the fact that dim(Ec) = 1, F has a unique
fixed point in H−1(0) which is also a fixed point of G. If G reverses the orientation of the
center bundle, one concludes analogously. If F and G preserve the orientation of the center
bundle, the endpoints of H−1(0) are the fixed points of F and G, proving the existence of
common fixed points.

The following lemma tells us that the linearization of the centralizer is virtually Z

or Z2.

LEMMA 3.3. Let f be a partially hyperbolic diffeomorphism on T3 whose linear part is
Anosov. Then the group {Lg ∈ GL(3, Z) : g ∈ Zr (f )} is abelian and is virtually Z or Z2.

Proof. Since f is partially hyperbolic, its linear part Lf has real simple spectrum. By
Lemma 2.12, the group

{Lg ∈ GL(3, Z) : g ∈ Zr (f )} ⊂ {B ∈ GL(3, Z) : Lf B = BLf }
is abelian and virtually Z2 or Z.

3.2. The centralizer Zr (f ) is virtually isomorphic to its linearization. In this part, we
discuss the relationship between Zr (f ) and its linearization {Lg : g ∈ Zr (f )}, and we
prove that the centralizer Zr (f ) is virtually isomorphic to {Lg : g ∈ Zr (f )}.
THEOREM 3.4. Let f be a Cr (r > 1) partially hyperbolic diffeomorphism on T3 whose
linear part Lf is Anosov. Then one has that:
• for each g ∈ Zr (f ) which is homotopic to the identity, there exists an integer l = lg

which is a factor of |det(Lf − Id
R3)| such that gl = Id

T3;
• #{g ∈ Zr (f ) : g is homotopic to IdT3} ≤ |det(Lf − IdR3)|.

Before giving the proof of Theorem 3.4, we need to make some preparations. We first
show that if g ∈ Zr (f ) is homotopic to the identity and a lift of g admits a fixed point on
R3, then g is the identity.

PROPOSITION 3.5. Let f ∈ Diffr (T3) (r > 1) be a partially hyperbolic diffeomorphism
and g ∈ Zr (f ). Make the following assumptions.
• The linear part Lf of f is Anosov.
• There exists a lift G : R3 → R3 of g with the following properties:

– G(x + n) = G(x) + n for any x ∈ R3 and n ∈ Z3;
– G admits a fixed point q ∈ R3.

Then G = IdR3 .

Proof. By Corollary 2.6 and the fact that G − Id
R3 is Z3-periodic, one has

G(F̃c(q + n)) = F̃c(q + n) = F̃c(q) + n for any n ∈ Z3.

By the third item of Remark 2.10, the set {F̃c(q + n)}n∈Z3 is dense in R3.
The following claim tells us that G is center fixing.
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CLAIM 3.6. For any x ∈ R3, the center leaf F̃c(x) is fixed by G.

Proof of the claim. As the set {F̃c(q + n)}n∈Z3 is dense in R3, for any x ∈ R3, there exists
a sequence of points xk ∈ {F̃c(q + n)}n∈Z3 such that xk converges to x. Since G − IdR3 is
Z3-periodic, there exists �0 > 0 such that d(G(y), y) ≤ �0 for any y ∈ R3. Since the center
foliation F̃c is quasi-isometric, there exist a, b > 0 such that for any x, y ∈ R3 with x ∈
F̃c(y), one has dF̃ c (x, y) ≤ a · d(x, y) + b. Since the center leaf F̃c(xk) is G-invariant,
one has

dF̃ c (G(xk), xk) ≤ a d(G(xk), xk) + b ≤ a�0 + b.

Let �1 = a�0 + b. By the continuity of the center foliation, F̃c
�1

(xk) converges to F̃c
�1

(x).
By the continuity of G and the fact that G(xk) ∈ F̃c

�1
(xk), one has G(x) ∈ F̃c

�1
(x), proving

that the center leaf F̃c(x) is fixed by G.

CLAIM 3.7. For any fixed point x0 of G, one has

G|F̃ s (x0)∪F̃u(x0)
= Id |F̃ s (x0)∪F̃u(x0)

.

Proof of the claim. By Theorem 2.2, the foliations F̃cu and F̃ s have global product
structure, hence for any point x ∈ R3 and any point y ∈ F̃cs(x), the center leaf F̃c(y)

intersects F̃ s(x) at a unique point.
Now, let x0 be a fixed point of G. By Corollary 2.6, one has G(F̃ s(x0)) = F̃ s(x0)

and G(F̃u(x0)) = F̃u(x0). One only needs to show that G restricted to F̃ s(x0) is the
identity, and the case for the strong unstable manifold works analogously. By Claim 3.6,
for any z ∈ F̃ s(x0) ⊂ F̃cs(x0), one has G(F̃c(z)) = F̃c(z). As F̃c(z) intersects F̃ s(x0)

at a unique point, by the fact that G(F̃ s(x0)) = F̃ s(x0), one has {G(z)} = G(F̃c(z) ∩
F̃ s(x0)) = F̃c(z) ∩ F̃ s(x0) = {z}.

Now, we show that G is the identity. As Acc(q) is saturated by strong stable and strong
unstable leaves and q is a fixed point of G, by Claim 3.7, the map G coincides with the
identity on Acc(q). There are two cases to discuss according to the accessibility property.

If f is accessible, by Lemma 2.19, each lift of f to the universal cover is also accessible,
hence Acc(q) = R3 which implies G = IdR3 .

If f is not accessible, by Theorem 2.20, f is Anosov. Consider a projection p of
the fixed point G on T3. Then g coincides with the identity on the union of the
strong stable and unstable manifolds of p. As f is Anosov, then the union of the
strong stable and unstable manifolds of p is dense in T3, hence g = Id

T3 which in
return implies G = IdR3 since G has fixed points. Now the proof of Proposition 3.5 is
completed.

As a consequence, one has the following corollary.

COROLLARY 3.8. Let f ∈ Diffr (T3) (r > 1) be a partially hyperbolic diffeomorphism
whose linear part Lf is Anosov, and let g ∈ Zr (f ). If g is homotopic to the identity, then
there exists l ∈ N which is a factor of |det(Lf − IdR3)| such that gl = IdT3 .
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Proof. Consider a lift of F of f to R3. Let g ∈ Zr (f ) be a diffeomorphism homotopic
to the identity. By Lemma 3.1, there exist a positive integer l which is a factor of
|det(Lf − Id

R3)| and a lift Ĝ of gl to R3 such that F ◦ Ĝ = Ĝ ◦ F . By Lemma 3.2, Ĝ

admits fixed points, hence Ĝ satisfies the assumption of Proposition 3.5, which gives that
gl = IdT3 .

Remark 3.9. Notice that Lemmas 3.1 and 3.2 are stated for C1-partially hyperbolic DA
diffeomorphisms. By the proof of Proposition 3.5, Corollary 3.8 holds for C1-partially
hyperbolic DA diffeomorphisms provided that they are accessible, as one only requires the
regularity with r > 1 when dealing with the non-accessible case.

We have obtained the first item in Theorem 3.4. The following result completes the
proof of Theorem 3.4.

PROPOSITION 3.10. Let f be a Cr (r > 1) partially hyperbolic diffeomorphism on T3

whose linear part Lf is Anosov. Then

#{g ∈ Zr (f ) : g is homotopic to the identity} ≤ |det(Lf − IdR3)|.

Proof. Let p1, . . . , pk be all the fixed points of Lf , where k = |det(Lf − Id)|. Consider
the semi-conjugacy h : T3 → T3 between f and Lf which is homotopic to the identity.
Then all the fixed points of f are contained in

⋃k
i=1 h−1(pi), and h−1(pi) is an f -invariant

center segment. Let Ii be the smallest connected segments containing all fixed points
of f in h−1(pi). If f reverses the orientation of the center foliation, then each Ii

is reduced to a single point. Since Fc is orientable, we give it an orientation. Let
Ii = [ai , bi]c such that the direction from ai to bi gives the positive orientation. Let
E = {ai}ki=1.

For any g ∈ Zr (f ) which is homotopic to the identity, by Corollary 2.6, the center
foliation Fc is g-invariant and g preserves the orientation of Fc. Therefore for each i ∈
{1, . . . , k}, there exists j ∈ {1, . . . , k} such that g(Ii) = Ij and g(ai) = aj .

CLAIM 3.11. For any g ∈ Zr (f ) which is homotopic to the identity, if there exists some
i ∈ {1, . . . , k} such that g(ai) = ai , then g = Id

T3 .

Proof of the claim. Let ãi ∈ R3 be lift of ai . As ai is a fixed point for g, there exists a lift
G of g such that G(ãi) = ãi . Since g ∈ Zr (f ) is homotopic to the identity, by Proposition
3.5, one has G = IdR3 , hence g = IdT3 .

CLAIM 3.12. For any i, j ∈ {1, . . . , k}, there exists at most one g ∈ Zr (f ) such that:
• g(ai) = aj ;
• g is homotopic to the identity.

Proof of the claim. Assume that there exist i, j ∈ {1, . . . , k} and two diffeomorphisms
g1, g2 ∈ Zr (f ) such that:
• g1(ai) = g2(ai) = aj ;
• g1 and g2 are homotopic to the identity.
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Let g = g1 ◦ g−1
2 . Then g ∈ Zr (f ) is homotopic to the identity and has aj as a fixed point.

By Claim 3.11, g = IdT3 , hence g1 = g2.

By Claims 3.11 and 3.12, and the fact that g ∈ Zr (f ) which is homotopic to the identity
must send a1 to some aj , one has

#{g ∈ Zr (f ) : g is homotopic to the identity} ≤ k = |det(Lf − IdR3)|.

3.3. The linearization of the centralizer is virtually Z2: rigidity case. In this section we
discuss the case where the linear part of the centralizer

L(Zr (f )) = {Lg : g ∈ Zr (f )}
is virtually Z2. The following theorem is the main result of this section.

THEOREM 3.13. Let f be a Cr (r > 1) partially hyperbolic diffeomorphism on T3 whose
linear part Lf is Anosov. If there exists g ∈ Zr (f ) such that Lm

g /∈ {Ln
f }n∈Z for any m �= 0,

then f is Cr−ε-conjugate to Lf for every ε > 0.

Remark 3.14. It is clear that Theorem 1.3 is a direct consequence of Theorems 3.4 and
3.13.

The proof of the following result is a standard fact for Cartan Z2-linear action on T3,
and for completeness we give a sketch of the its proof.

COROLLARY 3.15. Let f be a C1 partially hyperbolic diffeomorphism on T3 whose
linear part Lf is Anosov. If there exists g ∈ Z1(f ) such that Lm

g /∈ {Ln
f }n∈Z for any

m �= 0, then there exists g̃ ∈ Z1(f ) such that its linear part Lg̃ satisfies the following
properties:
• Lg̃ is contracting along Eu

Lf
and Es

Lf
;

• Lg̃ is uniformly expanding along Ec
Lf

;
• the splitting Eu

Lf
⊕≺ Es

Lf
⊕≺ Ec

Lf
is dominated for Lg̃ .

Sketch of the proof. By assumption, the rank of L(Z1(f )) is 2. By Lemma 2.14, each
element (except Id and − Id) in L(Z1(f )) is a hyperbolic automorphism on T3. Hence
L(Z1(f )) induces a Z2-linear action on T3 which is a Cartan action.

By Proposition 2.1, the Z2-linear action on T3 given by L(Z1(f )) leaves Eu
Lf

, Ec
Lf

and Es
Lf

invariant. Then the Lyapunov exponents along Eu
Lf

, Ec
Lf

and Es
Lf

can be seen

as linear functionals defined on Z2, and we denote them by λu, λc and λs respectively.
By Corollary 2.2.14 in [KN], the Lyapunov hyperplanes (given by ker λ∗ = 0 ⊂ R2 with
∗ = s, c, u) are in general position and are completely irrational. Since every element in
the action has determinant ±1, one has λs ⊕ λc ⊕ λu = 0. Then using linear algebra one
can find g̃ ∈ Z1(f ) satisfying the desired properties.

A priori, one does not know if the diffeomorphism g obtained in Corollary 3.15 is
partially hyperbolic. To conclude, one needs further discussion.
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Now, we show that the strong stable and unstable bundles are jointly integrable.

THEOREM 3.16. Let f be a C1 partially hyperbolic diffeomorphism on T3 whose linear
part Lf is Anosov. If there exists g ∈ Z1(f ) such that Lm

g /∈ {Ln
f }n∈Z for any m �= 0, then

f is not accessible.

Proof. Recall that we always assume Lf has two positive Lyapunov exponents. By
Corollary 3.15, one can assume that g ∈ Z1(f ) satisfies the following
properties:
• Lg is contracting along Eu

Lf
and Es

Lf
;

• Lg is uniformly expanding along Ec
Lf

;
• the splitting Eu

Lf
⊕≺ Es

Lf
⊕≺ Ec

Lf
is dominated for Lg .

Up to replacing f and g by f 2 and g2, one can assume that f and g preserve the
orientation of Es

Lf
, Ec

Lf
, Eu

Lf
. Let Fu, F s , Fc be the strong unstable, strong stable and

center foliations of f, respectively. Let Wu, Ws , Wc be the strong unstable, strong stable
and center foliations of Lf , respectively. Their corresponding center stable and center
unstable foliations would be denoted by Fcs , Fcu, Wcs , Wcu.

Consider a lift F of f to R3. By Lemma 3.1, there exists 0 < l ≤ |det(Lf − IdR3)| such
that gl admits a lift to R3 which commutes with F. For simplicity, we will assume that
l = 1. Let G be the lift of g such that F ◦ G = G ◦ F . By Lemma 3.2, F and G have a
common fixed point p ∈ R3. Let H : R3 → R3 be the continuous surjective map given by
Corollary 2.8 such that:
• H ◦ F = Lf ◦ H and H ◦ G = Lg ◦ H ;
• H − IdR3 is Z3-periodic.
Then H(p) = 0.

CLAIM 3.17. G is topologically contracting along the foliation F̃ s , that is, for any two
points x, y on the same F̃ s-leaf, one has limn→+∞ d(Gn(x), Gn(y)) = 0.

Proof of the claim. By Theorem 2.9, the map H is injective along each leaf of F̃ s

and sends a leaf of F̃ s to a leaf of W̃s . Recalling that Lg is uniformly contract-
ing along W̃s and H ◦ G = Lg ◦ H , one deduces that G is topologically contracting
along F̃ s .

CLAIM 3.18. There exists K > 0 such that for any x ∈ R3 and y ∈ F̃u(x), one has

lim sup
n→+∞

dF̃u(G
n(x), Gn(y)) ≤ K .

Proof of the claim. Recall that p ∈ R3 is a fixed point of G and H(p) = 0. Since the
foliations F̃cs and F̃u have the global product structure, the space of F̃cs-leaves can be
identified as F̃u(p) ∼= R. Similarly, the space of W̃cs-leaves of Lf can be identified as
W̃u(0): R3/F̃cs ∼= W̃u(0) ∼= R.

Thanks to Corollary 2.6, one can consider the action Gcs , induced by G, on the space
of F̃cs-leaves. Then one has the following commuting diagram, and Gcs can be identified
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as the diffeomorphism G : F̃u(p) → F̃u(p):

R3 G ��

projcs
��

R3

projcs
��

R3/F̃cs Gcs
��

∼=
��

R3/F̃cs

∼=
��

F̃u(p)
G �� F̃u(p)

R3/F̃cs F ��

Hcs

��

R3/F̃cs

Hcs

��
R3/W̃cs

Lf ��

∼=
��

R3/W̃cs

∼=
��

W̃u(0)
Lf �� W̃u(0)

By Theorem 2.9, the map H sends a center stable leaf of F to a center stable leaf of Lf

which induces a map Hcs from the space of F̃cs-leaves to the space of W̃cs-leaves.
Since H−1(x) is contained in a single center leaf for any x ∈ R3, it follows that Hcs is a

homeomorphism from the space of F̃cs-leaves to the space of W̃cs-leaves. Combining with
the fact that H ◦ G = Lg ◦ H , one gets that the homeomorphism Gcs : F̃u(p) → F̃u(p)

is conjugate to Lg : W̃u(0) → W̃u(0):

R3/F̃cs ∼= F̃u(p)
Gcs

��

Hcs

��

R3/F̃cs ∼= F̃u(p)

Hcs

��
R3/W̃cs ∼= Wu(0)

Lg �� R3/W̃cs ∼= Wu(0)

By the choice of g, the linear map Lg is a contracting along W̃u(0); therefore Gcs is
topologically contracting, as is G : F̃u(p) → F̃u(p).

Let x ∈ R3 and y ∈ F̃u(x). By the global product structure, the leaves F̃cs(x) and
F̃cs(y) intersect F̃u(p) at unique points x̂ and ŷ, respectively. Since d(Gn(̂x), Gn(ŷ))

tends to 0 when n tends to infinity and the center stable foliation and strong unstable
foliations are invariant under G, by Corollary 2.5, there exists a constant K > 0 such that

dF̃u(G
n(x), Gn(y)) ≤ K + d(Gn(̂x), Gn(ŷ)).

Letting n tend to +∞, one gets the posited property.

Assume, to the contrary, that f is accessible. Lemma 2.19 shows that the lift F : R3 →
R3 is also accessible. For every point x ∈ R3, we choose y ∈ Fc(x) such that H(x) �=
H(y). Let I c denote the segment between x and y contained in Fc(x).

Since F is accessible, there exists a sequence of segments I1, I2, . . . , Ik such that for
every j = 1, . . . , k, one has that:
• Ij is contained in a leaf of F̃ s or F̃u;
• the endpoints of Ij are xj−1 and xj , where x0 = x and xk = y.
By Claims 3.17 and 3.18,

max
j=1,...,k

{lim sup
n→+∞

�(Gn(Ij ))} ≤ K ,

where �(·) denotes the length of a C1 curve. This implies the two endpoints of Gn(I c) are
at uniformly bounded distance.

https://doi.org/10.1017/etds.2021.63 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.63


Centralizers of derived-from-Anosov systems 2859

On the other hand, since H(x) �= H(y), by the choice of g, one has

lim
n→+∞ �(Ln

g ◦ H(Ic)) = lim
n→+∞ �(H ◦ Gn(I c)) = +∞.

Since H − IdR3 is uniformly bounded on R3, one has limn→+∞ �(Gn(I c)) = +∞. This
contradicts to the quasi-isometric property of the center foliation F̃c given by Theorem
2.2.

Now, we are ready to give the proof of Theorem 3.13.

Proof of Theorem 3.13. By Theorems 2.20 and 3.16, the strong stable and unstable bundles
of f are jointly integrable, and f is Anosov. Let h be the homeomorphism such that h ◦ f =
Lf ◦ h.

Now, let us fix some notation. Recall that the partially hyperbolic splitting for f is
denoted by Es ⊕ Ec ⊕ Eu and the partially hyperbolic splitting for Lf is denoted by
Es

Lf
⊕ Ec

Lf
⊕ Eu

Lf
. Let F s , Fu, Fc be the strong stable, strong unstable and center

foliations of f respectively, and by Corollary 2.6, these foliations are invariant under
each element of Zr (f ). Let Ws , Wu, Wc be the strong stable, strong unstable and center
foliations of Lf , respectively.

Since Es ⊕ Eu is integrable, by Theorem 2.22, one has that:
• the conjugacy h is uniformly C1 along the center leaves of f ;
• h sends the foliation Fu to the foliation Wu.

In the following, we will show that h is uniformly C1 along the leaves of F s and Fu.
As per the discussion in Corollary 3.15, since the rank of the linearization of whole

Zr (f ) action is 2 (which is full rank), hence Zr (f ) induces a maximal Cartan affine action
on the torus, and there exist diffeomorphisms g, ĝ ∈ Zr (f ) whose linear parts satisfy the
following properties:
• Lg is uniformly expanding along Ec

Lf
, and Lg is uniformly contracting along Eu

Lf
⊕

Es
Lf

;
• Lĝ is uniformly expanding along Es

Lf
⊕ Ec

Lf
, and Lĝ is uniformly contracting along

Eu
Lf

;
• the splitting Eu

Lf
⊕ Es

Lf
⊕ Ec

Lf
is dominated for Lg and Lĝ .

Since both h ◦ g ◦ h−1 and h ◦ ĝ ◦ h−1 belong to the centralizer of Lf , by Theorem 2.11,
one has that

h ◦ g ◦ h−1 = Lg + wg and h ◦ ĝ ◦ h−1 = Lĝ + wĝ

are both affine maps on T3. Recall that h is uniformly C1 along the center leaves of f. Since
h(Fc) = Wc, Lg and Lĝ are uniformly expanding along Ec

Lf
, it follows that

g = h−1 ◦ (Lg + wg) ◦ h and ĝ = h−1 ◦ (Lĝ + wĝ) ◦ h

are uniformly expanding along Ec.

CLAIM 3.19. The diffeomorphisms g and ĝ are Anosov. To be precise:
• g is uniformly contracting along Eu and Es;
• ĝ is uniformly contracting along Eu, and uniformly expanding along Es .
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Proof of the claim. We only prove the case for g (the case for ĝ works analogously), since
what we need are the conjugation through h to their linear parts and the Hölder continuity
of h along the leaves of Fu and F s .

Since g is topologically conjugate to (Lg + wg) by h, it satisfies the shadowing lemma.
In particular, every ergodic measure of g can be approximated by the atomic measures
supported on periodic orbits. Thus to prove g is uniformly contracting along Eu and Es , it
suffices to show that the Lyapunov exponents of periodic points of g along Eu and Es are
uniformly smaller than zero.

By the continuity of the bundle Eu, for any ε > 0, there exists δ > 0 such that for any
x, y ∈ T3 with d(x, y) < δ, one has

−ε ≤ log ‖Dg|Eu(x)‖ − log ‖Dg|Eu(y)‖ ≤ ε. (1)

Since g is conjugate to (Lg + wg) and h sends the foliations Fu, F s to the corresponding
linear foliations of (Lg + wg), it follows that g is topologically contracting along the leaves
of Fu and F s . Let p be a periodic point of period k. Then gk|Fu(p) : Fu(p) → Fu(p) is
topologically contracting and has a unique fixed point p. Let x ∈ Fu

δ (p). Then gnk(x) ∈
Fu

δ (p) for any n ∈ N. By equation (1), one has

exp((χu(p) − ε)nk) · d(x, p) ≤ d(gnk(x), gnk(p))

≤ exp((χu(p) + ε)nk) · d(x, p), (2)

where χu(p) is the Lyapunov exponent of p for g along the direction Eu. Since h ◦ g =
(Lg + wg) ◦ h, one has

d(h ◦ gnk(x), h ◦ gnk(p)) = d((Lg + wg)
nk(h(x)), (Lg + wg)

nk(h(p))) (3)

= exp(χu(Lg) · nk) · d(h(x), h(p)),

where χu(Lg) is the Lyapunov exponent of Lg along Eu
Lf

, which is the same as the
Lyapunov exponent of (Lg + wg) along Eu

Lf
.

By Remark 2.23, the map h is uniformly Hölder continuous along the leaves of Fu, that
is, there exist C, α > 0 such that for any two points x1, x2 on the same Fu-leaf, one has
dFu(x1, x2) ≤ C · (dWu(h(x1), h(x2)))

α . Hence one has

d(hgnk(x), hgnk(p)) ≥ C−1/α · (d(gnk(x), gnk(p)))1/α .

Then, combining with Equations (2) and (3), for any n ∈ N, one has

C−1/α · exp((χu(p) − ε)nk/α) · (d(x, p))1/α ≤ exp(χu(Lg)nk) · d(h(x), h(p)),

which implies that χu(p) − ε ≤ α · χu(Lg). The arbitrariness of ε and p gives that the
Lyapunov exponents of periodic points of g along Eu are uniformly bounded away from
zero. Analogous argument gives that the Lyapunov exponents of periodic points of g along
Es are uniformly bounded away from zero. Hence g is also Anosov.
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By [PiRa], which states that the codimension-one stable (or unstable) foliation of a
Cr (r > 1) codimension-one Anosov diffeomorphism is C1-smooth, one has that:
• the unstable foliation of f, which is tangent to Ec ⊕ Eu, is C1-smooth;
• the stable foliation of g, which is tangent to Eu ⊕ Es , is C1-smooth;
• the unstable foliation of ĝ, which is tangent to Es ⊕ Ec, is C1-smooth.
As a consequence, the foliations F s , Fc, Fu are C1. Now, both g and ĝ satisfy the
assumption of Theorem 2.24, hence h is uniformly C1 along the leaves of F s and Fu.
As f , g, ĝ are Anosov diffeomorphisms, the leaves of F s , Fc, Fu are Cr . By Lemma
2.17, the map h is Cr along the leaves of F s , Fc, Fu. Finally, Journé’s theorem [J] shows
that h ∈ Diffr−ε(T3) for any ε > 0.

Acknowledgments. We would like to thank A. Gogolev and P. Varandas for useful com-
ments. D.X. would like to thank Professor Amie Wilkinson for many useful discussions
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London. We thank the anonymous referees for helping us improve the presentation of this
paper. S.G. is supported by NSFC 11771025 and 11831001. Y.S. is supported by NSFC
12071007, 11831001 and 12090015. D.X. is supported by NSFC 12090015. J.Z. is supported
by NSFC 12001027.

A. Appendix. Proof of Theorem 2.24.
The aim of this section is to give the proof of Theorem 2.24 which essentially follows the
argument in §A of [GS]. See also [Go1].

Proof of Theorem 2.24. Assume, to the contrary, that there exist two periodic orbits whose
Lyapunov exponents along the bundle Ec are different. For each periodic point p, we
denote by χc(p) the Lyapunov exponent of p along the direction Ec. As g is Anosov,
periodic measures (atomic probability measures equidistributed on a single periodic orbit)
are dense among invariant measures [Sig]. Since g is uniformly expanding along the
continuous bundle Ec, by the convexity of the set of invariant measures, there exist 0 <

χ1 < χ2 such that {χc(p) : p is a periodic point} = [χ1, χ2]. By the shadowing lemma,
for each point x ∈ T3, one has

χ1 ≤ lim inf
n→∞

1
n

log ‖Dgn|Ec(x)‖ ≤ lim sup
n→∞

1
n

log ‖Dgn|Ec(x)‖ ≤ χ2.

Hence for any ε > 0, there exists an adapted metric ‖ · ‖ε such that

χ1 − ε ≤ log ‖Dg|Ec(x)‖ε ≤ χ2 + ε, for any x ∈ T3.

By the continuity of the bundle Ec, there exists δ > 0 such that for any z1, z2 ∈ T3 with
d(z1, z2) < 3δ, one has

−ε < log ‖Dg|Ec(z1)‖ε − log ‖Dg|Ec(z2)‖ε < ε.

Now, for ε > 0 small (which will be fixed later), one fixes periodic points p, q such that
χc(p) ≤ χ1 + ε and χc(q) ≥ χ2 − ε.
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For the linear Anosov map Lg , let us denote by Ws , Wc, Wu, Wsu the foliations
tangent to Es

Lg
, Ec

Lg
, Eu

Lg
, Es

Lg
⊕ Eu

Lg
, respectively.

Since the factors of unit eigenvectors of Lg are algebraic, there exists C1 > 1 such that
for any l > 0 large, each strong unstable segment of Lg with length l is C1/

√
l dense in

T3. For any l > 0 large, there exist x, y ∈ T3 such that

x ∈ Wu
l (h(p)) and y ∈ Ws

C1/
√

l
(x) ∩ Wc

C1/
√

l
(h(q)). (4)

By the continuity of h, there exists η > 0 such that for any center segment for Lg of
length no more than η, its pre-image under h has length no more than δ. We will use �(I )

denote the length of a C1-curve. As Wsu is a linear foliation, the holonomy map given by
Wsu is an isometry. Now, one chooses Wc-center segments Ix and Ih(p) such that:
• �(Ix) = �(Ih(p)) = η;
• x is an endpoint of Ix and h(p) is an endpoint of h(p);
• Ix is an image of Ih(p) under the holonomy map Wsu.
Then Jx̂ = h−1(Ix) and Jp = h−1(Ih(p)) are segments tangent to Ec with length no more
than δ, and Jp is the image of Jx̂ under a holonomy map of F su, where x̂ = h−1(x).

By Remark 2.23, the homeomorphism h is uniformly Hölder continuous along the
leaves of Fu and F s , hence there exist constants C2 > 1 and θ ∈ (0, 1

2 ) which is only
determined by h such that x̂ ∈ Fu

d (p) and ŷ ∈ F s
C2/dθ (̂x) ∩ Fc

δ (q) for d large, due to
equation (4). As l can be chosen arbitrarily large, so is d.

As g is uniformly expanding and contracting along Eu and Es respectively, let us denote

τ = sup
x∈T3

‖Dg−1|Eu(x)‖ε < 1 and κ = sup
x∈T3

‖Dg−1|Es(x)‖ε > 1.

Let Nd be the smallest integer such that τNd · d ≤ 1. Then Nd ≤ −(log d/log τ) + 1. Let
N1

d be the largest integer such that

κN1
d C2/d

θ ≤ δ,

which implies that g−N1
d (Jx̂) is contained in the 3δ-neighborhood of q. Then for d large

enough, one has the following estimate:

N1
d

Nd

≥ θ log d + log δ − log C2 − 1
−(log d/log τ) + 1

· 1
log κ

= θ log d + log δ − log C2 − 1
log d − log τ

· − log τ

log κ

≥ θ

2
− log τ

log κ
.

As g is uniformly expanding along Ec, by the choices of Jp and δ, one has

exp(−Nd(χc(p) + ε)) · �(Jp) ≤ �(g−Nd (Jp))

and

�(g−Nd (Jx)) ≤ �(Jx) · exp(−N1
d (χc(q) − ε)) · exp((N1

d − Nd) · (χ1 − ε)).
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Then one has

�(g−Nd (Jx))

�(g−Nd (Jp))
≤ �(Jx)

�(Jp)
· exp(−N1

d (χc(q) − ε))

· exp((N1
d − Nd)(χ1 − ε)) · exp(Nd(χc(p) + ε))

≤ �(Jx)

�(Jp)
· exp(4Ndε) · exp(N1

d (χc(p) − χc(q)))

· exp((−N1
d + Nd) · (χc(p) − χ1))

≤ �(Jx)

�(Jp)
· exp(8Ndε) · exp(N1

d (χ1 − χ2))

≤ �(Jx)

�(Jp)
· exp(8εNd) · exp

(
(χ1 − χ2) · θ

2
(− log τ)

log κ
· Nd

)
.

One only needs to choose ε = (1/16)(χ2 − χ1) · (θ/−log τ)/2log κ , and one gets that
�(g−Nd (Jx))/�(g

−Nd (Jp)) tends to 0 when d tends to infinity. The holonomy map given
by the foliation Fu restricted to the unstable foliation of f is uniformly C1; therefore
�(g−Nd (Jx))/�(g

−Nd (Jp)) is uniformly bounded from above and below, which gives the
contradiction. This proves that all the periodic points have the same Lyapunov exponent
along the bundle Ec. Applying [GS], one gets a periodic point whose Lyapunov exponent
along Ec is the same as the center Lyapunov exponent of Lf . Finally, we apply [GS],
which shows that h is C1 along each leaf of Fc.
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